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Local symmetries in one-dimensional quantum scattering
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We introduce the concept of parity symmetry in restricted spatial domains—local parity—and explore its impact
on the stationary transport properties of generic, one-dimensional aperiodic potentials of compact support. It is
shown that, in each domain of local parity symmetry of the potential, there exists an invariant quantity in the
form of a nonlocal current, in addition to the globally invariant probability current. For symmetrically incoming
states, both invariant currents vanish if weak commutation of the total local parity operator with the Hamiltonian
is established, leading to local parity eigenstates. For asymmetrically incoming states which resonate within
locally symmetric potential units, the complete local parity symmetry of the probability density is shown to
be necessary and sufficient for the occurrence of perfect transmission. We connect the presence of local parity
symmetries on different spatial scales to the occurrence of multiple perfectly transmitting resonances, and we
propose a construction scheme for the design of resonant transparent aperiodic potentials. Our findings are
illustrated through application to the analytically tractable case of piecewise constant potentials.
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I. INTRODUCTION

Symmetries set the foundation upon which physical sys-
tems are treated, their ubiquitous presence on all scales dictat-
ing the form of the developed theory as well as experimental
observation and analysis. Global spatial symmetry, though,
in most cases pertains exactly to structurally simple isolated
systems and idealized models, while its absence in realistic
situations often implies their statistical treatment [1]. To
quantify situations of approximate symmetry, measures of
symmetry [2,3] have been proposed which reflect the degree
to which it is fulfilled under specific operations. In the generic
case, symmetry of a system under spatial transformations is
globally broken but retained on a local scale [4], such that the
associated invariance of physical properties affects its behavior
beyond a mean description [5]. If a system can be completely
covered by spatial domains where its structure exhibits such
local symmetry, it can be regarded as completely locally
symmetric. Since these domains can be of variable extent and at
different locations within a single system, there is, in general,
a multitude of possible local symmetry decompositions with
different symmetry scales and axes [see Fig. 1(a)]. Local
symmetries can be present by design, as in electronic transport
devices [6] and dielectric multilayers in nanophotonics [7–13],
but also naturally inherent in structurally complex systems,
like large molecules [14–16], quasicrystals [17–20], or even
disordered matter [21].

In spite of the intensive exploration of such systems,
their properties have, to a large extent, been related only
to global symmetry characteristics. Although classification
and study of local structural features have been carried out,
with consequences for spectral and localization properties
[8], little attention has been paid to the impact of explicit
local symmetries, even if they are very obviously present. In
particular, perfect transmission [9–13] through a scattering
potential is commonly connected to its global symmetry,
whereas the role of local symmetries for resonant states is
disregarded. Nevertheless, it is readily seen schematically

in Fig. 1(a) that global symmetry is a (trivial) special case
among—and not a necessity for—a plethora of possible
local symmetry decompositions of a potential. The question
thus arises whether and how these local symmetries affect
its (resonant) scattering properties in the absence of global
symmetry. In general, the need for a rigorous theoretical
treatment which addresses local regularities, but incorporates
the global composite structure, becomes evident.

In this work, we take a step in this direction, investigating
the impact of local symmetries in the transport properties
of globally nonsymmetric systems. Considering scattering in
one dimension, any Euclidean transformation can be reduced
to combinations of coordinate inversions within subintervals
of configuration space [see Fig. 1(b)], which we refer to
as local parity (LP) transformations. Utilizing completely
LP symmetric potentials, we show how LP is related to
the transport properties of stationary scattering states with
symmetric or asymmetric asymptotic conditions [SAC or
AAC, see Fig. 1(a)]: under conservation of LP, the total or
reflected probability current vanishes, respectively.

Specifically, it is proven that (i) states with definite LP,
which can arise only with waves incident symmetrically on
both sides of the potential, have zero probability current,
and, more importantly, that (ii) with one incident wave,
the scattering state exhibits a perfect transmission resonance
(PTR) which resonates within locally symmetric potential
units, if and only if its probability density is completely LP
symmetric. These PTRs are classified with respect to the
reducibility of the density profile into local symmetries at
lower scale, i.e., smaller LP symmetric domains, following
those of the potential. In this sense, it is shown that for
any such PTR there exists an irreducible decomposition of
the density profile into locally resonating units. We stress
that the introduced concepts and the derived results hold
for arbitrary one-dimensional (1D) LP symmetric potentials
of compact support, thereby enabling the development of
a construction principle for PTRs at desirable energies in
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FIG. 1. (Color online) Local symmetries
in one dimension. (a) Schematic of a
completely local parity symmetric potential,
composed of three different arbitrary mirror-
symmetric scatterers, labeled A,B,C, and
intervening potential-free regions (gaps). The
circular arcs above the scatterer array provide
all possible spatial decompositions into local
symmetry domains Dn, of lengths Ln/2 and
center positions αn, which completely cover
the potential region (up to variations including
part of the intervening gaps). Two selected
decompositions are shown below the array
(solid red and dashed green lines), demonstrat-
ing the presence of nested local symmetries
within the same system. In a scattering setup,
unit amplitude plane waves incident on the left
(and on the right) are considered (see Sec. III),
leading to transmitted t (and t̃) and reflected
r (and r̃) amplitudes. (b) In one dimension,
any translation of isolated constituents or parts
of the potential can be reduced to combined
overlapping local parity transformations: here,
subsequent inversion through the centers of
two subdomains, first D1, then D2.

globally nonsymmetric setups. As an illustrative example, we
consider the analytically tractable case of piecewise constant
(PWC) potentials.

