
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ 
ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΡΕΥΝΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ 

 ΕΣΠΑ 2007-2013 
Ε.Π. «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» 
ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ ΙΙ» - ΤΕΧΝΙΚΟ ΠΑΡΑΡΤΗΜΑ ΕΡΓΟΥ                          

 

1 
                             

                                                                                    
 

 

 

 

 

 

 

 

 

Τίτλος Έργου: «StochSocS: Συστήματα σε Ψηφίδα για Παράλληλη Στοχαστική 
Προσομοίωση Βιολογικών Δικτύων στη Βιολογία Συστημάτων» 

 

(κωδικός 3828 και Κ.Α. 70/3/12367) 

 

ΠΑΡΑΔΟΤΕΟ 2.2  

Τίτλος: "Αξιολόγηση Επιδόσεων Στοχαστικής  Προσομοίωσης Βιομοντέλων 
Αυξανόμενης Πολυπλοκότητας" 

 

 

 

ΑΘΗΝΑ 

ΙΟΥΛΙΟΣ 2015 



Many-Core CPUs Can Deliver Scalable Performance 
to Stochastic Simulations of Large-Scale Biochemical 

Reaction Networks 
 

Elias Kouskoumvekakis1, Dimitrios Soudris2, Elias S. Manolakos1 
1Department of Informatics and Telecommunications, University of Athens, Greece 

2School of Electrical & Computer Engineering, National Technical University of Athens, Greece 
Email: {eliask, eliasm}@di.uoa.gr 

 
 

Abstract—Stochastic simulation of large-scale biochemical 
reaction networks is becoming essential for Systems Biology. It 
enables the in-silico investigation of complex biological system 
dynamics under different conditions and intervention strategies, 
while also taking into account the inherent "biological noise" 
especially present in the low species count regime. It is however a 
great computational challenge since in practice we need to execute 
many repetitions of a complex simulation model to assess the 
average and extreme cases behavior of the dynamical system it 
represents. The problem's work scales quickly, with the number 
of repetitions required and the number of reactions in the bio-
model. The worst case scenario s when there is a need to run 
thousands of repetitions of a complex model with thousands of 
reactions. We have developed a stochastic simulation software 
framework for many- and multi-core CPUs. It is evaluated using 
Intel's experimental many-cores Single-chip Cloud Computer 
(SCC) CPU and the latest generation consumer grade Core i7 
multi-core Intel CPU, when running Gillespie's First Reaction 
Method exact stochastic simulation algorithm. It is shown that 
emerging many-core NoC processors can provide scalable 
performance achieving linear speedup as simulation work scales 
in both dimensions. 

Keywords— stochastic simulation algorithms; biochemical 
reaction networks; First Reaction Method; Intel SCC; many-core 
processors; Networks on Chip; parallel algorithms 

I. INTRODUCTION 
Systems Biology, a rapidly emerging important multi-

disciplinary field, creates challenges not only for biologists but 
also for computer scientists and engineers. A major challenge is 
the demand to capture and analyze the stochastic dynamics of 
large-scale biochemical reaction networks commonly used to 
model the behavior of cellular systems. The ever increasing 
complexity of such bio-models, with thousands of biochemical 
reactions, creates a pressing need for efficient and accurate in 
silico stochastic simulation schemes that could be employed 
easily and routinely by any investigator on a modern computer 
of reasonable cost and power consumption. The computational 
demands for such simulations increase dramatically as bio-
models scale to the level of whole cellular subsystems or whole 
organism metabolic networks [1]. 

When an investigator does not want to sacrifice simulation 
accuracy, there are two approaches to follow: The first employs 

deterministic methods based on ordinary differential equations 
(ODEs), while the second and more realistic tries to mimic the 
way nature works and account for intrinsic and extrinsic 
stochasticity ("noise") of biological systems by employing exact 
Stochastic Simulation Algorithms (SSA). SSAs employ Markov 
chain processes as the stochastic model for the biochemical 
reactions, in order to approximate their time evolution after a 
series of discrete steps. Then Monte Carlo experiments can be 
used to repeatedly execute these algorithms, while changing 
their initial conditions or reaction parameters in each repetition. 

The most popular exact Stochastic Simulation Algorithms 
were introduced by D.T Gillespie, with the Direct Method (DM) 
SSA being the first proposed method [2]. For networks with m 
reactions the algorithm has time complexity in O(m). Gillespie's 
First Reaction Method (FRM) is an equivalent later algorithm 
with the same complexity which is easier to parallelize for high 
performance. Gibson and Bruck have also introduced an 
alternative exact SSA, the Next Reaction Method (NRM) [3], 
enjoying a reduced time complexity in O(logm). However, in 
contrast to Gillespie's FRM, the NRM is a lot more difficult to 
efficiently parallelize. 

