Dyadic A_{1} weights and equimeasurable rearrangements of functions

Eleftherios N. Nikolidakis

Abstract

We prove that the non-increasing rearrangement of a dyadic A_{1}-weight w with dyadic A_{1} constant $[w]_{1}^{\mathcal{T}}=c$ with respect to a tree \mathcal{T} of homogeneity k, on a nonatomic probability space, is a usual A_{1} weight on $(0,1]$ with A_{1}-constant $\left[w^{*}\right]_{1}$ not more than $k c-k+1$. We prove also that the result is sharp, when one considers all such weights w.

1. Introduction

The theory of Muckenhoupt weights has been proved to be an important tool in analysis due to their self-improving properties (see [2], [3] and [9]). One class of special interest is $A_{1}(J, c)$ where J is an interval on \mathbb{R} and c is a constant such that $c \geq 1$. Then $A_{1}(J, c)$ is defined as the class of all non-negative locally integrable functions w defined on J, such that for every subinterval $I \subseteq J$ we have that

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} w(y) d y \leq c \operatorname{ess} \inf _{x \in I} w(x) \tag{1.1}
\end{equation*}
$$

where $|\cdot|$ is the Lesbesgue measure on \mathbb{R}.
In [1] it is proved that if $w \in A_{1}(J, c)$ then $w^{*} \in A_{1}((0,|J|], c)$, where w^{*} is the nonincreasing rearrangement of w. That is for every $w \in A_{1}(J, c)$ the following inequality is satisfied

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} w^{*}(y) d y \leq c w^{*}(t) \tag{1.2}
\end{equation*}
$$

for every $t \in(0,|J|]$. Here for a $w: J \rightarrow \mathbb{R}^{+}, w^{*}$ is defined by the following way. By denoting $A_{w}(y)=[x \in J:|w(x)|>y]$ and $m_{w}(y)=\left|A_{w}(y)\right|$ the distribution function
of $|w|$ then w^{*} is given by $w^{*}(t)=\inf \left(y>0: m_{w}(y)<t\right)$. An equivalent formulation of the non-increasing rearrangement can be given as follows

$$
w^{*}(t)=\sup _{\substack{e \subseteq J \\|e| \geq t}} \inf _{x \in e}|w(x)|, \quad \text { for any } t \in(0,|J|] .
$$

It is well known that the function w^{*} which is defined on $(0,|J|]$, is non-increasing, non negative and equimeasurable to $|w|$. Inequality (1.2) is the tool as one can see in [1], in the determination of all p such that $p>1$ and $w \in R H_{p}^{J}\left(c^{\prime}\right)$ for some $1 \leq c^{\prime}<+\infty$ whenever $w \in A_{1}(J, c)$. Here by $R H_{p}^{J}\left(c^{\prime}\right)$ we mean the class of all weights w defined on J which satisfy a reverse Holder inequality with constant c^{\prime} upon all the subintervals $I \subseteq J$. One can also see related problems for estimates for the range of p in higher dimensions in [4] and [5]. For related results one can see also [6], [10] and [11].

In this paper we are interested for those weights w defined on a dyadic cube Q on R^{n} or on the whole R^{n} satisfying condition (1.1) for all dyadic subcubes of it's domain. More precisely, a locally integrable non-negative function w on \mathbb{R}^{n} is called a dyadic A_{1} weight if it satisfies the following condition

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q} w(y) d y \leq c \operatorname{ess} \inf _{x \in Q} w(x), \tag{1.3}
\end{equation*}
$$

for every dyadic cube Q on \mathbb{R}^{n}.
This condition is equivalent to the inequality

$$
\begin{equation*}
\mathcal{M}_{d} w(x) \leq c w(x), \tag{1.4}
\end{equation*}
$$

for almost all $x \in \mathbb{R}^{n}$. Here \mathcal{M}_{d} is the dyadic maximal operator defined by

$$
\begin{equation*}
\mathcal{M}_{d} w(x)=\sup \left\{\frac{1}{|Q|} \int_{Q}|w(y)| d y: x \in Q, Q \subset \mathbb{R}^{n} \text { is a dyadic cube }\right\} . \tag{1.5}
\end{equation*}
$$

The smallest $c \geq 1$ for which (1.3) (equivalently (1.4)) holds is called the dyadic A_{1} constant of w and is denoted by $[w]_{1}^{d}$.