The paper is organized as follows: In Sec. II the LP
operators are defined and analyzed. In Sec. III, LP is applied
to scattering in arbitrary 1D potentials, and its relation to
zero-current states and PTRs is developed. In Sec. IV we
propose a general construction principle for setups with PTRs
at prescribed energies, which we use to illustrate our findings
in representative examples of PWC potentials. Section V
concludes the paper.

II. LOCAL PARITY

Let us first introduce the LP operation, which performs the
usual parity transform in a finite subdomainD of configuration
space (of the x axis in one dimension) and acts in the remaining
part, up to a sign, as the identity operator, thereby maintaining
spectral equivalence to global parity. The single LP operator
Π̂D

s ≡ Π̂ (L,α)
s , with s = ±1, is parametrized by the location of

its inversion point α and the size L of D, in terms of which it
is defined by its action on an arbitrary state |ψ(x)〉 as

Π̂D
s |ψ(x)〉 = Θ

(
L

2
− |x − α|

)
|ψ(2α − x)〉

+ sΘ

(
|x − α| − L

2

)
|ψ(x)〉, s = ±1, (1)

where Θ denotes the Heaviside step function. That is, in
addition to inverting the argument of |ψ(x)〉 within D, Π̂D

−
changes its sign outside D while Π̂D

+ retains it.
The LP operator can thus be regarded as a generalization

of the global parity operator, to which it reduces for L → ∞.

Since (Π̂D
s )2 = 1̂, either one of the two operators has two

eigenvalues, λs = ±1. The corresponding sets of eigenstates
of the Π̂D

s each have two parts, one odd and one even, as
shown schematically in Fig. 2. The even (odd) eigenstates of
Π̂D

− (Π̂D
+ ) necessarily vanish outside D, thus corresponding to

isolated bound states with global definite parity. In contrast,
even (odd) eigenstates of Π̂D

+ (Π̂D
− ) are arbitrary outsideD, and

can therefore nontrivially possess local parity; in particular,

arbitrary even

zero odd

zero even

arbitrary odd

FIG. 2. (Color online) Local parity eigenstates (their real parts)
schematically shown for a single subdomain D. Eigenstates of Π̂D

+
(Π̂D

− ) with eigenvalue λ = +1 (−1) are even (odd) within D and
arbitrary outside. Eigenstates of Π̂D

+ (Π̂D
− ) with eigenvalue λ = −1

(+1) are odd (even) within D and zero outside.
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they are relevant for scattering, since they allow for open
boundary conditions.

Two different LP transforms Π̂D1
s1

, Π̂D2
s2

commute if the
associated domains do not overlap, D1 ∩ D2 = �. Subsequent
application of N = N+ + N− nonoverlapping single LP trans-
forms, where N± is the number of acting Π̂

Dn± operators, thus
corresponds to a total LP operator

Π̂ =
N∏

n=1

Π̂Dn

sn
, sn = ±1 (2)

having again two eigenvalues λ = ∏N
n=1 λsn

= ±1, each of
which has degeneracy 2N−1 (being the sum of odd binomials).
As a consequence of the properties of the LP eigenstates,
seen in Fig. 2, an eigenstate of Π̂ can be nonvanishing only
in a single subdomain Dn if it is an eigenstate of Π̂

Dn

sn=±1
with opposite eigenvalue λn = ∓1. Therefore, an eigenstate of
Π̂ [with eigenvalue λ = (−1)N− ] is nonvanishing in multiple
subdomains, and thereby relevant for scattering, only if it is a
simultaneous eigenstate of each Π̂Dn

sn
with eigenvalue λn = sn.

As we will see in the following, the link between local sym-
metry and transport properties is provided by the commutation
of the Hamiltonian Ĥ = 1

2 k̂2 + V (x̂) (using units h̄ = m = 1,
with an arbitrary energy unit ε) with Π̂ , and thereby with each
Π̂Dn

sn
. Consider a completely LP symmetric potential V (x),

i.e., one which is symmetric about αn within every subdomain
Dn = [αn − Ln

2 ,αn + Ln

2 ],

V (x) = V (2αn − x) ∀ x ∈ Dn, n = 1,2, . . . ,N, (3)

for a given spatial decomposition into N subdomains. The
action of the two commutators associated with the nth
subdomain then reads[

Ĥ ,Π̂Dn

sn

]|ψ(x)〉 = 1
2�′(x){|ψ(2αn − x)〉 − sn|ψ(x)〉}
−�(x){|ψ(2αn − x)〉′ + sn|ψ(x)〉′},

sn = ±1, (4)

where �(x) = δ(x − αn − Ln

2 ) − δ(x − αn + Ln

2 ) is a sum of
boundary Dirac δ functions and the prime denotes differenti-
ation with respect to x. Note that, whereas [Π̂Dn

sn
,V̂ ]|ψ(x)〉 =

[V (x) − V (2αn − x)]|ψ(2αn − x)〉 = 0 for x ∈ Dn by as-
sumption, the kinetic term in Ĥ leads to nonvanishing
boundary terms. The commutation is then manifest in a weak
sense, that is, subsequent action of Ĥ and each Π̂Dn

sn
on ψ(x)

is independent of their order, only if the right-hand side of
Eq. (4) vanishes. Then, Ĥ commutes weakly also with the
total LP operator Π̂ , since

[Ĥ ,Π̂ ]|ψ(x)〉 =
[
Ĥ ,

N−1∏
n=1

Π̂Dn

sn

]
Π̂DN

sN
|ψ(x)〉

= λsN

[
Ĥ ,

N−2∏
n=1

Π̂Dn

sn

]
Π̂DN−1

sN−1
|ψ(x)〉

=
(

N∏
n=2

λsn

) [
Ĥ ,Π̂D1

s1

]|ψ(x)〉 = 0. (5)

