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Abstract: We prove that the non-increasing rearrangement of a dyadic A1-weight w

with dyadic A1 constant
[
w
]T
1

= c with respect to a tree T of homogeneity k, on a non-

atomic probability space, is a usual A1 weight on (0, 1] with A1-constant [w∗]1 not more

than kc − k + 1. We prove also that the result is sharp, when one considers all such

weights w.

1. Introduction

The theory of Muckenhoupt weights has been proved to be an important tool in

analysis due to their self-improving properties (see [2], [3] and [9]). One class of special

interest is A1(J, c) where J is an interval on R and c is a constant such that c ≥ 1.

Then A1(J, c) is defined as the class of all non-negative locally integrable functions w

defined on J , such that for every subinterval I ⊆ J we have that

1

|I|

∫
I
w(y)dy ≤ c ess inf

x∈I
w(x) (1.1)

where | · | is the Lesbesgue measure on R.

In [1] it is proved that if w ∈ A1(J, c) then w∗ ∈ A1((0, |J |], c), where w∗ is the non-

increasing rearrangement of w. That is for every w ∈ A1(J, c) the following inequality

is satisfied

1

t

∫ t

0
w∗(y)dy ≤ cw∗(t), (1.2)

for every t ∈ (0, |J |]. Here for a w : J → R+, w∗ is defined by the following way. By

denoting Aw(y) = [x ∈ J : |w(x)| > y] and mw(y) = |Aw(y)| the distribution function
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of |w| then w∗ is given by w∗(t) = inf(y > 0 : mw(y) < t). An equivalent formulation

of the non-increasing rearrangement can be given as follows

w∗(t) = sup
e⊆J
|e|≥t

inf
x∈e
|w(x)|, for any t ∈ (0, |J |].

It is well known that the function w∗ which is defined on (0, |J |], is non-increasing,

non negative and equimeasurable to |w|. Inequality (1.2) is the tool as one can see in [1],

in the determination of all p such that p > 1 and w ∈ RHJ
p (c′) for some 1 ≤ c′ < +∞

whenever w ∈ A1(J, c). Here by RHJ
p (c′) we mean the class of all weights w defined on

J which satisfy a reverse Holder inequality with constant c′ upon all the subintervals

I ⊆ J . One can also see related problems for estimates for the range of p in higher

dimensions in [4] and [5]. For related results one can see also [6], [10] and [11].

In this paper we are interested for those weights w defined on a dyadic cube Q on

Rn or on the whole Rn satisfying condition (1.1) for all dyadic subcubes of it’s domain.

More precisely, a locally integrable non-negative function w on Rn is called a dyadic

A1 weight if it satisfies the following condition

1

|Q|

∫
Q
w(y)dy ≤ c ess inf

x∈Q
w(x), (1.3)

for every dyadic cube Q on Rn.

This condition is equivalent to the inequality

Mdw(x) ≤ cw(x), (1.4)

for almost all x ∈ Rn. Here Md is the dyadic maximal operator defined by

Mdw(x) = sup

{
1

|Q|

∫
Q
|w(y)|dy : x ∈ Q, Q ⊂ Rn is a dyadic cube

}
. (1.5)

The smallest c ≥ 1 for which (1.3) (equivalently (1.4)) holds is called the dyadic A1

constant of w and is denoted by
[
w
]d
1
.

Let us now fix such a weight w. In [7] it is proved that it belongs to Lp for any

p ∈ [1, p0(n, c)) where,

p0(n, c) =
log(2n)

log[2n − (2n − 1)c−1]

.

Moreover it satisfies a reverse Hölder inequality for all p in the above range upon

all dyadic cubes on Rn. More precisely the following is true as can be seen in [7].
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Theorem 1. Let w be a dyadic A1 weight defined on Rn with dyadic A1 constant[
w
]d
1

= c. Then the following inequality is true

1

|Q|

∫
Q

(Mdw)p ≤ 2n − 1

2n − [2n − (2n − 1)c−1]p
( 1

|Q|

∫
Q
w(x)dx

)p
for every Q dyadic cube on Rn and p in the range [1, p0(n, c)). Additionally the above

inequality is sharp for any fixed c ≥ 1 and p in the above range.

