
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ
ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΡΕΥΝΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ

 ΕΣΠΑ 2007-2013
Ε.Π. «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ»
ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ ΙΙ» - ΤΕΧΝΙΚΟ ΠΑΡΑΡΤΗΜΑ ΕΡΓΟΥ

1

Τίτλος Έργου: «StochSocS: Συστήματα σε Ψηφίδα για Παράλληλη Στοχαστική
Προσομοίωση Βιολογικών Δικτύων στη Βιολογία Συστημάτων»

(κωδικός 3828 και Κ.Α. 70/3/12367)

ΠΑΡΑΔΟΤΕΟ 2.2

Τίτλος: "Αξιολόγηση Επιδόσεων Στοχαστικής Προσομοίωσης Βιομοντέλων
Αυξανόμενης Πολυπλοκότητας"

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2015

Many-Core CPUs Can Deliver Scalable Performance
to Stochastic Simulations of Large-Scale Biochemical

Reaction Networks

Elias Kouskoumvekakis1, Dimitrios Soudris2, Elias S. Manolakos1
1Department of Informatics and Telecommunications, University of Athens, Greece

2School of Electrical & Computer Engineering, National Technical University of Athens, Greece
Email: {eliask, eliasm}@di.uoa.gr

Abstract—Stochastic simulation of large-scale biochemical
reaction networks is becoming essential for Systems Biology. It
enables the in-silico investigation of complex biological system
dynamics under different conditions and intervention strategies,
while also taking into account the inherent "biological noise"
especially present in the low species count regime. It is however a
great computational challenge since in practice we need to execute
many repetitions of a complex simulation model to assess the
average and extreme cases behavior of the dynamical system it
represents. The problem's work scales quickly, with the number
of repetitions required and the number of reactions in the bio-
model. The worst case scenario s when there is a need to run
thousands of repetitions of a complex model with thousands of
reactions. We have developed a stochastic simulation software
framework for many- and multi-core CPUs. It is evaluated using
Intel's experimental many-cores Single-chip Cloud Computer
(SCC) CPU and the latest generation consumer grade Core i7
multi-core Intel CPU, when running Gillespie's First Reaction
Method exact stochastic simulation algorithm. It is shown that
emerging many-core NoC processors can provide scalable
performance achieving linear speedup as simulation work scales
in both dimensions.

Keywords— stochastic simulation algorithms; biochemical
reaction networks; First Reaction Method; Intel SCC; many-core
processors; Networks on Chip; parallel algorithms

I. INTRODUCTION
Systems Biology, a rapidly emerging important multi-

disciplinary field, creates challenges not only for biologists but
also for computer scientists and engineers. A major challenge is
the demand to capture and analyze the stochastic dynamics of
large-scale biochemical reaction networks commonly used to
model the behavior of cellular systems. The ever increasing
complexity of such bio-models, with thousands of biochemical
reactions, creates a pressing need for efficient and accurate in
silico stochastic simulation schemes that could be employed
easily and routinely by any investigator on a modern computer
of reasonable cost and power consumption. The computational
demands for such simulations increase dramatically as bio-
models scale to the level of whole cellular subsystems or whole
organism metabolic networks [1].

When an investigator does not want to sacrifice simulation
accuracy, there are two approaches to follow: The first employs

deterministic methods based on ordinary differential equations
(ODEs), while the second and more realistic tries to mimic the
way nature works and account for intrinsic and extrinsic
stochasticity ("noise") of biological systems by employing exact
Stochastic Simulation Algorithms (SSA). SSAs employ Markov
chain processes as the stochastic model for the biochemical
reactions, in order to approximate their time evolution after a
series of discrete steps. Then Monte Carlo experiments can be
used to repeatedly execute these algorithms, while changing
their initial conditions or reaction parameters in each repetition.

The most popular exact Stochastic Simulation Algorithms
were introduced by D.T Gillespie, with the Direct Method (DM)
SSA being the first proposed method [2]. For networks with m
reactions the algorithm has time complexity in O(m). Gillespie's
First Reaction Method (FRM) is an equivalent later algorithm
with the same complexity which is easier to parallelize for high
performance. Gibson and Bruck have also introduced an
alternative exact SSA, the Next Reaction Method (NRM) [3],
enjoying a reduced time complexity in O(logm). However, in
contrast to Gillespie's FRM, the NRM is a lot more difficult to
efficiently parallelize.

Application-specific, power efficient hardware accelerators
for exact stochastic simulation try to exploit the fine grain
parallelism provided by modern FPGAs. However the design of
such aggressively pipelined Systems on Chip (SoC) is still a
complex process where the designer should strike a good
balance between the complexity of the class of bio-models
supported by the SoC and the size of the FPGA device used, in
terms of on-chip resources (LUTs, RAMs and DSPs). Examples
of FPGA solutions are those in [4], [5]. Likewise, GPU based
solutions, such as [6] and [7], exploit the massively parallel
compute power of GPUs that are nowadays readily available on
the average scientist’s PC. Their major drawback lies however
in the difficulty of generating efficient ‘kernels’ (software)
implementation for every biomodel at hand, and in the amount
of available on-chip fast access RAM (hardware), which is very
limited for the needs of stochastic simulations of networks with
a large number of reactions and species.

