
ΘΑΛΗΣ-ΕΚΠΑ-ΑΣΦΑΛΕΙΣ ΑΣΥΡΜΑΤΕΣ ΜΗ-ΓΡΑΜΜΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

ΣΤΟ ΦΥΣΙΚΟ ΕΠΙΠΕΔΟ

380202

ΑΣΦΑΛΕΙΣ ΑΣΥΡΜΑΤΕΣ ΜΗ-ΓΡΑΜΜΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΤΟ ΦΥΣΙΚΟ

ΕΠΙΠΕΔΟ

D2.1 STATE-OF-THE-ART REPORT ON NONLINEAR REPRESENTATION

OF SOURCES AND CHANNELS

1

01/02/2012 - 01/05/2013

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΚΑΘΗΓΗΤΗΣ ΝΙΚΟΛΑΟΣ ΚΑΛΟΥΠΤΣΙΔΗΣ

D2.2.1 ΔΗΜΟΣΙΕΥΣΗ: ON LINE DICTIONARY LEARNING FROM BIG DATA
USING ACCELERATED STOCHASTIC APPROXIMATION ALGORITHMS

01/07/2012 - 31/01/2014



SecureWIreless Nonlinear COM-
munications at the Physical Layer

MIS 380202

Deliverable 2.2.1
Online Dictionary Learning from Big Data
Using Accelerated Stochastic Approximation

Algorithms

K. Slavakis and G. B. Giannakis

date:
March 11, 2014

version:
1.00





ONLINE DICTIONARY LEARNING FROM BIG DATA USING
ACCELERATED STOCHASTIC APPROXIMATION ALGORITHMS

Konstantinos Slavakis and Georgios B. Giannakis

Dept. of ECE and Digital Technology Center, University of Minnesota, USA
Emails: {kslavaki,georgios}@umn.edu

ABSTRACT

Applications involving large-scale dictionary learning tasks moti-

vate well online optimization algorithms for generally non-convex

and non-smooth problems. In this big data context, the present

paper develops an online learning framework by jointly leveraging

the stochastic approximation paradigm with first-order acceleration

schemes. The generally non-convex objective evaluated online at

the resultant iterates enjoys quadratic rate of convergence. The gen-

erality of the novel approach is demonstrated in two online learning

applications: (i) Online linear regression using the total least-squares

approach; and, (ii) a semi-supervised dictionary learning approach

to network-wide link load tracking and imputation of real data with

missing entries. In both cases, numerical tests highlight the potential

of the proposed online framework for big data network analytics.

1. INTRODUCTION

As pervasive sensors collect and record massive amounts of high-

dimensional data from communication and social networks, and

storage along with processing capacities of computers grow, new

analytical tools are necessary to comb through these “big data”

sets to distill out subsets of interest. Further, as many data sources

continuously generate data in real time, analytics must often be

performed in real time, without a chance to revisit past entries.

Given an M × 1 real data vector yk ∈ R
M , indexed by k ∈ N

(the set of non-negative integers), dictionary learning (DL) has

emerged as a prominent tool for modeling yk as a product of

an unknown over-complete dictionary D := [d1, . . . ,dQ] ∈
R
M×Q, Q ≥ M , times an unknown sparse coefficient vector

sk ∈ R
Q [1–3]. If D were known, basis pursuit would yield

sk [4]; but with D unknown, one can use multiple vectors in

YK := [y0,y1, . . . ,yK−1] to solve

min
(SK ,D)∈RQ×K×D

1

2
‖YK −DSK‖2F + λs‖SK‖1 (1)

where SK := [s0, . . . , sK−1], D := {D ∈ R
M×Q | ‖dq‖ ≤

1, q ∈ {1, . . . , Q}}, λs ∈ R>0, and ‖·‖F, ‖·‖1 denote the Frobenius

and ℓ1-norms, respectively. The unit-norm constraint on the columns

of D is incorporated to cope with the inherent scale ambiguity of the

bilinear fit, and also ensure that the solution of (1) remains bounded.