Because of the local symmetry of the potential, Eq. (3),
the commutation relation in Eq. (4) must hold inwards for any

L � Ln within Dn. We thus conclude that |ψ(x)〉 is a common
eigenstate of Ĥ and Π̂ , and therefore LP definite, if its wave
function fulfills the N conditions

ψ(x) = snψ(2αn − x), x ∈ Dn, n = 1,2, . . . ,N. (6)

In polar representation, ψ(x) = √
ρ(x)eiϕ(x), this yields the

2N conditions

ρ(x) = ρ(2αn − x), (7a)

ϕ(x) = ϕ(2αn − x) + (1 − sn)π

2
(7b)

for the probability density ρ(x) and for the phase ϕ(x) defined
up to mod(2π ). Violating one of these two conditions implies
a breaking of LP symmetry.

Note here that spectral equivalence of the LP operators
with global parity (i.e., having global eigenvalues λ = ±1) is
ensured at the expense of strong (state-independent) commu-
tation between Ĥ and Π̂ . In other words, the weakness of the
commutation in Eq. (4) is the price to pay for a local parity
operator with global (i.e., defined over all x ∈ R) action and
eigenvalues.

The wave function ψk(x) of a stationary state with energy
E = k2/2 is a solution of the time-independent Schrödinger
equation

1

2
ψ ′′

k (x) + γ 2(x)ψk(x) = 0, γ 2(x) = k2

2
− V (x), (8)

which, in the polar representation, is transformed to a nonlinear
equation for the modulus uk(x) = |ψk(x)| = √

ρk(x),

1

2
u′′

k (x) − j 2
k

2u3
k(x)

+ γ 2(x)uk(x) = 0, (9)

where

jk = u2
k(x)ϕ′

k(x) = ρk(x)ϕ′
k(x) = const (10)

is the spatially invariant (x-independent) probability current.
Note that, if uk(x) has nodes, jk necessarily vanishes, so that
no divergence occurs in Eq. (9).

While current invariance holds for any 1D potential, the
special case of a completely LP symmetric potential, Eq. (3),
yields yet another locally invariant quantity, in the form of a
complex nonlocal current: Restricting Eq. (8) to the subdomain
Dn, multiplying by ψk(2αn − x), and subtracting the LP
transformed (x → 2αn − x) result lead to

ψk(x) ψ ′
k(2αn − x) + ψ ′

k(x)ψk(2αn − x) ≡ qk,n = const,

(11)

provided that V (x) = V (2αn − x) for x ∈ Dn. In the case of
a completely LP symmetric potential, there are N (generally
different) such constants qk,n, with values depending on the
decomposition into N subdomains.

If the current jk vanishes, Eq. (9) becomes identical to
Eq. (8), although now for the real field uk(x). Using the same
procedure as for Eq. (11) we find a (real) invariant quantity for
the wave-function modulus,

uk(x) u′
k(2αn − x) + u′

k(x)uk(2αn − x) ≡ q̃k,n = const.

(12)
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The nonlocal quantity qk,n (and its counterpart q̃k,n for
zero current) expresses the manifestation of LP symmetry
in the state of the system: It remains invariant under the LP
transformations of Π̂ for any wave function ψk(x), while it
vanishes for LP eigenstates.

We now proceed to relate even further the spatially invariant
(zero or nonzero) quantities jk and qk,n to the LP of energy
eigenstates. To this aim, we substitute the polar form of ψk(x)
into Eq. (11) and separate real and imaginary parts, which
yields the following equations:

uk(x)u′
k(2αn − x) + u′

k(x)uk(2αn − x)

= |qk,n| cos[ϑk,n − ϕk(x) − ϕk(2αn − x)], (13a)

jk

(
uk(2αn − x)

uk(x)
+ uk(x)

uk(2αn − x)

)
= |qk,n| sin[ϑk,n − ϕk(x) − ϕk(2αn − x)], (13b)

where qk,n ≡ |qk,n|eiϑk,n .
The two cases (i) jk = 0 and (ii) jk = 0 are now distin-

guished, which classify the possible scattering states with
respect to their LP properties depending on the invariant
quantities qk,n, as follows.

(i) jk = 0: Then qk,n = q̃k,n = 0 or ϑk,n − ϕk(x) −
ϕk(2αn − x) = mπ (m ∈ Z), as seen from Eqs. (13b) and (12).
If the former condition holds for all subdomainsDn, then ψk(x)
has definite total LP, i.e., it is an LP eigenstate of Π̂ , due to
Eqs. (11) and (6). Otherwise, q̃k,n = ±|qk,n| from Eqs. (13a)
and (12), and ψk(x) is simply a state with zero probability
current but without definite total LP.

(ii) jk = 0: Then uk(x) = 0 ∀ x ∈ Dn in Eq. (13b)
(which excludes totally reflected states under AAC, see the
next section), so that also qk,n = 0. Now, if additionally
ϑk,n − ϕk(x) − ϕk(2αn − x) = (m + 1

2 )π (m ∈ Z) in eachDn,
then uk(x)u′

k(2αn − x) = −u′
k(x)uk(2αn − x) from Eq. (13a),

corresponding to a completely LP symmetric probability
density ρk = u2

k . This is the case of a PTR, as will be shown
in the next section.