Let us now fix such a weight w. In [7] it is proved that it belongs to L^{p} for any $p \in\left[1, p_{0}(n, c)\right)$ where,

$$
p_{0}(n, c)=\frac{\log \left(2^{n}\right)}{\log \left[2^{n}-\left(2^{n}-1\right) c^{-1}\right]}
$$

Moreover it satisfies a reverse Hölder inequality for all p in the above range upon all dyadic cubes on R^{n}. More precisely the following is true as can be seen in [7].

Theorem 1. Let w be a dyadic A_{1} weight defined on \mathbb{R}^{n} with dyadic A_{1} constant $[w]_{1}^{d}=c$. Then the following inequality is true

$$
\frac{1}{|Q|} \int_{Q}\left(\mathcal{M}_{d} w\right)^{p} \leq \frac{2^{n}-1}{2^{n}-\left[2^{n}-\left(2^{n}-1\right) c^{-1}\right]^{p}}\left(\frac{1}{|Q|} \int_{Q} w(x) d x\right)^{p}
$$

for every Q dyadic cube on R^{n} and p in the range $\left[1, p_{0}(n, c)\right)$. Additionally the above inequality is sharp for any fixed $c \geq 1$ and p in the above range.

Theorem 1 now implies that the range of p's mentioned above is best possible. Let now w be a weight defined on a dyadic cube $Q \subset R^{n}$ which satisfies the A_{1} condition upon all dyadic subcubes of Q with constant not more than $c>1$. Then as it is mentioned in [7] it's non-increasing rearrangement w^{*} does not necessarily belong to $A_{1}((0,|Q|], c)$. As a result certain questions arise: Does w^{*} belongs to $A_{1}\left((0,|Q|], c^{\prime}\right)$ for some $c^{\prime} \geq c$ and is there an upper bound on these c^{\prime} ? What is the least one ? These questions are answered by the following

Theorem 2. Let w be a dyadic A_{1} weight on \mathbb{R}^{n} with dyadic A_{1} constant $[w]_{1}^{d}=c$. Let Q be a fixed dyadic cube on \mathbb{R}^{n}. Then if we denote by w / Q the restriction of w on Q, the following inequality is satisfied

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t}(w / Q)^{*}(y) d y \leq\left(2^{n} c-2^{n}+1\right)(w / Q)^{*}(t) \tag{1.6}
\end{equation*}
$$

for every $t \in(0,|Q|]$. Moreover the last inequality is sharp when one considers all dyadic A_{1} weights with $[w]_{1}^{d}=c$.

We remark that by using a standard dilation argument it suffices to prove (1.6) for $Q=[0,1]^{n}$ and for all functions w defined only on $[0,1]^{n}$ and satisfying the A_{1} condition only for dyadic cubes contained in $[0,1]^{n}$. Actually, we will work on more general non-atomic probability spaces (X, μ) equipped with a structure \mathcal{T} similar to the dyadic one. (We give the precise definition in the next section).

The paper is organized as follows: In Section 2. we give some tools needed for the proof of Theorem 2. These are obtained from [7] and [8]. In Section 3 we give the proof of Theorem 2 in it's general form (as Theorem 3) and mention two applications of it.