Theorem 1 now implies that the range of p’s mentioned above is best possible. Let

now w be a weight defined on a dyadic cube Q ⊂ Rn which satisfies the A1 condition

upon all dyadic subcubes of Q with constant not more than c > 1. Then as it is

mentioned in [7] it’s non-increasing rearrangement w∗ does not necessarily belong to

A1((0, |Q|], c). As a result certain questions arise: Does w∗ belongs to A1((0, |Q|], c′)
for some c′ ≥ c and is there an upper bound on these c′ ? What is the least one ?

These questions are answered by the following

Theorem 2. Let w be a dyadic A1 weight on Rn with dyadic A1 constant
[
w
]d
1

= c.

Let Q be a fixed dyadic cube on Rn. Then if we denote by w/Q the restriction of w on

Q, the following inequality is satisfied

1

t

∫ t

0
(w/Q)∗(y)dy ≤ (2nc− 2n + 1)(w/Q)∗(t), (1.6)

for every t ∈ (0, |Q|]. Moreover the last inequality is sharp when one considers all

dyadic A1 weights with
[
w
]d
1

= c.

We remark that by using a standard dilation argument it suffices to prove (1.6)

for Q = [0, 1]n and for all functions w defined only on [0, 1]n and satisfying the A1

condition only for dyadic cubes contained in [0, 1]n. Actually, we will work on more

general non-atomic probability spaces (X,µ) equipped with a structure T similar to

the dyadic one. (We give the precise definition in the next section).

The paper is organized as follows: In Section 2. we give some tools needed for the

proof of Theorem 2. These are obtained from [7] and [8]. In Section 3 we give the proof

of Theorem 2 in it’s general form (as Theorem 3) and mention two applications of it.

2. Preliminaries

We fix a non-atomic probability space (X,µ) and a positive integer k ≥ 2. We give

the following

3



Definition 1. A set of measurable subsets of X will be called a tree of homogeneity k

if

i) For every I ∈ T there corresponds a subset C(I) ⊆ T containing exactly k pair-

wise disjoint subsets of I such that I = ∪C(I) and each element of C(I) has

measure (1/k)µ(I).

ii) T =
⋃
m≥0
T(m) where T(0) = {X} and T(m+1) =

⋃
I∈T(m)

C(I).

iii) The tree T differentiates L1(X,µ), that is if ϕ ∈ L1(X,µ) then for µ-almost all

x ∈ X and every sequence (Ik)k∈N such that x ∈ Ik, Ik ∈ T and µ(Ik) → 0 we

have that

ϕ(x) = lim
k → +∞

1

µ(Ik)

∫
Ik

ϕdµ.

It is clear that each family T(m) consists of km pairwise disjoint sets, each having

measure k−m, whose union is X. Moreover, if I, J ∈ T and I ∩ J is non empty then

I ⊆ J or J ⊆ I.

For this family T we define the associated maximal operator MT by

MT ϕ(x) = sup

{
1

µ(I)

∫
I
|ϕ|dµ : x ∈ I ∈ T

}
, (2.1)

and for any ϕ ∈ L1(X,µ) and we will say that a non-negative integrable function w is

an A1 weight with respect to T if

MT ϕ(x) ≤ Cϕ(x), (2.2)

for almost every x ∈ X. The smallest constant C for which (2.2) holds will be called

the A1 constant of w with respect to T and will be denoted by
[
w
]T
1

. We give now the

following:

Definition 2. Every non-constant function w of the form w =
∑

P∈T(m)

λPxP , for a

specific m > 0, and for positive λP , will be called a T -step function (xP denotes the

characteristic function of P ).

It is then clear that every T -step function is an A1 weight with respect to T . Let

now w be a weight as in Definition 2. Let also
[
w
]T
1

= c > 1 and for any I ∈ T write

AvI(w) = 1
µ(I)

∫
I

wdµ.

Now for every x ∈ X, let Iw(x) denote the largest element of the set {I ∈ T : x ∈ I
and MT w(x) = AvI(w)} (which is non-empty since AvJ(w) = AvP (w) for every P ∈
T(m) and J ⊆ P ).
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Next for any I ∈ T we define the set

AI = A(w, I) = {x ∈ X : Iw(x) = I}

and let S = Sw denote the set of all I ∈ T such that AI is non-empty. It is clear that

each such AI is a union of certain P from T(m) and moreover

MT w =
∑
I∈S

AvI(w)xAI
.