III. SCATTERING

We now employ LP to study 1D scattering in a completely
LP symmetric potential of the form

V (x) =
NS∑
n=1

Vn(x)Θ(Ln/2 − |x − αn|) (14)

describing an array of NS nonoverlapping scatterers Sn of
widths Ln, centered at and symmetric about x = αn. The
scatterer potentials Vn thus obey Eq. (3) with N = NS , but are
otherwise arbitrary bounded functions [|Vn(x)| < ∞]. Such a
potential is shown schematically in Fig. 1(a) for three different
types of scatterers. Obviously, V (x) incorporates the case of a
globally symmetric potential if the scatterers are distributed
symmetrically with respect to the array center. Also, the
potential-free gaps are not essential, meaning that V (x) could
as well represent a single continuous LP symmetric scatterer
if the gap lengths are set to zero.

The stationary scattering solution ψk(x) of Eq. (8), and
thereby uk(x) of Eq. (9), are uniquely determined by the
asymptotic conditions at x → ±∞, which coincide with

boundary conditions at the ends x = αN + LN/2,α1 − L1/2
of the potential since it is 1D and explicitly “unbiased” (of
compact support). Symmetric and asymmetric asymptotic con-
ditions are imposed with plane waves e±ikx = 〈x|±〉 incident
on the left and right, or only on the left, of the scattering region,
respectively (where k > 0). The corresponding asymptotic
ingoing amplitudes ( 1

1 ) or ( 1
0 ) in |±〉-space are scattered off

the potential into the outgoing ones by the S-matrix

S =
(

r t

t r̃

)
≡ eiζ

(√
Reiη

√
T√

T −√
Re−iη

)
, (15)

which is unitary by momentum (probability current) conser-
vation and symmetric due to time-reversal invariance. T =
|t |2 = 1 − |r|2 = 1 − R is the transmission probability, which
is measurable for a setup under AAC.

Both for SAC and AAC, the role of the current in Eq. (10)
is decisive for the present analysis, because it relates the
scattering properties of the system to symmetries in ψk(x):
For jk = 0, any (local) symmetry in ρk(x) implies the same
symmetry in ϕ′

k(x).

A. LP eigenstates with zero probability current

If ψk(x) is an LP definite eigenfunction of Π̂ , then it should
have a locally antisymmetric phase slope ϕ′

k(x), as implied
by Eq. (7b). This is incompatible with Eq. (10) for locally
symmetric ρk(x), unless ϕ′

k(x) = 0. Therefore, ϕk(x) must be
constant where ρk(x) = 0 with ±π jumps at nodes of ρk(x), so
that ψk(x) maintains its LP. The state then carries zero current.

Considering scattering off the potential V (x), an LP
eigenstate can only be realized under SAC, since AAC breaks
LP symmetry explicitly, as will be shown. To confirm the
impact of definite LP on the S-matrix, we use SAC with wave
function ψ<

k (x) = eikx + (t + r)e−ikx on the left and ψ>
k (x) =

e−ikx + (t + r̃)eikx on the right of the array. LP conservation
is now imposed in all subdomains Dn = [αn − Ln

2 ,αn +
Ln

2 ] (n = 1,2, . . . ,NS ) of the scatterers, and in the subdomains
D̄n̄ = [αn̄ + Ln̄

2 ,αn̄+1 − Ln̄+1

2 ] (n̄ = 1,2, . . . ,NS − 1) between
them, through condition (6). The partial eigenvalues are
λn = sn (λn̄ = sn̄) in each Dn(D̄n̄), so that the state is not
isolated within a single subdomain and has total eigenvalue
λ = (−1)N− , where N− is the number of applied sn = −1 and
sn̄ = −1 operations, as discussed above.

By induction through the array, that is, by applying Eq. (6)
to successive subdomains, we obtain that ψ(α1 − L1/2) =
λψ(αN + LN/2). This in turn leads to both of the following
conditions for the form of the S matrix and for the sum of
boundary phases of the LP eigenfunctions:

r = r̃ , (16a)

e2ikxc = λ, (16b)

where xc = (α1 − L1/2 + αNS + LNS/2)/2 is the array center.
This means that, for kxc = mπ/2,m ∈ Z, the locally sym-
metric array behaves as if it were globally symmetric, with
respect to its asymptotic transport properties (since r = r̃). In
particular, the invariant probability current for SAC,

jk = k(1 − |t + r|2) = −k(1 − |t + r̃|2), (17)
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vanishes with r = r̃ ( =0 in general). This can also be deduced
from the unitarity condition S†S = I , or from the fact that
r = r̃ yields a phase difference η = π/2 between t and r , as
seen from Eq. (15), so that |t + r|2 = |t |2 + |r|2 = 1 and thus
jk = 0.

Such zero-current states connect the concept of LP to a
transport observable, the current jk for SAC, in a situation
where the transmission coefficient T is ambiguous due to
the indistinguishability of reflected and transmitted wave
amplitudes in the asymptotic regions. Nevertheless, as already
seen in the previous section, definite LP is not a necessary
condition for zero-current states. Straightforward cases are
perfect transmission resonances, T = 1 (or total reflection,
R = 1), to be studied in the next subsection, for which the
current under SAC always vanishes, without the state being
LP definite. But also in general, zero-current states exist under
SAC irrespectively of LP conservation, as can be seen from
Eq. (9) for jk = 0: this linear equation for the modulus uk(x)
is then fulfilled for any phase function ϕk(x), which can yield
LP, but will generally not.

