ΑΝΑΣΤΟΛΗ ΙΣΟΕΝΖΥΜΩΝ ΤΗΣ ΜΕΤΑΦΟΡΑΣΗΣ ΤΗΣ
ΓΛΟΥΤΑΘΕΙΟΝΗΣ ΑΠΟ ΦΥΤΟΠΡΟΣΤΑΤΕΥΤΙΚΑ:
ΑΝΑΠΤΥΞΗ ΕΝΖΥΜΙΚΗΣ ΜΕΘΟΔΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΥ
ΑΥΤΩΝ ΣΕ ΔΕΙΓΜΑΤΑ ΝΕΡΟΥ

Ε. Χρονοπούλου*, Αναστάσιος Παπαγεωργίου, Αναστάσιος Μάρκογλου, Ν. Λάμπρου

Γεωπονικό Πανεπιστήμιο Αθηνών, Γεωπονική Βιοτεχνολογία, Εργαστήριο Ενζυμικής Τεχνολογίας, Iερά Οδός 75, 11855, Αθήνα

* exronop@gmail.com

Περίληψη

Οι μεταφοράσες της γλουταθειόνης (GSTs, EC 2.5.1.18) εμπλέκονται στη Φάση ΙΙ της κυτταρικής αποτοξίνωσης από ηλεκτρονιόφιλες υδρόφοβες τοξικές ενώσεις, όπως τα φυτοπροστατευτικά. Η δράση αυτή επιτυγχάνεται είτε καταλύοντας την χημική συμπύκνωσή των ενώσεων αυτών με τη γλουταθειόνη είτε μη-καταλυτικά, δεσμεύοντας τις ενώσεις αυτές με υψηλή συγγένεια με αποτέλεσμα την παρεμπόδιση της καταλυτικής τους δράσης. Ο σκοπός της παρούσας μελέτης ήταν η ανάπτυξη απλής αναλυτικής μεθόδου προσδιορισμού υπολειμμάτων φυτοπροστατευτικών προϊόντων σε δείγματα νερού, βασιζόμενη στη χρήση GSTs. Από τα ισοένζυμα τα οποία μελετήθηκαν το hGSTA1-1 φαίνεται να αναστέλλεται περισσότερο παρουσιάζοντας τη μεγαλύτερη αναστολή της δραστικότητας (>95%) με τα εντομοκτόνα dieldrin και spiromesifen, ενώ οι μικρότερες τιμές IC50 παρατηρήθηκαν στους 37°C και σε pH 6,5, οι οποίες ήταν 17,9 ± 1,7 μΜ και 12,1 ± 3,4 μΜ αντίστοιχα. Οι ενώσεις αυτές αλληλεπίδρουν με το ένζυμο στην περιοχή του ενεργού κέντρου και συμπεριφέρονται σαν αναστολές μικτού-τύπου (Ki 2.3±0.1 και 0.1±0.01 μΜ, έναντι GSH και CDNB, αντίστοιχα). Οι πρότυπες καμπύλες οι οποίες σχεδίαστηκαν (σταθερή απόκλιση 4.1%) με γνωστές συγκεντρώσεις των δύο εντομοκτόνων, επιτρέπουν τον άμεσο και χαμηλό κόστος προσδιορισμό προϊόντων σε δείγματα νερού με αποτελέσματα συγκρίσιμα με τα HPLC μεθόδους. Επιτρέπουν να χρησιμοποιηθεί για την προστασία του περιβάλλοντος και της δημόσιας υγείας. Από την παρούσα μελέτη φαίνεται ότι η προσφορά των GSTs μπορεί να χρησιμοποιηθεί για την ανάπτυξη νέων απλών μεθόδων αναλυτικού προσδιορισμού φυτοπροστατευτικών με ικανοποιητική ακρίβεια συνδυάζοντας χαμηλό κόστος και ελάχιστη προετοιμασία δείγματος. Εναλλακτικές μέθοδοι κρίνονται απαραίτητες για την εύκολη και άμεση προετοιμασία υπολειμμάτων φυτοπροστατευτικών προϊόντων σε περιβαλλοντικά και βιολογικά δείγματα.
INHIBITION OF HUMAN GLUTATHIONE TRANSFERASES
BY PESTICIDES: DEVELOPMENT OF A SIMPLE
ANALYTICAL ASSAY FOR THE QUANTIFICATION OF
PESTICIDES IN WATER

Evangelia Chronopoulou* , Anastassios Papageorgioub, Anastassios Markoglouc, Nikolaos Labroua

a Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
b Turku Centre for Biotechnology, University of Turku and Ebo Akademi University, Turku 20521, Finland
c Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 118 55 Athens, Greece

* exronop@gmail.com

Abstract

Glutathione transferases (GSTs; EC 2.5.1.18) form a group of multifunctional enzymes that are involved in phase II cellular detoxification mechanism. Here, screening of the inhibition potency of a wide range of pesticides toward selected human GST isoenzymes (hGSTA1-1, hGSTP1-1, hGSTT2-2 and hGSTO1-1) was carried out. The purpose of this project was to develop simple assays for the determination of pesticides in water samples, based in GSTs use. The insecticides dieldrin and spiromesifen were identified as potent reversible inhibitors toward hGSTA1-1 with IC\textsubscript{50} values equal to 17.9 ±1.7 μM and 12.1 ±3.4 μM, respectively. Based on in silico docking analysis and kinetic inhibition studies it was concluded that dieldrin and spiromesifen bind specifically to the enzyme presumably at a distinct position that partially overlaps with both the G- and H-site. The ability of dieldrin and spiromesifen to inhibit hGSTA1-1 activity was exploited for the development of analytical quantification assays for these two pesticides. Linear calibration curves were obtained for dieldrin and spiromesifen, with useful concentration in the range of 0–10 μM. The reproducibility of the assay response, expressed by relative standard deviation, was in the order of 4.1% (N = 28). The method was successfully applied to the determination of these pesticides in real water samples without sample preparation steps. The enzyme-based assays have potential advantages over bioassays and other analytical methods based on HPLC and GC/MS in terms of lower cost and technical complexity. Moreover, they provide reasonable sensitivity for certain applications, such as the direct determination of pesticide residues in water samples.