2. Preliminaries

We fix a non-atomic probability space (X, μ) and a positive integer $k \geq 2$. We give the following

Definition 1. A set of measurable subsets of X will be called a tree of homogeneity k if
i) For every $I \in \mathcal{T}$ there corresponds a subset $C(I) \subseteq \mathcal{T}$ containing exactly k pairwise disjoint subsets of I such that $I=\cup C(I)$ and each element of $C(I)$ has measure $(1 / k) \mu(I)$.
ii) $\mathcal{T}=\bigcup_{m \geq 0} \mathcal{T}_{(m)}$ where $\mathcal{T}_{(0)}=\{X\}$ and $\mathcal{T}_{(m+1)}=\bigcup_{I \in \mathcal{T}_{(m)}} C(I)$.
iii) The tree \mathcal{T} differentiates $L^{1}(X, \mu)$, that is if $\varphi \in L^{1}(X, \mu)$ then for μ-almost all $x \in X$ and every sequence $\left(I_{k}\right)_{k \in \mathbb{N}}$ such that $x \in I_{k}, I_{k} \in \mathcal{T}$ and $\mu\left(I_{k}\right) \rightarrow 0$ we have that

$$
\varphi(x)=\lim _{k \rightarrow+\infty} \frac{1}{\mu\left(I_{k}\right)} \int_{I_{k}} \varphi d \mu .
$$

It is clear that each family $\mathcal{T}_{(m)}$ consists of k^{m} pairwise disjoint sets, each having measure k^{-m}, whose union is X. Moreover, if $I, J \in \mathcal{T}$ and $I \cap J$ is non empty then $I \subseteq J$ or $J \subseteq I$.

For this family \mathcal{T} we define the associated maximal operator $\mathcal{M}_{\mathcal{T}}$ by

$$
\begin{equation*}
\mathcal{M}_{\mathcal{T} \varphi}(x)=\sup \left\{\frac{1}{\mu(I)} \int_{I}|\varphi| d \mu: x \in I \in \mathcal{T}\right\} \tag{2.1}
\end{equation*}
$$

and for any $\varphi \in L^{1}(X, \mu)$ and we will say that a non-negative integrable function w is an A_{1} weight with respect to \mathcal{T} if

$$
\begin{equation*}
\mathcal{M}_{\mathcal{T} \varphi}(x) \leq C \varphi(x) \tag{2.2}
\end{equation*}
$$

for almost every $x \in X$. The smallest constant C for which (2.2) holds will be called the A_{1} constant of w with respect to \mathcal{T} and will be denoted by $[w]_{1}^{\mathcal{T}}$. We give now the following:

Definition 2. Every non-constant function w of the form $w=\sum_{P \in \mathcal{T}_{(m)}} \lambda_{P} x_{P}$, for a specific $m>0$, and for positive λ_{P}, will be called a \mathcal{T}-step function (x_{P} denotes the characteristic function of P).

It is then clear that every \mathcal{T}-step function is an A_{1} weight with respect to \mathcal{T}. Let now w be a weight as in Definition 2. Let also $[w]_{1}^{\mathcal{T}}=c>1$ and for any $I \in \mathcal{T}$ write $A v_{I}(w)=\frac{1}{\mu(I)} \int_{I} w d \mu$.

Now for every $x \in X$, let $I_{w}(x)$ denote the largest element of the set $\{I \in \mathcal{T}: x \in I$ and $\left.\mathcal{M}_{\mathcal{T}} w(x)=A v_{I}(w)\right\}$ (which is non-empty since $A v_{J}(w)=A v_{P}(w)$ for every $P \in$ $\mathcal{T}_{(m)}$ and $\left.J \subseteq P\right)$.

Next for any $I \in \mathcal{T}$ we define the set

$$
A_{I}=A(w, I)=\left\{x \in X: I_{w}(x)=I\right\}
$$

and let $S=S_{w}$ denote the set of all $I \in \mathcal{T}$ such that A_{I} is non-empty. It is clear that each such A_{I} is a union of certain P from $\mathcal{T}_{(m)}$ and moreover

$$
\mathcal{M}_{\mathcal{T} w}=\sum_{I \in S} A v_{I}(w) x_{A_{I}}
$$

We also define the correspondence $I \rightarrow I^{*}$ with respect to S as follows: I^{*} is the smallest element of $\left\{J \in S_{w}: I \subsetneq J\right\}$. This is defined for every $I \in S$ that is not maximal with respect to \subseteq.