B. Perfect transmission resonances

Keeping the current jk as an observable, we now turn to
the case of AAC, which is most common in transport setups;
in this case the transmission coefficient T is unambiguous.
The incoming amplitudes in |±〉-space are now ( 1

0 ), that

is, ψ<
k (x) = eikx + re−ikx and ψ>

k (x) = teikx . Since we aim
to study transmission resonances, we consider the case in
which the probability current jk = kT does not vanish by
total reflection on the potential. A nonzero current implies
the violation of Eq. (7b): if it would hold, then the spatial
invariance of the current jk(x) = jk(2αn − x) leads to ρk(x) =
−ρk(2αn − x) = 0 (since ρk is positive definite) in Eq. (10),
i.e., jk = 0. Thus (necessarily even) LP can only be fulfilled for
the density ρk(x), Eq. (7a), but not for the phase φk(x), in the
explicitly symmetry-broken case of AAC. This LP symmetry,
left behind in the modulus of the complex field ψk(x), can be
regarded to constitute a remnant of total LP symmetry.

To see the impact of this scenario on transport, we
now impose (even) LP conditions only on ρk(x) in each
array subdomain according to Eq. (7a). This leads, again by
induction through the array, to two possibilities for the overall
reflection amplitude:

r = 0, (18a)

or r = −e2ikxa , (18b)

where xa = α1 − L1/2 is the left end of the array, correspond-
ing to (a) perfect transmission (T = 1) or (b) total reflection
(R = 1). We note that the case of total reflection [22] is simply
distinguished from the T > 0 case by the fact that the latter
does not allow for nodes in ρk(x), since then jk = 0 from
Eq. (10). Consequently, a PTR does occur whenever ρk(x)
is completely LP symmetric within the scattering region and
nonzero everywhere. In contrast to the case of zero-current
states previously discussed, here also the inverse holds: For
a PTR to occur which resonates within locally symmetric
potential units, ρk(x) must be completely LP symmetric, as
proven in the Appendix.

We thus conclude the following central result of the
paper: The scattering state under AAC exhibits a PTR which
resonates within locally symmetric potential units if and only
if its probability density is completely LP symmetric within
the interaction region (and nonzero everywhere). This main
result generalizes the relation between resonant transmission
and symmetric probability density, from globally to locally
symmetric potentials, in a conceptually transparent way.

Global parity symmetry. For a single, globally symmetric
scatterer, an isolated [23] resonance at momentum k = kr can
be shown to have symmetric ρk(x) and, therefore, be perfectly
transmitting. This is a special case of the proof given in the
Appendix, but it can also be derived using an expansion of
the scattering state into parity definite resonant states [24].
The global symmetry of ρk(x) at a PTR simply expresses
the fact that the observable, stationary probability density of
a perfectly transmitting state cannot reveal the direction of
incidence in a reflection symmetric potential.

Local parity symmetry. The symmetry of resonant states
is not directly evident, though, if different such (symmetric)
scatterers are connected into a locally symmetric array. Only
when treated separately could each scatterer be argued to
transmit resonantly at the same kr with corresponding globally
symmetric ρk(x) for the considered scatterer. This would then
remain unaffected by implementation into an array, since
only phase-shifted plane waves propagate in the intervening
potential-free regions. However, as already anticipated from
Fig. 1, this is only one (the one with minimal subdomain
sizes) out of many possible decompositions of the potential
into LP symmetric units. At a PTR, not all local symmetries
of the potential are necessarily followed by the resonant
probability density, as will be demonstrated explicitly in
Sec. IV. As mentioned in Sec. I, a generic LP symmetric
potential possesses symmetries at different scales, with nested
axes of symmetry (see Fig. 1), so that the decomposition in
symmetric scattering units is crucial for the identification of a
PTR state.

Moreover, equivalence between separate scatterers and
connected arrays thereof does not carry over to the case of
zero-current states under SAC. The proposed concept of LP
treats the nonsymmetric system globally while addressing
its local symmetries in arbitrary subdomains, and applies
uniformly to scattering under SAC or AAC.

Note that the strength of the above result for PTRs lies in its
generality. In particular, the necessary and sufficient condition
for PTRs allows us to identify all possible decompositions of
the considered type of potentials [as shown schematically, e.g.,
for the setup in Fig. 1(a)] which can support such PTRs. As
will be demonstrated in the next section, this constitutes the
basis for a construction principle for globally nonsymmetric
1D scattering devices, which become resonantly transparent
at prescribed energies.

IV. DESIGN OF PTR STATES THROUGH LOCAL PARITY

A. Construction and reducibility of PTRs in
generic LP symmetric potentials

Let us now proceed to the development of a construction
principle of 1D devices supporting PTR states. This amounts
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to the inverse of the problem treated so far: having shown
that the PTR probability density follows the symmetries of a
generic completely LP symmetric potential, we now inquire
how such a potential should be designed, given that PTRs
occur at desired energies.

We consider a scattering potential of the type in Eq. (14),
consisting of NS locally symmetric units [see Fig. 1(a)]. We
assume, without loss of generality, that each potential function
Vn(x) has compact support within the nth scatterer (i.e.,
vanishes for |x − αn| > Ln/2) and can be described by Nn

parameters �ν(n) = (ν(n)
1 ,ν

(n)
2 , . . . ,ν

(n)
Nn

). The total unimodular
transfer matrix of the device, connecting the |±〉-amplitudes
of ψ<

k to those of ψ>
k , is then given by the product (ordered in

n)

M =
(

w z

z∗ w∗

)
=

NS∏
n=1

Mn(k; �ν(n),αn), (19)

with w = (t∗)−1 and z = −r∗(t∗)−1, where

Mn =
(

wn(k; �ν(n),αn) zn(k; �ν(n),αn)

z∗
n(k; �ν(n),αn) w∗

n(k; �ν(n),αn)

)
(20)

is the (unimodular) transfer matrix of the nth scatterer, which
we henceforth regard as known (analytically or numerically).