 In addition, there are pure software solutions for today's
commodity multi-core CPUs. They are easy to install, setup and
use, however they lack the performance and power efficiency of

978-1-4673-7813-0/15/$31.00 ©2015 IEEE 517

the above hardware accelerators due to their serial software
nature. Advancements in modern compiler technologies, in
conjunction with the already perfected instruction level
parallelism (ILP) of multi-core processors, help mitigate the lack
of specialized massively parallel hardware. Pure software
simulators exploit these in order to provide decent performance
on stochastic simulations of medium size bio-models (with up
to few hundreds of reactions) using SSA algorithms. Software
tools that support stochastic simulation are COPASI [8],
StochKit and Matlab's SimBiology toolbox.

Given the pressing need of the systems biology community
for efficient exact stochastic simulation of large-scale
biochemical reaction networks (with thousands of reactions and
species), in this paper we focus on methods to deliver scalable
performance using the emerging class of many-core CPUs. By
using a fully parameterized software framework we have
developed for parallel stochastic simulation on many-core and
multi-core CPUs, we evaluate the performance and scalability
delivered when using the FRM SSA algorithm on different
underlying hardware targets and core configurations.

Our first hardware target is Intel's Single-chip Cloud
Computer [9], an experimental many-core CPU with 48 Pentium
cores that feature a simple in-order execution engine and
arranged across a mesh-type Network on Chip (NoC)
communication fabric. This processor was presented by Intel
Labs as "a concept vehicle" for many-core hardware and
software research and we chose it as our first target due to its
massively parallel architecture that, in contrast to FPGAs and
GPUs, can be exploited using well-established parallel
programming models and techniques. Our second hardware
target, was a powerful and more recent commodity multi-core
processor featuring Intel’s 4th generation Core
microarchitecture, code named “Haswell”, that features highly
optimized out-of-order execution and HT (HyperThreading)
[10], Intel’s flavor of SMT (simultaneous multi-threading).

Our intention is not to compare the absolute performance of
the two CPU architectures, but rather their performance and
scalability characteristics on the same problem, as its size
increases. Our results show that significant speedup gains can be
achieved by efficiently utilizing the parallelism afforded by both
many-core and multi-core CPU architectures. To the best of our
knowledge this is the first attempt to implement efficiently SSA
algorithms for many-core CPUs.

The rest of the paper is organized as follows: In Section II
we review Gillespie’s FRM SSA algorithm and show two
methods on the workload division among the units of execution
that can be either separate processes or threads. In Section III we
provide an overview of the Intel SCC NoC processor. In Section
III we present our software framework for parallel stochastic
simulation. In Section IV we present and discuss the scalability
evaluation of the Intel SCC NoC and Core i7 processors using
our software framework. Finally, in Section V, we summarize
our findings and point to future research directions.

II. THE FRM SSA ALGORITHM AND METHODS OF
PARALLELIZATION

A stochastic biochemical reactions network model is
composed of n species {S1, …, Sn} with initial concentrations

{X1, … Xn} that interact through m reaction channels {R1, …, Rm}.
To simplify the analysis we consider that all species are
uniformly distributed within some volume Ω inside a cell with
unit size. This assumption allows us to simplify the calculations
by ignoring the spatial effects that exist in the real world. Let
Xi(t) be the concentration of species Si at time t. The state of the
system at time t is X(t) = (X1(t), X2(t), …, Xn(t)) with initial
conditions X0(t) = x0 at initial time t = t0.

Stochastic simulation tracks the above state vector of
concentrations of the network at appropriately chosen discrete
time intervals, without explicitly solving the differential
equations governing the underlying system dynamics. If a
reaction Rμ occurs the current state x is updated by a factor, so
that X(t + τ) = x + vμ. The vμ state update vector is equal to (v1μ,
…, vnμ), where viμ represents the change in the molecular count
of Si due to the occurrence of the reaction Rμ. Each such reaction
Rμ is also associated with a specific probability rate constant cμ,
which is proportional to the reaction rate constant kμ and
inversely proportional to the volume Ω as shown in equations
7(a) and 7(b) of [2].

The probability that a randomly chosen combination of
reactant molecules can interact and form a reaction channel Rμ
within the next infinitesimal time interval [t, t + dt] is given by
cμdt. The propensity aμ(x) of reaction channel Rμ at state X is
calculated by multiplying the probability rate constant cμ by the
number of possible combinations of reactant molecules for Rμ in
state x, as shown in equations (21) to (26) of [2]. Thus for second
order reactions with two reactant species S1 , S2, it holds that:

αμ = cμ * X1 * X2 (1)

The model described above is a Markov process, where the
next state is only dependent on the previous one. Simulating this
model yields the trajectories of X(t). Gillespie’s original
stochastic simulation algorithm (SSA), named as Direct Method
(DM), is based on the above formulation and speeds up the
process by introducing a new function p(τ, μ | x, t) which is the
probability that the next reaction in the system is Rμ and it occurs
within the next infinitesimal time interval [t, t + τ], given that
the current state of the system is X(t) = x. This has the advantage
that the simulation can advance from one time step to the next,
without the need to simulate in-between times, at which no
reaction occurs. In this case the update of reactants and products
happens in discrete amounts and species counts can be even very
low, another notable advantage relative to the deterministic
simulation algorithms.

While the DM SSA algorithm works fine for small
biochemical networks, it is hard to parallelize and time
consuming for medium to large size bio-models. Concerned
with these issues Gillespie introduced an alternative but
equivalent SSA algorithm, called as First Reaction Method
(FRM). In this algorithm, a putative next reaction time τj is
calculated for every reaction channel Rj. The reaction channel Rμ
with the smallest next reaction time τμ is determined and this
reaction is then "fired" at the end of the reaction cycle (RC).
Since the calculation of each putative reaction time τj can
proceed independently of all the others, the algorithm is a good
candidate for massive parallelization. On the following page we
list all the steps of the FRM SSA algorithm.

