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Abstract. Amphiphilic block copolymer poly(isoprene-b-acrylic acid) (PI-b-PAA) stabilized 

exfoliated graphene in water and allowed the immobilization of semiconductor CdS nanoparticles 

forming CdS•PI-b-PAA/graphene. Characterization with HR-TEM and EDX justified the success of 

preparation and revealed the presence of spherical CdS. Moreover, UV-Vis and photoluminescence 

assays suggested that electronic interactions within CdS•PI-b-PAA/graphene exist as evidenced by the 

significant quenching of the characteristic emission of CdS by exfoliated graphene. Photoillumination 

of CdS•PI-b-PAA/graphene, in the presence of ammonium formate as quencher for the 

photogenerated holes, resulted on the generation of hydrogen by water splitting, monitored by the 

reduction of 4-nitroaniline to benzene-1,4-diamine (> 80±4% at 20 min; 100% at 24 min), much faster 

and efficient as compared when reference CdS•PI-b-PAA was used as photocatalyst (< 30±3% at 20 

min; 100% at 240 min). Moreover, Rhodamine B was photocatalytically degraded by CdS•PI-b-

PAA/graphene, with fast kinetics under visible light illumination in the presence of air. The 

enhancement of both photocatalytic processes by CdS•PI-b-PAA/graphene was rationalized in terms 

of effective separation of holes–electrons, contrary to reference CdS•PI-b-PAA, in which rapid 

recombination of the hole–electron pair is inevitable due to the absence of exfoliated graphene as 

suitable electron acceptor. 
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1. Introduction 

Semiconductors due to their unique electronic structure have the ability to promote photo-induced 

catalytic phenomena. In this context, photogenerated holes and electrons, as derived upon migration of an 

electron from the valence to the conduction band of the semiconductor, play an important role in 

photocatalysis. However, rapid charge-recombination, resulting in low photocatalytic efficiency and thus 

limiting practical applicability, is a major drawback for those systems. To overcome this obstacle, 

suppression of the charge-recombination rate is a key-issue which can be addressed by considering donor-

acceptor hybrid nanostructures in which semiconductors are combined with electron-acceptors such as 

graphene which, due to its superior electron mobility and high specific surface area, enhances charge-

separation via electron-transfer processes. Recently, the combination of CdTe quantum dots with 

graphene was reported and photoinduced electron-transfer phenomena from CdTe to graphene were found 

[1,2]. Moreover, numerous studies dealt with the combination of a variety of semiconductor quantum dots 

and graphene oxide (GO) or reduced graphene oxide (RGO) toward the preparation of photocatalytic 

systems for hydrogen generation and degradation of pollutants [3–6]. However, since GO possesses 

disrupted electronic network deficient of novel electronic properties, new routes for obtaining graphene 

sheets that preserve to large extent the high conductivity of the material are required. Meanwhile, 

reduction of GO partially occurs, hence, hampering the complete restoration of the sp2 network and 

resulting to material with properties that significantly deviate from those of pristine graphene. For the 

aforementioned reasons, both GO and RGO are rather unappealing for technological applications in 

which high and efficient charge transport is required, particularly those in photocatalysis, regardless that 

GO and/or RGO have already been combined with semiconductor quantum dots [7–14].The alternative 

route for achieving high-quality graphene sheets, yet well-dispersed in organic solvents, is by exfoliating 

graphite [15-17]. Without a doubt, liquid exfoliation of graphite results on the acquisition of large 

quantities of high quality graphene, which in turn can further boost its direct applicability. In this context, 

it is absolutely timely and significantly important to integrate semiconducting quantum dots onto liquid 

exfoliated graphene, by non-covalent means, aiming to keep intact the π-electronic network of graphene, 

and investigate the efficiency of the hybrid material in photocatalytic applications, namely, to generate 

hydrogen and degrade organic dyes upon photoirradiation.  

