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Abstract Over the years, many bacterial isolates
have been evaluated as potential biocontrol agents
against soilborne fungal phytopathogens. However,
few of them were ultimately successful after evalua-
tion in field trials. One of the major reasons for this
failure is the lack of appropriate screening procedures
to select the most suitable microorganisms for disease
control in diverse soil environments. For this reason,
the study of bacterial screening has a future that is
characterised by many technical and conceptual
challenges. In this review, we summarise and discuss
the convenience of use of the main screening methods
currently applied to select bacterial candidates for
biocontrol of fungal and oomycete soilborne phyto-
pathogens. Also, a comparative case study of the
application of different screening methods applied to

an experimental pathosystem is shown, revealing the
success of bacterial candidates selected by different
strategies for biocontrol of the phytopathogenic
fungus Rosellinia necatrix in avocado plants. Screen-
ing for antagonism against this fungal pathogen, one
of the more straightforward methods used for the
selection of bacterial biocontrol agents, was proven to
be a valid strategy for this experimental system.
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Introduction

Soilborne fungal and oomycete plant pathogens are
important determinants of the dynamics of plant
populations in natural environments and in agricul-
tural environments. Examples of economically impor-
tant soil-borne fungal and oomycete plant pathogens
include Fusarium spp., Gaeumannomyces graminis,
Verticillium spp., Phytophthora spp., Pythium spp.
and Rhizoctonia solani. Despite low initial densities
of inoculum in soil, these pathogens can cause
complete destruction of plants, and occasionally, total
loss of yield (Deacon 1991; Pal and McSpadden
Gardener 2006).

The term “biological control” and its abbreviated
synonym “biocontrol” have been used in different
fields of biology, but in plant pathology, this term is
applied for the use of microbial antagonists (the
biological control agent or BCA) to suppress diseases.
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However, various definitions of biological control
offered in the scientific literature have sometimes
caused confusion and controversy; for example, this
term has been used to define the cultural practices
performed by growers, such as the use of rotations and
planting of disease-resistant cultivars. Most narrowly,
biological control refers to the suppression of a single
pathogen (or pest) by a single antagonist in a single
cropping system. The result of the BCA application is
decreased incidence and severity of diseases (Haas and
DeFago 2005; Pal and McSpadden Gardener 2006).

Microorganisms as BCAs are widely reported, and
in some cases, their modes of action against the plant
pathogen have been elucidated. Examples of these
modes of action by bacterial BCAs in different
pathosystems are listed in Table 1. In hyperparasitism,
the pathogen is directly attacked by a specific BCA
that kills it or its propagules (Leveau and Preston
2008). Many microorganisms produce and release
lytic enzymes against compounds such as chitin,
proteins, cellulose, hemicellulose and DNA (Table 1),
sometimes resulting in the direct suppression of plant
pathogenic activities (Kobayashi et al. 2002). Fur-
thermore, some products of lytic enzyme activity may
contribute to indirect disease suppression, such as
oligosaccharides derived from fungal cell walls,
which are known to be potent inducers of plant host
defences (Kilic-Ekici and Yuen 2003).

One of the best studied modes of action of bacterial
BCAs is the antagonism mediated by different
compounds with antifungal properties (Haas and Keel
2003). Most microbes produce and secrete one or
more compounds with antibiotic activity (Raaijmakers
et al. 2002; Gross and Loper 2009), such as the
biocontrol strain Pseudomonas fluorescens Pf-5,
which produces the antibiotics pyrrolnitrin, pyolu-
teorin and 2,4-diacetylphloroglucinol (Loper et al.
2007), or the strain FZB42 of Bacillus amyloliquefa-
ciens, which produces various antifungal lipopeptides
(Koumoutsi et al. 2004). Other microbial byproducts
(Table 1), such as hydrogen cyanide (HCN, Howell et
al. 1988) or ammonia (Voisard et al. 1989), also may
contribute to pathogen suppression.

Rhizosphere colonisation is one of the first steps in
pathogenesis by soilborne pathogens. For this reason,
the trait of some bacteria to colonise the root and to
intergere with the biology of the pathogen can be used
for biological control of plant diseases (Bloemberg
and Lugtenberg 2001, Lugtenberg and Bloemberg

2004; Lugtenberg et al. 2001). To colonise the
rhizosphere successfully, a microbe must effectively
compete for available nutrients. On plant surfaces,
host-supplied nutrients include exudates, leachates,
and senesced tissue (Kamilova et al. 2007; Pliego et
al. 2008). For example, effective nutrient catabolism
in the spermosphere has been identified as a mecha-
nism contributing to Pythium ultimum suppression by
Enterobacter cloacae (van Dijk and Nelson 2000;
Kageyama and Nelson 2003).

Other aspects, such as the induction of host
resistance, are very important modes of action to
protect against fungal diseases. Plants actively re-
spond to a variety of environmental stimuli (including
gravity, light, temperature, physical stress, water and
nutrient availability) and can also respond to a variety
of chemical stimuli produced by soil- and plant-
associated microbes (van Loon et al. 1998; Haas and
Defago 2005). In several instances, inoculations with
plant-growth-promoting rhizobacteria (PGPR) were
effective in controlling multiple diseases caused by
different pathogens (van Loon et al. 1998; Ongena et
al. 2004; Ryu et al. 2004).