518

1. Initialize the state of the system X(t0) = x0.

2. For every reaction Rj:

- Compute the propensity function αj(X).

- Determine the time τj to the next reaction Rj.

𝜏𝑗 =
1

𝛼𝑗(𝑥)
∗ 𝑙𝑛 (

1

𝑟𝑗
) =

−1

𝛼𝑗(𝑥)
∗ 𝑙𝑛(𝑟𝑗) (2)

 where each rj is a unit uniform random number.

End for every reaction Rj.

3. Find the reaction Rμ that has the smallest putative time
τ =min{τj}.

4. Determine the new time and system state after firing
reaction Rμ:

t’ = t + τμ (3)

X(t + τμ) = X(t) + vμ (4)

Where vμ is the state change vector for Rμ.

5. If the new time t’ exceeds the desired simulation time
Tsim then halt the simulation.

6. Go to step 2.

The FRM SSA can be parallelized by dividing its
computation workload among N processing units. Steps 2
through 5 of the FRM SSA algorithm comprise a Reaction Cycle
(RC) and each RC can be processed in parallel by partitioning
its m reactions on those N processing units. This workload
partitioning scheme will be referred to from now on as Single
Simulation in Parallel (SSIP) and the associated workload
placed on each processing unit equals to WSSIP = m/Ν reactions.
Since we usually need to perform Monte Carlo experiments with
a lot of repetitions (say R) of a biomodel's simulation, we can
instead distribute the R repetitions among the N processing units.
This coarser grain workload partitioning scheme will be referred
to as Multiple Simulations in Parallel (MSIP) and the
corresponding workload for each processing unit will be WMSIP
= R/N repetitions in this case.

As mentioned in Section I, parallel implementations of
Gillespie’s SSAs exist for FPGAs, GPUs and multi-core CPUs.
However, to the best of our knowledge none exists for a many-
core processor like the experimental Intel SCC NoC, despite
their flexibility and increased parallel processing capabilities.

III. THE INTEL SCC MANY-CORE PROCESSOR NOC
 The Intel “Single-chip Cloud Computer” (SCC) [9] is an

experimental many-core Network on Chip (NoC) processor
architecture consisting of a mesh of 4 x 6 = 24 "tiles", as depicted
in Figure 1. Each tile includes two Pentium P54C cores, along
with their 32KB L1 (devided equally for instruction and data)
and 256KB L2 caches. It also contains a Mesh Interface Unit
(MIU) with circuitry to connect the cores onto the network and
allow them to run at different frequencies. In addition a 16KB
Message Passing Buffer (MPB) memory provides fast
communication between the cores of the network, for a total
MPB size of 384KB.

A. Overview of Cores and Tiles
Each SCC core is a second generation Pentium P54C with a

32-bit x86 instruction set architecture (IA-32) that can run at
frequencies from 533MHz up to 800MHz. These are small in-
order cores that Intel synthesized for layout onto the chip. The
absolute performance of these cores is not important since the
processor was designed as a concept vehicle for researchers, to
find ways to connect a large number of cores and assess how this
architecture interacts with and enables application software. All
of the cores act as independent computational nodes that
communicate with others using either non-cache coherent
shared memory through the 4 on-die DDR3 memory controllers,
or through the distributed MPB memory with aid of RCCE, an
MPI like library developed specifically for this purpose [11].

Every tile contains two cores and connects to a router that
communicates with the Mesh Interface Unit (MIU) used to
integrate the tile into the 2D mesh. The MIU packetizes and de-
packetizes data to and from the mesh using a round-robin
scheme for arbitration between the two cores of the tile. It also
catches cache misses and decodes each core’s 32-bit memory
addresses into 34-bit system memory addresses, suitable for the
memory controller it belongs. The memory address translation
is managed through a lookup table (LUT) on each core. Each of
the four memory controllers can address up to 16GB (234) bits
of DDR3 memory for a maximum system memory of 64GB.

B. Memory Organization
The programmer has access to private off-chip memory

which is accessed through the 4 on-chip DDR3 memory
controllers. The LUTs on each core are configured in such a way
so that specific regions of the DDR3 memory are only accessible
through a single core. Since this corresponds to the traditional
memory of a single core CPU of the past, the standard usage
patterns apply and data is transferred from the core’s registers,
through L1 and L2 caches and finally into the DDR3 memory
and vice versa. The same off-chip memory and its associated
controllers provide access to shared memory. However these
memory regions are mapped by the LUTs on all cores as un-
cacheable regions by default in order to avoid consistency
issues. This means that L1 and L2 caches are completely
bypassed and data is fed directly to each core’s register file.
Since no cache coherence protocol is in place, it is the
responsibility of the programmer to enforce partial order of
operations across the cores. This sometimes requires mutually
exclusive access to the shared memory regions using the test-
and-set register provided for each core.

Figure 1. The Intel SCC many-cores NoC processor architecture with 24
"tiles" (2 cores per tile, along with 16KB MPB memory and a mesh
interface unit), routers (R) and on-die DDR3 memory controllers (MC) [9].

519

Since the processor does not offer any hardware managed
cache coherency protocol, it features a new memory type to
enable efficient communication between the cores. This new
memory type is called the Message Passing Buffer Type
(MPBT) and it consists of all the MPB buffers on the processor.
Each one of the 24 tiles (with 2 cores) contains 16KB of MPB
(8KB for each core) and therefore the size of this memory type
is 384KB overall. A reserved bit in the page table of the cores is
used to mark MPBT data. Legacy software by default does not
mark memory as MPBT and runs without modifications. If the
bit is set, data is cached in L1 and bypasses L2. To support
software managed cache-coherence a new instruction was added
to the P54C’s x86 instruction set architecture which invalidates,
but does not flush, all cache lines tagged as MPBT in the L1, so
any subsequent accesses will go to DDR3 memory.