Application-specific, power efficient hardware accelerators 
for exact stochastic simulation try to exploit the fine grain 
parallelism provided by modern FPGAs. However the design of 
such aggressively pipelined Systems on Chip (SoC) is still a 
complex process where the designer should strike a good 
balance between the complexity of the class of bio-models 
supported by the SoC and the size of the FPGA device used, in 
terms of on-chip resources (LUTs, RAMs and DSPs). Examples 
of FPGA solutions are those in [4], [5]. Likewise, GPU based 
solutions, such as [6] and [7], exploit the massively parallel 
compute power of GPUs that are nowadays readily available on 
the average scientist’s PC. Their major drawback lies however 
in the difficulty of generating efficient ‘kernels’ (software) 
implementation for every biomodel at hand, and in the amount 
of available on-chip fast access RAM (hardware), which is very 
limited for the needs of stochastic simulations of networks with 
a large number of reactions and species.  

 In addition, there are pure software solutions for today's 
commodity multi-core CPUs. They are easy to install, setup and 
use, however they lack the performance and power efficiency of 
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the above hardware accelerators due to their serial software 
nature. Advancements in modern compiler technologies, in 
conjunction with the already perfected instruction level 
parallelism (ILP) of multi-core processors, help mitigate the lack 
of specialized massively parallel hardware. Pure software 
simulators exploit these in order to provide decent performance 
on stochastic simulations of medium size bio-models (with up 
to few hundreds of reactions) using SSA algorithms. Software 
tools that support stochastic simulation are COPASI [8], 
StochKit and Matlab's SimBiology toolbox. 

Given the pressing need of the systems biology community 
for efficient exact stochastic simulation of large-scale 
biochemical reaction networks (with thousands of reactions and 
species), in this paper we focus on methods to deliver scalable 
performance using the emerging class of many-core CPUs. By 
using a fully parameterized software framework we have 
developed for parallel stochastic simulation on many-core and 
multi-core CPUs, we evaluate the performance and scalability 
delivered when using the FRM SSA algorithm on different 
underlying hardware targets and core configurations.  

Our first hardware target is Intel's Single-chip Cloud 
Computer [9], an experimental many-core CPU with 48 Pentium 
cores that feature a simple in-order execution engine and 
arranged across a mesh-type Network on Chip (NoC) 
communication fabric. This processor was presented by Intel 
Labs as "a concept vehicle" for many-core hardware and 
software research and we chose it as our first target due to its 
massively parallel architecture that, in contrast to FPGAs and 
GPUs, can be exploited using well-established parallel 
programming models and techniques. Our second hardware 
target, was a powerful and more recent commodity multi-core 
processor featuring Intel’s 4th generation Core 
microarchitecture, code named “Haswell”, that features highly 
optimized out-of-order execution and HT (HyperThreading) 
[10], Intel’s flavor of SMT (simultaneous multi-threading). 

Our intention is not to compare the absolute performance of 
the two CPU architectures, but rather their performance and 
scalability characteristics on the same problem, as its size 
increases. Our results show that significant speedup gains can be 
achieved by efficiently utilizing the parallelism afforded by both 
many-core and multi-core CPU architectures. To the best of our 
knowledge this is the first attempt to implement efficiently SSA 
algorithms for many-core CPUs. 

The rest of the paper is organized as follows: In Section II 
we review Gillespie’s FRM SSA algorithm and show two 
methods on the workload division among the units of execution 
that can be either separate processes or threads. In Section III we 
provide an overview of the Intel SCC NoC processor. In Section 
III we present our software framework for parallel stochastic 
simulation. In Section IV we present and discuss the scalability 
evaluation of the Intel SCC NoC and Core i7 processors using 
our software framework. Finally, in Section V, we summarize 
our findings and point to future research directions. 

II. THE FRM SSA ALGORITHM AND METHODS OF 
PARALLELIZATION 

A stochastic biochemical reactions network model is 
composed of n species {S1, …, Sn} with initial concentrations 

{X1, … Xn} that interact through m reaction channels {R1, …, Rm}. 
To simplify the analysis we consider that all species are 
uniformly distributed within some volume Ω inside a cell with 
unit size. This assumption allows us to simplify the calculations 
by ignoring the spatial effects that exist in the real world. Let 
Xi(t) be the concentration of species Si at time t. The state of the 
system at time t is X(t) = (X1(t), X2(t), …, Xn(t)) with initial 
conditions X0(t) = x0 at initial time t = t0. 

Stochastic simulation tracks the above state vector of 
concentrations of the network at appropriately chosen discrete 
time intervals, without explicitly solving the differential 
equations governing the underlying system dynamics. If a 
reaction Rμ occurs the current state x is updated by a factor, so 
that X(t + τ) = x + vμ. The vμ state update vector is equal to (v1μ, 
…, vnμ), where viμ represents the change in the molecular count 
of Si due to the occurrence of the reaction Rμ. Each such reaction 
Rμ is also associated with a specific probability rate constant cμ, 
which is proportional to the reaction rate constant kμ and 
inversely proportional to the volume Ω as shown in equations 
7(a) and 7(b) of [2]. 

