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Abstract A unifying description of lattice potentials
generated by aperiodic one-dimensional sequences is
proposed in terms of their local reflection or parity
symmetry properties. We demonstrate that the ranges
and axes of local reflection symmetry possess charac-
teristic distributional and dynamical properties, deter-
mined here numerically for certain lattice types. A
striking aspect of such a property is given by the return
maps of sequential spacings of local symmetry axes,
which typically traverse few-point symmetry orbits.
This local symmetry dynamics allows for a descrip-
tion of inherently different aperiodic lattices accord-
ing to fundamental symmetry principles. Illustrating
the local symmetry distributional and dynamical prop-
erties for several representative binary lattices, we fur-
ther show that the renormalized axis-spacing sequences
follow precisely the particular type of underlying ape-
riodic order, revealing the presence of dynamical self-
similarity. Our analysis thus provides evidence that the
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long-range order of aperiodic lattices can be character-
ized in a compellingly simple way by its local symme-
try dynamics.
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1 Introduction

Aperiodic sequences of distinct scattering units have
long served as a flexible model for long-range order
which goes beyond conventional crystalline periodic-
ity. As a means to approach disorder in an ordered man-
ner, they pave the way for a fundamental characteriza-
tion of condensed matter with respect to the combina-
tion of its structural and spectral properties [1]. Along
with its conceptual importance, aperiodic order has
been extensively applied to scattering setups and shown
to yield intriguing features in the system response, such
as critical states [1–3] and self-similar excitation spec-
tra [4–6]. Another prominent applicational aspect is
the occurrence of perfect transmission of light through
aperiodically ordered photonic multilayers [6–9], as
well as the manipulation of their (banded) transmis-
sion spectra by varying the layer refractive indices or
the angle of incidence [8–10].

A decisive aspect of order in one dimension is the
presence of local reflection symmetries in a system,
that is, of distinct symmetric constituents that (typi-
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cally) add up to a globally non-symmetric structure.
For infinitely extended systems, abundant local sym-
metries have been shown to underlie the absence of
decaying eigenstates for the associated Schrödinger
operator [11–13]. For finite structures, complete local
symmetry, that is, decomposability of the whole system
into symmetric parts, was recently shown to enable the
occurrence—but also construction—of a class of per-
fectly transmitting resonances (PTRs) in quantum scat-
tering [14], whose spatial profile follows the local sym-
metries of the potential. A key ingredient that enables
multiple PTRs in a single, globally non-symmetric
potential is the presence of nested local reflection sym-
metries on multiple scales. As we will see in the present
work, well-known types of aperiodicity offer a rich
platform for the realization of such structures.

Local symmetries were further associated with cor-
responding spatial invariants (constructed from the
amplitudes of a scattered wave), whose constancy over
finite domains allows for an unambiguous classifi-
cation of resonances in terms of their spatial struc-
ture [15]. In the same framework, the mapping of
the wave amplitudes between 1D symmetry-related
spatial domains has been generalized from global to
local symmetries [16]. The generic form of the the-
ory implies its applicability to various wave propaga-
tion settings, such as matter waves in nanoelectronic
devices, light waves in photonic quasicrystals, or pres-
sure waves in acoustic setups. For definiteness, how-
ever, we refer to the scatterer medium simply as the
“potential.” Due to increased efficiency and technologi-
cal advantages, most experimental studies of scattering
in aperiodic media have been performed on nanopho-
tonic devices, which can be constructed according to
(usually binary) aperiodic sequences with high preci-
sion [17–20]. In order to predict, analyze, and control
the scattering properties of such—possibly complex—
aperiodic scatterer lattices, it becomes of major impor-
tance to determine their local symmetry structure, as is
evident from the above. This task takes the form of a
systematic investigation, in purely symbolic manner, of
the presence and characteristic distributions of inher-
ent local symmetries in potentials encoded by aperi-
odic sequences, and constitutes the aim of the present
work.

Independent of their physical impact, local reflec-
tion symmetries in 1D aperiodic sequences have indeed
been extensively studied under the name “palindromes”
in the combinatorics of words [21–29]. Here, the min-

imal reflection symmetric structural units are encoded
as symbolic elements (the letters) of a set of given car-
dinality (the alphabet), out of which discrete lattices
(the words) are constructed by concatenation. Aperi-
odically ordered sequences are constructed by the iter-
ative action of a given substitution (or inflation) rule
on the set of lattice elements. The presence of differ-
ent palindromes (words that are read the same forward
and backward) in a sequence is then expressed by its
palindrome complexity function [24], which gives the
number of contained palindromes of given length. Rig-
orous mathematical results on the palindromicity of
certain classes of (infinite) words have been obtained
[23,24,26,27,30], an important part of which concerns
palindromic prefixes (factors in the beginning of a
word) [26,31,32]. On the other hand, large effort has
also been made for the computational determination
of palindromes in arbitrary sequences [33], or even of
gapped palindromes (having a non-symmetric central
part) [34], which are directly related to genome struc-
ture [35]. Regarding complete local symmetry, men-
tioned above, the factorizability of finite words into
(maximal length) palindromes has been demonstrated
in closed form for binary words [36].

Aperiodic sequences have also been studied in terms
of the recurrence of factors or palindromes along given
(classes of) words [24,28,37]. In this context, a dynam-
ical aspect of the structural properties of aperiodic lat-
tices can be identified, where the sequential positions
of their building blocks take the role of time in stan-
dard (non-linear) dynamics. In particular, the question
arises, whether—and to what extent—aperiodic lattices
with different long-range order can be characterized by
their “local symmetry dynamics”, that is, the evolution
of the distances between subsequent local reflection
symmetry axes along a lattice.