We also define the correspondence I → I∗ with respect to S as follows: I∗ is the

smallest element of {J ∈ Sw : I ( J}. This is defined for every I ∈ S that is not

maximal with respect to ⊆.

We recall now two Lemmas from [7] and for the sake of completness we present

their proof.

Lemma 1. Let w be as above. Then for all I ∈ T we have I ∈ S, if and only if,

AvQ(w) < AvI(w) whenever I ⊆ Q ∈ T , I 6= Q. In particular X ∈ S and so I → I∗

is defined for all I ∈ S such that I 6= X.

Proof. If I ∈ S then it is clear that the condition that is described above holds. Let

now I ∈ T for which AvQ(w) < AvI(w) for any Q that strictly contains I and belongs

to the tree T . Assume that I ∈ T(s), then since

AvJ(w) =

∑
F∈C(J) µ(F )AvF (w)∑

F∈C(J) µ(F )

we conclude that for each J ∈ T there exists F ∈ C(J) such that AvF (w) ≤ AvJ(w).

Applying the above m − s times we get a chain I = I0 ⊃ I1 ⊃ I2 ⊃ ... ⊃ Im−s such

that Ir ∈ T(s+r) for each r and moreover AvIm−s(w) ≤ AvIm−s−1(w) ≤ ... ≤ AvI1(w) ≤
AvI0(w) = AvI(w). Now because on the assumption on I and the last mentioned

inequalities we conclude that Iw(x) = I for every x ∈ Im−s, therefore I ∈ S.

In the following denote by yI the AvI(w) for any I ∈ T .

Lemma 2. Let I ∈ S. Then, if J ∈ S is such that J∗ = I, then yI < yJ ≤ (k − (k −
1)c−1)yI .

Proof. The inequality on the left follows immediately from Lemma 1. Consider now the

unique F ∈ T such that J ∈ C(F ). Obviously F ⊆ I. It is also true that AvF (w) ≤ yI .
Indeed I ∈ S implies that AvQ(w) < yI whenever I ⊆ Q, I 6= Q and so if AvF (w) > yI

there would exist F1 ∈ T such that F ⊆ F1 ⊆ I with F1 6= I and AvF1(w) > AvQ(w)
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whenever F1 ⊆ Q,F1 6= Q. This combined with Lemma 1 implies that F1 must lie in

S, which doesn’t agree with our hypothesis that J∗ = I. Now note that for every x

that belongs to the set-theoretic difference F \ J we have [w]T1 w(x) ≥ MT w(x) ≥ yI ,

hence integrating over F \ J and using all the above we get

yI ≥ AvF (w) ≥ µ(J)

µ(F )
yJ +

µ(F \ J)

µ(F )

1

[w]T1
yI =

yJ + (k − 1)c−1yI
k

and from this we immediately conclude the right inequality that is stated in this Lemma.

3. Main theorem and proof

In this section we will prove the following.

Theorem 3. Let T be a tree of homogeneity k ≥ 2 on the probability non-atomic

space (X,µ), and let w be A1 weight with respect to T with A1-constant
[
w
]T
1

= c.

Then if one considers w∗ : (0, 1] → R+ the non-increasing rearrangement of w we

have that 1
t

t∫
0

w∗(y)dy ≤ (kc− k + 1)w∗(t), for every t ∈ (0, 1]. Moreover the constant

appearing in the right of the last inequality is sharp, if one considers all such weights

with A1-constant with respect to T equal to c.

Proof. We suppose for the beginning that w is a T -step function. Fix t ∈ (0, 1] and

consider the set

Et = {x ∈ X : MT w(x) > cw∗(t)}

= {MT w > cλ}, where λ = w∗(t).

Then Et is a measurable subset of X. We first assume that µ(Et) > 0. We consider the

family of all those I ∈ T maximal under the condition AvI(w) > cλ, and denote it by

(Ij)j . Then (Ij)j is pairwise disjoint and Et = ∪Ij . Additionally for every j and I ∈ T
such that I ) Ij we have that 1

µ(I)

∫
I

wdµ = AvI(w) ≤ cλ because of the maximality of

Ij . In view of Lemma 1 this gives Ij ∈ Sw = S, for every j.