Photocatalytic water splitting is a promising, clean, environmental friendly and economic approach to 

produce hydrogen by solar energy [18,19]. Besides, since photocatalytic water splitting into 

stoichiometric H2 and O2 is regarded as artificial photosynthesis, electron donor-acceptor ensembles 

composed of semiconductor CdS and exfoliated graphene can be of special interest. In addition, 

environmental protection from noxious waste is a major issue and advanced oxidative processes for the 
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destruction of synthetic organic species resistant to conventional methods are needed [20–23]. Such 

oxidative processes rely on in-situ generation of highly reactive radical species, by using solar energy, in 

the presence of accumulated electrons (i.e. by reduction of O2), those for example that are yielded in 

donor-acceptor ensembles upon electron-transfer phenomena at the acceptor site. Herein, aqueous 

ensembles of semiconductor CdS nanoparticles combined with block copolymer stabilized exfoliated 

graphene were tested for the first time in photocatalysis. Particularly, generation of hydrogen by water 

splitting as observed by monitoring the reduction of 4-nitroaniline to the corresponding benzene-1,4-

diamine, upon photoillumination of CdS/graphene ensembles in the presence of ammonium formate as 

quencher for the photogenerated holes was achieved. Moreover, degradation of Rhodamine B (RhB), one 

of the most important and common xanthene cationic dyes [24–26], with fast kinetics under visible light 

illumination of CdS/graphene in the presence of air was attained. Both photocatalytic processes were due 

to electron-transfer phenomena that take place within the CdS/graphene nanoensemble. 

2. Methods 

2.1 Materials and Methods 

All reagents and solvents were purchased from Aldrich and used without further purification. Graphene 

was produced after liquid exfoliation of graphite flakes in N-methylpyrrolidone (NMP) [27]. 

Poly(isoprene-b-acrylic acid), abbreviated as PI-b-PAA (Mw = 42,500, Mw/Mn = 1.16, 10 wt% PI) was 

synthesized following to previously reported procedures [28]. Steady state UV-Vis electronic absorption 

spectra were recorded on a Perkin-Elmer (Lambda 19) UV-Vis-NIR spectrophotometer. Steady state 

emission spectra were recorded on a Fluorolog-3 Jobin Yvon-Spex spectrofluorometer (model GL3-21). 

HR-TEM measurements were carried out using a JEM-2100F (JEOL) high-resolution field-emission gun 

TEM operated at 80 keV at room temperature and under a pressure of 10-6 Pa. HR-TEM images were 

recorded with a charge-coupled device with an exposure time of typically 1s. Energy dispersive X-ray 

(EDX) spectroscopy measurements were performed using the same microscope equipped with a super 

atmospheric thin-window X-ray detector. 

2.2 Preparation of graphene/PI-b-PAA 

A solution of PI-b-PAA in NMP (2 mg/mL) was added to a dispersion of exfoliated graphene in NMP 

(24.4 µg in 2 mL) and stirred gently overnight at room temperature. 
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2.3 Preparation of CdS•PI-b-PAA 

An aqueous solution (2 mL) of CdCl2O8 (5.6 mg/mL) was added to a solution (1 mL) of PI-b-PAA in 

NMP (2 mg/mL) and left stirring overnight at room temperature. Subsequently, an aqueous solution (2 

mL) of Na2S (6.4 mg/mL) was added and the mixture stirred for 1h at room temperature. 

2.4 Preparation of CdS•PI-b-PAA/graphene ensembles 

An aqueous solution (2 mL) of CdCl2O8 (5.6 mg/mL) was added in graphene/PI-b-PAA dispersion in 

NMP (3 mL) and stirred overnight at room temperature. Then, an aqueous solution (2 mL) of Na2S (6.4 

mg/mL) was added and the mixture stirred for 1h at room temperature. 

2.5 Photocatalytic H2 evolution 

The photocatalytic H2 evolution was carried out in a special Pyrex vessel sealed with a silicone rubber 

septum, at room temperature under nitrogen atmosphere. The Pyrex vessel was positioned inside a 

cylindrical vessel surrounded by a circulating NaNO2 1M aqueous solution as UV-cut-off filter, thus 

ensuring that illumination was only by visible light. The light source used was a 500 W Xenon lamp, 

which was positioned 20 cm away from the reactor. Typically, CdS•PI-b-PAA/graphene as photocatalyst 

(1.5 mL of a 5.57 mg/mL solution) was added to an aqueous solution of 4-nitroaniline (2 mL of a 10 

mg/L aqueous solution) and ammonium formate (2 mg), which was used as sacrificial agent. Prior to 

visible light irradiation, the reaction mixture was bubbled with nitrogen for 30 min to remove the 

dissolved oxygen. At given irradiation time intervals, 3 mL of the reaction mixture was sampled and 

separated by centrifugation (4.200 rpm, 5 min.). The supernatant was analysed by UV-Vis spectroscopy 

and the concentration of 4-nitroaniline was determined by monitoring changes in the absorption band 

centred at 380 nm. 