We recall now two Lemmas from [7] and for the sake of completness we present their proof.

Lemma 1. Let w be as above. Then for all $I \in \mathcal{T}$ we have $I \in S$, if and only if, $A v_{Q}(w)<A v_{I}(w)$ whenever $I \subseteq Q \in \mathcal{T}, I \neq Q$. In particular $X \in S$ and so $I \rightarrow I^{*}$ is defined for all $I \in S$ such that $I \neq X$.

Proof. If $I \in S$ then it is clear that the condition that is described above holds. Let now $I \in \mathcal{T}$ for which $A v_{Q}(w)<A v_{I}(w)$ for any Q that strictly contains I and belongs to the tree \mathcal{T}. Assume that $I \in \mathcal{T}_{(s)}$, then since

$$
A v_{J}(w)=\frac{\sum_{F \in C(J)} \mu(F) A v_{F}(w)}{\sum_{F \in C(J)} \mu(F)}
$$

we conclude that for each $J \in \mathcal{T}$ there exists $F \in C(J)$ such that $A v_{F}(w) \leq A v_{J}(w)$. Applying the above $m-s$ times we get a chain $I=I_{0} \supset I_{1} \supset I_{2} \supset \ldots \supset I_{m-s}$ such that $I_{r} \in \mathcal{T}_{(s+r)}$ for each r and moreover $A v_{I_{m-s}}(w) \leq A v_{I_{m-s-1}}(w) \leq \ldots \leq A v_{I_{1}}(w) \leq$ $A v_{I_{0}}(w)=A v_{I}(w)$. Now because on the assumption on I and the last mentioned inequalities we conclude that $I_{w}(x)=I$ for every $x \in I_{m-s}$, therefore $I \in S$.

In the following denote by y_{I} the $A v_{I}(w)$ for any $I \in \mathcal{T}$.
Lemma 2. Let $I \in S$. Then, if $J \in S$ is such that $J^{*}=I$, then $y_{I}<y_{J} \leq(k-(k-$ 1) $\left.c^{-1}\right) y_{I}$.

Proof. The inequality on the left follows immediately from Lemma 1. Consider now the unique $F \in \mathcal{T}$ such that $J \in C(F)$. Obviously $F \subseteq I$. It is also true that $A v_{F}(w) \leq y_{I}$. Indeed $I \in S$ implies that $A v_{Q}(w)<y_{I}$ whenever $I \subseteq Q, I \neq Q$ and so if $A v_{F}(w)>y_{I}$ there would exist $F_{1} \in \mathcal{T}$ such that $F \subseteq F_{1} \subseteq I$ with $F_{1} \neq I$ and $A v_{F_{1}}(w)>A v_{Q}(w)$
whenever $F_{1} \subseteq Q, F_{1} \neq Q$. This combined with Lemma 1 implies that F_{1} must lie in S, which doesn't agree with our hypothesis that $J^{*}=I$. Now note that for every x that belongs to the set-theoretic difference $F \backslash J$ we have $[w]_{1}^{\mathcal{T}} w(x) \geq \mathcal{M}_{\mathcal{T}} w(x) \geq y_{I}$, hence integrating over $F \backslash J$ and using all the above we get

$$
y_{I} \geq A v_{F}(w) \geq \frac{\mu(J)}{\mu(F)} y_{J}+\frac{\mu(F \backslash J)}{\mu(F)} \frac{1}{[w]_{1}^{\top}} y_{I}=\frac{y_{J}+(k-1) c^{-1} y_{I}}{k}
$$

and from this we immediately conclude the right inequality that is stated in this Lemma.