If M is excessively large, solvers of (1) remain tractable ei-

ther after splitting YK in multiple row sub-blocks, and running DL

per sub-block on parallel processors; or, by simply down-sampling
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(a.k.a. sketching) the rows of YK . Thanks to the sparsity of SK , DL

remains tractable also when the collected data vectors have missing

entries for reasons such as privacy, storage limitations or due to the

high cost of data gathering [5]. But even when M is of manage-

able size, the streaming nature of data presents major challenges to

solving (1) as K grows.

Although the cost in (1) is non-convex, owing to the bilinear

form DSK , it is convex in each of its arguments, SK or D, if the

other one is held fixed. Block coordinate descent methods (BCDMs)

have recently gained popularity in the big data optimization area

[2, 3, 6–17], largely because they exploit structure of the objective

functions, they have low memory requirements, and also incur low

cost per iteration. BCDMs optimize (exactly or inexactly) the ob-

jective function over one (block) variable at a time, while holding

all other fixed. However, the computationally expensive and time-

consuming quest for (almost) exact minimizers per BCDM iteration

can be prohibitive in the big data context, where the streaming nature

and sheer dimensionality of data dictate stringent policies on com-

putational power and CPU time. Notwithstanding the importance of

accuracy in estimation, the sequential nature and non-stationarity of

data places time-adaptivity attributes of algorithms at a central po-

sition; online solutions should “monitor” their batch counterparts,

without “over-fitting” them, since that would degrade their agility to

track time-varying and non-stationary big-data processes.

Projected proximal stochastic (sub)gradient methods are attrac-

tive low-complexity online alternatives to BCDMs mainly for op-

timizing convex objective functions [18–22]. Unfortunately, such

first-order solutions tend to exhibit slow convergence even for con-

vex problems, due to their perplexed means of choosing step-size

parameters, which become increasingly complicated as the objec-

tive functions become more complex. On the other hand, acceler-

ated variations for convex problems enjoy provable quadratic conver-

gence rate of the objective function values, meaning they are optimal

among first-order methods [23–28]. However, convergence claims

for non-convex objective functions are largely uncharted territories.

The present work introduces a scalable, online, and low-

complexity iterative learning approach for a class of non-convex

optimization tasks, going beyond and subsuming (1). Using only

first-order information of the underlying objective function, the

convergence rate is proved to be quadratic. The novel algorithm

employs the method of [26] as a starting point, developed originally

for convex loss functions and equipped with flexibility in parameter

selection. Subsequently, it adapts stochastic approximation (SA)

[29] tools to ensure generalization to out-of-sample data. The ana-

lytical results are tested on two instances of broad practical interest:

Online, robust, linear regression based on the total least-squares

(TLS) criterion; and the online semi-supervised DL approach put

forth in [5] for network-wide link load tracking and imputation.



2. PROBLEM STATEMENT

Although the proposed approach and theoretical claims apply to

any finite number of block variables, exposition here will focus for

brevity and simplicity on only two blocks, namely (x(1), x(2)) ∈
H1 × H2, where H1,H2 are any finite-dimensional linear vector

spaces, with inner products 〈·, ·〉
H1

and 〈·, ·〉
H2

, respectively.

With reference to (1), consider the following sequence of

loss functions (Fk : H1 × H2 → R ∪ {+∞})k∈N, defined as

Fk(x
(1), x(2)) := fk(x

(1), x(2)) + g1(x
(1)) + g2(x

(2)), where

fk : H1 × H2 → R is non-convex, while gi ∈ Γ0(Hi), where

Γ0(Hi) stands for all (proper lower semicontinuous) convex func-

tions [30] defined on Hi with values in R∪{+∞}, i ∈ {1, 2}. Since

{g1, g2} can be non-differentiable, Fk is generally non-smooth. The

features of the DL problem in (1) appear in fk. Indeed, ∀k func-

tion fk is assumed convex with respect to (w.r.t.) each one of its

arguments, whenever the other one is fixed. Finally, fk is assumed

Lipschitz continuously differentiable in x(1) and x(2), with (local)

Lipschitz constants Lfk|x(1)(x
(2)) and Lfk|x(2)(x

(1)), respectively.