2.6 Photocatalytic degradation of RhB 

The degradation of aqueous RhB was carried out in a special Pyrex vessel, which was positioned inside a 

cylindrical vessel surrounded by a circulating NaNO2 1M aqueous solution as UV-cut-off filter, thus 

ensuring that illumination was only by visible light. The light source used was a 500 W Xenon lamp, 

which was positioned 20 cm away from the reactor. The CdS•PI-b-PAA/graphene photocatalyst (13 mg, 

3.85 μmol/mg) was added in an aqueous solution of RhB (2.5 mL, 10-5 M) and the mixture stirred for 18 h 

in the dark in order to achieve a suitable adsorption–desorption equilibrium of the dye on the surface of 



 5 

the catalyst. The experiment took place under continuous air flow. At given irradiation time intervals, 3 

mL of the reaction mixture was sampled and separated by centrifugation (4.2 rpm, 5 min.). The 

concentration of RhB was determined by monitoring changes in the absorption band centred at 555 nm. 

3. Results and Discussion 

3.1 Synthesis and characterization of CdS•PI-b-PAA/graphene 

In line with our previously described methodology [27], exfoliated graphene obtained upon tip sonication 

of a graphite suspension in NMP was further treated with the amphiphilic block copolymer PI-b-PAA in 

order to achieve long period stabilization in aqueous media [29]. Subsequently, the carboxyl groups of the 

poly(acrylic acid) block of the copolymer in the PI-b-PAA/graphene hybrid material were used as anchors 

for the capture of Cd2+cations, which after gentle stirring with Na2S for 1 h were successively converted to 

CdS nanoparticles, thus yielding the CdS•PI-b-PAA/graphene ensemble. 

The aforementioned CdS•PI-b-PAA/graphene ensemble was characterized in full by complementary 

microscopic and spectroscopic means. High-resolution transmission electron microscopy (HR-TEM) 

images of CdS•PI-b-PAA/graphene clearly indicated the presence of round-shaped monodispersed 

nanoparticles of average diameter 3–5 nm, spread all over the exfoliated graphene sheets with higher 

density at graphene wrinkled edges (Figure 1 (a)). In some cases, TEM imaging of monolayered graphene 

in CdS•PI-b-PAA/graphene ensemble was possible, identified from selected area electron diffraction 

(SAED) and fast Fourier transform (FFT) in the selected areas (see inset of Figure 1 (a)). Energy 

dispersive X-ray (EDX) spectroscopy confirmed the presence of Cd and S in the sample (peaks at 3.1 keV 

and 2.3 keV, respectively) in a 1:1 ratio (Figure 1 (b)), indicating that the spherical particles observed in 

HR-TEM images represent CdS nanoparticles. At the same time, reference images of CdS nanoparticles 

stabilized in the presence of PI-b-PAA, prepared under similar experimental conditions but in the absence 

of exfoliated graphene, revealed the same spherical morphology with diameter in the range of 3–5 nm 

(Figure 1 (c)), while EDX spectroscopy further proved the presence of Cd and S in the reference CdS•PI-

b-PAA material (Figure 1 (d)). 



 6 

 

Figure 1. HR-TEM images [(a), (c)] and EDX spectra [(b), (d)] of CdS•PI-b-PAA/graphene ensemble and 

reference CdS•PI-b-PAA material, respectively. In the EDX spectra [(b), (d)], stars denote the elements 

Cu and Si, which are detected because of their presence in the microscope equipment, sample holder, and 

crystal detector. The inset in HR-TEM image of CdS•PI-b-PAA/graphene ensemble shows the FFT from 

the specific selected area electron diffraction. 