3. Main theorem and proof

In this section we will prove the following.
Theorem 3. Let \mathcal{T} be a tree of homogeneity $k \geq 2$ on the probability non-atomic space (X, μ), and let w be A_{1} weight with respect to \mathcal{T} with A_{1}-constant $[w]_{1}^{\mathcal{T}}=c$. Then if one considers $w^{*}:(0,1] \rightarrow \mathbb{R}^{+}$the non-increasing rearrangement of w we have that $\frac{1}{t} \int_{0}^{t} w^{*}(y) d y \leq(k c-k+1) w^{*}(t)$, for every $t \in(0,1]$. Moreover the constant appearing in the right of the last inequality is sharp, if one considers all such weights with A_{1}-constant with respect to \mathcal{T} equal to c.

Proof. We suppose for the beginning that w is a \mathcal{T}-step function. Fix $t \in(0,1]$ and consider the set

$$
\begin{aligned}
E_{t} & =\left\{x \in X: \mathcal{M}_{\mathcal{T}} w(x)>c w^{*}(t)\right\} \\
& =\left\{\mathcal{M}_{\mathcal{T}} w>c \lambda\right\}, \text { where } \lambda=w^{*}(t) .
\end{aligned}
$$

Then E_{t} is a measurable subset of X. We first assume that $\mu\left(E_{t}\right)>0$. We consider the family of all those $I \in \mathcal{T}$ maximal under the condition $A v_{I}(w)>c \lambda$, and denote it by $\left(I_{j}\right)_{j}$. Then $\left(I_{j}\right)_{j}$ is pairwise disjoint and $E_{t}=\cup I_{j}$. Additionally for every j and $I \in \mathcal{T}$ such that $I \supsetneq I_{j}$ we have that $\frac{1}{\mu(I)} \int_{I} w d \mu=A v_{I}(w) \leq c \lambda$ because of the maximality of I_{j}. In view of Lemma 1 this gives $I_{j} \in S_{w}=S$, for every j.

For every I_{j} consider $I_{j}^{*} \in S$. Then by Lemma 2 , $y_{I_{j}} \leq\left[k-(k-1) c^{-1}\right] y_{I_{j}^{*}}$. By the above discussion we now have $y_{I_{j}^{*}} \leq c \lambda$. Thus we obtain as a consequence that

$$
y_{I_{j}} \leq[k-(k-1) \delta] c \lambda=(k c-k+1) \lambda, \text { for every } j .
$$

This gives

$$
\begin{align*}
\int_{I_{j}} w d \mu \leq(k c-k+1) \lambda \mu\left(I_{j}\right) & \Rightarrow \int_{E_{t}} w d \mu \leq(k c-k+1) \lambda \mu\left(E_{t}\right) \\
& \Rightarrow \frac{1}{\mu\left(E_{t}\right)} \int_{E_{t}} w d \mu \leq(k c-k+1) \lambda . \tag{3.1}
\end{align*}
$$

Since $\mathcal{M}_{\mathcal{T}} w \leq c w \mu$-a.e on X, and $E_{t}=\left\{\mathcal{M}_{\mathcal{T}} w>c \lambda\right\}$ we obviously have $E_{t} \subseteq\{w>$ $\lambda\} \cup H=\left\{w>w^{*}(t)\right\} \cup H$, where H is suitable subset of X with $\mu(H)=0$.

There exist now $E_{t}^{*} \subseteq(0,1]$ Lesbesgue measurable such that $\left|E_{t}^{*}\right|=\mu\left(E_{t}\right)=: t_{1}$, and such that $\int_{E_{t}^{*}} w^{*}(y) d y=\int_{E_{t}} w d \mu$. By the equimeasurability of w and w^{*}, we can choose the set E_{t}^{*} such that $E_{t}^{*} \subseteq\left\{w^{*}>w^{*}(t)\right\} \subseteq(0, t)$. As an immediate consequence $t_{1} \leq t$.