The background for screening methods

Some authors separate biocontrol strategies into two
broad categories. One strategy, which could be
considered preventive, follows a fundamentally eco-
logical approach. This biocontrol strategy pretends to
reach a long-time plant protection against the patho-
gen, and it is mainly based on induction or improve-
ment of suppressive soils. On the other hand, a second
strategy, which could be considered curative, uses
microorganisms as biopesticides and resembles in
some important respects the approach of chemical
pesticide treatment, which aims for control at a
limited period of time (Knudsen et al. 1997). These
differences in control strategy should influence the
choice of isolation as well as the screening method
(Köhl 2009).

Currently, it is believed that one of the biggest
reasons for biocontrol failure is the lack of appropriate
screening procedures to select those microorganisms
which are most suitable for disease control in diverse
soil environments (Merriman and Russell 1990;
Folman et al. 2003). Current screening procedures
may ignore the influence of biotic and abiotic factors
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in the rhizosphere. For example, dual culture with
fungal pathogens on agar plates has often been used
as a screening method (Kloepper and Schroth 1981;
Schroth and Hancock 1982). However, the method
may be inappropriate because it excludes host-
antagonist-pathogen interacting factors and it cannot

select biocontrol agents that provide disease control
by other mechanisms such as root colonisation,
induction of systemic resistance and/or niche compe-
tition (Lugtenberg et al. 2001; Bakker et al. 2003;
Kamilova et al. 2005; Lugtenberg and Kamilova
2009; Pang et al. 2009). Regardless, it should be

Table 1 Modes of action displayed by bacterial BCAs against soilborne fungal and oomycete plant pathogens in different
pathosystems

Mode of action Specific mechanism BCA/Pathogen/Host References

Hyperparasitism/predation Disorganization of fungal
cell walls and/or cell contents

Paenibacillus sp./Fusarium
oxysporum/Sorghum

Budi et al. 2000

Hyperparasitism/predation Mycophagy Many combinations Leveau and Preston
2008

Lytic enzymes Chitinases, β-1,3-Glucanases Lysobacter enzymogenes/
Fusarium graminearum/wheat

Li et al. 2008

Lytic enzymes Chitinases Serratia plumuthica/Botrytis
cinerea/many host

Frankowski et al. 2001

Lytic enzymes Proteases Stenotrophomonas maltophilia/
Pythium ultimum/sugar beet

Dunne et al. 2000

Antibiotics Bacillomycin, fengycin Bacillus amyloliquefaciens/
Fusarium oxysporum/maize

Koumoutsi et al. 2004

Antibiotics Agrocin 84 Agrobacterium radiobacter/
Agrobacterium tumefaciens/many hosts

Vicedo et al. 1993

Antibiotics 2,4-diacetylphloroglucinol Pseudomonas fluorescens/Pythium
spp./sugar beet

Shanahan et al. 1992

Antibiotics Pyoluteorin, pyrrolnitrin Pseudomonas fluorescens/Pythium
ultimum/sugar beet

Howell and Stipanovic
1980

Antibiotics 2-hexyl, 5-propyl resorcinol Pseudomonas fluorescens/
Rosellinia necatrix/avocado

Cazorla et al. 2006

Antibiotics Phenazines Pseudomonas chlororaphis/
Fusarium oxysporum/tomato

Chin-A-Woeng et al.
2001

Antibiotics Polyenes Streptomyces violaceusniger/Pythium
ultimum/sugar beet

Trejo-Estrada et al.
1998

Antibiotics Cyclic lipopeptides Pseudomonas sp./Phytophthora
infestans/tomato

Raaijmakers et al.
2006

Waste products Ammonia Enterobacter cloacae/Pythium spp./
sugar beet

Howell et al. 1988

Waste products Hydrogen cyanide Pseudomonas fluorescens/
Phytophthora infestans/tomato

Voisard et al. 1989

Physical/chemical
interference

Molecular cross-talk confused Pseudomonas fluorescens/
Fusarium oxysporum/wheat

Duffy et al. 2003

Competition Exudates and/or leachates
consumption

Collimonas fungivorans/Fusarium
oxysporum/tomato

Kamilova et al.
2007

Competition Physical niche occupation Pseudomonas pseudoalcaligenes/
Rosellinia necatrix/avocado

Pliego et al. 2008

Competition Iron and siderophore
scavenging

Pseudomonas putida/different
pathogens/cucumber

Loper and Henkels
1999

Induction of host
resistance

Detection of
pathogen-associated,
molecular patterns

Many combinations Nürnberger and
Lipka 2005

Induction of host
resistance

Phytohormone-mediated
induction

Pseudomonas putida/Phytophthora
infestans/potato

van Loon 2007
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considered that any screening method is selective;
therefore, it is to be expected that only a portion of the
antagonistic microbiota will be detected.