C. Software Platform
The most common software platform of the SCC is very

similar to the one found on typical multi-core systems and it is
based on a customized Linux operating system that runs
separately on each core. The system includes drivers for the low-
level access to the MPB memory and other hardware features of
the SCC like the connection to the management console and the
network communications (non MPB) between the cores of the
die via an NFS file system visible among all the cores.

The lack of cache coherence between the cores suggests that
the most natural and efficient programming model is the
distributed one, where cores run Single Program Multiple Data
(SPMD) programs and communicate by exchanging messages.
For this purpose, a special library was developed and named
RCCE (not an acronym) [11]. The RCCE uses the familiar to
distributed message passing programmers SPMD model. The
application is simultaneously launched on all cores using a
helper script, called rccerun. This is actually a parallel ssh
wrapper that connects to all the cores and executes the
application that is stored on the NFS file system, which is in turn
accessible from all cores. In the RCCE execution model, the
application is started on each core in an unspecified order. Thus
conformant programs must not depend on a particular order of
execution on the cores.

A different effort in our research group has focused on the
development of a skeletons library, called rckskel, that allows
programming at a higher level masking the complexity of the
hardware and allowing programmers to perform task based
parallelism on the Intel SCC processor. It uses efficient task
allocation, mapping, sequencing and execution patterns, in order
to distribute the workload among the cores of the processor [12].

IV. SOFTWARE FRAMEWORK FOR PARALLEL STOCHASTIC
SIMULATIONS ON MULTI AND MANY CORE PROCESSORS
We present here the software framework we have developed

for performing stochastic simulations on multi-core and many-
core processor architectures. The framework provisions the
whole simulation flow, from configuration and loading of
resources to the actual simulation scheduling and parallel
execution, on the set of cores or threads the user configures
during the setup phase. The supported SSA algorithm is, at the
moment, the FRM SSA, both in SSIP and MSIP modes of
parallel operation and is able to run on local workstations (with

e.g Intel Core i5/i7 multi-core CPUs) as well as remotely onto
the Intel “Single-chip Cloud Computer” (SCC) [9].

The software is written in C++ for performance reasons as
well as code clarity and maintenance and employs the RCCE
library for message passing communications. The compilers
used were the open-source GNU GCC 4.9 and LLVM Clang 3.5.
A GCC cross compiler that targets and optimizes for the x86
i586 micro-architecture of Intel SCC’s Pentium cores was
generated with the aid of the CrossTool-NG toolchain builder.
The build system used for compiling the software was CMake.
We also employed some popular open-source development
libraries. Boost libraries were used for a variety of tasks and we
also used Google Log in order to provide extensive logging
capabilities to the application, Google Flags to easily declare
and use command line arguments and last but not least, Google
Test as the framework to write the unit tests for the application’s
classes.

A. The Frontend Components
The frontend components are those that closely interact with

the end user and for this reason we chose to make them agnostic
of the backend which includes components that actually perform
the stochastic simulation on the underlying hardware using the
selected SSA algorithm. This decoupling allows for flexibility
on extending the framework with different SSA algorithms
besides the FRM SSA. All of the components are shown in
Figure 2.

The user controls the simulator using a command line
interface (CLI) that allows him to select the simulation(s)
configuration file, the binary results file location that will
contain the resulting data set(s) of the simulation(s) and the data
folder from which to read the simulation(s) resources. The user
can also select the simulation engine to use which acts as the

Comannd Line Interface

Configuration Provider

Resource Provider

Results Generator

Simulation Settings

Simulation Resources

Simulation Statistics

Thread Pool

Thread
Worker 1

Thread
Worker T..

Communicator (e.g RCCE)

SBML File, Settings File, Data
Directory, Engine, Logging,

Simulation Storage

Binary Results File

CSV Files for Repetitions,
Statistics, etc

Figure 2. The software framework’s main components

520

hardware abstraction layer (HAL) to the underlying hardware
(e.g SCC), whether to produce logs in console or in files with
variable verbosity, and last but not least whether to run some
unit tests prior to simulation.

The simulator’s primary input is the biomodel file in
standard SBML format [13] which contains all of the bio-
model’s reactions (m) and molecular species (n). Prior to
executing the simulation, the Resource Provider is initiated in
order to parse the original SBML file and generate the
simulation’s resources: the reaction table (RT) and the species
table (ST). The RT table contains the m reactions with each one
having separate reactant and product pointers (addresses) to
molecular species counts stored on the ST table along with the
probability rate constant cμ, the vμ state vector with the
stoichiometry of the reaction and the order of the reaction. We
support reactions up to the 3rd order with up to three reactant and
five product species. The ST table contains the initial
concentrations {X1, … Xn} of the n species participating in the
simulation.

The configuration file is a text file that can be easily edited
by the user and contains the desired simulations and their
parameters. These are shown in Table I along with an example
that can simulate the ASYN bio-model [15] using the FRM SSA
algorithm on all 48 cores of the SCC processor for 100
repetitions with a simulation duration ("lab time") of 1 week.
The user can choose the sampling (reporting) period (SP) of the
simulation which has an immediate effect on the file size of the
binary file that contains the complete output data set of the
simulation. There is also a parameter that sets the maximum
steps (reaction events) in a sampling period before aborting a
repetition. This helps maintain the exact simulation in a running
state even when the time steps produced (τμ) during an SP, are
very small and cannot successfully lead to its completion.