In this work, we address this task by considering the
distribution of local reflection symmetries and the spac-
ing of their axes in representative binary substitution
sequences. We use typical examples of well-studied
aperiodic sequences and provide a novel description of
their properties in a straightforward manner, thereby
demonstrating the advantages of our approach. In con-
trast to the class-specific, rigorous combinatorial state-
ments provided in the literature, we here perform
“numerical experiments” in order to shed light and to
present a unifying viewpoint on the local symmetry
properties of different classes of aperiodic lattices. The
analysis reveals that the long-range order and complex-
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ity of well-known substitution sequences can be simply
encapsulated within their local symmetry dynamics.
In particular, we show that the return maps of palin-
drome spacings for given palindrome lengths consist
of finite sets of strongly collinear points, with real-
space trajectories which follow the original substitu-
tion rule, revealing the presence of “dynamical” self-
similarity. Apart from compact characterization, this
allows for an immediate recognition of qualitative—but
also quantitative—common features and differences
among various types of lattices.

The introduced local symmetry dynamics thus
brings advantages to the description of long-range ape-
riodic order, since it (i) allows for a classification which
is independent of the exact symbolic representation of
the elementary units and composition of the locally
symmetric parts in the considered (aperiodic) system
and (ii) reveals structural correlations at a deeper,
dynamical level of complexity, which are encoded in a
compact way.

The paper is organized as follows. In Sect. 2 the
basic concepts of symbolic aperiodic sequences are
introduced and defined, along with a notation suitable
for our needs. In Sect. 3 the local symmetry proper-
ties of representative aperiodic sequences are individu-
ally addressed and analyzed. In particular, the different
symmetry aspects—including its distribution, dynam-
ics, and scaling thereof—are first introduced for the
standard Fibonacci lattice, and then examined for gen-
eralized Fibonacci, period-doubling and Thue–Morse
sequences, which are finally contrasted with the struc-
turally different Cantor lattice. Section 4 summarizes
and concludes the paper.

2 Basic concepts and notation

Before starting the local symmetry analysis of aperi-
odic sequences, we briefly introduce here the global
notation and terminology appropriate for our purposes.
Since we will consider, throughout this work, 1D poten-
tials that are composed of mirror symmetric building
blocks (scatterers), we can make use of the basic defin-
itions for symbolic sequences. Different scatterers are
thus symbolized by different letters a j , j = 1, 2, ..., N ,
which are elements of a finite alphabet A of cardinality
|A| = N . A finite 1D lattice of scatterers thus corre-
sponds to a combination of letters concatenated into a
word

w = x1x2 · · · xn, xi ∈ A, (1)

of length lw ≡ |w| = n. The set of all such words
defines the language L = A∗, which is the so- called
free monoid generated by A, including the empty word
ε of length zero (the identity element of L). Within
L, words can thus also be concatenated to form new
words. A factor f of w, corresponding to a number of
consecutive scatterers in the lattice, is a word such that
w = u f v with u, v ∈ L. If u = ε (v = ε), then f is in
the beginning (end) of the sequence and is called prefix
(suffix) of w.

The reversal of the word w in Eq. (1) is defined as

w̃ = xn xn−1 · · · x1. (2)

If w̃ = w, then w is called palindrome, i.e., a
word which reads the same forward and backward.
Palindromes thus correspond to reflection symmetric
sequences of scatterers, and palindromic factors to
locally symmetric parts of a potential. We denote by
P(w) ⊂ L the set of all palindromic factors of a (finite
or infinite) word w, and by Pl(w) its subset of palin-
dromic factors of length l. The cardinality of Pl(w)

is the palindrome complexity function, pw(l), which
thus gives the number of different palindromes of given
length l contained in w, i.e., irrespective of their posi-
tion. The palindromic factors of generic binary words
have been extensively studied in terms of the associ-
ated palindrome complexity function [24,38], but also
in relation to palindromic factorization [27,36,39–41],
i.e., decomposition into locally symmetric parts.

With the symbolic correspondence between a given
1D completely locally symmetric potential and a word
w, we map the symmetric scatterers to the letters xi

(of unit length) of w centered at the positive integers
x = i ∈ Z

+ on the x-axis, and denote by w[i : j] the
factor xi xi+1 · · · x j ofw (see Fig. 1). Having introduced
this coordinate system, any (palindromic) factor π =
w[i : j] is represented as (α, l), where

α = i + j

2
, l = |π | = | j − i | + 1 (3)

are its center and length, respectively (that is, the reflec-
tion axis position and the range of this locally symmet-
ric part in the lattice).

The palindromeπ is called maximal if it is the largest
palindrome centered at α, i.e., if any palindromic fac-
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Fig. 1 An aperiodic 1D lattice of two types of equidistant, arbi-
trary reflection symmetric scatterers (depicted as squares and
circles) is mapped to a binary symbolic sequence of letters (A
and B, respectively), constituting the word w (whose shown part
coincides with the 4th generation Fibonacci word, see text). The
letter symbols are set to unit length and centered at the positive
integers x = i ∈ Z

+ on the x-axis. Maximal palindromic factors
of w with more than one letter, denoted as w[i : j], are depicted
as horizontal line segments of length l p centered at αp , counted
by the index p in order of increasing αp . The index q = 1, 2, ...

counts the maximal palindromes of common length l(r)
q = Lr

occurring in w, again in order of increasing position α
(r)
q , as

shown (in red) for the length L3 = 6. Single-letter palindromes
(with Lr=1 = 1, in this case A) are not shown. (Color figure
online)

tor of w centered at α has length l ′ � l. We denote
by Mx (w) the set of all pairs (αp, l p), p = 1, 2, ...,
of coordinates of maximal palindromes πp with length
l p � 2, ordered according to increasing αp along the
x-axis. For each occurring maximal palindrome length
Lr , (r = 1, 2, ... with Lr+1 > Lr ), we define the
subsets

Mx
Lr

(w)=
{
(αp, l p)≡

(
α(r)

q , l(r)
q

)
∈Mx (w) | l p = Lr

}
,

(4)

where the index q = 1, 2, ... counts the maximal
palindromes of given length Lr , again ordered in their
position α

(r)
q (see Fig. 1). Mapping the elements of

Mx
Lr

(w) (i.e., word coordinates) back to the corre-
sponding words,

(
α(r)

q , l(r)
q

)
→ π(r)

q ∈ L, (5)

we obtain the set MLr (w) of different maximal palin-
dromic factors of length Lr , with ∪rMLr (w) ≡
M(w). It is important to note that the above definition
of maximal palindromes takes into account their posi-
tion along a word w: A palindrome πp can be maximal
at a position αp , even if there exists another palindromic

factor πp′ = uπpv, with v = ũ, at a different position
αp′ 	= αp.