Although a number of authors have stressed the
importance of appropriate screening procedures
(Merriman and Russell 1990; Deacon 1991; Campbell
1994; Whipps 1997), only a few studies have been
conducted that compared the results of different
screening methods in one experimental system (e.g.
Kommedahl and Windels 1978; Renwick et al. 1991;
Duczek 1994). After testing different screening
strategies, Daayf et al. (2003) concluded that whole
plant tests were the most convincing strategy, but
other tests (in vitro or in detached leaves) also
provided an indication of alternative mechanisms of
action that could cooperate. On the other hand,
Knudsen et al. (1997) found that screening for
antagonistic BCAs by different strategies yielded
positive results. Thus, it can be concluded that
screening methods should be used with caution if
candidates with multifactorial or plant-mediated
mechanisms of control are to be obtained. A
screening strategy can be developed to assess the
potential of plant-associated bacteria to control dis-
eases by a hierarchical combination of assays (Faltin
et al. 2004).

A valuable background for any screening approach
is a thorough knowledge of the aetiology and life
cycle of the causal agent to be controlled; particularly,
it is important to have knowledge about inoculum
transfer, survival, critical inoculum threshold level,
the infection process, and climatic conditions favour-
able for disease outbreak and development. These
aspects need to be mirrored in the biological control
strategy, time and place of application, and thus,
initially in the choice of an appropriate screening
method. More often, however, researchers have
focused on the mode of action of the antagonist in
rather artificial environments with hardly resemble
from the field situation. Thus, the search for isolates
or strains of microorganisms with antagonistic prop-
erties is often performed using pure laboratory
methods. As most of these methods have important
drawbacks and shortcomings as discussed below, they
should be used with great caution.

The first step in all of these studies is the isolation
and construction of bacterial collections of isolates
from selected sites. Campbell (1986) offered a
pragmatic approach for selecting search sites and

screening methods for BCAs. It was suggested that
culture collections are generally unsuitable because
the microorganisms may have high nutritional
requirements that are impractical for a commercial
product and lack survival abilities in harsh environ-
ments. Practical considerations for selecting sites
include areas where there is high disease pressure
and where the plants show little or no disease
symptoms. Disease-suppressive soils offer a logical
site for selecting naturally occurring BCAs for
soilborne diseases (Haas and DeFago 2005; Schroth
and Hancock 1982). It may be practical to isolate
microorganisms from agroecosystems under various
farm management practices where a crop is being
grown. This may aid in choosing microorganisms that
are compatible with certain farm management practi-
ces such as fertiliser and pesticide applications and
tillage practices.

Subsequently, the bacterial collection should be
screened using selected strategies. Screening methods
can be arranged based on the level of complexity they
represent. Methods with low numbers of components
(e.g. an antagonist and a pathogen) mainly give
information about mechanisms such as antagonism.
More complex methods with higher numbers of
components—such as antagonist, pathogen, host and
environmental factors—may give less exact informa-
tion about the mechanisms of action, but they may
more closely mimic the field situation. The success of
the screening process is related to the objectives of the
researcher. However, in some cases, particular screen-
ing strategies failed in selecting BCA candidates, as it
was reported by Folman et al. 2003, who developed a
screening procedure based on carbon source oxidation
profiles and growth rates of the bacteria as indicators
of a partial niche overlap with the pathogen without a
positive result.

Types of screening strategies

Introduction

Once the bacterial collection of isolates from roots
and soil is established, the choice of the screening
procedure will drive the selection of the different
bacterial BCA candidates. This decision must be
based on the objectives of the work, the type of
pathogen, the environmental parameters, the desired
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future biocontrol strategy (preventive or curative),
difficulties for future formulation, and other factors.
In brief, the main screening methods broadly used in
the literature can be classified as follows:

In vitro assays

The main in vitro screening methods that have been
performed previously used plate assays with only one
microorganism (mainly searching for lytic enzymes or
siderophores production) or with two different micro-
organisms (mainly searching for antagonistic or
parasitic relationships).

Searching for lytic enzymes is a very easy
procedure. This method has been used successfully
to select different BCAs (Viterbo et al. 2002).
Selection of enzyme-producing microorganisms by
an easy plate assay is very rapid and simple and can
be performed prior to interactions with the pathogen
and/or the plant (Cattelan et al. 1999). The main lytic
enzymes produced by bacterial BCA are chitinases,
glucanases and proteases; however, although chitinol-
ysis is a common trait in bacteria that exhibit
antifungal activity (de Boer et al. 2004; Hoster et al.
2005; Ajit et al. 2006), chitinase activity alone
appears to be insufficient to account for bacterial
lysis of fungal hyphae (Budi et al. 2000; Zhang and
Yuen 2000; Kobayashi et al. 2002). The complexity
of the fungal cell wall makes it a formidable challenge
as a primary target for bacterial attack, as bacteria
would need to rapidly produce a wide variety of
exoenzymes to degrade cell wall components to the
level needed to compromise structural integrity
(de Boer et al. 2005) and enhance biocontrol efficacy
(Someya et al. 2007). For screening based on non-
antibiotic substances, such as siderophore production,
specific media should be used (Schwyn and Neilands
1987), which has resulted in selection of bacterial
BCAs belonging to the genera Pseudomonas, Bacillus
and Kocuria against many fungal soilborne phyto-
pathogens such as Fusarium oxysporum, Pyricularia
oryzae, and Sclerotium spp. (Chaiharn et al. 2009).

