
GSTs appear to have a significant role in plants’ adaptation under abiotic stress as many isoenzymes are found to be differentially expressed under these conditions yet, 

little is known about the regulatory functions of GSTs. Wild type and transgenic tobacco plants over-expressing the soybean GmGSTU4 of cultivars Basmas, Burley and 

Virginia were grown in vitro under 100 and 200mM mannitol or in soil (plant pots) by withholding watering for 15 days. However, GmGSTU4 plants did not exhibit significant 

differences in drought tolerance compared to wild-type plants. Morphological (shoot length, total and root fresh weight) and physiological (chlorophyll content, relative 

water content and photosynthetic capacity) parameters of transgenic plants did not differ from the wild-type in the presence of 100 or 200mM mannitol or in the soil when 

watering was halted. Metabolite profiling was used to understand the dynamics between the wild-type and transgenic tobacco response to drought stress. Different 

metabolic pathways are involved in production of osmoprotectants. These molecules accumulate in plants under stress conditions as adaptive mechanism, which can 

provide stress tolerance. GmGSTU4 plants did not exhibit difference in drought tolerance compared to wild-type plants, however metabolomics analysis indicated 

alterations in metabolite profile and increased concentration of sorbitol, glycerol and pyruvic acid. In conclusion, overexpression of GmGSTU4 in transgenic plants did not 

affect their drought stress tolerance although it has altered their metabolite profile possible because of diverse effects on plant stress tolerance mechanism.  
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                      Introduction 

Drought is one of the most important environmental 

stress factors that adversely influences plant productivity. 

Therefore, it is of paramount importance to  develop plant 

crop varieties with enhanced drought tolerance. Plants, 

in order to limit oxidative damage under stress condition, 

have developed a  detoxification systems, that 

orchestrates plants cell protection from the cytotoxic 

effects of ROS, using antioxidant enzymes. GSTs 

(glutathione transferase) appear to have a significant role 

in plants’ adaptation under abiotic stress as many 

isoenzymes are found to be differentially expressed 

under these conditions (Chi et al. 2011; Sappl et al. 

2009). A compact connection between GSTs and 

oxidative damage prevention from abiotic stress 

conditions was provided by genetic transformation 

assays of plant GST genes Little is known about the  

metabolic changes of the plants with altered expression 

of GSTs. Given the complexicity of plant stress 

responses metabolomic analysis will help to understand 

the regulatory role of GSTs and manipulate complex 

quantitative traits with pleiotropic effect as the drought 

tolerance. GSTs has been long  reported to involved in 

abiotic stress resistance. Despite that, limited knowledge  

is available about the involvement of GST in drought 

stress. For that reason the morphophysiological and 

metabolic responses of tobacco transgenic lines and WT 

plants under  water deficit conditions were examined . 

 

Fig 3.Chlorophyll content (A) and photosynthetic capacity (B) of T1 transgenic lines and wt plants of the 

three cultivars under in vivo  drought stress 7 (A1,B1) and 15 (A2, B2) days after water restriction, as well 

as control plants  normal watered. Data are the means (± standard deviation, n=4).lines indicated with * 

differ significantly from the wt plants P≤ 0,05 

Metabolite profiling  of  transgenic line BAGST-3 and  wt plants  
 

Drought stress in WT plants  resulted in increased  concentration of 

manittol (1081-fold), the amino acids glutamine, glycine,  proline and 

hydroxyl-proline  (3-, 3.8-, 4.7-, 6.2-fold respectively) as also the 

disaccharide trehalose. Of the metabolites whose concentration was 

decreased, the highest decrease was observed for glycerol (13-fold) 

while citric acid and succinic acid, intermediates of the Krebs cycle, 

levels dropped  off  2.5- and 3.1- fold respectively, In drought stressed 

GmGST4  plants metabolites that were uniquely increased were the 

photorespiration intermediate glyceric acid, as well as pyruvic acid and 

succinc acid, glycolysis and Krebs cycle intermediates respectively. 