The simulator saves the results into binary files. These files
have a custom structure and contain all the repetitions of the
performed simulation in a specific format readable by the
Results Generator. Each repetition section includes the species
populations on specific time intervals based on the sampling
period that the user has defined on the configuration file. After
each such section, the file contains repetition summary statistics
like the reaction cycles (RCs) performed.

At the end of the simulation, the Results Generator has the
ability to parse the binary files described above using multiple
threads (on multi-core processors) and generate human readable,
comma separated value (CSV) files with (possibly large) data-
sets from the repetitions performed: the species counts at each
sampling (reporting) period, as well as the average, minimum
and maximum of molecular species populations, along with
execution statistics such as the executed reaction cycles
(simulation steps) and simulation (lab) times for each repetition.
These CSV files can be in turn opened by other applications in
order to further manipulate them and / or produce useful plots
for the end-user.

B. The Backend Components
 The actual simulation of a bio-model is performed by
components that belong to this group. Each process after
initialization eventually creates one or more Model Simulator
objects that control and synchronize all of their underlying
components. The Simulation Settings component is responsible
for providing the user’s configuration of the simulations that are
currently in progress. The Simulation Resources component
provides the SBML biomodel’s resources (e.g. the RT and ST
tables) to the worker units that actually do the computation. The
Simulation Storage contains all the data structures for keeping
the results of the simulation and traversing those on regular time
intervals (based on the selected SP) allowing it to generate the
resulting binary files of the simulation. The Simulation Statistics
keeps the various statistics for all the species for all repetitions
of the simulation.

 The Simulation Engine is responsible for scheduling and
dividing the work, statically at the moment, among all the
worker threads that it spawns within the Thread Pool unit. The
latter is also used for synchronizing the threads, whenever the
SSA algorithm depends on such a barrier, using a Thread
Barrier unit. Each worker thread spawned uses a Thread Worker
derived object, like the FRM Thread Worker, as its underlying
container holding the data structures and algorithmic functions
of the selected SSA algorithm. This derived object corresponds
to a Unit of Execution (UE), an abstraction which maps to a
single thread for multi-core CPUs or a single core for multi-core
ones. It is responsible for performing the computations in every
repetition where each one continually creates reaction cycles
and a specific reaction, having the minimum j time on this UE,
is selected among all the possible ones.

 The communication between the UEs happen during two
specific phases of the simulation. The first occurs only once, at
the start of the simulation, where the master UE reads the
resource files and distributes the data among the communication
group (communicator) for this specific simulation. This can be
done either with a broadcast or with a scatter primitive,
depending on whether we want all the UEs to have a single or
split representation of data respectively. The other
communication phase happens when a set of N UEs execute the
FRM algorithm in parallel SSIP mode, where at the end of each
reaction cycle (RC), UE C will locally hold a winning reaction
R having the minimal putative time τj among the m / N reactions
assigned to it. A communication step is then needed, involving
all N UEs, to all-reduce (reduction plus broadcast) the local
minimum times and distribute the information of the global

TABLE I. SIMULATION SETTINGS

Parameter Example for
Intel SCC

The bio-model’s name (represents the SBML filename) ASYN
The number of reactions contained in the bio-model (m) 136
The number of species contained in the bio-model (n) 90
The SSA algorithm to use (e.g FRM) FRM
The mode of parallelism to use (SSIP / MSIP) SSIP
The range of cores to assign work [00-47]
The number of threads to use on each core (if SMT/HT) 1
The number of repetitions to perform (R) 100
Total simulation time (in seconds) for each repetition 604800
Time interval between sampling periods (SP) 3600
Sampling period steps before aborting a repetition 1000000

521

"winner" reaction Rμ and time, τ = min {τj} (see algorithm in
Section II) to all of the N UEs. Our framework realizes this all-
reduce step on any subset of N UEs using RCCE’s blocking
primitives (send and recv). The method of all-reduction used
matters only on many-core NoC processors and not on multi-
core ones, since it is in the former case that different methods
may have different routing latencies when passing messages
between cores, while in the latter we have shared memory
operations that impose almost the same latency on all cores.

Our all-reduction method works for any 2D mesh
communicator, where we first reduce the local winning
reactions of each row (in parallel), using a hub (star)
communication scheme embedded into the row. When the
leftmost UE of each row on the 2D mesh (let's call it Ci,0 without
loss of generality), acting as the central place (hub) of its row,
has acquired the local winning reaction of every other UE in its
row, it reduces them to the one with the minimum time and
initiates a broadcast of this row’s winner reaction to all of the
row’s UEs. Subsequently, a second phase starts where the same
procedure repeats along the columns of the 2D mesh, using the
bottom UE of each column (C0,,j) as the master, i.e. the
reduction target and subsequent broadcast initiator. At the end
of this second phase every UE in the 2D mesh communicator
has aquired the global winner reaction information and since it
has a local copy of the model's current species table (state
trajectories X(t)), it can update independently the affected
species counts and then proceed with the execution of the next
RC. In all cases, the communication primitives used by our
software framework are parameterized by the size of the
communicator (N) and can be applied to any subset of UEs on
multi-core or many-core CPUs, no matter what is its underlying
physical configuration.