The probability that a randomly chosen combination of 
reactant molecules can interact and form a reaction channel Rμ 
within the next infinitesimal time interval [t, t + dt] is given by 
cμdt. The propensity aμ(x) of reaction channel Rμ at state X is 
calculated by multiplying the probability rate constant cμ by the 
number of possible combinations of reactant molecules for Rμ in 
state x, as shown in equations (21) to (26) of [2]. Thus for second 
order reactions with two reactant species S1 , S2,  it holds that: 

αμ = cμ * X1 * X2  (1) 

The model described above is a Markov process, where the 
next state is only dependent on the previous one. Simulating this 
model yields the trajectories of X(t). Gillespie’s original 
stochastic simulation algorithm (SSA), named as Direct Method 
(DM), is based on the above formulation and speeds up the 
process by introducing a new function p(τ, μ | x, t) which is the 
probability that the next reaction in the system is Rμ and it occurs 
within  the next infinitesimal time interval [t, t + τ], given that 
the current state of the system is X(t) = x. This has the advantage 
that the simulation can advance from one time step to the next, 
without the need to simulate in-between times, at which no 
reaction occurs. In this case the update of reactants and products 
happens in discrete amounts and species counts can be even very 
low, another notable advantage relative to the deterministic 
simulation algorithms. 

While the DM SSA algorithm works fine for small 
biochemical networks, it is hard to parallelize and time 
consuming for medium to large size bio-models. Concerned 
with these issues Gillespie introduced an alternative but 
equivalent SSA algorithm, called as First Reaction Method 
(FRM). In this algorithm, a putative next reaction time τj is 
calculated for every reaction channel Rj. The reaction channel Rμ 
with the smallest next reaction time τμ is determined and this 
reaction is then "fired" at the end of the reaction cycle (RC). 
Since the calculation of each putative reaction time τj can 
proceed independently of all the others, the algorithm is a good 
candidate for massive parallelization. On the following page we 
list all the steps of the FRM SSA algorithm. 
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1. Initialize the state of the system X(t0) = x0. 

2. For every reaction Rj: 

- Compute the propensity function αj(X). 

- Determine the time τj to the next reaction Rj. 

𝜏𝑗 =  
1

𝛼𝑗(𝑥)
∗  𝑙𝑛 (

1

𝑟𝑗
) =  

−1

𝛼𝑗(𝑥)
∗ 𝑙𝑛(𝑟𝑗)          (2) 

        where each rj is a unit uniform random number. 

End for every reaction Rj. 

3. Find the reaction Rμ that has the smallest putative time 
τ =min{τj}. 

4. Determine the new time and system state after firing 
reaction Rμ: 

t’ = t + τμ    (3) 

X(t + τμ) = X(t) + vμ    (4) 

Where vμ is the state change vector for Rμ. 

5. If the new time t’ exceeds the desired simulation time 
Tsim then halt the simulation. 

6. Go to step 2. 

The FRM SSA can be parallelized by dividing its 
computation workload among N processing units. Steps 2 
through 5 of the FRM SSA algorithm comprise a Reaction Cycle 
(RC) and each RC can be processed in parallel by partitioning 
its m reactions on those N processing units. This workload 
partitioning scheme will be referred to from now on as Single 
Simulation in Parallel (SSIP) and the associated workload 
placed on each processing unit equals to WSSIP =  m/Ν  reactions. 
Since we usually need to perform Monte Carlo experiments with 
a lot of repetitions (say R) of a biomodel's simulation, we can 
instead distribute the R repetitions among the N processing units. 
This coarser grain workload partitioning scheme will be referred 
to as Multiple Simulations in Parallel (MSIP) and the 
corresponding workload for each processing unit will be WMSIP 
= R/N repetitions in this case. 

As mentioned in Section I, parallel implementations of 
Gillespie’s SSAs exist for FPGAs, GPUs and multi-core CPUs. 
However, to the best of our knowledge none exists for a many-
core processor like the experimental Intel SCC NoC, despite 
their flexibility and increased parallel processing capabilities. 

III. THE INTEL SCC MANY-CORE PROCESSOR NOC 
 The Intel “Single-chip Cloud Computer” (SCC) [9] is an 

experimental many-core Network on Chip (NoC) processor 
architecture consisting of a mesh of 4 x 6 = 24 "tiles", as depicted 
in Figure 1. Each tile includes two Pentium P54C cores, along 
with their 32KB L1 (devided equally for instruction and data) 
and 256KB L2 caches. It also contains a Mesh Interface Unit 
(MIU) with circuitry to connect the cores onto the network and 
allow them to run at different frequencies. In addition a 16KB 
Message Passing Buffer (MPB) memory provides fast 
communication between the cores of the network, for a total 
MPB size of 384KB. 

A. Overview of Cores and Tiles 
Each SCC core is a second generation Pentium P54C with a 

32-bit x86 instruction set architecture (IA-32) that can run at 
frequencies from 533MHz up to 800MHz. These are small in-
order cores that Intel synthesized for layout onto the chip. The 
absolute performance of these cores is not important since the 
processor was designed as a concept vehicle for researchers, to 
find ways to connect a large number of cores and assess how this 
architecture interacts with and enables application software. All 
of the cores act as independent computational nodes that 
communicate with others using either non-cache coherent 
shared memory through the 4 on-die DDR3 memory controllers, 
or through the distributed MPB memory with aid of RCCE, an 
MPI like library developed specifically for this purpose [11]. 