To facilitate convergence analysis on the premises of stochas-

tic approximation (SA) [29], the following stationarity assumption

on (Fk)k∈N is also adopted. (Generalizations are possible but go

beyond the scope of this paper.)

Assumption 1. There exists a function F : H1×H2 → R∪{+∞}
such that (s.t.) the following stationarity holds true:

Eξ|(x(1),x(2)){Fk(x
(1), x(2), ξ)} = F (x(1), x(2)), ∀k ∈ N

where ξ denotes a trial within the ensemble of trials Ξ of a prob-

ability space [31] that characterizes randomness in Fk originating

from the observed data. Moreover, Eξ|(x(1),x(2)) denotes expectation

w.r.t. ξ, conditioned on (x(1), x(2)) held fixed, since the arguments

of Fk are in general vector- or matrix-valued random variables (r.vs.)

x(i) : Ξ→ Hi. Indeed, this is true on the premises of Alg. 1, where

(x
(1)
k , x

(2)
k ) at time k generally depend on the observed data for time

instants {0, 1, . . . , k − 1}.
For concreteness, examples of principal practical interest follow.

Example 1 (Total least-squares). A special case of (1) with M = 1
is the linear regression model yk = u⊤

∗ks∗ + vk, k ∈ N, where

(u∗k, s∗) ∈ R
Q × R

Q, with the regressor vector u∗k assumed

random; ·⊤ denotes transposition; s∗ is assumed sparse, and vk
stands for noise. Observed data are (yk,uk)k∈N ⊂ R × R

Q, where

uk is a noisy version of the true u∗k. Here, H1 = H2 = R
Q,

with 〈·, ·〉
RQ being the dot-vector product. Following the total least-

squares (TLS) criterion and the resultant errors-in-variables (EIV)

modeling approach [32], the following sequence of functions is con-

sidered; ∀k ∈ N:

Fk(s, e) :=
1

2

[
yk − (uk + e)⊤s

]2

︸ ︷︷ ︸

fk(s,e)

+λs‖s‖1
︸ ︷︷ ︸

g1(s)

+
λe
2
‖e‖2

︸ ︷︷ ︸

g2(e)

, (2)

where e ∈ R
Q models EIV, and λs, λe ∈ R>0. Notice that a Lip-

schitz constant of ∇sfk is Lfk|s(e) = ‖(uk + e)(uk + e)⊤‖ ≤
‖(uk + e)(uk + e)⊤‖F = ‖uk + e‖2, where ‖A‖ denotes the

spectral norm of a matrix A, and fk|s the restriction of fk on the

s-domain. On the other hand, a Lipschitz constant of ∇efk is

Lfk|e(s) = ‖ss⊤‖ ≤ ‖ss⊤‖F = ‖s‖2.

It is not hard to verify that

Eξ|(s,e){Fk(s, e, ξ)}
=

1

2
s
⊤
ee

⊤
s+ s

⊤
Eξ|(s,e){uk}e⊤

s

+
1

2
s
⊤
Eξ|(s,e){uku⊤

k }s+ Eξ|(s,e){yk}e⊤
s

+ Eξ|(s,e){yku⊤
k }s+

1

2
Eξ|(s,e){y2k}.

Assuming that all expected values remain invariant w.r.t. k, then As-

sumption 1 holds if F (s, e) := Eξ|(s,e){Fk(s, e, ξ)}.
Example 2 (Semi-supervised dictionary learning [5]). Consider an