The CdS•PI-b-PAA and CdS•PI-b-PAA/graphene ensembles form yellow and yellow-grey solutions 

in a mixture of NMP:H2O (1:1), respectively, and were stable for several weeks, without observing any 

precipitation, allowing their spectroscopic study in solution. In this context, the UV-Vis spectrum of 

CdS•PI-b-PAA revealed an absorption band at 430 nm (Figure 2 (a)), characteristic of the electronic 

absorption of CdS, however, considerably blue shifted as compared to the absorption band of bulk CdS 

centered at ~512 nm, indicative of the quantum size effect. Furthermore, the absorption spectrum of 

CdS•PI-b-PAA/graphene showed a continuing absorption due to the presence of exfoliated graphene 

sheets, with an evolving band at around 440 nm, suggesting firstly the efficient formation of the CdS•PI-

b-PAA/graphene nanoensemble and secondly that the size of CdS in CdS•PI-b-PAA/graphene is similar 

to the one in the reference material CdS•PI-b-PAA. The latter observation is in full accordance with the 

HR-TEM images described earlier (cf. Figure 1 (a) and (c)). Besides that, photoluminescence assays 

revealed the presence of strong electronic interactions between CdS and exfoliated graphene sheets in the 

aqueous CdS•PI-b-PAA/graphene ensemble. The characteristic strong emission of CdS in CdS•PI-b-PAA 

at 649 nm, as observed upon photoexcitation at 400 nm, was found significantly quenched and red-shifted 

by 19 nm in the CdS•PI-b-PAA/graphene ensemble (Figure 2 (b)). The latter observation manifests strong 

electronic interactions in the excited states between CdS and exfoliated graphene and further suggests that 
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photogenerated electrons migrate and transport from the excited state of CdS in exfoliated graphene 

sheets, within the CdS•PI-b-PAA/graphene nanoensemble.  

 

Figure 2. UV-Vis absorption (a) and photoluminescence (b) spectra of CdS•PI-b-PAA/graphene 

nanoensemble (black) and reference CdS•PI-b-PAA (red), respectively, obtained in NMP:H2O (1:1). The 

excitation wavelength was 400 nm, and the concentrations were adjusted so that CdS in the two samples 

exhibited equal absorbance at the excitation wavelength. 

 

3.2 Photocatalytic H2 evolution 

Having comprehensively characterized the CdS•PI-b-PAA/graphene ensemble, its photocatalytic activity 

toward producing hydrogen by water splitting under visible light irradiation was evaluated. To this end, 4-

nitroaniline was reduced to benzene-1,4-diamine upon visible light illumination, under continuous N2 

purge, in the presence of CdS•PI-b-PAA/graphene and ammonium formate as quencher for the 

photogenerated holes. The photocatalytic activity of CdS•PI-b-PAA/graphene on producing H2 was 

evaluated by monitoring temporal changes in the absorption spectrum of 4-nitroaniline under visible light 
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irradiation. Figure 3 (a) shows that the characteristic absorption band at 386 nm attributed to 4-

nitroaniline gradually decreased and disappeared after 24 min. in the presence of CdS•PI-b-

PAA/graphene ensemble as photocatalyst, while at the same time two new absorption bands evolved, at 

323 and 264 nm, indicating the formation of the reduced product. Notably, the generation of H2 as 

identified by the formation of benzene-1,4-diamine was significantly slower when reference CdS•PI-b-

PAA was used as photocatalyst (Figure 3 (b)), with the transformation completed after 240 min. 

Following the temporal course of the 4-nitroaniline reduction (Figure 3 (c)), it is obvious that within 20 

min. more than 80±4% of 4-nitroaniline was reduced by the CdS•PI-b-PAA/graphene ensemble, while 

after the same period of time less than 30±3% was reduced by the reference CdS•PI-b-PAA material. The 

latter result highlights the high efficiency of CdS•PI-b-PAA/graphene as photocatalyst for hydrogen 

production in comparison to reference CdS•PI-b-PAA. Moreover, control experiments performed in dark 

or with only exfoliated graphene (i.e. without CdS) were negative (i.e. no changes were observed in the 

UV-Vis spectrum of 4-nitroaniline after 4 h of visible light irradiation). In other words, those control 

experiments showed the absence of any hydrogen evolution as evidenced by the stability of 4-nitroaniline. 