Every tile contains two cores and connects to a router that 
communicates with the Mesh Interface Unit (MIU) used to 
integrate the tile into the 2D mesh. The MIU packetizes and de-
packetizes data to and from the mesh using a round-robin 
scheme for arbitration between the two cores of the tile. It also 
catches cache misses and decodes each core’s 32-bit memory 
addresses into 34-bit system memory addresses, suitable for the 
memory controller it belongs. The memory address translation 
is managed through a lookup table (LUT) on each core. Each of 
the four memory controllers can address up to 16GB (234) bits 
of DDR3 memory for a maximum system memory of 64GB. 

B. Memory Organization 
The programmer has access to private off-chip memory 

which is accessed through the 4 on-chip DDR3 memory 
controllers. The LUTs on each core are configured in such a way 
so that specific regions of the DDR3 memory are only accessible 
through a single core. Since this corresponds to the traditional 
memory of a single core CPU of the past, the standard usage 
patterns apply and data is transferred from the core’s registers, 
through L1 and L2 caches and finally into the DDR3 memory 
and vice versa. The same off-chip memory and its associated 
controllers provide access to shared memory. However these 
memory regions are mapped by the LUTs on all cores as un-
cacheable regions by default in order to avoid consistency 
issues. This means that L1 and L2 caches are completely 
bypassed and data is fed directly to each core’s register file. 
Since no cache coherence protocol is in place, it is the 
responsibility of the programmer to enforce partial order of 
operations across the cores. This sometimes requires mutually 
exclusive access to the shared memory regions using the test-
and-set register provided for each core. 

 
Figure 1. The Intel SCC many-cores NoC processor architecture with 24 
"tiles" (2 cores per tile, along with 16KB MPB memory and a mesh 
interface unit), routers (R) and on-die DDR3 memory controllers (MC) [9]. 
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Since the processor does not offer any hardware managed 
cache coherency protocol, it features a new memory type to 
enable efficient communication between the cores. This new 
memory type is called the Message Passing Buffer Type 
(MPBT) and it consists of all the MPB buffers on the processor. 
Each one of the 24 tiles (with 2 cores) contains 16KB of MPB 
(8KB for each core) and therefore the size of this memory type 
is 384KB overall. A reserved bit in the page table of the cores is 
used to mark MPBT data. Legacy software by default does not 
mark memory as MPBT and runs without modifications. If the 
bit is set, data is cached in L1 and bypasses L2. To support 
software managed cache-coherence a new instruction was added 
to the P54C’s x86 instruction set architecture which invalidates, 
but does not flush, all cache lines tagged as MPBT in the L1, so 
any subsequent accesses will go to DDR3 memory. 

C. Software Platform 
The most common software platform of the SCC is very 

similar to the one found on typical multi-core systems and it is 
based on a customized Linux operating system that runs 
separately on each core. The system includes drivers for the low-
level access to the MPB memory and other hardware features of 
the SCC like the connection to the management console and the 
network communications (non MPB) between the cores of the 
die via an NFS file system visible among all the cores. 

The lack of cache coherence between the cores suggests that 
the most natural and efficient programming model is the 
distributed one, where cores run Single Program Multiple Data 
(SPMD) programs and communicate by exchanging messages. 
For this purpose, a special library was developed and named 
RCCE (not an acronym) [11]. The RCCE uses the familiar to 
distributed message passing programmers SPMD model. The 
application is simultaneously launched on all cores using a 
helper script, called rccerun. This is actually a parallel ssh 
wrapper that connects to all the cores and executes the 
application that is stored on the NFS file system, which is in turn 
accessible from all cores. In the RCCE execution model, the 
application is started on each core in an unspecified order. Thus 
conformant programs must not depend on a particular order of 
execution on the cores. 

A different effort in our research group has focused on the 
development of a skeletons library, called rckskel, that allows 
programming at a higher level masking the complexity of the 
hardware and allowing programmers to perform task based 
parallelism on the Intel SCC processor. It uses efficient task 
allocation, mapping, sequencing and execution patterns, in order 
to distribute the workload among the cores of the processor [12]. 

IV. SOFTWARE FRAMEWORK FOR PARALLEL STOCHASTIC 
SIMULATIONS ON MULTI AND MANY CORE PROCESSORS 
We present here the software framework we have developed 

for performing stochastic simulations on multi-core and many-
core processor architectures. The framework provisions the 
whole simulation flow, from configuration and loading of 
resources to the actual simulation scheduling and parallel 
execution, on the set of cores or threads the user configures 
during the setup phase. The supported SSA algorithm is, at the 
moment, the FRM SSA, both in SSIP and MSIP modes of 
parallel operation and is able to run on local workstations (with 

e.g Intel Core i5/i7 multi-core CPUs) as well as remotely onto 
the Intel “Single-chip Cloud Computer” (SCC) [9]. 

The software is written in C++ for performance reasons as 
well as code clarity and maintenance and employs the RCCE 
library for message passing communications. The compilers 
used were the open-source GNU GCC 4.9 and LLVM Clang 3.5. 
A GCC cross compiler that targets and optimizes for the x86 
i586 micro-architecture of Intel SCC’s Pentium cores was 
generated with the aid of the CrossTool-NG toolchain builder. 
The build system used for compiling the software was CMake. 
We also employed some popular open-source development 
libraries. Boost libraries were used for a variety of tasks and we 
also used Google Log in order to provide extensive logging 
capabilities to the application, Google Flags to easily declare 
and use command line arguments and last but not least, Google 
Test as the framework to write the unit tests for the application’s 
classes. 