undirected weighted graph G(V, E), where V denotes the vertex

set, with cardinality P ∈ N∗, and E is the edge set. Connectiv-

ity and edge strengths of G are described by the adjacency matrix

W ∈ R
P×P , where [W ]ij > 0 if nodes ni and nj are connected,

while [W ]ij = 0 otherwise. At every k ∈ N, a variable χkp ∈ R,

which describes a network-wide dynamical process of interest, cor-

responds to a node np. All node variables are collected in a sin-

gle vector χk := [χk1, . . . , χkP ]
⊤ ∈ R

P . A sparse representa-

tion of the process over G models χk as a linear combination of

“few” atoms in a dictionary D ∈ R
P×Q, Q ≥ P : χk = Dsk,

where sk ∈ R
Q is sparse. Further, only a portion of χk is observed

per time slot k. Let now Mk ∈ R
M×P , M < P , denote a bi-

nary measurement matrix, with each row of Mk corresponding to

the canonical basis vector for RP , selecting the measured compo-

nents of yk ∈ R
M . In other words, the observed data per slot k are

yk = Mkχk+vk, where vk denotes noise. To enable imputation of

missing entries of χk in yk, the topology of G will be utilized. The

spatial correlation of the process is captured by the Laplacian matrix

L := diag(W1P ) −W , where 1P ∈ R
P is the all-ones vec-

tor. In this setting, H1 = R
Q, with 〈·, ·〉

H1
denoting the dot-vector

product, and H2 = R
P×Q, with 〈D1,D2〉H2

= trace(D⊤
1 D2),

∀(D1,D2) ∈ H
2
2 .

Given a “forgetting factor” δ ∈ (0, 1] to gradually diminish the

effect of past data (and thus account for non-stationarity), define

Fk(s,D) :=

fk(s,D)
︷ ︸︸ ︷

1

2∆k

k∑

κ=0

δk−κ‖yκ −MκDs‖2 + λL
2
s
⊤
D

⊤
LDs

+ λs‖s‖1
︸ ︷︷ ︸

g1(s)

+ ιD(D)
︸ ︷︷ ︸

g2(D)

(3)

where ∆k :=
∑k

κ=0 δ
k−κ, and ιD stands for the indicator function

of D, i.e., ιD(D) = 0 if D ∈ D, and ιD(D) = +∞ if D /∈ D.

The term including the known L quantifies a priori information on

the topology of G, and promotes “smooth” solutions over strongly

connected nodes of G [5]. This term is also instrumental in accom-

modating missing entries in (χk)k∈N.

It can be easily verified that

Eξ|(s,D){Fk(s,D, ξ)}

=
1

2∆k

k∑

κ=0

δk−κ
[

s
⊤
D

⊤
Eξ|(s,D){M⊤

κ Mκ}Ds

−2Eξ|(s,D){y⊤
κMκ}Ds+ Eξ|(s,D){‖yκ‖2}

]

+
λL
2

s
⊤
D

⊤
LDs+ λs‖s‖1 + ιD(D). (4)

As before, if all expected values are invariant w.r.t. k, then Assump-

tion 1 holds true with F (s,D) := Eξ|(s,D){Fk(s,D, ξ)}.
Notice that a Lipschitz constant of ∇sfk is Lfk|s(D) =

‖D⊤AkD‖ ≤ ‖D⊤AkD‖F ≤ ‖D‖2F‖Ak‖F, where Ak :=

∆−1
k

∑k

κ=0 δ
k−κM⊤

κ Mκ + λLL; whereas a Lipschitz constant of

∇Dfk is Lfk|D (s) = ‖s‖2‖Ak‖F.

3. ALGORITHM

This section introduces Alg. 1, which is built on a few basic notions

outlined next.