When directly comparing WT and GmGST4  plants under drought 

stress, the latter exhibited higher concentration of the osmoprotectants 

glycerol and sorbitol, as well as intermediates of the Krebs cycle and 

pentose phosphate pathway. Proline, a major stress metabolite with 

both antioxidant and osmoprotective function, was decreased in 

GmGST4 under drought stress. 

 

           Plant material and drought stress treatment 

 

 

                                               

      Conclusion  

 Transgenic  tobacco plants overexpressing GmGST4  fail to respond positively to  

drought stress treatments     possibly due to: Highly specification of GMGST4 to 

particular stress stimuli 

 

 Pleiotropic effects of mannitol accumulation inside the plant, used to induce osmotic 

stress. However GmGST4 did not perform better in vivo . The observed greater 

accumulation of the osmopotectants  glycerol and sorbitol may have adverse effects in 

plant growth as these metabolites when they over-accumulate become toxic (Deguchi et 

al. 2006). Furthermore the reduced proline concentration may restrict plant adaptive 

potential under drought (Szabados and Savouré 2010). 

 

 GmGSTU4 plays a regulatory role which results in significant metabolic alterations 

under drought stress thus further research need to be undertaken to understand the 

function of GSTs under abiotic stress for their efficient utilization in I    improving plant 

stress tolerance. 

 

Fig.4 Transgenic  lines and  wt plants after 30d on 

MS medium with  100 or 200 mΜ mannitol 
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Table 1. Metabolites significantly (P< 0.05) increased or decreased in the different genotypes and 

conditions comparisons  

   

Wild type and T1 transgenic lines from tobacco plants var. 

Basmas (BAGST-3), Virginia (VGST-2) and Burley (BUGST-2) 

overexpressing GmGSTU4 were tested for their drought 

tolerance under  in vitro  and in vivo conditions. For in vitro 

drought testing, seeds were surface sterilized and were sown 

on  MS  medium with  Mannitol (100 mM and 200 mM). The 

plants were grown in a controlled environment 16-h-light/8-h   

dark photoperiod at 25oC. After 30 days we evaluate the shoot 

length, total and root fresh weight and chlorophyll content, 

photosynthetic capacity and relative water content Each 

experiment was carried out under a completely randomized 

design The software SPSS 17 was used to handle the results. 

The data were analysed by LSD and  Dunkan test, and mean 

values under  each treatment were compared at p≤ 0.05.  

 

           Material and Methods 

Metabolomic analysis was carried out using the line BAGST-

3 (Benekos et al., 2010 ).Τwo week old plants were 

transplanted in MS medium with 70mM mannitol. Leaves 

were harvested 20 days after imposition of stress.  Gas-

chromatography coupled to Mass-spectrometry (GC-MS) 

measurements were performed in a HP6890 GC coupled to 

a HP 5973 MS. Results were expressed as a response that 

corresponds to the ratio between the areas of the target 

metabolite divided by the area of the reference metabolite 

(ribitol, m/z 319) and reported relative to the dry weight. 

Results  

                        
 

GSTs has been long  reported to involved in abiotic stress resistance. Despite 

that, we did not observe any significant differences between wt and transgenic 

lines  in all morphological (Fig.1 A and B) and physiological (Fig.2  )  parameters 

examined under in vitro (mannitol) and in vivo  drought stress conditions, except 

from the photosynthetic capacity which was significant reduced in line BUGST2. 

Fig 2. Relative water content of  transgenic lines and wt plants of stress conditions 15 days after water 

restriction, as well as control plants  normal watered. data are the means (± standard deviation, n=4). The 

lines indicated with * differ significantly from the wt plants P≤ 0,05 

the three cultivars under in vivo   drought 

Abstract 

Morphophysiological  Response  of transgenic lines and wt plants under Drought Stress conditions 

Fig 1. Morphological measurements  of  transgenic lines and WT  plants of the three  

tobacco cultivars under osmotic stress after 30d  in MS medium supplemented with 100 and 

200mM mannitol. Shoot length (A) Total fresh weight (B) Fresh root weight (C).  Data are the 

means (± standard deviation, n=4). Lines indicated with * differ significantly from the wt 

plants P≤ 0,05 
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