The construction of a lattice with aperiodic order can
be simply achieved by starting from one (or more) let-
ter(s) and then iteratively apply a single rule which sub-
stitutes letters (or words) with (larger) words, thereby
ensuring the presence of long-range order among the
scatterers of the emerging potential. Such a substitu-
tion (or inflation) rule σ is formally defined as a map
σ : L → L, supplied with the property

σ(uv) = σ(u)σ (v), u, v ∈ L, (6)

as well as

σ k(u) = σ(σ k−1(u)), with σ 0(u) ≡ u. (7)

In particular, its action on the word w = x1x2 · · · xn ,
xi ∈ A, simply becomes

σ(w) = σ(x1)σ (x2) · · · σ(xn). (8)

In the following, we will consider lattices correspond-
ing to words on a two-letter (binary) alphabet A =
{A, B}, constructed through an inflation rule σ defined
by its action on the single letters, using the shorthand
notation

σ(A, B) ≡ (σ (A), σ (B)). (9)

3 Local symmetry distribution and dynamics

To introduce the concept of local symmetry dynamics,
which is the main task of this section, we focus on the
space of maximal palindromes, that is, the maximal
locally symmetric parts of the associated lattice at cor-
responding symmetry axis positions. As a first step, we
classify the maximal palindromes, as they appear along
the infinite word of the considered symbolic sequence,
with respect to their length Lr , where r counts the pos-
sible different length values in increasing order: Lr <

Lr+1. Then, for a given Lr , we determine the posi-
tions α

(r)
q of the symmetry axes of the maximal palin-

dromes with this length (i.e., those belonging to the set
Mx

Lr
(w)), and represent their distribution through the

plot Lr vs. α(r)
q for r = 1, 2, ... . The index q counts the

maximal palindromes of given length Lr for increas-
ing symmetry axis position α

(r)
q . This local symmetry
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distribution characterizes the palindrome composition
of the considered symbolic sequences in a symbol-
independent manner, and can be used for their clas-
sification with respect to structural features. The local
symmetry dynamics is then determined for each Lr by
the change of the distance between subsequent maxi-
mal palindrome symmetry axes, d(r)

q = α
(r)
q −α

(r)
q−1, as

q increases. We choose here to present this dynamics
through the return map d(r)

q vs. d(r)
q−1, which turns out to

be an excellent tool to reveal dynamical scaling prop-
erties as well as correlations at different scales. The
latter are, as will be explained below, directly related
to the fact that the considered symbolic sequences pos-
sess nested local symmetries, that is, systematically
and multiply overlapping symmetric parts of the lat-
tice. The detailed local symmetry dynamics, which will
be shown to follow the corresponding original inflation
rule of a given sequence, is finally illustrated by explicit
d(r)

q -trajectories for selected r .
In the following, we will present results of this

analysis applied to five different types of aperiodic
sequences: Fibonacci, generalized Fibonacci, period
doubling, Thue–Morse and Cantor lattices. In each
case, we accompany the presentation of the palin-
dromic structure by shortly referring to relevant results
from the literature which help to understand our find-
ings. However, we employ a different description
(where each case is treated on equal footing), also
including visual representations of the local symme-
try structure, which we believe supports a more intu-
itive understanding. As stated above in Sect. 1, we then
aim at a comparison and characterization of the studied
lattice types under the common viewpoint of local sym-
metry dynamics, which is a concept introduced here.
Together with the presented quantitative details of the
dynamics, this analysis has, to the best of our knowl-
edge, not been reported previously.

3.1 Fibonacci sequence: a prototype ordered
aperiodic lattice

Let us first analyze the local symmetries of a lat-
tice composed according to the famous Fibonacci
sequence, which constitutes a prominent example of
quasiperiodic order [17,42]. As a symbolic two-letter
sequence, the k-th order Fibonacci word is generated
by iterative application of the inflation rule

σF (A, B) = (AB, A), (10)

conventionally starting with the letter A:

w
(k)
F = σ k

F (A), k = 0, 1, 2, ... (11)

For k � 2, it has the recursion property

w
(k)
F = w

(k−1)
F w

(k−2)
F , (12)

so that its length |w(k)
F | = |w(k−1)

F | + |w(k−2)
F | follows

the numeric Fibonacci sequence 1, 2, 3, 5, 8, 13, ...,
with

lim
k→∞

∣∣∣w(k)
F

∣∣∣
∣∣∣w(k−1)

F

∣∣∣
= 1 + √

5

2
= ϕg, (13)

the so-called golden mean. Denoting bywF ≡ limk→∞
w

(k)
F the infinite Fibonacci word, we note that any suf-

ficiently long factor of wF (i.e., not necessarily a k-
th order prefix w

(k)
F ) is characterized by the aperiodic

order induced by the inflation rule.
The local reflection symmetries of the Fibonacci lat-

tice are illustrated in Fig. 2, where its maximal palin-
drome coordinates (αp, l p), with p ordered in increas-
ing αp, are shown (excluding the single-letter palin-
dromes). The infinite Fibonacci word wF belongs to
the class of Sturmian words [22,43], which can in fact
be defined as the (infinite) binary words with palin-
dromic complexity [21,23,24]

pw(l = even, odd) = 1, 2. (14)

Note, however, that the number of different maximal
palindromes of given length l is generally not given by
pw(l). E.g., for l = 3, P3 = {AB A, B AB}, but M3 =
{AB A}, since B B is not a factor of wF and, therefore,
B AB cannot be a maximal palindrome anywhere in
wF .