1 Choose any initial points (x
(i)
0 , y

(i)
1 , η

(i)
1 ), i ∈ {1, 2};

2 for k = 1 to +∞ do

3 for i = 1 to 2 do

4 if minx(i) fk(x
(i) | x(−i)k+i−2) + gi(x

(i)) is feasible then

5 x
(i)
k ∈ arg minx(i) fk(x

(i) | x(−i)k+i−2) + gi(x
(i));

6 else

/* Acceleration for i-th block of coordinates: */

/* Initialization: */

7 (x0, y1, η0) := (x
(i)
k−1, y

(i)
k , η

(i)
k );

/* Perform Ri cycles of (5): */

8 for r = 1 to Ri do

9 Πr := (xr−1, yr, ηr);

10 (xr, yr+1, ηr+1)← Accel
(
fk(· | x(−i)k+i−2), gi,Πr

)
;

11 end

/* Update i-th block of coordinates: */

12 (x
(i)
k , y

(i)
k+1, η

(i)
k+1) := (xRi

, yRi+1, ηRi
);

13 end

14 end

15 end

Algorithm 1: A Gauss-Seidel-inspired acceleration scheme.

Given (ψ, β) ∈ Γ0(H)× R>0, consider the proximal mapping

Proxβψ(x) := arg min
ω∈H

ψ(ω) +
1

2β
‖x− ω‖2, ∀x ∈ H.

Clearly, when ψ equals the indicator function ιD of a closed convex

set D, then ∀β ∈ R>0, Proxβψ boils down to the (metric) projection

PD onto D [cf. (1)].

Given functions (ϕ, ψ) ∈ Γ0(H)2, where ∇ϕ is Lipschitz con-

tinuous with constant Lϕ ∈ R>0, Φ := ϕ + ψ, and the parameters

Πr := (xr−1, yr, ηr) ∈ H× H× R>0, define the core block of

acceleration in Alg. 1 (cf. [26]):

Accel(ϕ, ψ,Πr)

=







λr ∈ [ǫ̌λ, 1]

ηr ∈
[

ǫ̌η,min
{
ǫ̂η,

1

L̂

}]

, ηr+1 ≤ ηr
Lr ∈ [Lϕ, L̂]

βr ∈
[
1−
√
1− ηrLrλr
Lr

,
1 +
√
1− ηrLrλr
Lr

]

zr :=Proxβrψ
(
yr − βr∇ϕ(yr)

)

xr ∈ argmin
x

{
Φ(x) | x ∈ {xr−1 + λr(zr − xr−1), xr−1}

}

tr+1 :=

√

4t2r + λ2
1λ

2
r+1 + λ1λr+1

2
, t1 := λ1

yr+1 :=
tr
tr+1

yr +
(

1− λ1

tr+1

)

xr −
tr − λ1

tr+1
xr−1

− tr
tr+1

ηrλr
βr

(yr − zr).
(5)

Parameters (ǫ̌λ, ǫ̌η, ǫ̂η) ∈ R
3
>0 are user-defined, while L̂ ∈ R>0

stands for an upper bound on all Lipschitz constants used in this pa-

per. The acceleration operator (5) is applied to Alg. 1 in a successive

or Gauss-Seidel fashion. First, it is applied to x(1) for R1 ∈ N∗

cycles, and then to x(2) for R2 ∈ N∗ cycles.

A few comments regarding Alg. 1 are now in order. Vector x(−i)

denotes all variables in (x(1), x(2)) other than x(i), i ∈ {1, 2}.
Line 4 in Alg. 1 allows for exact computations of the minimizer,

whenever closed-form solutions are available (cf. Sec. 4.1); or,

whenever time and CPU resources are available for finding a highly

accurate estimate of the minimizer. The computational complex-

ity of Alg. 1 on Examples 1 and 2, including computations of

Lipschitz constants and function evaluations, are in the order of

O[(R1 +R2)Q] and O[(R1 +R2)(Q+ P )P ] per k, respectively.

Theorem 1. Assuming that all the employed r.vs. have finite first-

and second-order moments, Alg. 1 enjoys the following properties.

