Φαινοτυπικός και μοριακός θόρυβος μεμονωμένων βακτηριακών κυττάρων

Ασπρίδου Ζ., Φωτιάδης, Χ., Ταμπακάκη, Λ. b, Κουτσουμμενής Κ. Ι.

1 Εργαστήριο Μικροβιολογίας και Υγεινής Τροφίμων, Σχολή Γεωπνών, Διαιτολογίας και Φυσικού Περιβάλλοντος, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη, Ελλάδα
2 Εργαστήριο Γενικής και Γεωργικής Μικροβιολογίας, Τμήμα Επιστήμης Φυτικής Παραγωγής, Γεωπνωνικό Πανεπιστήμιο Αθηνών, Αθήνα, Ελλάδα

Η μελέτη της συμπεριφοράς των βακτηριακών κυττάρων πραγματοποιείται σε δύο επίπεδα, σε αυτό της `κοινωνίας` των κυττάρων και σε αυτό των μεμονωμένων κυττάρων. Τα μεμονωμένα κύτταρα ενός γενετικά ίδιου πληθυσμού χαρακτηρίζονται από φαινοτυπική ετερογένεια και πιθανώς αυτή είναι η βάση συνδυασμού και επιβίωσης τους σε πιο σύνθετα επίπεδα οργάνωσης, όπως τα βιομέρια. Με την ανάπτυξη σύγχρονων τεχνικών μελέτης στο κυτταρικό επίπεδο και την απεικονιστική δύναμη φθοριόσωσής προτείνεται περιεχόμενο δυνατή η μελέτη της ατομικής συμπεριφοράς και γονιδιακής έκφρασης των μεμονωμένων κυττάρων. Η ετερογένεια των μεμονωμένων κυττάρων εκδηλώνεται σε διάφορα χαρακτηριστικά της συμπεριφοράς τους, όπως η ανάπτυξη, ο χρόνος διαίρεσης τους καθώς και η ανθεκτικότητα στις καταπονήσεις και ο χρόνος θανάτου. Πίσω από αυτή την παραλλαγοδοτικότητα βρίσκεται η συγκοινωνία της γονιδιακής έκφρασης καθώς και οι μοριακοί μηχανισμοί που καθορίζουν τις μικροβιακές αποκρίσεις. Στην παρούσα εργασία μελέτησαν μικροσκοπικά η συμπεριφορά ανάπτυξης και άδρανοποίησης μεμονωμένων κυττάρων του προφορέγοντος παθογόνου Salmonella που εφέραν πλασμομικης κατακεκτεί με μεταφραστικές συντήξεις φθοριούντας προτείνεις με γονίδια που εμπλέκονται στο σχηματισμο μικροβιών. Η αποκοπή και έκτη της γονιδιακής έκφρασης καθώς και η συχνάστηση της παραπομονώμενης μοριακοπαραλλαγικότητας με τη μοριακή της προέλευση είναι μία επίπεδη διαδικασία η οποία κάθε φορά εξαρτάται από το υπό μελέτη ύποπτο καθώς και άλλους παράγοντες. Στη διαδικασία αυτή διάφορα ζητήματα ανακύπτουν που αφορούν, μεταξύ άλλων, είτε στην επιλογή πλασμομικού φορέα με φωτοκέντρηση αντιγράφων, είτε στον παραπομονώμενο φθορισμό και στον υποκυτταρικό εντοπισμό του ενώ για την αντιμετώπισή τους υιοθετούνται ποικίλες προσεγγίσεις.

Ευχαριστίες: Η εργασία χρηματοδοτήθηκε από την πράξη Θαλής: «Βιολογική ολιστική προσέγγιση της δύναμης της Μορφής Επιβίωσης παθογόνων βακτηριακών σχηματισμών - BIOYMENIA», υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος "Εκπαίδευση και Δια Βίου Μάθηση" (ΕΠΕΔΒΜ) και συγχρηματοδοτείται από το Ευρωπαϊκό Κοινωνικό Ταμείο (ΕΚΤ)."
Phenotypic and molecular noise of individual bacterial cells

Aspridou Z.1, Fotiadis, C.2, Tampakaki, A.2, Koutsoumanis, K.1

1Laboratory of Food Microbiology and Hygiene, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
2Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Athens, Greece

The study of bacterial cell behavior is conducted both at the ‘community’ and the single cell level. Individual cells of a genetically identical population are characterized by phenotypic heterogeneity and this could be the basis of their coexistence and survival in more complex systems, such as biofilms. The development of modern studying techniques at the single cell level and the imaging power of genetically encoded fluorescence proteins enable the study of individual cell behavior and gene expression. The heterogeneity of single cells is manifested at several behavioral traits, such as cell growth, division time as well as stress tolerance and time of inactivation. Stochasticity of gene expression and the molecular mechanisms defining microbial responses underlie the observed variability. In the present work, the growth and inactivation behavior of individual cells of the foodborne pathogen \textit{Salmonella} was microscopically studied through the development of a series of plasmid constructs with translational fusions of the gene encoding Yellow Fluorescent Protein and various biofilm-related genes. The imaging and quantitative assessment of gene expression as well as the correlation between the observed phenotypic variability and the molecular origin is a laborious process depending on the system studied and other parameters. Various issues arise concerning, among others, the choice of plasmid vector with a certain plasmid copy number as well as the observed fluorescence and its subcellular localization. To address these issues, different approaches need to be adopted.

\textbf{Acknowledgments:} This work was found by the action THALIS: “\textit{Biological Investigation Of the Forces that Influence the Life of pathogens having as Mission to Survive in various Lifestyles; BIOFILMS}”, falls under the Operational Programme (OP) “Education and Lifelong Learning (EdLL)” and is co-financed by the European Social Fund (ESF) and National Resources