Further, Sturmian aperiodicity can be geometrically
connected to irrational numbers (like ϕg) by the so-
called “cut and project” scheme [20,44–46]: words
are constructed from the projection of the vertices of
a square two-dimensional lattice which lie within a
stripe of given width [20] and with irrational slope,
onto the direction of the stripe. The segments between
the projected vertices (being of two possible lengths)
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Fig. 2 Local symmetries of the Fibonacci lattice, corresponding
to maximal palindromes of length l p in the letter sequence wF ,
represented as line segments in order p of their occurrence along
the x-axis (see coordinates defined in Fig. 1). Those maximal
palindromes of lengths �1 are shown, which are contained within
the 22nd order Fibonacci word w

(22)
F = σ 22

F (A). The inset shows

the 6th generation word w
(6)
F (the generations are counted by the

index k), containing the first four prefix palindromes with l > 1.
w

(6)
F can be decomposed into a prefix maximal palindrome πa

and a non-maximal palindrome πb (distinguished by the dashed
line), while its last prefix palindrome πc reaches up to its two last
letters B A (see text)

are mapped onto letters A and B, thus constituting a
word. The slope of the stripe is also called the slope of
the word; if it equals 1/ϕg , one obtains wF .

Regarding their decomposability, finite Sturmian
words can be uniquely written as [22,47]

w = πaπb = πcs, (15)

where πa, πb, and πc are palindromes and s = AB or
B A.

For the Fibonacci word generations w
(k)
F , we have

s = AB (B A) for even (odd) k. This can be seen in the
inset of Fig. 2 for the generations k = 3, 4, 5, 6, with
the corresponding prefix palindrome lengths |πc| =
3, 6, 11, 19. As also seen, the palindromic decomposi-
tion can in general not be achieved solely with maxi-
mal palindromes. E.g., for k = 6, the palindrome prefix
with |πa | = 11 is maximal, but concatenated to a non-
maximal palindrome with |πb| = 10.

Fig. 3 Local symmetry distribution of the Fibonacci lattice.
Pairs (αp, l p) of axis positions and lengths of maximal palin-
dromes πp are plotted on base-10 logarithmic scale. For each
occurring symmetry range Lr (r = 1, 2, ..., L1 not plotted),
the index q counts the maximal palindromes π

(r)
q ∈ Mr with

l(r)
q = Lr , ordered in increasing axis position α

(r)
q (horizontally

collinear points). The inset shows the linear distribution of local
symmetry axes for the first occurring ranges

Further, any sufficiently large prefix of the Fibonacci
sequence can be factorized in multiple ways into palin-
dromes of different lengths [27,36,39,40]. Therefore,
any finite lattice with Fibonacci aperiodic order is com-
pletely locally symmetric (completely decomposable
into locally symmetric parts) at multiple scales. This
property relies on the distribution of palindromes of
each given length along the sequence, determining
which palindromes can be successively concatenated
to construct a given finite lattice.

To analyze the local symmetry distribution of the
Fibonacci lattice, we plot in Fig. 3 the elements of
Mx (wF ), i.e., the length l p of each maximal palin-
drome versus its axis position αp (excluding pairs
corresponding to single-letter maximal palindromes).
As we see, only certain lengths occur, which consti-
tute the sequence (Lr )r�1 = 1, 3, 6, 11, 19, 32, 53, ...

(see inset of Fig. 3). A remarkable feature of the sets
Mx

Lr
(wF ) (horizontally collinear points in Fig. 3) is

that their first element (α(r)
q=1, l(r)

q=1) always corresponds
to a prefix of wF , so that

α
(r)
q=1 = Lr + 1

2
. (16)
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In particular, for the Fibonacci sequence we thus have

α
(r)
q=1 = |w(r)

F | − 1

2
, l(r)

q=1 = Lr = |w(r)
F | − 2, (17)

corresponding to the palindrome πc in wF = πcs,
as defined above in Eq. (15), for each word genera-
tion k = r [22]. This means that, at these special axis
positions arbitrarily deep within the lattice, there occur
local symmetries which extend to the beginning (left
boundary) of it, which we call edge local symmetries.
In view of wave scattering, such edge local symme-
tries are important, because they can render the lattice
transparent [14,15] over a large part from its beginning,
despite the complex, aperiodic character of the under-
lying medium. In particular for the Fibonacci lattice,
the trailing two scatterers [s = AB or B A in Eq. (15)]
could be discarded from any Fibonacci word w

(k)
F , in

order to produce PTRs [14,15] in a globally symmetric
system with quasiperiodic order.

As anticipated from the above, the ratio of succes-
sive palindromic lengths in wF converges to the golden
mean,

λ ≡ lim
r→∞

Lr+1

Lr
= ϕg. (18)

In fact, the Fibonacci word wF is a special case of
Sturmian words with abundant palindromic prefixes,
studied in Ref. [32]: it is the one with the smallest
ratio λ (apart from periodic words with λ = 1), thus
being the most dense in prefix palindromes. Further-
more, the fact that each prefix palindrome is centered
within the previous one (since ϕg < 2) suggests that
wF can be constructed in terms of its palindromic pre-
fixes, as is indeed the general case for this class of
words [32].

Note that, up to this point, we have dealt with local
symmetry aspects of the golden Fibonacci lattice which
have been studied previously in the framework of Stur-
mian words. We here not only reviewed these results,
since they relate to what follows, but also explained
them in a more intuitive manner—having lattice poten-
tials in mind—through the visualizations in Figs. 2
and 3.

Let us now turn to the novel concept of “local
symmetry dynamics” for the Fibonacci lattice, that is,
the evolution of consecutive spacings between maxi-
mal palindromes of given length along the word wF .