Antagonism, as a mode of action, could be
considered as a method of inhibiting phytopathogenic
fungi through secretion of substances that interfere
with the life cycle of the target microorganism. When
an in vitro plant test is the first line of screening, it is
generally designed to screen BCAs with antibiotic
activity (Burkhead et al. 1995). Finding organisms

with specific enzyme activity or toxin production is
the object of some procedures. Antagonistic bacterial-
fungal interactions are typically assessed in vitro in
terms of an unoccupied “inhibition zone” between a
bacterial colony and fungal hyphae cocultured on an
agar plate. Two-component screening (e.g. dual
cultures of a candidate antagonist and a pathogen on
agar) is exclusively related to interaction studies, and
potential antagonists are typically ranked according to
their ability to inhibit the growth of the pathogen
expressed by an inhibition zone. The antibiotic-
producing strains have been studied for their antagonism
in this way, and these antibiotics are known to be active
against fungi in vivo. The production of these antago-
nistic substances sometimes correlate very well with the
biocontrol ability of these bacteria, at least for the
antibiotics listed in Table 1, and the dual culture method
has performed reasonably well for their screening.
However, other authors have found that production of
antibiotics in vitro does not correlate with their
production in vivo (Fravel 1988; Renwick et al.
1991). One reason for this lack of correlation could
be that antibiotics may be induced by specific
nutrients. No single medium can, it seems, promote
the expression of the full range of antibiotic production
of an organism. Studying the antifungal compounds
produced by Pseudomonas spp., Haas and Keel (2003)
found that nutrients played a role in the amount of
antibiotic produced, and the authors suggested that
caution should be taken when attempting to equate in
vitro and in vivo production of these compounds. On
the other hand, several studies also demonstrated that
toxins presence and environmental conditions (such as
pH and temperature) can have an enormous influence
on the level of antibiotic produced (Duffy and Defago
(1999); van Rij et al. 2005, 2004). Moreover, antibiotic
production in the rhizosphere has been confirmed
(Thomashow and Weller 1996; Rochat et al. 2010).

This type of approach is most often used to
differentiate candidates of a species already known
to possess antagonistic potential. Thus, this approach
is focused on some facet of the mechanism of
antagonism itself, but it has been argued that these
screening methods may not be suitable and should be
avoided (Campbell 1986). However, screening for
this mode of action is easy and inexpensive and
permits massive screening of several strains of
microorganisms. If the goal is to select microorgan-
isms with high capabilities of natural metabolite
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production and to develop these natural products for
commercial applications, prescreening for antibiosis
may be appropriate. Moreover, different works, such
as that of Larkin and Fravel (1998), consider that
identification of effective antagonist strains represents
only the first step toward the development of effective
biological control. For biocontrol to be implemented on
a practical level, the antagonists must be ecologically fit
to survive, become established, and function within the
particular conditions of the ecosystem. However, from
the applied point of view, antibiotic-producing bacteria
could present some difficulties to register.

Assays involving plants

In addition to the in vitro studies, the screening
programs could be extended by including plants
growing in natural substrates. Thus, other parameters
such as induced resistance, plant growth promotion,
edaphic or nutritional factors such as root exudates
and plant residues could be considered in this
experimental system.

In recent years, an increasing number of scientific
reports have revealed that several mechanisms may be
responsible for a biological control effect (Mercado-
Blanco and Bakker 2007). The involvement of
various mechanisms and especially the role of
competition in biological control have been reviewed
(Lugtenberg et al. 2001; Kamilova et al. 2005). Thus,
even though antibiosis or mycoparasitism has been
shown to occur, it is often competition for nutrients
and the ability to compete against other organisms in
the rhizosphere, spermosphere, and other areas that
are the essential attributes of successful biocontrol
organisms (Lugtenberg and Kamilova 2009). Clearly,
in the absence of plants, selection for antagonism
alone will not provide information concerning the
ability of a microorganism to colonise and protect
roots and seeds. It is well established that seed and
root-infecting pathogens are often highly dependent
on exudates to initiate plant infection, and the ability
of the antagonist to metabolise these exudated
molecules may be an important step in biocontrol
processes (Kamilova et al. 2005). Indeed, rhizosphere
competence has in some cases been noted as an
important prerequisite for obtaining successful bio-
control, and specific tests have been devised to select
for this characteristic (Lugtenberg et al. 2001).
Inoculation with BCAs based on single clonal strains

may result in poor or short-lived colonisation of the
rhizosphere. To overcome this problem, Deacon
(1994) defended the use of mixtures of ecotypes of
a BCA organism or combinations of different BCAs
to achieve synergism and more persistent control
(Meyers and Roberts 2002; Raupach and Kloepper
1998). However, Roberts et al. (2005) reported
bacterial combination less effective that the strains
separately. Moreover, compatibility between particu-
lar isolate pair varied with the assay and possibly the
method of application. Anyway, the best option to use
different microorganisms as BCA is to combine
different mode of action in order to increase the
chances of plant protection (Guetsky et al. 2002).

Screening for plant-growth promoting rhizobacteria

Many root-associated bacteria have a direct positive
influence on plant growth and can indirectly stimulate
plant health (Compant et al. 2005), which is also an
important criterion for a BCA. To test the plant-
growth-promoting effect, many plate tests have been
developed using different plants with small seeds,
such as a microplate assay with strawberry seedlings
(Berg et al. 2001). These plant growth promotion
assays in microplates are an easier in planta test than
a whole plant system in terms of time, plant material,
and growth facilities. In addition, it has the advan-
tages of allowing many repetitions and high-
throughput screening for a large number of bacterial
isolates. On the basis of in vitro testing, an assessment
system should be developed to select the most
efficient BCAs for greenhouse trials. Ideally, green-
house trials should be followed by field trials under
different climatic conditions and diverse soil qualities
(Berg 2007).