Since now \mathcal{T} differentiates $L^{1}(X, \mu)$ we have that μ-almost every element of the set $\{w>c \lambda\} \subseteq X$ belongs to E_{t}. Since $\mu\left(E_{t}\right)>0$ we also have that $\mu(\{w>c \lambda\})>0$. Let now t_{2} be such that

$$
w^{*}(t)>\lambda c \text { for every } t \in\left(0, t_{2}\right) \text { and } w^{*}(t) \leq c \lambda, \text { for every } t \in\left(t_{2}, 1\right) .
$$

By the definition of E_{t}^{*} we have that $E_{t}^{*}=\left(0, t_{2}\right) \cup A_{t}$, where A_{t} is a Lesbesgue measurable subset of $\left(t_{2}, t\right)$ and $\left|A_{t}\right|=t_{1}-t_{2}$ (Of course $t_{2}=\left|\left(0, t_{2}\right)\right|=\left|\left\{w^{*}>\lambda c\right\}\right|=$ $\left.\mu(\{w>\lambda c\}) \leq \mu\left(\left\{\mathcal{M}_{\mathcal{T}} w>\lambda c\right\}\right)=\mu\left(E_{t}\right)=: t_{1}\right)$.

We will now prove the following inequality

$$
\begin{equation*}
\frac{1}{\mu\left(E_{t}\right)} \int_{E_{t}} w d \mu \geq \frac{1}{t} \int_{0}^{t} w^{*}(y) d y \tag{3.2}
\end{equation*}
$$

(3.2) is equivalent to

$$
\begin{align*}
\frac{1}{t_{1}} \int_{E_{t}^{*}} w^{*}(y) d y \geq & \frac{1}{t} \int_{0}^{t} w^{*}(y) d y \Leftrightarrow t \int_{0}^{t_{2}} w^{*}(y) d y+t \int_{A_{t}} w^{*}(y) d y \\
\geq & t_{1} \int_{0}^{t_{2}} w^{*}(y) d y+t_{1} \int_{t_{2}}^{t} w^{*}(y) d y \\
& \Leftrightarrow\left(t-t_{1}\right) \int_{0}^{t_{2}} w^{*}(y) d y+t \int_{A_{t}} w^{*}(y) d y \\
\geq & t_{1} \int_{t_{2}}^{t} w^{*}(y) d y \tag{3.3}
\end{align*}
$$

We define $\Gamma_{t}=\left(t_{2}, t\right) \backslash A_{t}$. Then (3.3) becomes

$$
\begin{align*}
& \left(t-t_{1}\right) \int_{0}^{t_{2}} w^{*}(y) d y+\left(t-t_{1}\right) \int_{A_{t}} w^{*}(y) d y \geq t_{1} \int_{\Gamma_{t}} w^{*}(y) d y \\
& \Leftrightarrow\left(t-t_{1}\right) \int_{E_{t}^{*}} w^{*}(y) d y \geq t_{1} \int_{\Gamma_{t}} w^{*}(y) d y \tag{3.4}
\end{align*}
$$

Additionally

$$
\int_{E_{t}^{*}} w^{*}(y) d y=\int_{E_{t}} w d \mu>\mu\left(E_{t}\right) \cdot c \lambda=c \lambda \cdot t_{1}
$$

since E_{t} is the pairwise disjoint union of $\left(I_{j}\right)_{j}$. Thus if we prove that

$$
\begin{equation*}
\int_{\Gamma_{t}} w^{*}(y) d y \leq c \lambda\left(t-t_{1}\right), \tag{3.5}
\end{equation*}
$$

we complete the proof of (3.2). But (3.5) is obvious since $w^{*}(y) \leq c \lambda$ on $\left(t_{2}, t\right), \Gamma_{t} \subseteq$ $\left(t_{2}, t\right)$ and

$$
\left|\Gamma_{t}\right|=\left|\left(t_{2}, t\right) \backslash A_{t}\right|=\left(t-t_{2}\right)-\left|A_{t}\right|=t-t_{1} .
$$

We thus have proved that for every $w \mathcal{T}$-step function and t such that $\mu\left(\left\{\mathcal{M}_{\mathcal{T}} w>\right.\right.$ $\left.\left.c \cdot w^{*}(t)\right\}\right)>0$, the following inequality is true

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} w^{*}(y) d y \leq(k c-k+1) w^{*}(t) \tag{3.6}
\end{equation*}
$$

If t is such that $\mu\left(\left\{\mathcal{M}_{\mathcal{T}} w>c w^{*}(t)\right\}\right)=0$ then obviously $\mathcal{M}_{\mathcal{T}} w(x) \leq c w^{*}(t)$, for μ almost every $x \in X$, so since \mathcal{T} differentiates $L^{1}(X, \mu): w(y) \leq c w^{*}(t)$ for almost all $y \in X$. This obviously gives (3.6), since $c \leq k c-k+1$.