V. PERFORMANCE RESULTS
 In this section we describe the simulation experiments
performed in order to assess the throughput and performance
delivered to the application when our framework is running the
same biomodel, but on different CPU architectures and core
configurations. We measured the running times and total
reaction cycles performed during all repetitions of each
simulation and report the simulation's Throughput (in Mega
Reaction Cycles per second - MRC/sec), Performance (in Mega
Reactions per second - MR/sec), the Speedup (S) factor achieved
relatively to using one core, and the Efficiency (E) i.e the
speedup over the total number of cores, for a variety of core
configurations. Note that during the execution of one RC the
simulator should evaluate all m reactions of the model.

A. Experimental Systems and Bio-Models Used
 All simulation experiments were performed using the same

algorithm (FRM SSA) in both SSIP and MSIP modes of
operation. A first baseline for benchmarking was established by
running each simulation on a single core of the SCC NoC
processor, an Intel Pentium (P54C) at 533MHz running SCC
Linux. A second baseline was established by running the same
bio-model, using our framework setup for utilizing one core of
a very powerful workstation PC with a quad-core Intel Core i7
4790K CPU running at 4GHz (when workload is placed on all
cores) to 4.4GHz (when workload is placed on a single core)
with 32 GB of RAM and a fast SSD under GNU/Linux OS.

 For all simulations we used two bio-models. The first, is the
well known Linear Chain System (LCS) of 2nd order reactions
[14] that is commonly used as a benchmark, in the sense that we
can easily scale its workload on demand. The format of its 2nd
order reactions (Ri, i = 0,1,2, …,m-1), all having two reactant
and two product species, is the following:

𝑆𝑖 𝑚𝑜𝑑 𝑚 + 𝑆(𝑖+1) 𝑚𝑜𝑑 𝑚
𝑘𝑖
→ 𝑆(𝑖+2) 𝑚𝑜𝑑 𝑚 + 𝑆(𝑖+3) 𝑚𝑜𝑑 𝑚

The second biomodel used was developed by our group and
has been recently judged to become the "model of the month"
(3/2015) of the EBI Biomodel Database [15]. It was developed
to study how the polymerization of protein Alpha-synuclein
(ASYN) affects different parts of the cell and disturbs the
homeostasis of dopaminergic neurons, a mechanism that is
believed to play a key role at the onset of Parkinson's disease.
Our ASYN biomodel has m = 136 reactions (mass action
kinetics), n = 90 species and is a typical (medium size) bio-
model of the EBI DB, with a mix of reactions of different orders
and stoichiometries.

B. SSIP Simulation Experiments
The first experiment tries to evaluate the communication

cost and its impact when using the SSIP mode parallel
implementation to partition the reactions of the FRM SSA
among the many cores of the SCC processor. This kind of
simulation can tell us how the efficiency drops with the number
of cores, for a fixed problem size, and how many cores of the
CPU can be used efficiently i.e. before the speedup levels off, to
accelerate a single run (repetition) of the network's simulation.
We used the LCS bio-model with three different configurations
in terms of the reactions workload (m): 1024 (1K), 2048 (2K)
and 4096 (4K) in the evaluation. Every setup was run a
minimum of five times and we additionally performed more
executions until we couldn’t observe any noticeable change on
the simulation times.

We observed performance and speedup gains while
increasing the cores count up to a certain point, as shown in
Figure 3. Detailed results for the LCS4K (model simulation time
Tsim= 10ms) are provided in Table II, where speedup, throughput
and performance figures are calculated based on the actual time
taken to complete the simulation on a subset of the SCC cores
(using an increment of 12 cores). The results demonstrate that as

Figure 3. Intel SCC NoC scalability analysis. (a) Performance (MR/sec)
and (b) Speedup while running the LCS 1K/2K/4K bio-model
configurations using the parallel FRM SSA in SSIP mode.

522

the LCS bio-model’s complexity increases in terms of reactions,
we observe improved speedup for the same number of cores. For
example for the LCS4K model speedup remains linear and
efficiency is almost perfect (1.0), all the way up to 36 cores.
Even when all 48 cores are used the efficiency is very good and
almost linear (0.96). Speedup on smaller models levels off
earlier, as expected. This is attributed to the fact that for a fixed
problem size (m) as the number of cores increases the
communication costs increase, while the computation workload
per core actually decreases due to the reactions partitioning
(SSIP mode). So for every stochastic simulation of fixed
problem size there is a number of cores beyond which
communication dominates computation leading to leveling
performance. Nevertheless the SCC NoC can deliver high
performance (more than 8MR/sec) at an efficiency larger than
66%, even in models of m = 1024 reactions (the smallest size
considered).

The second experiment was similar with the first, but now
using a different target machine, one that contains the Core i7
multi-core processor associated with the second baseline. This
experiment allowed us to assess not only the expected
performance of a modern multi-core CPU readily available for
scientists and engineers (please remember that the SCC is an
experimental research concept CPU), but also how it behaves as
the number of cores increase along with the problem size. We
should remark that in this case our software framework utilizes
shared memory among the running threads since it does not have
access to a hardware memory type, such as the MPB of the SCC
processor.

The Intel’s Core i7 multi-core processor implements HT
(HyperThreading) [10], Intel’s flavor of SMT (simultaneous
multi-threading), in order to run up to two concurrent threads on
each core’s hardware, for a total concurrent execution of 8
threads and thus we can perform immediate comparisons
between the many-core and multi-core processors. As shown in
Table III we observe the same increasing speedup on this multi-
core processor when running the LCS4K biomodel (Tsim =
10msec) on up to the 4 threads configurations. This is to be
expected since the parallel FRM SSA algorithm's
implementation using our software framework remains the same
and there is still the same communication overhead that does not
dominate the computation times as long as the bio-model has a
high enough complexity (number of reactions).