Fig. 4 a Local symmetry spacing return maps for the Fibonacci
lattice. For each occurring symmetry range Lr , each distance
d(r)

q = α
(r)
q − α

(r)
q−1 between axes of consecutive palindromes is

plotted versus the previous distance d(r)
q−1, with full (empty) cir-

cles for even (odd) r . Each map consists of three possible spac-
ings D(r)

i (i = 1, 2, 3), and consecutive map points are connected
by lines. Note that the plot consists of multiple disconnected maps
plotted together, and distinguished by the alternately filled/empty
circles. The inset repeats the plot on base-10 logarithmic scale,
with maps labeled by the corresponding Lr ; thick arrows on the
lowest map indicate possible direction of traversal of any map.
b Local symmetry spacing trajectory (i.e., the d(r)

q plotted in
order of occurrence q for fixed r ) for range Lr=2 = 3 in the
Fibonacci lattice. By mapping the pairs D(2)

3 D(2)
1 and D(2)

2 D(2)
2

of consecutive spacings (marked by dotted boxes) to letters A and
B, respectively, the trajectory reproduces the original sequence
(see text)

Fig. 4a shows, for each length Lr , the return map of the
spacings

d(r)
q ≡ α(r)

q − α
(r)
q−1 (q � 2) (19)

between the consecutive local symmetry axes (d(r)
q is

also indicated in Figs. 1, 3). The d(r)
q for each Lr take

on only three possible values

D(r)
i (i =1, 2, 3), with D(r)

1 < D(r)
2 = D(r)

3

2
,

(20)
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in a succession which forms a four-point orbit in each
return map. We see that, for any given symmetry range
Lr , none of the spacings D(r)

i is repeated consecutively

as q increases (d(r)
q 	= d(r)

q−1), and that d(r)
q returns to

the minimal spacing D(r)
1 for every second q.

We further observe that the spacing return maps of
consecutive local symmetry ranges are correlated in
the following twofold nested sense: Firstly, the middle
spacing for each palindrome length coincides with the
minimal spacing for the next length,

D(r)
2 = D(r+1)

1 . (21)

Secondly, we have that

D(r)
1 + D(r)

3 = D(r+1)
1 + D(r+1)

2 , (22)

so that consecutive return maps have four collinear
points along the lines with slope −1, as seen in the
linear plot of Fig. 4a.

With respect to the spacing return maps, there are
here two properties which demonstrate how the aperi-
odic order of the Fibonacci sequence is encoded in its
local symmetry dynamics:

(i) The sequence of minimal spacings coincides with
the numeric Fibonacci sequence,

D(r)
1 = |w(k=r)

F | (= 1, 2, 3, 5, 8, ...), (23)

counting here also the single-letter maximal palin-
dromes A (not plotted).

(ii) The spacing return maps for different Lr present
a characteristic scaling, which converges1 to the inverse
slope of wF ,

lim
r→∞

D(r)
2

D(r)
1

= ϕg. (24)

The quasiperiodicity of the Fibonacci lattice is,
finally, manifest also in the individual trajectories of
the axis spacings for given symmetry ranges, i.e., the
order in which the points of the return map orbits

1 Since we perform a numerical investigation of the considered
aperiodic sequences, throughout the paper the notion of asymp-
totic convergence is not used in a mathematically strict sense, but
refers to the observed behavior for large number of correspond-
ing iterations.

are traversed (this information is obviously not avail-
able from the return maps alone). The spacing trajec-
tory for Lr=2 = 3 is shown in Fig. 4b. We see that
the sequence of spacings for odd q, with elements
D(2)

3 , D(2)
2 (= 6, 3), goes like the original Fibonacci

sequence, with returns to D(2)
1 for every even q. This

is indeed true for any local symmetry range, yielding a
third remarkable property:

(iii) For any maximal palindrome length Lr , the
sequence of spacings dF ≡ (d(r)

q )q�1 is generated as

d(k)
F = σ k

F (A), k = 0, 1, 2, ..., (25)

just like the generations of wF in Eq. (11), but with the
Fibonacci substitution rule σF (A, B) now acting on the
renormalized “spacing alphabet”

{
A = D(r)

3 D(r)
1 , B = D(r)

2 D(r)
1

}
, (26)

with additional starting letter dF [−1] = B (see
Fig. 4b). Note that the spacings D(r)

i are here treated
simply as symbols being concatenated into a sequence.

Equivalently, the sequence wF can itself be renor-
malized by mapping its letters B and (squares of) A to
the occurring spacings for any given Lr as follows:

B → D(r)
1 , A → D(r)

2 , A2 → D(r)
3 , (27)

with the B’s thus mapped to the spacing returned to at
every second step. Renormalized according to Eq. (27),
the original Fibonacci sequence is mapped exactly to
the three-letter (or trinary) sequence dF :

wF = A B A2 B A B A2 B · · ·
→ D2 D1 D3 D1 D2 D1 D3 D1 · · · = dF . (28)

From the above properties (i)–(iii), the total local
symmetry (at different spatial scales) of the Fibonacci
lattice can be seen to possess a dynamical self-
similarity, which uniquely characterizes its long-range
aperiodic order.

3.2 Generalized Fibonacci lattices

The Fibonacci inflation rule can be generalized [20,42]
to powers of A and B as

σm,n(A, B) = (Am Bn, A), (29)
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where the word generationsw
(k)
m,n = σ k

m,n(A) are equiv-
alently given by the recursion scheme

w(k)
m,n = [w(k−1)

m,n ]m[w(k−2)
m,n ]n, k � 2. (30)

Their lengths are, accordingly, |w(k)
m,n| = m|w(k−1)

m,n | +
n|w(k−2)

m,n |. The generated infinite word wm,n =
limk→∞ w

(k)
m,n then has limiting word length ratio [42]

ϕm,n = lim
k→∞

|w(k+1)|
|w(k)| = m + √

m2 + 4n

2
. (31)

For the standard Fibonacci word we thus have ϕ1,1 =
ϕg . For general letter powers m, n the resulting lat-
tice is aperiodic, while for n = 1 it is also quasiperi-
odic [20,42]. Lattices with the above aperiodic order
have, among others, been used to demonstrate anom-
alous quantum diffusion in 1D or higher dimensions
[48,49]. In the following, we will address the local
symmetries of 1D lattices generated by representative
cases of Eq. (29), displaying different distributional and
dynamical characteristics.