A. The Frontend Components 
The frontend components are those that closely interact with 

the end user and for this reason we chose to make them agnostic 
of the backend which includes components that actually perform 
the stochastic simulation on the underlying hardware using the 
selected SSA algorithm. This decoupling allows for flexibility 
on extending the framework with different SSA algorithms 
besides the FRM SSA. All of the components are shown in 
Figure 2. 

The user controls the simulator using a command line 
interface (CLI) that allows him to select the simulation(s) 
configuration file, the binary results file location that will 
contain the resulting data set(s) of the simulation(s) and the data 
folder from which to read the simulation(s) resources. The user 
can also select the simulation engine to use which acts as the 

Comannd Line Interface

Configuration Provider

Resource Provider

Results Generator

Simulation Settings

Simulation Resources

Simulation Statistics

Thread Pool

Thread 
Worker 1

Thread 
Worker T..

Communicator (e.g RCCE)

SBML File, Settings File, Data 
Directory, Engine, Logging, ....

Simulation Storage

Binary Results File

CSV Files for Repetitions, 
Statistics, etc

 
Figure 2. The software framework’s main components 
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hardware abstraction layer (HAL) to the underlying hardware 
(e.g SCC), whether to produce logs in console or in files with 
variable verbosity, and last but not least whether to run some 
unit tests prior to simulation. 

The simulator’s primary input is the biomodel file in 
standard SBML format [13] which contains all of the bio-
model’s reactions (m) and molecular species (n). Prior to 
executing the simulation, the Resource Provider is initiated in 
order to parse the original SBML file and generate the 
simulation’s resources: the reaction table (RT) and the species 
table (ST). The RT table contains the m reactions with each one 
having separate reactant and product pointers (addresses) to 
molecular species counts stored on the ST table along with the 
probability rate constant cμ, the vμ state vector with the 
stoichiometry of the reaction and the order of the reaction. We 
support reactions up to the 3rd order with up to three reactant and 
five product species. The ST table contains the initial 
concentrations {X1, … Xn} of the n species participating in the 
simulation. 

The configuration file is a text file that can be easily edited 
by the user and contains the desired simulations and their 
parameters. These are shown in Table I along with an example 
that can simulate the ASYN bio-model [15] using the FRM SSA 
algorithm on all 48 cores of the SCC processor for 100 
repetitions with a simulation  duration ("lab time") of 1 week. 
The user can choose the sampling (reporting) period (SP) of the 
simulation which has an immediate effect on the file size of the 
binary file that contains the complete output data set of the 
simulation. There is also a parameter that sets the maximum 
steps (reaction events) in a sampling period before aborting a 
repetition. This helps maintain the exact simulation in a running 
state even when the time steps produced (τμ) during an SP, are 
very small and cannot successfully lead to its completion. 

The simulator saves the results into binary files. These files 
have a custom structure and contain all the repetitions of the 
performed simulation in a specific format readable by the 
Results Generator. Each repetition section includes the species 
populations on specific time intervals based on the sampling 
period that the user has defined on the configuration file. After 
each such section, the file contains repetition summary statistics 
like the reaction cycles (RCs) performed. 

At the end of the simulation, the Results Generator has the 
ability to parse the binary files described above using multiple 
threads (on multi-core processors) and generate human readable, 
comma separated value (CSV) files with (possibly large) data-
sets from the repetitions performed: the species counts at each 
sampling (reporting) period, as well as the average, minimum 
and maximum of molecular species populations, along with 
execution statistics such as the executed reaction cycles 
(simulation steps) and simulation (lab) times for each repetition. 
These CSV files can be in turn opened by other applications in 
order to further manipulate them and / or produce useful plots 
for the end-user. 

B. The Backend Components 
 The actual simulation of a bio-model is performed by 
components that belong to this group. Each process after 
initialization eventually creates one or more Model Simulator 
objects that control and synchronize all of their underlying 
components. The Simulation Settings component is responsible 
for providing the user’s configuration of the simulations that are 
currently in progress. The Simulation Resources component 
provides the SBML biomodel’s resources (e.g. the RT and ST 
tables) to the worker units that actually do the computation. The 
Simulation Storage contains all the data structures for keeping 
the results of the simulation and traversing those on regular time 
intervals (based on the selected SP) allowing it to generate the 
resulting binary files of the simulation. The Simulation Statistics 
keeps the various statistics for all the species for all repetitions 
of the simulation. 

 The Simulation Engine is responsible for scheduling and 
dividing the work, statically at the moment, among all the 
worker threads that it spawns within the Thread Pool unit. The 
latter is also used for synchronizing the threads, whenever the 
SSA algorithm depends on such a barrier, using a Thread 
Barrier unit. Each worker thread spawned uses a Thread Worker 
derived object, like the FRM Thread Worker, as its underlying 
container holding the data structures and algorithmic functions 
of the selected SSA algorithm. This derived object corresponds 
to a Unit of Execution (UE), an abstraction which maps to a 
single thread for multi-core CPUs or a single core for multi-core 
ones. It is responsible for performing the computations in every 
repetition where each one continually creates reaction cycles 
and a specific reaction, having the minimum j time on this UE, 
is selected among all the possible ones. 