Screening for colonisation

There is correlation between the efficacy of biocontrol
microorganisms against soilborne pathogens and their
ability to colonise the root system of the plant to be
protected, especially when the mode of action used by
these bacterial strains is antibiosis (Chin-A-Woeng et
al. 1998) or competition for niches and nutrients
(Kamilova et al. 2005; de Weert and Bloemberg 2006;
Lugtenberg and Kamilova 2009). Recently, a new
strategy for screening bacterial BCAs was developed
based in the efficient colonisation of the plant root to
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avoid selection by antagonism because future regis-
tration of antibiotic-producing strains could be more
difficult (Kamilova et al. 2005; Pliego et al. 2007;
Egamberdieva and Kucharova 2009). This technique
is based on several cycles of inoculation and
reisolation of microorganisms from the plant root tip
(Kamilova et al. 2005; Pliego et al. 2007). By using
this strategy, enhanced root colonisers were isolated,
which supported the notion that these bacteria could
act through the mechanism of competition for niches
and nutrients (Pliego et al. 2008); however, excellent
colonisation is not sufficient by itself for excellent
biocontrol because it would be also needed the ability
to differentially colonize the root zones that could be
the target of the pathogen (Kamilova et al. 2005;
Pliego et al. 2008).

Another approach was followed by Martínez-
Granero et al. (2006), who selected highly motile
phenotypic variants of P. fluorescens with enhanced
competitive colonisation ability to improve biocontrol
ability.

Screening for induced resistance

Interaction of some bacteria with the plant roots can
result in plants resistant to some pathogenic bacteria,
fungi and viruses. This phenomenon is called “in-
duced systemic resistance” (ISR). ISR is dependent
on jasmonic acid and ethylene signalling in the plant,
and it can be induced by non-pathogenic bacteria in
the soil (Kloepper et al. 2004). ISR differs from SAR
(systemic acquired resistance), which required accu-
mulation of endogenous salicylic acid, and it can be
induced by pathogenic microorganisms (Ryals et al.
1996). As an area of increasing in biocontrol, ISR has
been intensively studied in various plant pathos-
ystems using biotic or abiotic inducing agents and is
the subject of different works (Kloepper et al. 2004;
van Loon 2007). To select bacterial BCAs with this
trait, an easy screening method based on PGPR could
be developed. Using a plate assay, the increase in
growth of root and/or aerial plant (such as tobacco,
tomato, lettuce, arabidopsis, etc.) can be measured
after exposure to the potential BCA or its exudates
incorporated to the media (van Loon 2007). Such
screening methods could indicate that multiple de-
fence mechanisms in plants can be activated by, and
may be effective against, diseases caused by a broad
range of fungi, bacteria and viruses. Subsequently, a

second round of experiments, this time including the
pathogen, could lead to the selection of potential
bacterial BCAs. Naturally, only screening methods
employing plants can take advantage of the phenom-
enon of induced resistance in the evaluation of
putative BCAs (Shoresh et al. 2010).

The development of BCAs that act through
induced systemic resistance is very attractive because
the number of plant pathogens that may be potentially
controlled is increased and it may be possible to apply
a mixture of ISR-mediated bacterial strains for
biological control. Screening of bacterial strains for
this mode of action may be somewhat more expen-
sive, time-consuming, and labour-intensive than
screening for antibiotic production. Recently, several
PGPR have been shown to efficiently help plants
overcome biotic stresses by induced systemic resis-
tance (Kloepper et al. 2004).

Screening by plant performance

Screening methods involving plants in which the
results are measured as disease severity or disease
incidence do not reveal the mechanisms involved.
However, from a practical point of view—at least at
this stage in the selection process—knowledge about
mechanisms is not critically important. In planta
screening could be conducted in defined media, such
as sand, peat soil or in natural soils (Knudsen et al.
1997), or under different conditions (Validov et al.
2009). The ability to protect infection sites in situ may
be one of the key attributes of a BCA. Although the
period of protection may be more prolonged, a similar
attribute is required of antagonists used for protecting
seeds and roots from infection by seedborne patho-
gens (Lugtenberg et al. 2001).

The importance of field screening has already been
demonstrated in a number of studies. Lumsden and
Lewis (1989), for example, recommended screening
in vivo in non-sterile natural soil and preferred field
screening for organisms to be used in field crops.
However, screening in the field may be difficult to
perform due to inconsistent abiotic and biotic param-
eters in addition to being time- and space-consuming
and is also expensive. Because the requirements of a
primary screen are often that it is simple, rapid and
repeatable, we are often forced to make compromises.
One compromise is to attempt to simulate field
conditions in pot tests. However, the physical,
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chemical and biological characteristics of the soil will
not be identical with those in the field. Moreover,
sterilised field soil or artificial substrates often are
used to avoid compaction and similar cultural prob-
lems or to minimise labour. All such simplifications
may cause problems in selecting the fittest antagonists
for use under field conditions.