3.2.1 Silver Fibonacci lattice

In Fig. 5a the local symmetry distribution (αp, l p) is
shown for the lattice w2,1 [i.e., with m = 2, n = 1
in Eq. (29)], with ϕ2,1 = 1 + √

2 ≡ ϕs referred to as
the silver mean. Again, the first occurring palindromes
π

(r)
q=1 for every given length Lr = 1, 2, 5, 8, 15, 22, ...

(L1 = 1 not plotted) are prefixes, i.e., Eq. (16) holds.
However, the Lr now form two subsequences for odd
and even r having, as we will see, different structural
properties. For odd r , the Lr are given by the lengths of
the r -th order generated words with the last two letters
discarded,

Lr=odd =
∣∣∣∣w

(k= r+1
2 )

2,1

∣∣∣∣ − 2, (32)

like in the standard Fibonacci case. The ranges for even
r are asymptotically related to the above as

r=even
lim

r→∞
Lr+1

Lr
= ϕ2,1 − 1 = √

2. (33)

Thus, for both odd and even sequences the ratio of
consecutive prefix palindromes converges to the sil-

Fig. 5 Silver Fibonacci sequence, w2,1. a Local symmetry dis-
tribution (like in Fig. 3). b Spacing return maps for different Lr ,
with full (empty) circles for even (odd) r , repeated on logarith-
mic scale in the inset (like in Fig. 4a). c Spacing trajectories
for even (top) and odd (bottom) r , represented by d(2)

q and d(3)
q ,

respectively
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ver mean, limr→∞ Lr+2/Lr = ϕ2,1, in analogy to
Eq. (18).

The local symmetry dynamics of w2,1 is shown
in Fig. 5b, as represented by the return maps of the
spacings d(r)

q for each symmetry range Lr . For each

r we have three possible, non-repeated spacings D(r)
i

(i = 1, 2, 3), as in the standard Fibonacci case, now
with

3D(r=even)
2 = 2D(r)

3 , D(r=odd)
3 = 2D(r)

1 , (34)

which scale asymptotically as

r=even
lim

r→∞
D(r)

2

D(r)
1

= 2ϕ2,1,
r=odd
lim

r→∞
D(r)

2

D(r)
1

= ϕ2,1 − 1. (35)

For even (odd) r , there are consecutive returns to D(r)
1

(D(r)
2 ) in each map. Again, the minimal spacings fol-

low the numeric sequence of lengths of w
(k)
2,1, but now

pairwise:

D(r=odd)
1 = D(r+1)

1 =
∣∣∣∣w

(k= r−1
2 )

2,1

∣∣∣∣ . (36)

The odd and even subsequences of symmetry ranges
are further nested through the relations

D(r=odd)
3 = D(r−1)

2 . (37)

Also, the spacings in consecutive return maps obey,
with r odd,

D(r)
1 + D(r)

2 = D(r−1)
1 + D(r−1)

2 , (38a)

D(r)
2 + D(r)

3 = D(r−1)
1 + D(r−1)

3 , (38b)

so that the pairs r , r − 1 have two lines with collinear
points (see linear plot in Fig. 5b).

The presence of the w2,1 aperiodic order in its
detailed local symmetry dynamics is illustrated in
Fig. 5c for r = 2 and r = 3. Similar to the golden
Fibonacci case, the actual spacing trajectories d(r)

q for
given Lr coincide with the original aperiodic sequence
w2,1, when “renormalized” and shifted by Δq = 2: The
corresponding sequence d2,1 of spacing symbols D(r)

i

is generated, in analogy to Eq. (25), as d(k)
2,1 = σ k

2,1(A)

(k = 0, 1, 2, ...) by the substitution rule σ2,1(A, B) on
the alphabet

{A = D(r)
1 D(r)

2 D(r)
3 D(r)

2 , B = D(r)
1 D(r)

2 } (39a)

or {A = D(r)
2 D(r)

1 D(r)
3 D(r)

1 , A = D(r)
2 D(r)

1 } (39b)

for odd (39a) or even (39b) r , respectively, again with
additional starting letter d2,1[−1] = B. The grouping
of spacings into letters is depicted by the dotted lines
in Fig. 5c.

Conversely, the letter sequence w2,1 can be renor-
malized by mapping the single B’s and the squares and
cubes of A to the occurring spacings for given Lr ,

B → D(r)
1 (D(r)

2 ), (40a)

A2 → D(r)
2 (D(r)

1 ), (40b)

A3 → D(r)
3 (40c)

for even (odd) r . The original sequence w2,1 is then
renormalized into the trinary sequence d2,1 of the spac-
ing trajectory,

w2,1 = A2 B A2 B A3 B A2 B · · ·
→ D2 D1 D2 D1 D3 D1 D2 D1 · · ·

( → D1 D2 D1 D2 D3 D2 D1 D2 · · · ) ≡ de(o)
2,1 (41)

for even (odd) r ; see Fig. 5c.
This latter mapping of the original aperiodic sequen-

ce onto its local symmetry spacing dynamics, which
was described already for the golden Fibonacci case
(Eqs. (27), (28)), can be intuitively anticipated from
the local symmetry distribution: The pattern of sym-
metry spacings for certain maximal range is expected
to follow, in some way, the pattern of isolated B’s
among powers of A, which in turn is directly given
in the original letter sequence—and indeed, this way
is exactly provided by Eqs. (28) and (41) for wF and
w2,1. Moreover, this renormalization scheme can be
extended to larger m in the class of quasiperiodic gen-
eralized Fibonacci lattices, as will be seen in the next
subsection.

3.2.2 Generalized quasiperiodic Fibonacci lattices

As we have seen above for the quasiperiodic case
n = 1, the m = 1 (golden) and m = 2 (silver)
sequences feature one and two characteristic asymp-
totic scaling(s) for the spacing of local symmetries,
respectively. This scheme continues for larger m, so
that “m-tets” of asymptotic spacing scalings arise. We
will use the index s = 1, 2, ..., m to count the mem-
bers of an m-tet: The s-th spacing scaling in an m-tet
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Fig. 6 Generalized Fibonacci w5,1 lattice. Local symmetry a
distribution and b spacing return maps (like in Fig. 5a, b, respec-
tively). The curved arrows in a distinguish the 3rd subsequence of
symmetry ranges (see text), and the shaded areas show a the 2nd
scaling quintet bundle and b the corresponding spacing return
maps. The straight vertical arrows in (a), starting from ∧-like
structures, show the jumps to larger symmetry ranges belonging
to the next (solid lines) or second next (dashed lines) quintet
bundle (see text)

corresponds to the subsequence composed of every m-
th occurring maximal local symmetry range, starting
with Lr=s−1 (e.g., for s = 3 we get the third such
subsequence, L2, L2+m, L2+2m,..., marked in Fig. 6a)2.