1) (E{Fk(x(1)k , x
(2)
k )})k∈N is non-increasing; ∀k ∈ N,

E{Fk(x(1)k+1, x
(2)
k+1, ξ)} ≤ E{Fk(x(1)k , x

(2)
k , ξ)}

where expectation is taken both w.r.t. ξ and (x
(1)
κ , x

(2)
κ )k+1

κ=0.

2) If F is bounded from below, and (x
(1)
k , x

(2)
k )k∈N is uniformly

bounded over Ξ (the ensemble of trials), then the convergence rate

of the iterates is quadratic, i.e., ∃(k0, F∗, C) ∈ N× R × R>0 s.t.
∣
∣E{Fk(x(1)k , x

(2)
k , ξ)} − F∗

∣
∣ ≤ C

(1 + k)2
, ∀k ≥ k0.

3) If g1, g2 are coercive, meaning limk→∞ |gi(ωk)| = +∞ when-

ever limk→∞‖ωk‖Hi
= +∞, i ∈ {1, 2}, if F is bounded from

below, and if (x
(1)
k , x

(2)
k )k∈N is uniformly bounded over Ξ, then ∀k

there exist subgradients [30] (h
(1)
k , h

(2)
k ) ∈ ∂x(1)Fk(z

(1)
k , x

(2)
k−1, ξ)×

∂x(2)Fk(x
(1)
k , z

(2)
k , ξ) s.t.

lim
k→∞

E
{
‖h(1)

k ‖
2 + ‖h(2)

k ‖
2} = 0.

Coercivity is a quite general property; any ℓν -norm, with ν ∈
[1,+∞), as well as the indicator function ιD associated with any set

D are coercive.

4) If g1, g2 are coercive, if F is bounded from below, and if

(x
(1)
k , x

(2)
k )k∈N is uniformly bounded over Ξ, then the previous

F∗ satisfies

F∗ ≤ lim sup
k→∞

min
x(i)

E
{
Fk(x

(i), ξ | x(−i)k )
}
, i ∈ {1, 2},

provided also that the set of all minimizers of E
{
Fk(·, ξ | x(−i)k )

}
is

uniformly bounded over k ∈ N.

Due to lack of space, proofs of the previous properties will be

presented elsewhere. It is worth stressing however that convergence

analysis in [24–26] pertains only to the sequence of objective func-

tion iterates, and not to the sequence of primal variables.

4. NUMERICAL TESTS

Although on smaller dimensions than those involved with big data

applications, preliminary tests of the novel approach were performed

using both synthetic and real data.

4.1. Synthetic data

To test Alg. 1 on Example 1, both regressors (u∗k)k∈N and noise

(vk)k∈N were generated as zero-mean, i.i.d. mutually independent

Gaussian processes with variances 1 and 10−2, respectively. The

nonzero entries were placed randomly (following a uniform distri-

bution) in the sparse s∗, with values generated independently also

by a zero-mean, unit-variance Gaussian process. Alg. 1 was tested

in two scenarios, namely a low-dimensional one corresponding to

(Q, ‖s∗‖0) = (100, 10), and a relatively high-dimensional one

with (Q, ‖s∗‖0) = (750, 75), tagged “low-dim” and “high-dim”

in Figs. 1a and 1b, respectively. The regressors (uk)k∈N were

formed by adding to (u∗k)k∈N i.i.d., zero-mean Gaussian noise

with variance 10−2. The following additional parameters were used

in Alg. 1: λ0 := 10−6, λk = 1, ∀k 6= 0, η0 := 10−6, λs := 10−6,

and λe := 102 was selected to prevent large values of ‖e‖.