Collectively, this set of experiments showcasing the hydrogen generation by water splitting upon light-

irradiation of CdS•PI-b-PAA/graphene, clearly indicates the important role of exfoliated graphene as 

electron-acceptor in the CdS•PI-b-PAA/graphene ensemble, in which the photoinduced electron-transfer 

phenomena governing the nanoensemble decelerate the recombination rate of the electron-hole pair, 

contrary to the case of CdS•PI-b-PAA in which ultra-fast recombination occurs. 

 

Figure 3.UV–Vis absorption spectra of 4-nitroaniline over (a) CdS•PI-b-PAA/graphene, and (b) CdS•PI-

b-PAA, under visible light irradiation, in the presence of ammonium formate as sacrificial agent and N2 

purge. (c) Photocatalytic performance of CdS•PI-b-PAA/graphene (black), reference CdS•PI-b-PAA (red) 

and exfoliated graphene (grey) in the reduction of aqueous 4-nitroaniline under visible light irradiation in 

the presence of N2. 
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3.3 Photocatalytic degradation of RhB 

The photocatalytic activity of nanostructured CdS•PI-b-PAA/graphene was further investigated by 

monitoring its influence on the degradation of RhB. Briefly, CdS•PI-b-PAA/graphene was initially added 

to aqueous RhB and the reaction mixture protected from light was kept under stirring overnight to 

establish the appropriate adsorption/desorption equilibrium. Moreover, the photocatalytic degradation 

experiments took place under continuous airflow ensuring the presence of excess O2 in the reaction 

mixture. Although a strong band centered at 555 nm characterizes the absorption spectrum of RhB, UV-

Vis spectral changes were developed when aqueous RhB was irradiated by visible light in the presence of 

air and catalytic amounts of CdS•PI-b-PAA/graphene. Evidently, the absorption band of RhB was 

gradually reduced as a function of elapsing time while simultaneously was blue-shifted by 16 nm (i.e. 

absorption centered at 539 nm) after 90 min and eventually by 44 nm (i.e. absorption centered at 511 nm) 

after 150 min (Figure 4 (a)). Such spectral changes in the electronic absorption profile of RhB correspond 

to the loss of one and three N-ethyl groups and the formation of N,N,N΄-triethylrhodamine and N-ethyl-

rhodamine, respectively, according to previous reports [30]. In stark contrast, aqueous RhB was found 

photostable in the absence of CdS•PI-b-PAA/graphene (i.e. no changes were observed in the UV-Vis 

spectrum after 3 h of visible light irradiation). Furthermore, no changes on the electronic absorption 

spectrum of RhB were observed in the presence of CdS•PI-b-PAA/graphene but without photoirradiation, 

thus suggesting that visible light illumination is a key-factor for the degradation process. Additional 

reference experiments were also performed with exfoliated graphene (i.e. without CdS) or CdS•PI-b-PAA 

(i.e. without graphene) and found that photoirradiated RhB remained intact in the presence of exfoliated 

graphene, while partially transformed, however, with rather slow kinetics, by CdS•PI-b-PAA (Figure 4 

(b)). The normalized temporal concentration changes (C/C0) of RhB during the photocatalytic process 

(Figure 4 (c)), clearly illustrate that CdS•PI-b-PAA/graphene exhibit superior photocatalytic performance 

than CdS•PI-b-PAA. Evidently, more than 90±2% of RhB was decomposed after 150 min of visible light 

irradiation by CdS•PI-b-PAA/graphene, whereas the degradation percentage drops to less than 45±5% in 

the presence of CdS•PI-b-PAA. 
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Figure 4. UV-Vis spectral changes of aqueous RhB in the presence of (a) CdS•PI-b-PAA/graphene 

ensemble, and (b) reference CdS•PI-b-PAA, under visible light irradiation in the presence of air. (c) 

Photocatalytic performance of CdS•PI-b-PAA/graphene (black), reference CdS•PI-b-PAA (red) and 

exfoliated graphene (grey) in the degradation of aqueous RhB under visible light irradiation in the 

presence of air. 