The steep speedup drop (efficiency loss) when using more
than 4 threads is attributed to the fact that this is a quad-core
processor that implements HT [10]. Since all threads operate on
exactly the same type of instruction workload (SPMD) it cannot
take advantage of each core’s superscalar architecture that needs

varied workload placement (e.g integer and floating point
arithmetic at the same time) to show performance advantages
when utilizing more threads than cores. Of course throughput
and performance figures are way ahead of the many-core SCC
processor due to the fact that this multi-core CPU contains latest
generation cores, featuring a highly superior, out-of-order
micro-architecture and clocked at almost 8X the frequency of
the SCC. We believe that even more performance can be
exploited from next generation multi-core processors, should
they start introducing hardware memory structures like the MPB
of the SCC NoC processor alongside their cores, for increased
communication efficiency among them, without resorting to
shared memory and its unavoidable locks or cache-coherency
protocol overheads.

C. MSIP Simulation Experiments
In the third experiment we used the SCC to perform many

repetitions of the ASYN biomodel in MSIP mode of operation,
exploiting all 48 cores of the SCC, each one with a workload of
R/N repetitions. This kind of simulation is useful to assess the
maximum expected performance a CPU can deliver, since after
simulation initialization, where broadcasting of biomodel
resource data occurs, the simulation repetitions proceed
independently in parallel and there is no communication among
the cores. All 48 SCC cores finished the ASYN model's
simulation (Tsim = 604800 secs = 1 Week, 48 repetitions) that
consisted of a total of 0.003 million RCs in Treal = 54 secs. The
achieved throughput was 0.41 MRC/sec and the performance,
when considering the model’s complexity (m = 136), reached
19.06 MR/sec. This is an estimate of the maximum performance
that the Intel SCC many-core processor running at 533MHz can
deliver during a stochastic simulation with the FRM SSA
algorithm. In comparison, our framework running 8 threads on
Intel Core i7 performed the same 48 repetitions in 29 secs,
giving a speadup of only S = 1.86 relatively to the SCC NoC
CPU which features simple in-order, low frequency Pentium
cores. All results are summarized in Table IV.

TABLE III. INTEL CORE I7 4-CORE CPU, STOCHASTIC SIMULATION
PERFORMANCE SCALING (PARALLEL FRM-SSA, LCS4K BIOMODEL)

Intel
Core i7
Threads

Time
(s) Speedup Efficiency Throughput

(RC/s)
Performance

(MR/s)

1 302 1.00 1.00 1359 5.57

2 154 1.97 0.98 2673 10.95
4 80 3.80 0.95 5161 21.14
6 91 3.34 0.56 4539 18.59

8 72 4.21 0.53 5716 23.41

TABLE IV. PERFORMANCE COMPARISON OF INTEL SCC NOC VS.
INTEL CORE I7 CPUS (FRM SSA MSIP MODE - 48 REPETITIONS)

Setup Time
(s) Speedup Throughput

(MRC/s)
Performance

(MR/s)
1 Core of SCC

NoC 2495 1 0.003 0.41

48 Cores of
SCC NoC 54 46.25 0.140 19.06

1 Thread on

Core i7 147 1 0.051 7.00

8 Threads on
Core i7 29 5.06 0.258 35.11

TABLE II. INTEL SCC NOC 48-CORE CPU. STOCHASTIC SIMULATION
PERFORMANCE SCALING (PARALLEL FRM-SSA, LCS4K MODEL)

Intel
SCC

Cores

Time
(sec) Speedup Efficiency Throughput

(RC/s)
Performance

(MR/s)

1 6883 1.00 1.00 60 0.24
12 574 11.99 0.99 714 2.92
24 287 23.99 0.99 1432 5.86
36 191 35.98 0.99 2149 8.80
48 150 46.03 0.96 2740 11.22

523

We also experimented with the ASYN bio-model in SSIP
mode of operation but measured low performance when
dividing the reaction workload on more than 10 cores.
Scalability and efficiency were suboptimal due to the medium
size workload of this model, that is not high enough to keep
more than 10 cores busy between each communication phase.
For this reason and for such medium size models we recommend
the utilization of small subsets of cores (clusters), to compute
reaction cycles in parallel (SSIP mode) and then employ many
such clusters, to compute many simulation repetitions in parallel
(MSIP mode). This hybrid C x N scheme, where N is the number
of cores combined in SSIP mode and C is the number of SSIP
simulation runs combined in MSIP mode, might prove to be
ideal for exploiting in the best way many-core CPUs. We plan
to further research such setups, in order to find the optimal
balance and thus throughput and performance, as the number of
repetitions and the model complexity increase at the same time,
which is the most practical scenario for large scale biomolecular
network stochastic simulations in systems biology.

VI. CONCLUSIONS
In silico investigation of the stochastic dynamics of large

scale biological system models is an important problem in
systems biology, with applications in drug design and
personalized medicine. Stochastic simulation is the method of
choice since it allows accounting for the "noise" inherent in
biological systems and assessing their behavior even in the very
low species counts regime. However as models become more
complex (bio-molecular interactions increases to thousands) it is
also required to run a large number of repetitions of the bio-
model simulations to assess not only the average behavior but
also the sensitivity and robustness of a system under different
conditions.