Additionally if w is in general an A_{1}-weight with respect to \mathcal{T}, then an approximation argument by \mathcal{T}-simple A_{1}-weights gives the result for w. More precisely one can easily see, that if w is a A_{1} weight with respect to \mathcal{T}, with A_{1}-constant $[w]_{1}^{\mathcal{T}}=c$ then there exists an increasing sequence of \mathcal{T}-simple functions, $\left(w_{n}\right)_{n}$, such that $w_{n} \leq w$ and $[w]_{1}^{\mathcal{T}}=c_{n} \leq c$ with the additional properties $w_{n} \rightarrow w, \mu$ a.e. and $c_{n} \rightarrow c$ as $n \rightarrow+\infty$. In order to finish the proof of Theorem 3 we just need to prove the sharpness of the result. We proceed to this as follows

Fix $k \geq 2$. We suppose that we are given a tree \mathcal{T} of homogeneity k, and consider $\mathcal{T}_{(2)}$. Then

$$
\begin{gathered}
\mathcal{T}_{(2)}=\left\{P_{1}, \ldots, P_{k}, P_{k+1}, \ldots, P_{2 k}, \ldots, P_{k^{2}-k+1}, \ldots, P_{k^{2}}\right\} \text { where } \\
\mathcal{T}_{(1)}=\left\{\bigcup_{i=1}^{k} P_{i}, \bigcup_{i=k+1}^{2 k} P_{i}, \ldots, \bigcup_{i=k^{2}-k+1}^{k^{2}} P_{i}\right\}=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\} .
\end{gathered}
$$

We have that $\mu\left(P_{i}\right)=\frac{1}{k^{2}}, \forall i$.
Suppose $\delta>0$ is such that $\delta<\frac{1}{k^{2}}$, and consider for any such δ a set A_{δ} of measure $\mu\left(A_{\delta}\right)=\delta$ such that $A_{\delta} \subseteq P_{1}((X, \mu)$ is non atomic $)$. Let $c \geq 1$ and $\alpha, \epsilon>0$ be such
that $\epsilon<\alpha$ and $k c-k+1=\frac{\alpha}{\epsilon}$. Let $\varphi=\varphi_{\delta}$ be the function defined as follows:

$$
\begin{array}{ll}
\varphi / A_{\delta}:=\alpha \\
\varphi / I_{1} \backslash A_{\delta}:=\epsilon & \\
\varphi / P_{k+1}:=\alpha, & \varphi /\left(I_{2} \backslash P_{k+1}\right):=\epsilon \\
\varphi / P_{2 k+1}:=\alpha, & \varphi /\left(I_{3} \backslash P_{2 k+1}\right):=\epsilon \\
& \cdots \\
\varphi / P_{k^{2}-k+1}:=\alpha, & \varphi /\left(I_{k} \backslash P_{k^{2}-k+1}\right):=\epsilon
\end{array}
$$

It is easy to see that $\varphi=\varphi_{\delta}$ is a A_{1} weight with A_{1} constant

$$
c_{\delta}=[\varphi]_{1}^{\mathcal{T}}=\frac{A v_{I_{2}}(\varphi)}{\epsilon}=\frac{k}{\epsilon} \int_{I_{2}} \varphi d \mu=\frac{k}{\epsilon}\left[a \frac{1}{k^{2}}+\left(\frac{1}{k}-\frac{1}{k^{2}}\right) \epsilon\right] .
$$

Then $c_{\delta}=c$, is independent of δ. Additionaly $\varphi_{\delta}^{*}(1 / k)=\epsilon$, so $\varphi_{\delta}^{*}(1 / k)(k c-k+1)=\alpha$, while $k \int_{0}^{1 / k} \varphi_{\delta}^{*}(y) d y$ tends to α, as $\delta \rightarrow 1 / k^{2^{-}}$.