 

3.4 Mechanism for the photocatalytic activity of CdS•PI-b-PAA/graphene 

Based on the photoluminescence quenching of photoexcited CdS in CdS•PI-b-PAA/graphene (cf. Figure 

2 (b)) that is mainly benefitted by electron-transfer phenomena, it is reasonable to state that effective 

charge-separation within CdS•PI-b-PAA/graphene ensemble is the fundamental process that dictates both 

the photoreduction of 4-nitroaniline and the photodegradation of RhB under the particular aforementioned 

experimental conditions. The presence of exfoliated graphene in CdS•PI-b-PAA/graphene ensemble 

allows high mobility of electrons throughout the carbon conjugated network, in stark contrast with the 

case of defected GO and RGO in which the process is disrupted, yet with reduced charge-recombination 

rate of the photogenerated holes and electrons as compared with CdS•PI-b-PAA in which ultra-fast 

recombination occurs. Accumulations of electrons in exfoliated graphene results in water splitting and 

evolution of H2 which effects the reduction of 4-nitroaniline to benzene-1,4-diamine (Figure 5). The 

photocatalytic activity of CdS•PI-b-PAA/graphene toward the production of H2 is particularly efficient in 

the presence of ammonium formate, as sacrificial electron-donor that quenches the photogenerated holes, 

thus promptly restoring the semiconductor CdS. On the other hand and in the presence of molecular 

oxygen, the accumulated electrons on exfoliated graphene are able to generate superoxide radical anions 

O2•– which in turn yield HO• and HOO• as highly reactive species responsible for degrading RhB, as well 

as other organic pollutants [31]. In addition, the photogenerated holes on CdS similarly degrade RhB 

(Figure 5). 
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Figure 5.Illustration of the proposed mechanism for the photocatalytic processes responsible for the water 

splitting and H2 production (under nitrogen) and the degradation of aqueous RhB (under air) by visible 

light irradiation of CdS•PI-b-PAA/graphene ensemble. 

 

4. Conclusions 

In summary, aqueous dispersions of CdS•PI-b-PAA/graphene ensembles were prepared. The CdS 

nanoparticles decorating the exfoliated graphene in CdS•PI-b-PAA/graphene were found to possess 

spherical morphology with diameter 3-5 nm as identified by HR-TEM and EDX spectroscopy. 

Furthermore, the CdS•PI-b-PAA/graphene was characterized by UV-Vis and photoluminescence 

spectroscopy. The latter aided to identify electronic communication between CdS and exfoliated 

graphene, within CdS•PI-b-PAA/graphene, in the excited state due to significant quenching of the 

characteristic emission of CdS at 649 nm, upon photoexcitation at 400 nm, in the presence of exfoliated 

graphene. Then, the photocatalytic application of CdS•PI-b-PAA/graphene for the production of 

hydrogen, by examining the reduction of 4-nitroaniline to benzene-1,4-diamine, was assessed. Monitoring 

temporal changes in the absorption spectrum of 4-nitroaniline under visible light irradiation, it was found 

that the formation of benzene-1,4-diamine was faster and more efficient in the presence of CdS•PI-b-

PAA/graphene (> 80±4% at 20 min; 100% at 24 min) as compared when reference CdS•PI-b-PAA was 

used as photocatalyst (< 30±3% at 20 min; 100% at 240 min). In addition, the photocatalytic degradation 

of RhB was investigated by CdS•PI-b-PAA/graphene and found to proceed with fast kinetics under 

visible light illumination in the presence of air. Both photocatalytic processes tested utilizing CdS•PI-b-

PAA/graphene, involved visible light absorption by CdS, photogeneration and separation of charges, 

migration of holes to CdS and electrons to exfoliated graphene, were superior in efficiency as compared 



 12 

either with reference CdS•PI-b-PAA or only exfoliated graphene, highlighting the decisive role of 

exfoliated graphene when participating in donor-acceptor systems and electron-transfer reactions. 
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