Food related streptococci beyond *Streptococcus thermophilus*: friends or foes?

A comparative genomics approach

Papadimitriou Konstantinos¹, Anastasiou Rania¹, Mavrogonatou Eleni², Blom Jochen³, Papandreou Nikos⁴, Hamodrakas Stavros⁴, Ferreira Stéphanie⁵, Renault Pierre⁶, Supply Philip⁵, ⁷, ⁸, ⁹, ¹⁰, Pot Bruno⁷, ⁸, ⁹, ¹⁰, Tsakalidou Effie¹

¹Agricultural University of Athens, Athens, Greece
²National Centre for Scientific Research “Demokritos”, Athens, Greece
³Bielefeld University, Bielefeld, Germany
⁴University of Athens, Athens, Greece
⁵Genoscreen Genomic Platform and R&D, Lille, France
⁶Institut National de la Recherche Agronomique, Jouy-en-Josas, France
⁷Institut Pasteur de Lille, Lille, France
⁸Inserm, Lille, France
⁹Centre National de la Recherche Scientifique, Lille, France
¹⁰University of Lille Nord de France, Lille, France
Laying the background: Fermented foods and Streptococci

Commensal species including:

- GAS
- GBS
- *Streptococcus pneumoniae*

Streptococcus thermophilus
Laying the background: Fermented foods and Streptococci

Identification of streptococci from Greek Kasseri cheese and description of *Streptococcus macedonicus* sp. nov.

E. Tsakalidou,¹ E. Zoidou,¹ B. Pot,² L. Wassill,³ W. Ludwig,³ L. A. Devriese,⁴ G. Kalantzopoulos,¹ K. H. Schleifer³ and K. Kersters²
Streptococci that can be found growing in milk belong to the *Streptococcus bovis/Streptococcus equinus* complex (SBSEC).
Sequencing the genome of *S. macedonicus* ACA-DC 198

The aim of this work was to sequence the complete genome of the dairy isolate *S. macedonicus* ACA-DC 198 in order to assess *in silico* its adaptation to the milk environment and its pathogenic potential.
Assessing the adaptation to milk and the pathogenic potential of the dairy *Streptococcus macedonicus* ACA-DC 198 through comparative genomics

A. Complete genome sequencing and annotation of *S. macedonicus*

B. Comparative genomics of *S. macedonicus* against related streptococci

C. Assessing the adaptation of *S. macedonicus* to the milk environment

D. Assessing the pathogenic potential *S. macedonicus*
Complete genome sequencing and annotation of *S. macedonicus*

- Annotation was performed with the BaSys and the RAST pipelines and Kodon software.
- Final corrections and quality assessment was performed using GenePRIMP.

2,192 protein coding genes
192 potential pseudogenes
18 rRNA genes
70 tRNA genes

Assessing the adaptation to milk and the pathogenic potential of the dairy Streptococcus macedonicus ACA-DC 198 through comparative genomics

A. Complete genome sequencing and annotation of *S. macedonicus*

B. Comparative genomics of *S. macedonicus* against related streptococci

C. Assessing the adaptation of *S. macedonicus* to the milk environment

D. Assessing the pathogenic potential *S. macedonicus*
Comparative genomics of *S. macedonicus* ACA-DC 198 against related species within the *S. bovis/S. equinus* complex

In the SBSEC there are currently five additional complete genome sequences available:

- *S. gallolyticus* UCN34 (human blood)
- *S. gallolyticus* ATCC BAA 2069 (human blood)
- *S. gallolyticus* ATCC 43143 (human blood)
- *S. pasteurianus* ATCC 43144 (human blood)
- *S. infantarius* CJ18 (suusac fermented camel milk)
Comparative genomics of *S. macedonicus* ACA-DC 198 against related species within the *S. bovis/S. equinus* complex
Comparative genomics of *S. macedonicus* ACA-DC 198 against related species within the *S. bovis/S. equinus* complex.
Comparative genomics of *S. macedonicus* ACA-DC 198 against related species within the *S. bovis/S. equinus* complex
Comparative genomics of *S. macedonicus* ACA-DC 198 against related species within the *S. bovis/S. equinus* complex