 The communication between the UEs happen during two 
specific phases of the simulation. The first occurs only once, at 
the start of the simulation, where the master UE reads the 
resource files and distributes the data among the communication 
group (communicator) for this specific simulation. This can be 
done either with a broadcast or with a scatter primitive, 
depending on whether we want all the UEs to have a single or 
split representation of data respectively. The other 
communication phase happens when a set of N UEs execute the 
FRM algorithm in parallel SSIP mode, where at the end of each 
reaction cycle (RC), UE C will locally hold a winning reaction 
R having the minimal putative time τj among the m / N reactions 
assigned to it. A communication step is then needed, involving 
all N UEs, to all-reduce (reduction plus broadcast) the local 
minimum times and distribute the information of the global 

TABLE I.  SIMULATION SETTINGS 

Parameter Example for 
Intel SCC 

The bio-model’s name (represents the SBML filename) ASYN 
The number of reactions contained in the bio-model (m) 136 
The number of species contained in the bio-model (n) 90 
The SSA algorithm to use (e.g FRM) FRM 
The mode of parallelism to use (SSIP / MSIP) SSIP 
The range of cores to assign work [00-47] 
The number of threads to use on each core (if SMT/HT) 1 
The number of repetitions to perform (R) 100 
Total simulation time (in seconds) for each repetition 604800 
Time interval between sampling periods (SP) 3600 
Sampling period steps before aborting a repetition 1000000 
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"winner" reaction Rμ and time, τ = min {τj} (see algorithm in 
Section II) to all of the N UEs. Our framework realizes this all-
reduce step on any subset of N UEs using RCCE’s blocking 
primitives (send and recv). The method of all-reduction used 
matters only on many-core NoC processors and not on multi-
core ones, since it is in the former case that different methods 
may have different routing latencies when passing messages 
between cores, while in the latter we have shared memory 
operations that impose almost the same latency on all cores. 

Our all-reduction method works for any 2D mesh 
communicator, where we first reduce the local winning 
reactions of each row (in parallel), using a hub (star) 
communication scheme embedded into the row. When the 
leftmost UE of each row on the 2D mesh (let's call it Ci,0 without 
loss of generality), acting as the central place (hub) of its row, 
has acquired the local winning reaction of every other UE in its 
row, it reduces them to the one with the minimum time and 
initiates a broadcast of this row’s winner reaction to all of the 
row’s UEs. Subsequently, a second phase starts where the same 
procedure repeats along the columns of the 2D mesh, using the 
bottom UE of each column (C0,,j) as the master, i.e. the  
reduction target and subsequent  broadcast initiator. At the end 
of this second phase every UE in the 2D mesh communicator 
has aquired the global winner reaction information and since it 
has a local copy of the model's current species table (state 
trajectories X(t)), it can update independently the affected 
species counts and then proceed with the execution of the next 
RC. In all cases, the communication primitives used by our 
software framework are parameterized by the size of the 
communicator (N) and can be applied to any subset of UEs on 
multi-core or many-core CPUs, no matter what is its underlying 
physical configuration. 

V. PERFORMANCE RESULTS 
 In this section we describe the simulation experiments 
performed in order to assess the throughput and performance 
delivered to the application when our framework is running the 
same biomodel, but on different CPU architectures and core 
configurations. We measured the running times and total 
reaction cycles performed during all repetitions of each 
simulation and report the simulation's Throughput (in Mega 
Reaction Cycles per second - MRC/sec), Performance (in Mega 
Reactions per second - MR/sec), the Speedup (S) factor achieved 
relatively to using one core, and the Efficiency (E) i.e the 
speedup over the total number of cores, for a variety of core 
configurations. Note that during the execution of one RC the 
simulator should evaluate all m reactions of the model. 

A. Experimental Systems and Bio-Models Used 
 All simulation experiments were performed using the same 

algorithm (FRM SSA) in both SSIP and MSIP modes of 
operation. A first baseline for benchmarking was established by 
running each simulation on a single core of the SCC NoC 
processor, an Intel Pentium (P54C) at 533MHz running SCC 
Linux. A second baseline was established by running the same 
bio-model, using our framework setup for utilizing one core of 
a very powerful workstation PC with a quad-core Intel Core i7 
4790K CPU running at 4GHz (when workload is placed on all 
cores) to 4.4GHz (when workload is placed on a single core) 
with 32 GB of RAM and a fast SSD under GNU/Linux OS.  

 For all simulations we used two bio-models. The first, is the 
well known Linear Chain System (LCS) of 2nd order reactions 
[14] that is commonly used as a benchmark, in the sense that we 
can easily scale its workload on demand. The format of its 2nd 
order reactions (Ri, i = 0,1,2, …,m-1), all having two reactant 
and two product species, is the following: 

𝑆𝑖 𝑚𝑜𝑑 𝑚 +  𝑆(𝑖+1) 𝑚𝑜𝑑 𝑚  
𝑘𝑖
→  𝑆(𝑖+2) 𝑚𝑜𝑑 𝑚 + 𝑆(𝑖+3) 𝑚𝑜𝑑 𝑚 

The second biomodel used was developed by our group and 
has been recently judged to become the "model of the month" 
(3/2015) of the EBI Biomodel Database [15]. It was developed 
to study how the polymerization of protein Alpha-synuclein 
(ASYN) affects different parts of the cell and disturbs the 
homeostasis of dopaminergic neurons, a mechanism that is 
believed to play a key role at the onset of Parkinson's disease. 
Our ASYN biomodel has m = 136 reactions (mass action 
kinetics), n = 90 species and is a typical (medium size) bio-
model of the EBI DB, with a mix of reactions of different orders 
and stoichiometries. 