By this we end the proof of Theorem 3.
Theorem 1 of Section 1 is an immediate Corollary of Theorem 3. Additionally the following are consequences of Theorem 3.

Corollary 1. Let w be an A_{1} weight with respect to the tree \mathcal{T} of homogeneity $(k \geq 2)$ on (X, μ) with $[w]_{1}^{\mathcal{T}}=c$. Then if one considers $((0,1],|\cdot|)$ equipped with the usual k-adic tree \mathcal{T}_{k}, where $|\cdot|$ is the Lesbesgue measure on $(0,1]$. Then $\left[w^{*}\right]_{1}^{\mathcal{T}_{k}} \leq k c-k+1$ and this result is sharp.

Proof. The proof is obvious. We just need to consider the function φ_{δ} constructed at the end of Theorem 3.

Corollary 2. Let w be A_{1}-weight on \mathbb{R}^{n} as described in Section 1. Then $w^{*}:(0,+\infty) \rightarrow$ \mathbb{R}^{+}has the following property:

$$
\frac{1}{t} \int_{0}^{t} w^{*}(y) d y \leq(k c-k+1) w^{*}(t), \quad \text { for every } t \in(0,+\infty)
$$

and the last inequality is sharp.
Proof. We expand \mathbb{R}^{n} as a union of an increasing sequence $\left(Q_{j}\right)_{j}$ of dyadic cubes, and use Theorem 3 in any of these.

Aknowledgement 1. The author would like to thank professor A. Melas for usefull discussions on the topic of this paper.

Aknowledgement 2. This research has been co-financed by the European Union and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF), Aristeia Code: MAXBELLMAN 2760, Research code: 70/3/11913.

References

[1] B. Bojarski, C. Sbordone and I. Wik, The Muckenhoupt class $A_{1}(\mathbb{R})$, Studia Math. 101 (2) (1992), 155-163.
[2] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
[3] F. W. Gehring, The L^{p} integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277.
[4] J. Kinnunen, Sharp results on reverse Hölder inequalities, Ann. Acad. Sci. Fenn. Ser A I Math. Diss 95 (1994), 1-34.
[5] J. Kinunnen, A stability result on Muckenhoupt weights, Publ. Math. 42 (1998), 153-163.
[6] E.Y.Leonchik, On an estimate for the rearrangement of a function from th Muckenhoupt class A_{1}, Ukrainian Math. J. 62 (2011), no. 8, 1333-1338.
[7] A. Melas, A sharp L^{p} inequality for dyadic A_{1} weights in \mathbb{R}^{n}, Bull. London Math. Soc. 37 (2005), 919-926.
[8] A. Melas, The Bellman functions of dyadic-like maximal operators and related inequalities, Adv. in Math. 192 (2005), 310-340.
[9] B. Muckenhoupt, Weighted norm inequalities for the Hardy-Littlewood maximal function. Trans. Amer. Math. Soc. 165 (1972), 207-226.
[10] A.Osekowski, Sharp inequalities for dyadic A_{1} weights, Arch Math. (Basel) 101 (2013), no. 2, 181-190.
[11] V.I.Vasyunin, The exact constant in the inverse Hölder inequality for Muckenhoupt weights (Russian), Algebra i Analiz 15 (2003), no. 1, 73-117. Translation in St. Petersburg Math. J. 15 (2004), no.1, 49-79.

Eleftherios Nikolidakis
National and Kapodistrian University of Athens
Department of Mathematics
Panepistimioupolis, GR 157-84
Athens, Greece
E-mail address: lefteris@math.uoc.gr