We have developed a parallel implementation of the FRM
SSA algorithm that can divide the bio-model reactions, or the
simulation repetitions, workload on a user selected number of
cores. Experimental results demonstrate that both processor
architectures considered have the potential to deliver high
performance and linear speedup as long as the problem scales
on both dimensions i.e. in terms of the biomodel's complexity as
well as in terms of the number of required repetitions of the
simulation. Our software framework can be extended to
incorporate more stochastic simulation algorithms, e.g. Gibson
and Bruck’s NRM SSA, more hardware targets, and hybrid
configuration setups. These features, if properly combined,
make the framework a solid research ‘vehicle’ for the stochastic
simulation landscape and allow for experimentation and
performance assessment with a multitude of setups and
parameters.

ACKNOWLEDGMENTS
This research is implemented in the framework of operation

“ΑRISTEIA II”, which is co-funded by the European Union
(European Social Fund) and national resources through the
Operational Programme “Education and Lifelong Learning”,
(NSRF 2007-2013). We would also like to thank MicroLab -
ECE - National Technical University of Athens, for allowing use
of their SCC infrastructure, performed under the supervision of
Mr. D. Rodopoulos and Prof. D. Soudris.

REFERENCES

[1] M. Tomita, "Whole-cell simulation: a grand challenge of the
21st century," TRENDS in Biotechnology, vol. 19, no. 6, pp.
205-210, 2001.

[2] D. T. Gillespie, "Stochastic simulation of chemical kinetics,"
Annu. Rev. Phys. Chem., vol. 58, pp. 35-55, 2007.

[3] M. A. Gibson and J. Bruck, "Efficient exact stochastic
simulation of chemical systems with many species and many
channels," The Journal of Physical Chemistry A, vol. 104, no. 9,
pp. 1876-1889, 2000.

[4] E. Logaras, O. Hazapi and E. Manolakos, "Python to accelerate
embedded SoC design: a case study for systems biology," ACM
Transactions on Embedded Computing Systems (TECS), vol. 13,
no. 4, pp. 84:1-84:25, 2014.

[5] L. Macchiarulo, "A massively parallel implementation of
Gillespie algorithm on FPGAs," in Proc. of 30th Annual IEEE
Int'l Conf. in Medicine and Biology Society, pp. 1343-6, 2008.

[6] G. Klingbeil, R. Erban, M. Giles and P. K. Maini,
"StochsimGPU: parallel stochastic simulation for the Systems
Biology Toolbox 2 for MATLAB," Bioinformatics, vol. 27, no.
8, pp. 1170-1171, 2011.

[7] Y. Zhou, J. Liepe, X. Sheng, M. Stumpf and C. Barnes, "GPU
accelerated biochemical network simulation," Bioinformatics,
vol. 27, no. 6, pp. 874-6, 2011.

[8] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, S. Natalia, M.
Singhal, L. Xu, P. Mendes and U. Kummer, "COPASI - A
complex pathway simulator," Bioinformatics, vol. 22, no. 24,
pp. 3067-3074, 2006.

[9] J. Howard, et al., "A 48-Core IA-32 Processor in 45 nm CMOS
Using On-Die Message-Passing and DVFS for Performance and
Power Scaling," IEEE Journal of Solid-State Circuits, vol. 46,
no. 1, pp. 173-183, 2011.

[10] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra and R. Biswas,
"The impact of hyper-threading on processor resource
utilization in production applications," in 18th Int'l Conference
on High Performance Computing (HiPC), pp. 1-10, 2011.

[11] "RCCE," Intel, [Online]. Available:
http://www.intel.com/content/www/us/en/research/intel-labs-
rcce-single-chip-cloud-brief.html. [Accessed 10 2 2015].

[12] A. Sharma, A. Papanikolaou and E. S. Manolakos,
"Accelerating All-to-All Protein Structures Comparison with
TMalign," in Proc. IEEE Int'l Symp. on Parallel & Distributed
Processing, Workshops (IPDPSW), pp. 510-9, 2013.

[13] M. Hucka, et al., "The Systems Biology Markup Language
(SBML): A Medium for Representation and Exchange of
Biochemical Network Models," Bioinformatics, vol. 9, no 4, pp.
524-531, 2003.

[14] Y. Cao, H. Li and L. Petzold, "Efficient formulation of the
stochastic simulation algorithm for chemically reacting
systems," The Journal of Chemical Physics, vol. 121, no. 9, pp.
4059-4067, 2004.

[15] E. Ouzounoglou, D. Kalamatianos, E. Emmanouilidou, M.
Xilouri, L. Stefanis, K. Vekrellis and E. S. Manolakos, "In silico
modeling of the effects of alpha-synuclein oligomerization on
dopaminergic neuronal homeostasis," BMC Systems Biology,
vol. 8, no. 1, p. 54, May 2014.
Bio-model (SBML) available online: https://www.ebi.ac.uk/
biomodels-main/static-pages.do?page=ModelMonth/2015-03

524

From: Waleed Smari <smari@arys.org>
Date: Mon, Jun 22, 2015 at 6:15 AM
Subject: Outstanding Paper Nomination HPCS 2015-URGENT
To:

Hello,

Congratulations. Your paper has been nominated for the HPCS 2015
Outstanding Paper Award.

Can you please forward to me the acceptance notification email of your
HPCS 2015 paper along with all the reviews and comment you received, at
your earliest convenience (by this Tuesday noon New York time at the
latest)?

We will need these for the records of the Awards Committee since your
paper is under consideration for the Outstanding Paper Award of the HPCS
2015 Conference.

We appreciate your prompt help with this matter.

Thank you very much.

Best Wishes.

--ws./
On Behalf of the HPCS 2015 Organizers

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20150619150348
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