For every Ij consider I∗j ∈ S. Then by Lemma 2, yIj ≤ [k − (k − 1)c−1]yI∗j . By the

above discussion we now have yI∗j ≤ cλ. Thus we obtain as a consequence that

yIj ≤ [k − (k − 1)δ]cλ = (kc− k + 1)λ, for every j.

This gives ∫
Ij

wdµ ≤ (kc− k + 1)λµ(Ij)⇒
∫
Et

wdµ ≤ (kc− k + 1)λµ(Et)

⇒ 1

µ(Et)

∫
Et

wdµ ≤ (kc− k + 1)λ. (3.1)
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Since MT w ≤ cw µ-a.e on X, and Et = {MT w > cλ} we obviously have Et ⊆ {w >

λ} ∪H = {w > w∗(t)} ∪H, where H is suitable subset of X with µ(H) = 0.

There exist now E∗t ⊆ (0, 1] Lesbesgue measurable such that |E∗t | = µ(Et) =: t1,

and such that
∫
E∗t

w∗(y)dy =
∫
Et

wdµ. By the equimeasurability of w and w∗, we can

choose the set E∗t such that E∗t ⊆ {w∗ > w∗(t)} ⊆ (0, t). As an immediate consequence

t1 ≤ t.
Since now T differentiates L1(X,µ) we have that µ-almost every element of the set

{w > cλ} ⊆ X belongs to Et. Since µ(Et) > 0 we also have that µ({w > cλ}) > 0. Let

now t2 be such that

w∗(t) > λc for every t ∈ (0, t2) and w∗(t) ≤ cλ, for every t ∈ (t2, 1).

By the definition of E∗t we have that E∗t = (0, t2) ∪ At, where At is a Lesbesgue

measurable subset of (t2, t) and |At| = t1 − t2 (Of course t2 = |(0, t2)| = |{w∗ > λc}| =
µ({w > λc}) ≤ µ({MT w > λc}) = µ(Et) =: t1).

We will now prove the following inequality

1

µ(Et)

∫
Et

wdµ ≥ 1

t

∫ t

0
w∗(y)dy, (3.2)

(3.2) is equivalent to

1

t1

∫
E∗t

w∗(y)dy ≥ 1

t

∫ t

0
w∗(y)dy ⇔ t

∫ t2

0
w∗(y)dy + t

∫
At

w∗(y)dy

≥ t1
∫ t2

0
w∗(y)dy + t1

∫ t

t2

w∗(y)dy

⇔ (t− t1)
∫ t2

0
w∗(y)dy + t

∫
At

w∗(y)dy

≥ t1
∫ t

t2

w∗(y)dy, (3.3)

We define Γt = (t2, t) \At. Then (3.3) becomes

(t− t1)
∫ t2

0
w∗(y)dy + (t− t1)

∫
At

w∗(y)dy ≥ t1
∫
Γt

w∗(y)dy

⇔ (t− t1)
∫
E∗t

w∗(y)dy ≥ t1
∫
Γt

w∗(y)dy. (3.4)

Additionally ∫
E∗t

w∗(y)dy =

∫
Et

wdµ > µ(Et) · cλ = cλ · t1,
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since Et is the pairwise disjoint union of (Ij)j . Thus if we prove that∫
Γt

w∗(y)dy ≤ cλ(t− t1), (3.5)

we complete the proof of (3.2). But (3.5) is obvious since w∗(y) ≤ cλ on (t2, t), Γt ⊆
(t2, t) and

|Γt| = |(t2, t) \At| = (t− t2)− |At| = t− t1.

We thus have proved that for every w T -step function and t such that µ({MT w >

c · w∗(t)}) > 0, the following inequality is true

1

t

∫ t

0
w∗(y)dy ≤ (kc− k + 1)w∗(t). (3.6)

If t is such that µ({MT w > cw∗(t)}) = 0 then obviously MT w(x) ≤ cw∗(t), for µ-

almost every x ∈ X, so since T differentiates L1(X,µ): w(y) ≤ cw∗(t) for almost all

y ∈ X. This obviously gives (3.6), since c ≤ kc− k + 1.