2 The first and second range subsequences would be
L0, L0+m , L0+2m , ... and L1, L1+m , L1+2m , ..., respectively.
Thus, in order to consider the very first m-tet bundle

Equal-order members of these m range subsequences
form “m-tet bundles” (e.g., the bundle of second mem-
bers of the m = 5 subsequences is marked by shaded
areas in Fig. 6a). For any m, the first occurring palin-
dromes for given ranges Lr are prefixes of wm,1. Also,
although in general the m-tet subsequences have dif-
ferent palindrome spacing scalings, their palindrome
lengths share the same scaling, given by the inverse
slope of wm,1 (like the cases m = 1, 2 seen above):

lim
r→∞

Lr+m

Lr
= ϕm,1. (42)

Further, the last length in each m-tet bundle follows the
length sequence of wm,1 in the same way as seen so far
for m = 1 and 2 (with k � 2 for m = 1),

Lr=km−1 = |w(k)
m,1| − 2 (k = 1, 2, ...). (43)

As an example, we briefly consider the case (m =
5, n = 1), i.e., the sequence w5,1. In Fig. 6a, its local
symmetry distribution is plotted, showing a grouping
of the ranges Lr into quintets (horizontal bundles at
increasing scale, with five ranges each). It is evident
how, due to the recurrent Am-factors, axes of maxi-
mal palindromes located at the left and right ends of a
larger palindrome are shifted inward for increasing Lr ,
thereby forming characteristic ∧-like structures, along
the sequence (i.e., the αp-axis) and at increasing scales
(i.e., the l p-axis). At the meeting point αp of the legs of
each such ∧, a larger local symmetry occurs, with cor-
responding range Lr belonging to the next or second
next m-tet bundle (as indicated by vertical arrows in
Fig. 6a); see also Fig. 8a, showing the bundle structure
of the w10,1 sequence.

The spacing dynamics for the different symmetry
ranges become increasingly complex for higher m, as
can be seen from the return maps for m = 5 in Fig. 6b.
Just as the odd–even maps in the m = 2 case, the
maps corresponding to Lr ’s of the same m-tet bundle
in Fig. 6a are collinear, giving evidence to a nested order
of symmetry dynamics along the lattice. Out of the m

Footnote 2 continued
L0, L1, ..., Lm , one has to include, apart from the single-letter
maximal palindromes with length L1 = 1, also the empty max-
imal palindromes ε of length L0 = 0. The latter are the “inter-
faces” between two different letters A and B in a word. Since L0
and L1 are not plotted throughout our analysis, we describe the
m-tets starting from the second bundle L0+m , L1+m , ..., Lm+m .
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(different) spacing scalings of the m-tet, the asymptotic
scaling for the leading subsequence (the sequence of
the smallest symmetry ranges in subsequent m-tet bun-
dles) is directly related to the slope of wm,1 as [cf. cases
m = 1, 2 above, Eqs. (24), (35)]

r=km−1
lim

k→∞
D(r)

2

D(r)
1

= mϕm,1 = 5ϕ5,1 = 5
(5 + √

29)

2
.

(44)

Finally, as mentioned above, suitable renormaliza-
tion of the original sequence wm,1, by mapping the
single B’s and powers of A to the spacings D(r)

i ,
again yields the spacing trajectory. In particular, for
all Lr contained in any s-th range subsequence (s =
1, 2, ...m), there exists a common mapping

B → D(r)
i , Am → D(r)

j , Am+1 → D(r)
k , (45)

so that

wm,1 → d(s)
m,1 ≡ (d(r)

q )q�1 (46)

with the different i, j, k ∈ {1, 2, 3} depending on the
chosen s [cf. cases m = 1, 2 above, Eqs. (28), (41)].

3.2.3 Copper Fibonacci lattice

As an example of a non-quasiperiodic generalized
Fibonacci sequence [i.e., n > 1 in Eq. (29)] we
consider the case m = 1, n = 2. The lengths of
the word generations w

(k)
1,2 are recursively given by

|w(k)
1,2| = |w(k−1)

1,2 | + 2|w(k−2)
1,2 |, and have limiting ratio

ϕ1,2 = ϕc = 2, known as the copper mean. The local
symmetry distribution of w1,2 is shown in Fig. 7a. Like
in the w2,1 case, the sequence of occurring maximal
palindrome lengths, (Lr )r�1 = 1, 2, 4, 7, 9, 14, 20, ...

(L1 = 1 not plotted), is split into two subsequences for
odd and even r . Here, though, for the subsequence of
even r the first occurring maximal palindromes (with
axes α

(r)
q=1) are not prefixes of w1,2, that is, no edge

local symmetries of those ranges are encountered.
Further, the two Lr subsequences are related to the

length sequence |w(k)
1,2| in a more involved way, through

their difference ΔLr ≡ Lr+1 − Lr , r � 2, as follows.
For odd r , ΔLr coincides with the sequence of lattice
generation lengths, while for even r it oscillates around
it by alternately ±1:

Fig. 7 Copper Fibonacci lattice, w1,2. Local symmetry a distri-
bution, b spacing return maps and c spacing trajectories for even
and odd r (like in Fig. 5a, b, c, respectively)

ΔLr=odd = |w(k= r−1
2 )

1,2 | =
= |w(0)

1,2|, |w(1)
1,2|, |w(2)

1,2|, ...
= 1, 3, 5, 11, 21, 43, 85, ..., (47a)
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ΔLr=even = |w(k= r−2
2 )

1,2 | + (−1)
rmod4

2 +1

= |w(0)
1,2| + 1, |w(1)

1,2| − 1, |w(2)
1,2| + 1, ...