As discussed above, local symmetries are generally mani-
fest on multiple scales and with different symmetry axes within
the same scatterer array [see Fig. 1(a)]. Therefore, the total
potential can be decomposed in ND different ways into LP
symmetric units, each containing a number of scatterers. In the
ith such decomposition, the NS scatterers are thus grouped into
N

(i)
R � NS LP symmetric resonators R(i)

l (l = 1,2, . . . ,N
(i)
R )

occupying the subdomains D(i)
l , separated by regions D̄(i)

l̄

(l̄ = 1,2, . . . ,N
(i)
R − 1) of zero potential. The lth resonator

of the ith decomposition contains n
(i)
l scatterers at positions

{αn}(i)
l , whose potentials are described by the set {�ν(n)}(i)

l of
parameter vectors, yielding a transfer matrix M

(i)
l .

We now apply the condition r
(i)
l = 0 at k = k(i)

r for PTR
with AAC to the scattering amplitudes through each R(i)

l in the
considered ith resonator decomposition [e.g., the one depicted
by the red solid line below the setup in Fig. 1(a)], that is,

z
(i)
l

(
k(i)
r ; {�ν(n)}(i)

l ,{αn}(i)
l

) = 0 (21)

for each subdomain D(i)
l (l = 1,2, . . . ,N

(i)
R ).

The existence of a simultaneous solution of Eqs. (21) for
all resonators R(i)

l of the ith decomposition, with respect to
the parameters �ν(n) and positions αn of the scatterers, provides
us with a setup with a PTR at a prescribed k(i)

r . It is thus shown
how the desired PTR can, in principle, be constructed with the
aid of the derived one-to-one correspondence to LP symmetry.

Each resonator decomposition i ∈ UD ≡ {1,2, . . . ,ND}
corresponds to a possible PTR at certain momentum k(i)

r , as
described above. To construct multiple PTRs for a subset
UPTR

D ⊂ UD [e.g., a second decomposition in Fig. 1(a) is
depicted by the green dashed line], the set of

∑
i∈UPTR

D
N

(i)
R

complex equations, Eqs. (21), must be solved simultaneously
for all i ∈ UPTR

D . These equations determine an equal number
of suitably chosen parameters among the total parameters

�ν(n),αn (n = 1,2, . . . ,NS ) of the potential. To the remaining
potential parameters, and to the desired PTR momenta k(i)

r ,
fixed values are assigned in Eqs. (21). Note that the existence
of different resonator decompositions requires, in general,
multiple scatterers to be identical [e.g., in Fig. 1(a) there
are only three types of scatterers], which thereby reduces the
number of different parameters in the �ν(n). The choice of fixed
versus determined parameters depends on the specific type of
considered potential.

From the described procedure, we see how LP is used to
decrease the (typically vast) space of possible configurations of
the considered type of potential, Eq. (14), for the construction
of PTRs at given energies. The same procedure can also be
used to construct zero-current states with definite LP, in which
case though, the LP conditions, Eq. (6), must be imposed
also in the gap subdomains D̄l̄ between the resonators. While
the restriction of parameter space through LP is achieved on
generic symmetry grounds, the actual solution of Eqs. (21) is
potential-specific. In the following subsection, the construction
principle will be applied to the case of PWC potentials, where
the transfer matrices M

(i)
l are expressed analytically in terms

of the parameters �ν(n).
To complete the general discussion, we note that the

probability density ρk(x) of a PTR state for a specific
resonator decomposition may be LP symmetric within smaller
subdomains than a resonator. If the system resonates within
such smaller constituents (scatterers or gaps) covering a
resonator, then we refer to the state as reducible in that
resonator. The invariance of a given resonant energy under
interchange or translation of resonator constituents implies
their independence within the total system [25], in terms of
transmission. In this sense also resonators are independent
constituents of the scatterer array at PTRs.

B. Piecewise constant potentials

For a PWC potential we have the additional restriction

Vn(x) = V 0
n , n = 1,2, . . . ,NS (22)

4 6 8 10 12 14

2

4
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10

0 0.5 1

0.98

4.2

4.6

1

FIG. 3. (Color online) Transmission spectrum of the simplest LP-
symmetric barrier setup, with ψkc

(x) and ρkr
(x) shown (in arbitrary

units) for a zero-current state (Ec = 8.70ε) under SAC and a PTR
(Er = 4.60ε) under AAC, respectively.
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FIG. 4. (Color online) Potential with two resonators R1 (with n1 = 5 barriers) and R2 (n2 = 9), exhibiting two close (tunneling) PTRs
at E1 = 7.00ε and E2 = 7.46ε, with corresponding probability densities shown (in arbitrary units) for AAC. Their reducibility within the
resonators is indicated by vertical dotted lines.

in Eq. (14), where the constant potential strength V 0
n , width

Ln, and location αn of the nth barrier are freely adjustable.
The previously defined scatterer parameter vectors are now
two-dimensional, �ν(n) = (V 0

n ,Ln). In the following, we will
consider the case of potential barrier arrays, that is, V 0

n > 0
for all n. The potential barriers themselves and the regions
between them define the smallest possible subdomains with
local symmetry and mutually different potential strengths.

The NR resonators Rl of a LP decomposition are now of
three types with respect to the PTRs they support: (a) a single
barrier, supporting above-barrier resonances (ABRs), (b) a ho-
mogeneous array of identical equidistant barriers, supporting
tunneling resonances and ABRs, or (c) an inhomogeneous
barrier array, supporting isolated PTRs (tunneling or ABR) for
appropriate combinations of barrier strengths and widths [23].