Alg. 1 was tested against the standard subgradient descent

(SGD) method with constant step size 10−3, and the block coordi-

nate descent (BCD) scheme having the cost in (2) per BCD iteration

of s maximally separated in scalar-valued blocks. Given the co-

ordinates {sj}j 6=i of s, minimization of (2) w.r.t. si amounts to

the following scalar-valued optimization task: minsi∈R 0.5[yk −∑

j 6=i(ukj + ej)sj − (uki + ei)si]
2 + λs|si|, which can be

solved in closed form using the scalar-valued soft-thresholding

operator. In all methods, the exact minimization step over e is

straightforward: Given s, the minimizer of (2) w.r.t. e is ê =
(yk − u⊤

k s)(ss
⊤ + λeIQ)

−1s, where the required inverse is per-

formed using the matrix inversion lemma: (ss⊤ + λeIQ)
−1 =

λ−1
e [IQ − ss⊤(λe + ‖s‖2)−1]. It is worth noticing here that

R1 = 1 for the inner loop of Alg. 1 in lines 8–11.

Figs. 1a and 1b illustrate the performance of all methods tested.

Fig. 1a depicts the error fit 0.5[yk − (uk + êk)
⊤ŝk]

2 across time,

where (ŝk, êk) denote estimates per slot k. Fig. 1b shows the nor-

malized deviationQ−1‖ŝk−s∗‖ versus k on the support of s∗. The

smooth curves of Figs. 1a and 1b were obtained after averaging 100
realizations. Although BCD exhibits fast convergence of the error

function iterates, it does not identify correctly s∗. The behavior of

SGD confirms the known fact that (sub)gradient techniques are gen-

erally slow convergent. However, SGD shows the best performance

as a system identification module. The proposed accelerated method

outperforms both SGD and BCD in fitting the data accurately, and is

only inferior to SGD in identifying s∗.

4.2. Real data

Along the lines of Example 2, Alg. 1 was validated also on esti-

mating and tracking network-wide link loads taken from the Inter-

net2 measurement archive [33]. The Internet2 network consists of

P = 54 links and 9 nodes. Using the network topology and routing

information, network-wide link loads (χk)k∈N ⊂ R
P become avail-

able (in Gbps). Per time slot k, onlyM = 30 of the χk components,

chosen randomly via Mk ∈ R
M×P , are observed in yk ∈ R

M .

The cardinality of the time-varying dictionaries is set constant to

Q = 80, ∀k. To cope with pronounced temporal variations of the

Internet2 link loads, the forgetting factor δ in Example 2 was set

equal to 0.5. Initial values for both (s,D) were randomly drawn

from the feasibility regions seen in Example 2. The parameters used

in this realization of Alg. 1 were selected as follows: λ1 = 10−3,

η0 = 10−6, λs = 10−3, and λL = 10−1.

Fig. 1c depicts estimated values of both observed (dots) and

missing (crosses) link loads, for a randomly chosen link of the net-

work. The normalized squared estimation error between the true χk
and the inferred χ̂k, namely ‖χk − χ̂k‖2‖χk‖−2, is also plotted in

Fig. 1c versus time k. Alg. 1 was compared with the state-of-the-art

scheme in [5] that relies on the alternating direction method of mul-

tipliers (ADMM), see e.g., [34], to minimize a cost closely related to

(3) w.r.t. s, and uses BCD iterations requiring matrix inversions to

optimize (3) w.r.t. D. On the other hand, the number of inner loops

in Alg. 1 w.r.t. s were set to R1 = 1, while in order to retain the

same overall estimation accuracy as [5], R2 = 10 was used for the

inner loops w.r.t. D. It is worth noticing here that ADMM in [5]

requires multiple iterations to achieve a prescribed estimation accu-

racy, and that no matrix inversion was incorporated in the realization

of Alg. 1. Both Alg. 1 and [5] perform comparably in the simulated

tests, but only those of Alg. 1 are shown here for clarity.
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Fig. 1. Numerical results for the synthetic [(a), (b)] and real data

[(c)] of Secs. 4.1 and 4.2, respectively.
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