Screening of endophytes

Plant bacterial endophytic populations correlate to a
certain extent with plant growth performance (Sessitsch
et al. 2004). The genera Bacillus, Pseudomonas,
Serratia, Arthrobacter, Micrococcus and Curtobacte-
rium include endophytic representatives (Aravind et al.
2009; 2010). For this reason, much effort has been
focused recently on the study of such groups of
microorganisms, due to their good performance in
some experimental systems (Prieto et al. 2009). In
these biocontrol experiments, test of endophytes
revealed that they preferentially colonise the inner part
to the plant roots (Tjamos et al. 2004). To obtain an
endophyte candidate for a BCA, isolation of candidate
plant root endophytes is usually performed by isolation
of microorganisms associated with very well washed
and surface-sterilized roots. After obtaining bacterial
candidates, authors generally search for antagonistic
endophytes by dual-plate assays, similar to that shown
before (Sessitsch et al. 2004; Aravind et al. 2009).
However, recent molecular techniques permit a genetic
screening approach, allowing the exploration of un-
studied traits (Wu et al. 2009).

Molecular techniques of screening

Selection and evaluation of microbial strains for their
antifungal activity in natural environments is time-
and energy-consuming. For this purpose, molecular
approaches have been developed. In this sense,
Giacomodonato et al. (2001), adapted a PCR-based
method to search for peptide-producing microorgan-
isms, resulting in the selection of Bacillus strains with
antifungal activity against Sclerotinia sclerotiorum.

Broadly speaking, there are two distinct culture-
independent approaches that can be followed to
rapidly discover functionally important microbes such
as BCAs. The first approach is to use genetic markers
for a functionally important activity such as antibio-
sis. The theory behind this approach is that natural

variation of such marker genes will reveal concomi-
tant natural variation in functional activity. By
isolating a diverse set of genetic variants, one can
identify strains or subspecies with various capacities
to colonise plant roots and/or suppress pathogens.
This approach has been used to identify and recover
novel genotypes of 2,4-diacetylphloroglucinol pro-
ducers from the rhizosphere of fields-grown crop
plants (Bergsma-Vlami et al. 2005; Landa et al.
2002). In the absence of knowledge about the
mechanisms involved in biocontrol, PCR-based
suppressive-subtractive hybridisation can be used to
identify new markers (Leveau et al. 2006). The
second approach is based on molecular profiling of
microbial population structure, an approach some-
times referred to as microbial community profiling. In
this approach, ribosomal gene sequences are targeted,
amplified from the rhizosphere environment, and
analysed. Low-cost, low-resolution techniques, such
as terminal restriction fragment (TRF) length poly-
morphism (T-RFLP) analyses, provide a cost-effective
approach to finding generalist populations that con-
sistently contribute to suppression across environ-
ments. T-RFLP analyses compare the bacterial
community structure in soils differing in their
disease-suppressive capacities, revealing the positive
association of multiple bacterial populations (marked
with different TRFs) with disease suppression
(Benitez and McSpadden Gardener 2009). Recently,
evolution of molecular tools permitted the develop-
ment of new screening strategies, such as the
development of sequence-based T-RFLP-derived mo-
lecular markers to direct the identification and
isolation of novel bacteria (Benitez and McSpadden
Gardener 2009).

Future prospects

Novel strategies aimed at the screening for biocontrol
bacterial take into consideration multitrophic inter-
actions, including the interactions established by
biocontrol agents with the root host (Lugtenberg et
al. 2001; Kamilova et al. 2005; Pliego et al. 2008), the
pathogen (Hogan and Kolter 2002; Pliego et al.
2008), the soil, and the organisms inhabiting the
rhizospere (Winding et al. 2004). In relation to
bacterial interactions with fungi, the phenomenon of
bacterial mycophagy, defined as a set of phenotypic
behaviours that enable bacteria to obtain nutrients
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from living fungi and thus allowing the conversion of
fungal into bacterial biomass (Leveau and Preston
2008), is an open field of study which role as a
biocontrol strategy requires more intensive explora-
tion. Bacterial mycophagy do not necessarily implies
killing of fungal cells in order to obtain nutrients. In
fact, extracellular bacteria are under selection to
develop fungi-specific traits that confer a competitive
advantage during colonisation of fungal surfaces (de
Weert et al. 2004). Recently, the bacterium Collimo-
nas fungivorans was shown to be an efficient
biocontrol agent of Fusarium oxysporum f. sp.
radicis-lycopersici, the causative agent of tomato foot
and root rot, but it is unclear whether this involved
mycophagous behaviour since competition for
nutrients and niches appeared to be the main mode
of action for this bacterium (Kamilova et al. 2007). It
is worth noting that mycophagous BCAs are in
essence positive-feedback BCAs because they inhibit
the growth of harmful fungi by feeding on them, thus
supporting their own growth, which in turn leads to
greater biocontrol activity.

Concerning the future of the antagonism screening
strategy, it should be taken into consideration that
many potential antagonists may be inadvertently
disregarded because they demonstrate no inhibition
in agar bioassays, and this may exclude the discovery
of antagonists that control plant pathogens through
other mechanisms (Elad and Chet 1995; Kloepper
1991). For this reason, antagonism should not be
considered a phenotype fallen into disuse; however,
the combination of diverse methods and the inclusion
of the host plant into the screening assays results
essential for the selection of antagonistic BCAs acting
through modes of action such as induced resistance,
competition or parasitism. In addition, improvements
are needed to modulate bacterial production in the
rhizosphere of antifungal compounds responsible for
antagonism (de Werra et al. 2008).