- **Some additional characteristics of the genomes under investigation**

<table>
<thead>
<tr>
<th>Species</th>
<th>Genome size (Mb)</th>
<th>No. of protein coding genes</th>
<th>No. of potential pseudogenes/ (% percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. gallolyticus ATCC BAA 2069</td>
<td>2.35</td>
<td>2329</td>
<td>nr*/(nr)</td>
</tr>
<tr>
<td>S. gallolyticus ATCC 43143</td>
<td>2.36</td>
<td>2287</td>
<td>41/(1.8)</td>
</tr>
<tr>
<td>S. gallolyticus UCN34</td>
<td>2.35</td>
<td>2251</td>
<td>28/(1.2)</td>
</tr>
<tr>
<td>S. macedonicus ACA-DC 198</td>
<td>2.13</td>
<td>2192</td>
<td>192/(8.7)</td>
</tr>
<tr>
<td>S. pasteurianus ATCC 43144</td>
<td>2.10</td>
<td>1869</td>
<td>157/(7.7)</td>
</tr>
<tr>
<td>S. infantarius CJ18</td>
<td>1.98</td>
<td>1964</td>
<td>nr/(4.6)</td>
</tr>
</tbody>
</table>

* not reported

1. *S. macedonicus*, *S. pasteurianus* and *S. infantarius* genomes are being shaped by selective pressures that favor extensive gene loss events and genome decay processes when compared to the *S. gallolyticus* genome

2. This property (i.e. genome decay) has been linked to the adaptation of bacteria to rich in nutrients environments as in the case of *S. thermophilus* adaptation to the milk environment
Assessing the adaptation of *S. macedonicus* to the milk environment

A. Complete genome sequencing and annotation of *S. macedonicus*

B. Comparative genomics of *S. macedonicus* against related streptococci

C. Assessing the adaptation of *S. macedonicus* to the milk environment

D. Assessing the pathogenic potential *S. macedonicus*
Assessing the adaptation of *S. macedonicus* to the milk environment

- *S. macedonicus* has deviated from the rumen environment
Assessing the adaptation of *S. macedonicus* to the milk environment

- *S. macedonicus* has an extra gene cluster responsible for lactose and galactose catabolism

![Gene cluster diagram]

- S. macedonicus ACA-DC 198
- S. suis BM407
- L. lactis subsp. cremoris plasmid pLP712
Assessing the adaptation of *S. macedonicus* to the milk environment

- *S. macedonicus* is particularly equipped with defenses against phages

<table>
<thead>
<tr>
<th>CRISPR label</th>
<th>Position</th>
<th>Nbr Spacers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRISPR_1</td>
<td>1507890, 1508913</td>
<td>15</td>
</tr>
<tr>
<td>CRISPR_2</td>
<td>1515490, 1516317</td>
<td>12</td>
</tr>
<tr>
<td>CRISPR_3</td>
<td>1484496, 1486444, 1477224, 1477919</td>
<td>29, 10</td>
</tr>
<tr>
<td>CRISPR_4</td>
<td>1515726, 1516570</td>
<td>12</td>
</tr>
<tr>
<td>CRISPR_5</td>
<td>1395041, 1397515</td>
<td>37</td>
</tr>
<tr>
<td>CRISPR_6</td>
<td>1412482, 1415817</td>
<td>50</td>
</tr>
<tr>
<td>CRISPR_7</td>
<td>1273106, 1273801</td>
<td>10</td>
</tr>
</tbody>
</table>

- Spacers 3, 5, 17, 46 in *S. macedonicus* CRISPR provide immunity against phages of the dairy *S. thermophilus* and *L. lactis*
Assessing the adaptation of *S. macedonicus* to the milk environment

- The *S. macedonicus* plasmid pSMA198 belongs to the narrow host range pCI305 family of lactococcal plasmids.
Assessing the adaptation of *S. macedonicus* to the milk environment