The |±〉-amplitudes along the array are determined by
matching the wave function at all scatterer interfaces, and
thereby connected by analytically determined single-barrier
transfer matrices Mn(k; V 0

n ,Ln,αn). The total transfer matrix
of the device is given in analogy with Eq. (19), and the LP
symmetry conditions applied at each interface of a given
resonator decomposition i lead to Eqs. (21) with z

(i)
l =

z
(i)
l (k(i); {V 0

n ,Ln}(i)
l ,{αn}(i)

l ).

Let us now discuss some examples which illustrate the
above concepts and their implementation more explicitly, in or-
der of increasing resonator number NR. Figure 3 demonstrates
the occurrence of a zero-current state and an irreducible PTR
in the simplest case which breaks global parity, an asymmetric
double-barrier setup. As we see, the zero-current state has even
LP in the barriers and odd LP between them. T (E) displays a
multi-ABR structure, but only the depicted peak corresponds
to a PTR state (see the inset).

Figure 4 shows again a setup of NR = 2 resonators, but of
a more complex structure, supporting two energetically close
PTRs. ρk2 (at E2) is irreducible in both resonators, while ρk1

(at E1) is irreducible in R1 but reducible in R2 (as shown
by the vertical dotted lines), where it varies only within the
barrier regions, while flat ρ(x) indicates a forward propagating
wave only. This is an example of LP being fulfilled at two
different scales (here within resonator R2) in the same system.
Note that the occurrence of the PTR at E2 requires that the
positioning of scattering units inR2 supports LP symmetry at a
new spatial scale, in accordance with the general construction
principle described above. We also point out that the setup
remains resonant for arbitrary combinations of R1 and R2,
with repeated corresponding patterns in ρk(x). A system with

0 10 20 30 40 50 60

4

6

8

10

12

14

0 0.5 1
0.99 1

7.3

7.4

(AAC)

(SAC)

FIG. 5. (Color online) Potential
decomposed into NR = 5 resonators,
exhibiting a zero-current state [with
shown Re(ψkr

) for SAC and ρkr
for

AAC, in arbitrary units] at energy
Er = k2

r /2 = 7.354ε. IfR1 is removed
(dashed lines), the state becomes a PTR
(with shown ρkr

for AAC, in arbitrary
units) at the same energy.

032113-7



KALOZOUMIS, MORFONIOS, DIAKONOS, AND SCHMELCHER PHYSICAL REVIEW A 87, 032113 (2013)

0 10 20 30 40 50 60 70 80

5

10

15

20

0 0.5 1
0.95 1

4.9

5.1

FIG. 6. (Color online) Finite array
of NS = 12 rectangular barriers, two
of which are deformed (defects). The
array is decomposed into N

(1)
R = 5 and

N
(2)
R = 12 resonators with respect to

supported irreducible PTRs at energies
E1 = 5.00ε and E2 = 8.47ε (ρk1 and
ρk2 are plotted in arbitrary units).

the resulting structural complexity can thus support PTRs,
relying on (repeated) LP symmetries in the potential.

In Fig. 5, a zero-current state becomes a PTR at the same
energy by removing the first resonator R1 from an NR = 5
array. As can be seen, the PTR state is overall irreducible and
more localized within R4. Notice that this PTR is independent
of the width of the central barrier in R5, within which the wave
propagates only forward with constant ρkr

(x) > 1. This might
be utilized for the flexible design of efficiently transmitting
nonsymmetric devices.

In Fig. 6, we investigate a finite periodic array with two
defects in the form of alternate lattice cells. Without the
defects, the transmission properties of the uniform array are
determined by its unit cell [26], which also defines the scale
of local symmetry. Due to coupling of the degenerate resonant
levels of adjacent identical resonators, a uniform N -scatterer
array exhibits (N − 1)-fold split PTRs [26,27], which saturate
into transmission bands for increasing N . As we see, the
presence of aperiodicity [28] distorts the precursors of the
energy bands [1,29] and lowers the resonances in T (E) from
unity because of the induced asymmetry [6]. Nevertheless,
the decomposition into resonators [particularly of type (c)]
containing multiple barriers reveals the possibility of PTRs,
as explained above, owing to the locally symmetric ρkr

of
irreducible resonant states.

This implies that identification of local symmetries on
scales larger than the minimal constituent building blocks
provides a key for the description of structurally complex
systems. Moreover, different LP axes (i.e., resonator decompo-
sitions) for the same setup correspond to different PTR levels;
local symmetry considerations thus prove to be of fundamental
importance in accessing and understanding the properties of
aperiodic nonuniform systems.

V. CONCLUSION

We have introduced the concept of local parity (LP) and
revealed its impact on the transport properties of aperiodic
1D arrays of arbitrary reflection symmetric scatterers. The
manifestation of LP for the potential and for a generic quantum
state was simply reduced to the domain-wise invariance or
vanishing of a derived nonlocal quantity. Scattering states were
generically classified with respect to their LP properties with
the aid of this invariant quantity as well as the probability
current. It was shown (i) that eigenstates of total LP operators

carry zero current for symmetric asymptotic conditions, and
(ii) that a remnant of LP symmetry in the wave-function
modulus underlies the emergence of perfect transmission
resonances (PTRs) which resonate within locally symmetric
potential units. Consequently, the decomposition of globally
nonsymmetric arrays into different symmetric resonator units
relates perfect transmission to LP symmetries of the stationary
probability density. PTR states were shown to depend on
their spatial reducibility into LP symmetric parts of altering
sizes and symmetry axes arrangements, even within the
same potential. This in turn demonstrates the importance of
considering local order on different scales to understand the
behavior of systems with structural complexity. Invariance
of resonant transmission under translation or exchange of
resonator subdomains also links to the concept of indepen-
dence among constituents of extended systems. Our findings
were demonstrated by applying a general construction princi-
ple for PTRs to the analytically solvable case of piecewise
constant potentials. The generalization of our approach to
higher dimensions and different kinds of local symmetry
transformations could provide a different context for the
analysis of complex systems, based on fundamental principles.
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APPENDIX

We prove here that a PTR which resonates within locally
symmetric potential units occurs at an energy E = k2/2 only
if its probability density ρk(x) is completely LP symmetric.
This is equivalent to stating that, if such a PTR occurs at E,
then ρk(x) is completely LP symmetric.