Additionally if w is in general an A1-weight with respect to T , then an approxima-

tion argument by T -simple A1-weights gives the result for w. More precisely one can

easily see, that if w is a A1 weight with respect to T , with A1-constant
[
w
]T
1

= c then

there exists an increasing sequence of T -simple functions, (wn)n, such that wn ≤ w

and
[
w
]T
1

= cn ≤ c with the additional properties wn → w, µ a.e. and cn → c

as n → +∞. In order to finish the proof of Theorem 3 we just need to prove the

sharpness of the result. We proceed to this as follows

Fix k ≥ 2. We suppose that we are given a tree T of homogeneity k, and consider

T(2). Then

T(2) = {P1, . . . , Pk, Pk+1, . . . , P2k, . . . , Pk2−k+1, . . . , Pk2} where

T(1) =

{ k⋃
i=1

Pi,

2k⋃
i=k+1

Pi, . . . ,

k2⋃
i=k2−k+1

Pi

}
= {I1, I2, . . . , Ik}.

We have that µ(Pi) = 1
k2

, ∀ i.
Suppose δ > 0 is such that δ < 1

k2
, and consider for any such δ a set Aδ of measure

µ(Aδ) = δ such that Aδ ⊆ P1 ((X,µ) is non atomic). Let c ≥ 1 and α, ε > 0 be such
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that ε < α and kc− k + 1 = α
ε . Let ϕ = ϕδ be the function defined as follows:

ϕ/Aδ := α

ϕ/I1 \Aδ := ε

ϕ/Pk+1 := α, ϕ/(I2 \ Pk+1) := ε

ϕ/P2k+1 := α, ϕ/(I3 \ P2k+1) := ε

· · ·
ϕ/Pk2−k+1 := α, ϕ/(Ik \ Pk2−k+1) := ε

It is easy to see that ϕ = ϕδ is a A1 weight with A1 constant

cδ =
[
ϕ
]T
1

=
AvI2(ϕ)

ε
=
k

ε

∫
I2

ϕdµ =
k

ε

[
a

1

k2
+

(
1

k
− 1

k2

)
ε

]
.

Then cδ = c, is independent of δ. Additionaly ϕ∗δ(1/k) = ε, so ϕ∗δ(1/k)(kc−k+ 1) = α,

while k
∫ 1/k
0 ϕ∗δ(y)dy tends to α, as δ → 1/k2

−
.

By this we end the proof of Theorem 3.

Theorem 1 of Section 1 is an immediate Corollary of Theorem 3. Additionally the

following are consequences of Theorem 3.

Corollary 1. Let w be an A1 weight with respect to the tree T of homogeneity (k ≥ 2)

on (X,µ) with
[
w
]T
1

= c. Then if one considers ((0, 1], | · |) equipped with the usual

k-adic tree Tk, where | · | is the Lesbesgue measure on (0, 1]. Then
[
w∗
]Tk
1
≤ kc− k + 1

and this result is sharp.

Proof. The proof is obvious. We just need to consider the function ϕδ constructed at

the end of Theorem 3.

Corollary 2. Let w be A1-weight on Rn as described in Section 1. Then w∗ : (0,+∞) →
R+ has the following property:

1

t

∫ t

0
w∗(y)dy ≤ (kc− k + 1)w∗(t), for every t ∈ (0,+∞)

and the last inequality is sharp.

Proof. We expand Rn as a union of an increasing sequence (Qj)j of dyadic cubes, and

use Theorem 3 in any of these.

Aknowledgement 1. The author would like to thank professor A. Melas for usefull

discussions on the topic of this paper.

Aknowledgement 2. This research has been co-financed by the European Union

and Greek national funds through the Operational Program ”Education and Life-

long Learning” of the National Strategic Reference Framework (NSRF), Aristeia Code:

MAXBELLMAN 2760, Research code: 70/3/11913.

9



References

[1] B. Bojarski, C. Sbordone and I. Wik, The Muckenhoupt class A1(R), Studia Math.

101 (2) (1992), 155-163.

[2] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions

and singular integrals, Studia Math. 51 (1974), 241-250.

[3] F. W. Gehring, The Lp integrability of the partial derivatives of a quasiconformal

mapping, Acta Math. 130 (1973), 265-277.

[4] J. Kinnunen, Sharp results on reverse Hölder inequalities, Ann. Acad. Sci. Fenn.
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