- The *S. macedonicus* plasmid pSMA198 belongs to the narrow host range pCI305 family of lactococcal plasmids

18 out of 19 *Lactococcus* spp. are dairy isolates

S. macedonicus
Assessing the adaptation to milk and the pathogenic potential of the dairy Streptococcus macedonicus ACA-DC 198 through comparative genomics

A. Complete genome sequencing and annotation of S. macedonicus

B. Comparative genomics of S. macedonicus against related streptococci

C. Assessing the adaptation of S. macedonicus to the milk environment

D. Assessing the pathogenic potential S. macedonicus
Assessing the pathogenic potential *S. macedonicus*

- *S. macedonicus* shows a diminished potential to bind to the extracellular matrix of the host

<table>
<thead>
<tr>
<th>S. gallolyticus UCN 34</th>
<th>gene</th>
<th>function</th>
<th>S. gallolyticus ATCC BAA 2069</th>
<th>S. gallolyticus ATCC 43143</th>
<th>S. macedonicus ACA-DC 198</th>
<th>S. pasteurianus ATCC 43144</th>
<th>S. infantarius CJ18</th>
</tr>
</thead>
<tbody>
<tr>
<td>gallo_2179</td>
<td>accessory pilin (pil1)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gallo_2178</td>
<td>major pilin (pil1)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gallo_2177</td>
<td>sortase C (pil1)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gallo_1570</td>
<td>accessory pilin (pil2)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gallo_1569</td>
<td>major pilin (pil2)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gallo_1568</td>
<td>sortase C (pil2)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gallo_2040</td>
<td>accessory pilin (pil3)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gallo_2039</td>
<td>major pilin (pil3)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gallo_2038</td>
<td>sortase C (pil3)</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Diagram:
- *ECM* (Extracellular Matrix)
- *CELL*
- *Proteoglycan molecule*
- *Proteoglycan complex*
- *Collagen fibril*

Legend:
- Fibronectin
- Integrin
- Microfilaments of cytoskeleton
- Plasma membrane
Assessing the pathogenic potential *S. macedonicus*

- *S. macedonicus* has retained the hemolysin encoding genes

<table>
<thead>
<tr>
<th>Virulence factor</th>
<th>S. gallolyticus UCN34</th>
<th>S. gallolyticus ATCC 43143</th>
<th>S. gallolyticus ATCC BAA-2069</th>
<th>S. pasteurianus ATCC 43144</th>
<th>S. macedonicus ACA-DC 198</th>
<th>S. infantarius CJ18</th>
</tr>
</thead>
<tbody>
<tr>
<td>hemolysin TLY</td>
<td>GALLO_0630</td>
<td>SGGB_0605</td>
<td>SGGBAA2069_c05730</td>
<td>SGPB_0499</td>
<td>SMA_0591</td>
<td>Sinf_0511</td>
</tr>
<tr>
<td>hemolysin III</td>
<td>GALLO_1262</td>
<td>SGGB_1256</td>
<td>SGGBAA2069_c12530</td>
<td>SGPB_1172</td>
<td>SMA_1191</td>
<td>Sinf_1093</td>
</tr>
<tr>
<td>hemolysin A</td>
<td>GALLO_1799</td>
<td>SGGB_1786</td>
<td>SGGBAA2069_c17570</td>
<td>SGPB_1603</td>
<td>SMA_1706</td>
<td>Sinf_1530</td>
</tr>
</tbody>
</table>
Conclusions

1. *Streptococcus macedonicus* is evolving under genome decay processes suggesting adaptation to a rich in nutrients environment

2. Our analysis supports that the species shows traits of adaptation to the dairy environment

3. Even though *S. macedonicus* shows a diminished pathogenic potential compared to *S. gallolyticus*, several pathogenicity traits are still conserved
This work was performed in collaboration with:

- Prof. Stavros Hamodrakas
- Dr. Bruno Pot
- Dr. Philippe Supply
Acknowledgments

The present work was cofinanced by the European Social Fund and the National resources EPEAEK and YPEPTH through the Thales project
Thank you for your attention!!!