Forthcoming advances in the field of antibiotic-
producing bacterial BCAs include the quantification
of the production of antibiotics directly on the surface
of plant roots or seed coats, which analysis under
natural conditions has been impaired due to inade-
quate methodology (Pal and McSpadden Gardener
2006). For example, rapid quantification of B. subtilis
antibiotics in the rhizosphere by a method based on
solid phase extraction (SPE), high-performance liquid
chromatography (HPLC) and mass spectroscopy

(MS) allowed the detection of a few micrograms to
almost 0.5 mg of antibiotics per gram of root
(Kinsella et al. 2009) or the monitoring of simulta-
neous root colonisation and gene expression of a
bacterial BCA in the rhizosphere (Rochat et al. 2010).
In the future, new techniques may be helpful in
elucidating the production of specific antibiotics in
soil e.g. by immunological methods as shown by
Lumsden et al. (1992) or by analysis of the DNA
sequence, such as in the case of P. fluorescens Pf-5
(Loper and Gross 2007) or P. fluorescens CHA0
(Péchy-Tarr et al. 2008), in which different toxic
compounds were found after a genomic mining
strategy of their sequences.

Design of screeing strategies for the selection of
BCAs is largely dependent of the specific pathosystem
under study. For this reason, extensive knowledge of the
biology and epidemiology of the plant pathogenmust be
clearly obtained priot to bacterial selection. Study of the
microbial ecology of the rhizosphere is required to
understand the complex interactions of biotic, physical,
and chemical processes that occur in the ecosystem and
what impact these factors have on the BCA. Multidis-
ciplinary activities in plant pathology and applied
microbiology, host-pathogen interactions, epidemiolo-
gy, molecular technology, and fermentation and formu-
lation technology will advance the development of
BCAs to the commercial stage (McSppaden-Gardener
and Fravel 2002). In relation to fermentation and BCAs
formulation technology, more efforts must be carried
out to overcome the lack of adequate methodologies
for mass-producing biological agents that have superior
efficacy and amenability to the stresses of commercial-
scale biomass production. Recently, it has been shown
that it is possible to co-culture strains together in one
fermetor by a more cost-effectively strategy. This
process could stimulate inter-strain activities to boost
biocontrol efficacy and consistency beyond that
achievable by the more costly method of growing
strains in separate fermentations and mixing just prior
to addition to the plant (Slininger et al. 2010).

Although bacterial BCAs are naturally occurring
microbes, some of them can cause disease in humans.
For successful registration, it is necessary to test
potentially adverse effects on the health of at-risk
candidates. Existing pathogenicity assays are cost-
intensive and time-consuming and furthermore, they
are often inappropriate for facultative pathogens. For
this purpose, a new fast and inexpensive bioassay was
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recently developed that is based on the nematode
Caenorhabditis elegans, which is a well-accepted
model organism to study bacterial pathogenicity.
Studying survival, motility and reproductive behav-
iour of nematodes exposed to strains will prevent the
selection of potentially pathogenic BCA (Zachow et
al. 2009). The C. elegans assay can be integrated into
initial screenings for BCAs and is a new tool to
identify effects against eukaryotes in a very early
stage of product development.

A case study: screening for BCAs of avocado white
root rot

Our current work is focused on developing BCAs
against avocado white root rot. Avocado (Persea
americana Mill.) is an important tropical and sub-
tropical crop worldwide, and the most important
diseases affecting this crop are root rots primarily
caused by the oomycete Phytophthora cinnamomi and
the ascomycete fungus Rosellinia necatrix (Sztejnberg
and Madar 1980). R. necatrix causes white root rot,
and it has been recognised to cause losses in many
economically important crops and to cause the
destruction of both ornamental and fruit trees (Ten
Hoopen and Krauss 2006; Sztejnberg and Madar
1980). Disease development in avocado trees infected
by R. necatrix is usually rapid, killing the trees within
a few weeks after the first foliar symptoms are visible,
and is sometimes favoured by the high susceptibility
of cv. Topa-Topa, the rootstock most frequently used
in avocado orchards in most avocado-producing areas
(López-Herrera et al. 1998). Recent studies revealed
that fungal penetration of avocado roots occurs
simultaneously at several random sites, preferentially
in the crown region. R. necatrix hyphae were also
able to penetrate the primary and secondary xylem
(Pliego et al. 2009). Control of avocado white root rot
poses difficulties, and several approaches have been
used over the past two decades to control R. necatrix
before planting, such as soil fumigation using methyl
bromide (Sztejnberg et al. 1983), fungicides such as
fluazinam (Kanadani et al. 1998), soil solarisation
(López-Herrera et al. 1998), and biological control
using the antagonistic fungus Trichoderma harzianum
(Sztejnberg et al. 1987).