First, we prove that, if the transmission Tl through a single
LP symmetric subdomain Dl is perfect, Tl = 1, then ρk(x)
is LP symmetric within Dl (for a schematic illustration, see
Fig. 7), as follows.
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FIG. 7. (Color online) Part of the potential V (x) of around the nth
scatterer, with corresponding wave-function modulus uk(x). Either
(i) a subdomain Dl is itself perfectly transmitting with LP symmetric
uk(x) (solid lines), which is shown by considering a BVP in each
of its halves (see the Appendix), or (ii) it must be augmented by a
subsequent subdomain, so that uk(x) is LP symmetric in the resulting
subdomain Dm̃ (dashed lines).

If Tl = 1, then at the boundaries ofDl the conditions uk(x =
αl − Ll/2) = uk(x = αl + Ll/2) = Tl = 1 and u′

k(x = αl −
Ll/2) = u′

k(x = αl + Ll/2) = 0 apply. In the left half DL
l ≡

[αl − Ll/2,αl] of Dl , the unique solution ψk(x) of Eq. (8)
under AAC has modulus uk,L(x) which obeys the boundary
value problem (BVP)

1

2
u′′

k,L(x) − j 2
k

2u3
k,L(x)

+ γ 2(x)uk,L(x) = 0, x ∈ DL
l ,

(A1a)

uk,L(x)|x=αl−Ll/2 = 1, (A1b)

u′
k,L(x)|x=αl−Ll/2 = 0, (A1c)

uk,L(x)|x=αl
= u

αl

k , (A1d)

where u
αl

k ≡ uk(αl) = |ψk(αl)| [30]. In the right half DR
l ≡

[αl,αl + Ll/2] of Dl , the modulus uk,R(x) obeys the BVP

1

2
u′′

k,R(x) − j 2
k

2u3
k,R(x)

+ γ 2(x)uk,R(x) = 0, x ∈ DR
l ,

(A2a)

uk,R(x)|x=αl+Ll/2 = 1, (A2b)

u′
k,R(x)|x=αl+Ll/2 = 0, (A2c)

uk,R(x)|x=αl
= u

αl

k . (A2d)

Under a passive transformation x → 2αl − x of only the
reference coordinate system (that is, keeping the potential
intact), and using the LP symmetry γ (x) = γ (2αl − x) for
x ∈ Dl , the same BVP for uk,R(x), Eq. (A2), reads

1

2
u′′

k,R(2αl − x) − j 2
k

2u3
k,R(2αl − x)

+ γ 2(x)uk,R(2αl − x) = 0, x ∈ DL
l , (A3a)

uk,R(2αl − x)|x=αl−Ll/2 = 1, (A3b)

u′
k,R(2αl − x)|x=αl−Ll/2 = 0, (A3c)

uk,R(2αl − x)|x=αl
= u

αl

k . (A3d)

Comparison of the BVPs in Eqs. (A1) and (A3) for the
functions uk,L(x) and uk,R(2αl − x) of x yields

uk,L(x) = uk,R(2αl − x), (A4)

which shows that uk(x) is necessarily LP symmetric within
Dl .

Having proven that Tl = 1 leads to LP symmetric ρk(x) in
Dl , we now assume that the transmission through the whole
array is perfect, T = 1, for a state which resonates within
locally symmetric potential units, and we show that then ρk(x)
is completely LP symmetric. To do this, we start at the left end
x = α1 − L1/2 of the potential V (x) of Eq. (14), and consider
the first smallest LP symmetric subdomain Dl (n = 1) with
nonzero potential. Now, depending on whether the case (i)
Tl = 1 or (ii) Tm < 1 is fulfilled for l = m = 1, we proceed as
dictated below:

(i) Tl = 1: Then, ρk(x) is LP symmetric inDl (see solid lines
in Fig. 7). Starting from the upper boundary of Dl , x = αl +
Ll/2, consider its subsequent smallest possible LP symmetric
subdomain with nonzero potential, Dl+1. If Tl+1 = 1, repeat
the present step (i) with l → l + 1; otherwise, if Tl+1 < 1,
apply step (ii) with m → l + 1.

(ii) Tm < 1: Then, ρk(x) is not LP symmetric in Dm (see
dashed lines in Fig. 7). Starting from the lower boundary of
Dm, x = αm − Lm/2, consider the first smallest possible LP
symmetric subdomain with nonzero potential, denoted Dm̃,
which is larger than Dm. If Tm̃ = 1, proceed to step (i) with
l → m̃; otherwise, if Tm̃ < 1, repeat this step (ii) with m → m̃.

In this way, starting from l = m = 1, steps (i) and (ii)
lead us through the scatterer array until the last smallest
possible LP symmetric subdomain with nonzero potential is
reached, either through step (i) or through step (ii). For this last
subdomain, case (i) must necessarily hold, since in total T = 1
by assumption, and so ρk(x) is completely LP symmetric. This
completes the proof.
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