B. SSIP Simulation Experiments 
The first experiment tries to evaluate the communication 

cost and its impact when using the SSIP mode parallel 
implementation to partition the reactions of the FRM SSA 
among the many cores of the SCC processor. This kind of 
simulation can tell us how the efficiency drops with the number 
of cores, for a fixed problem size, and how many cores of the 
CPU can be used efficiently i.e. before the speedup levels off, to 
accelerate a single run (repetition) of the network's simulation. 
We used the LCS bio-model with three different configurations 
in terms of the reactions workload (m): 1024 (1K), 2048 (2K) 
and 4096 (4K) in the evaluation. Every setup was run a 
minimum of five times and we additionally performed more 
executions until we couldn’t observe any noticeable change on 
the simulation times. 

We observed performance and speedup gains while 
increasing the cores count up to a certain point, as shown in 
Figure 3. Detailed results for the LCS4K (model simulation time 
Tsim= 10ms) are provided in Table II, where speedup, throughput 
and performance figures are calculated based on the actual time 
taken to complete the simulation on a subset of the SCC  cores 
(using an increment of 12 cores). The results demonstrate that as 

 
Figure 3. Intel SCC NoC scalability analysis.  (a) Performance (MR/sec) 
and (b) Speedup while running the LCS 1K/2K/4K bio-model 
configurations using the parallel FRM SSA in SSIP mode. 
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the LCS bio-model’s complexity increases in terms of reactions, 
we observe improved speedup for the same number of cores. For 
example for the LCS4K model speedup remains linear and 
efficiency is almost perfect (1.0), all the way up to 36 cores. 
Even when all 48 cores are used the efficiency is very good and 
almost linear (0.96). Speedup on smaller models levels off 
earlier, as expected. This is attributed to the fact that for a fixed 
problem size (m) as the number of cores increases the 
communication costs increase, while the computation workload 
per core actually decreases due to the reactions partitioning 
(SSIP mode). So for every stochastic simulation of fixed 
problem size there is a number of cores beyond which 
communication dominates computation leading to leveling 
performance. Nevertheless the SCC NoC can deliver high 
performance (more than 8MR/sec) at an efficiency larger than 
66%, even in models of m = 1024 reactions (the smallest size 
considered). 

The second experiment was similar with the first, but now 
using a different target machine, one that contains the Core i7 
multi-core processor associated with the second baseline. This 
experiment allowed us to assess not only the expected 
performance of a modern multi-core CPU readily available for 
scientists and engineers (please remember that the SCC is an 
experimental research concept CPU), but also how it behaves as 
the number of cores increase along with the problem size. We 
should remark that in this case our software framework utilizes 
shared memory among the running threads since it does not have 
access to a hardware memory type, such as the MPB of the SCC 
processor. 

The Intel’s Core i7 multi-core processor implements HT 
(HyperThreading) [10], Intel’s flavor of SMT (simultaneous 
multi-threading), in order to run up to two concurrent threads on 
each core’s hardware, for a total concurrent execution of 8 
threads and thus we can perform immediate comparisons 
between the many-core and multi-core processors. As shown in 
Table III we observe the same increasing speedup on this multi-
core processor when running the LCS4K biomodel (Tsim = 
10msec) on up to the 4 threads configurations. This is to be 
expected since the parallel FRM SSA algorithm's 
implementation using our software framework remains the same 
and there is still the same communication overhead that does not 
dominate the computation times as long as the bio-model has a 
high enough complexity (number of reactions). 

The steep speedup drop (efficiency loss) when using more 
than 4 threads is attributed to the fact that this is a quad-core 
processor that implements HT [10]. Since all threads operate on 
exactly the same type of instruction workload (SPMD) it cannot 
take advantage of each core’s superscalar architecture that needs 

varied workload placement (e.g integer and floating point 
arithmetic at the same time) to show performance advantages 
when utilizing more threads than cores. Of course throughput 
and performance figures are way ahead of the many-core SCC 
processor due to the fact that this multi-core CPU contains latest 
generation cores, featuring a highly superior, out-of-order 
micro-architecture and clocked at almost 8X the frequency of 
the SCC. We believe that even more performance can be 
exploited from next generation multi-core processors, should 
they start introducing hardware memory structures like the MPB 
of the SCC NoC processor alongside their cores, for increased 
communication efficiency among them, without resorting to 
shared memory and its unavoidable locks or cache-coherency 
protocol overheads. 