The aim of our research was to find bacterial BCAs
against this soilborne phytopathogenic fungus of

avocado. We used different approaches to screen for
bacterial BCA candidates, which is summarised in
Fig. 1. The first approach used the dual plate assay,
searching for antagonistic bacteria that could be used
as BCAs (Cazorla et al. 2001, 2006, 2007). Our first
studies reported the isolation of antagonistic bacteria
against R. necatrix (Cazorla et al. 2006, 2007). The
success of this strategy was dependent on the
presence of typical culturable microorganisms (main-
ly belonging to Pseudomonas and Bacillus genera)
from the avocado root, as well as the place of R.
necatrix attack. Pseudomonas fluorescens PCL1606
strain and the Bacillus subtilis PCL1608 strain were
chosen for their high antagonistic activity, which is
related to their antibiotic production and biocontrol
activity on avocado plantlets. Pseudomonas fluores-
cens PCL1606 produces the antifungal antibiotic 2-
hexyl, 5-propyl resorcinol (HPR), which has an
important role in biocontrol against white root rot
(Cazorla et al. 2006). Bacillus subtilis PCL1608
produced iturin and fengicin (Cazorla et al. 2007),
antibiotics that are also crucial in the biocontrol of
pathogenic fungi in other systems (Romero et al.
2007). Colonisation features of P. fluorescens
PCL1606 and B. subtilis PCL1608 were higher than
those of the other related isolates (Cazorla et al. 2006,
2007), demonstrating in this case a correlation
between biocontrol and colonisation. Furthermore,
despite the antifungal activities shown by most of
these isolates on agar plates, some strains do not show
biocontrol activity in the rhizosphere environment,
probably due to poor colonisation and therefore poor
delivery of antifungal metabolites along the root
system. To gain insight in the colonising aspects and
to improve the selection of potential BCAs, a novel
procedure based on selection of competitive root tip
colonisers (Kamilova et al. 2005) was recently
applied to generate a collection of bacterial isolates
that efficiently colonise the roots of avocado plantlets
(Pliego et al. 2007). This strategy yielded rhizobacte-
rial strains with efficient colonisation traits, especially
the strain Pseudomonas pseudoalcaligenes AVO110,
which is a non-antibiotic-producing strain that is
antagonistic to R. necatrix, with biocontrol activity
in the avocado/Rosellinia test system competition for
niches and nutrients as its mode of action (Pliego et
al. 2008).

Both screening strategies (antagonism and coloni-
sation) are the most frequently used to select bacterial
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candidates for biocontrol. However, these previous
strategies did not take into account the influence of
biotic and abiotic factors in the rhizosphere of
Rosellinia-infected plants, and they introduced a bias,
selecting mainly those strains with biocontrol activity
based on the mechanism used in the selection method,
such as production of antifungal compounds (Cazorla
et al. 2006, 2007) or root colonisation (Pliego et al.
2007). For this reason, a direct plant-protection
strategy was developed to screen for candidate BCAs

that considered all potential biocontrol traits (red
arrow in Fig. 1). This screening method, without a
dominant selection pressure (e.g. colonisation abili-
ties), expands the variety of strains selected and the
different mechanisms of biocontrol against avocado
root rot. Bacterial isolates from avocado root and soil
samples were analyzed, and after recording which
bacterial strains were protective against the white root
rot, the selected strains were characterised. These
potential BCA strains belonged to the genera Pseu-

Fig. 1 Diagram of the dif-
ferent steps followed in the
screening program to isolate
candidate bacterial BCAs by
three different selective
strategies: antagonism (blue
arrows), colonization (green
arrows) and direct plant
protection (red arrows).
Black arrows were common
steps in the screening pro-
cedures. KB: King’s B agar;
NA: nutrient agar; PDA:
potato dextrose agar
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domonas and Bacillus. All of the protective strains
showed different biocontrol traits, but antagonism was
identified as a generalised and relevant trait in the
biocontrol activity of Pseudomonas and Bacillus
strains against the white root rot of avocado
(González-Sánchez et al. 2010).

In summary, our study suggest that in the
avocado/Rosellinia test system, antagonism appeared
to play a key role as pathogen major mode of action
to biologically control R. necatrix because all of the
microorganisms selected by the different screening
strategies showed this ability but had no other trait in
common. However, colonisation and induction of
plant resistance could have also important roles in
the final protection of the avocado roots because this
has been demonstrated previously. Based on these
studies, we support the use of antagonism as a valid
screening strategy to select candidate BCAs in the
avocado/Rosellinia test system because antagonism
is a prevalent trait in all of the selected bacterial
BCAs.

In conclusion

Identification of biocontrol bacteria based exclusively
on their performance on laboratory media usually
biases the selection to organisms functioning by
antibiosis or hyperparasitism, but with some possible
exceptions discussed above, these tests overlook
organisms that act by competition or induced host
plant resistance. Screening for antagonists in pots
containing test plants and the pathogen via the disease
to be controlled in a more soil-like substrate than agar
increases the chances of selecting bacterial agents
showing a broader spectrum of desirable biocontrol
properties. However, the rather uniform environmental
conditions in which pot tests are performed, compared
to most field situations, usually leads to an overesti-
mation of antagonistic strains. Nevertheless, and based
on our results obtained for the pathosystem avocado
plants (Rosellinia necatrix), direct selection of antago-
nistic bacteria might offer an easily performed strategy
for some plant/pathogen systems.
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