C. MSIP Simulation Experiments 
In the third experiment we used the SCC to perform many 

repetitions of the ASYN biomodel in MSIP mode of operation, 
exploiting all 48 cores of the SCC, each one with a workload of 
R/N repetitions. This kind of simulation is useful to assess the 
maximum expected performance a CPU can deliver, since after 
simulation initialization, where broadcasting of biomodel 
resource data occurs, the simulation repetitions proceed 
independently in parallel and there is no communication among 
the cores. All 48 SCC cores finished the ASYN model's 
simulation (Tsim = 604800 secs = 1 Week, 48 repetitions) that 
consisted of a total of 0.003 million RCs in Treal = 54 secs. The 
achieved throughput was 0.41 MRC/sec and the performance, 
when considering the model’s complexity (m = 136), reached 
19.06 MR/sec. This is an estimate of the maximum performance 
that the Intel SCC many-core processor running at 533MHz can 
deliver during a stochastic simulation with the FRM SSA 
algorithm. In comparison, our framework running 8 threads on 
Intel Core i7 performed the same 48 repetitions in 29 secs, 
giving a speadup of only S = 1.86 relatively to the SCC NoC 
CPU which features simple in-order, low frequency Pentium 
cores. All results are summarized in Table IV.  

TABLE III.  INTEL CORE I7 4-CORE CPU, STOCHASTIC SIMULATION 
PERFORMANCE SCALING (PARALLEL FRM-SSA,  LCS4K BIOMODEL) 

Intel 
Core i7 
Threads 

Time 
(s) Speedup Efficiency Throughput 

(RC/s) 
Performance 

(MR/s) 

1 302 1.00 1.00 1359 5.57 

2 154 1.97 0.98 2673 10.95 
4 80 3.80 0.95 5161 21.14 
6 91 3.34 0.56 4539 18.59 

8 72 4.21 0.53 5716 23.41 

 

TABLE IV.  PERFORMANCE COMPARISON OF INTEL SCC NOC VS. 
INTEL CORE I7 CPUS (FRM SSA  MSIP MODE  - 48 REPETITIONS) 

Setup Time 
(s) Speedup Throughput 

(MRC/s) 
Performance 

(MR/s) 
1 Core of SCC 

NoC 2495 1 0.003 0.41 

48 Cores  of 
SCC NoC 54 46.25 0.140 19.06 

 
1 Thread on 

Core i7 147 1 0.051 7.00 

8 Threads on 
Core i7 29 5.06 0.258 35.11 

 

TABLE II.  INTEL SCC NOC 48-CORE CPU. STOCHASTIC SIMULATION 
PERFORMANCE SCALING (PARALLEL FRM-SSA, LCS4K MODEL)   

Intel 
SCC 

Cores 

Time 
(sec) Speedup Efficiency Throughput 

(RC/s) 
Performance 

(MR/s) 

1 6883 1.00 1.00 60 0.24 
12 574 11.99 0.99 714 2.92 
24 287 23.99 0.99 1432 5.86 
36 191 35.98 0.99 2149 8.80 
48 150 46.03 0.96 2740 11.22 
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We also experimented with the ASYN bio-model in SSIP 
mode of operation but measured low performance when 
dividing the reaction workload on more than 10 cores. 
Scalability and efficiency were suboptimal due to the medium 
size workload of this model, that is not high enough to keep 
more than 10 cores busy between each communication phase. 
For this reason and for such medium size models we recommend 
the utilization of small subsets of cores (clusters), to compute 
reaction cycles in parallel (SSIP mode) and then employ many 
such clusters, to compute many simulation repetitions in parallel 
(MSIP mode). This hybrid C x N scheme, where N is the number 
of cores combined in SSIP mode and C is the number of SSIP 
simulation runs combined in MSIP mode, might prove to be 
ideal for exploiting in the best way many-core CPUs. We plan 
to further research such setups, in order to find the optimal 
balance and thus throughput and performance, as the number of 
repetitions and the model complexity increase at the same time, 
which is the most practical scenario for large scale biomolecular 
network stochastic simulations in systems biology. 

VI. CONCLUSIONS 
In silico investigation of the stochastic dynamics of large 

scale biological system models is an important problem in 
systems biology, with applications in drug design and 
personalized medicine.  Stochastic simulation is the method of 
choice since it allows accounting for the "noise" inherent in 
biological systems and assessing their behavior even in the very 
low species counts regime. However as models become more 
complex (bio-molecular interactions increases to thousands) it is 
also required to run a large number of repetitions of the bio-
model simulations to assess not only  the average behavior but 
also the sensitivity and robustness of a system under different 
conditions. 

We have developed a parallel implementation of the FRM 
SSA algorithm that can divide the bio-model reactions, or the 
simulation repetitions, workload on a user selected number of 
cores. Experimental results demonstrate that both processor 
architectures considered have the potential to deliver high 
performance and linear speedup as long as the problem scales 
on both dimensions i.e. in terms of the biomodel's complexity as 
well as in terms of the number of required repetitions of the 
simulation. Our software framework can be extended to 
incorporate more stochastic simulation algorithms, e.g.  Gibson 
and Bruck’s NRM SSA, more hardware targets, and hybrid 
configuration setups. These features, if properly combined, 
make the framework a solid research ‘vehicle’ for the stochastic 
simulation landscape and allow for experimentation and 
performance assessment with a multitude of setups and 
parameters. 
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