= 2, 2, 6, 10, 22, 42, 86, ... . (47b)

As we see, the non-quasiperiodic w1,2 sequence fea-
tures more indirect connection of its palindrome dis-
tribution to the structure of the original letter sequence
than the previous cases (i.e., the quasiperiodic wm,1

sequences). Its asymptotic palindrome length scaling,
on the other hand, is the same for the odd and even r
subsequences,

lim
r→∞

Lr+2

Lr
= ϕC = 2 (48)

with asymptotic even-to-odd r ratio

r=odd
lim

r→∞
Lr+1

Lr
= 3

2
. (49)

The spacing return maps for different local sym-
metry ranges in w1,2 are shown in Fig. 7b. There are
again 3 possible spacings in each map, and now any
map point for k � 3 lies on an antidiagonal line with
8 collinear points, 4 for each subsequence (odd and
even r ) of lengths Lr . This not only connects the con-
secutive maps of each subsequence but also fixes the
subsequences to each other, as seen in the linear plot of
Fig. 7b. The asymptotic scalings of the odd and even r
spacings with respect to the D(r)

1 in the maps are

r=odd,even
lim

r→∞
D(r)

2

D(r)
1

= 1, 3 (50)

for the middle spacings, and

r=odd,even
lim

r→∞
D(r)

3

D(r)
1

= 3, 7 (51)

for the maximal spacings.
Also here the renormalized spacing trajectories for

given Lr coincide with the original aperiodic sequence
w1,2: The sequence of spacings is given iteratively by
d(k)

1,2 = σ k
1,2(A) on the alphabet

{
A = D(r)

1 D(r)
3 , B = D(r)

1 D(r)
2

}
(52a)

or
{

A = D(r)
3 D(r)

2 , B = D(r)
1 D(r)

2

}
(52b)

for odd or even r , respectively, with additional starting
letter d1,2[−1] = B. This is shown for the r = 2 and
r = 3 trajectories in Fig. 7c.

Fig. 8 Local symmetry distributions of the generalized
Fibonacci lattices a w10,1, with separate m-tet (here m = 10)
bundles forming along the αp-axis (in analogy to Fig. 6a), and
b w1,10, with intertwined n-tet (here n = 10) bundles (see text)

To illustrate the characteristic differences between
the local symmetry properties of the quasiperiodic
(n = 1) and non-quasiperiodic (n > 1) generalized
Fibonacci lattices for larger m and n, Fig. 8 shows
the maximal palindrome distributions for the sequences
w10,1 and w1,10. It is clearly seen how m- and n-tets
of maximal symmetry range subsequences occur (in
Fig. 8a, b, respectively), which form bundles contain-
ing consecutive (in αp-direction) ∧-like structures of
approaching symmetry axes for increasing Lr , like in
Fig. 6a. At the meeting points of the legs of the ∧
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larger symmetry ranges occur, belonging to a subse-
quent (in l p-direction) m- or n-tet bundle. In the quasi-
periodic case, Fig. 8a, the first maximal palindrome
of each occurring length (i.e., all points on the left
leg of each first-occurring ∧) is a prefix of wm,1, and
the m-tet bundles are separated. On the contrary, in
the non-quasiperiodic case, Fig. 8b, prefix palindromes
occur only at the meeting points of first-occurring ∧’s,
and the n-tet bundles are, in general, intertwined (i.e.,
bundles overlap with successors containing different
Lr ’s).

3.3 Period doubling lattice

Let us now inspect the local symmetries of the period-
doubling (PD) lattice, whose extensively studied struc-
tural and spectral properties [11,24,30,42,50–52] man-
ifest its self-similar nature, although it is not catego-
rized as quasicrystalline [1,20]. The PD letter sequence
wP = limk→∞ w

(k)
P , with w

(k)
P = σ k

P (A), is generated
by the inflation rule

σP (A, B) = (AB, AA), (53)

that is, like a standard Fibonacci rule but with a squared
image of B, and the length of the k-th generation
word is now |w(k)

P | = 2k . Its recursion scheme is

w
(k)
P = w

(k−1)
P [w(k−2)

P ]2, which coincides with that
of the copper Fibonacci sequence w1,2. In fact, wP is
obtained from w1,2 simply by substituting all squares
B B by single Bs. We can thus expect these lattices to
have certain structural similarities.

In Fig. 9a the local symmetry distribution of wP is
shown, which, indeed, has the same characteristics as
the distribution for w1,2 described above. Again, the
sequence of occurring lengths, Lr , consists of two sub-
sequences for odd and even r (i.e., doublets of local
symmetry scaling), the former of which contains all
palindromic prefixes. The lengths of the palindromes
in the odd and even subsequences relate to the wP word
generation lengths as

Lr=odd = |w(k= r+1
2 )

P | − 1 = 2k − 1 (54a)

Lr=even = 3

2
|w(k= r

2 )

P | − 1 = 3

2
· 2k − 1, (54b)

where k = 1, 2, ..... From these relations it is obvi-
ous that the maximal palindrome lengths in each

Fig. 9 Period doubling lattice, wP . Local symmetry a distrib-
ution, b spacing return maps, and c spacing trajectories for even
and odd r (like in Fig. 5a, b, c, respectively)

(odd and even r ) subsequence scale asymptotically
as the original PD sequence, limr→∞ Lr+2/Lr =
2, with limr=odd

r→∞ Lr+1/Lr = 3/2, just like for the
copper Fibonacci sequence (Eqs. (48) and (49),
respectively).
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Moreover, it is clear that each palindrome prefix,
having odd length Lr , contains the previous prefix
palindrome of length Lr−2 (for odd r � 3) in its left
half, i.e., up to (but not including) its central letter.
Specifically, it is composed as

π ′ =πxπ; |π ′|= Lr , |π |= Lr−2, x ∈{A, B}.
(55)

Simultaneously, though, its prefix πx coincides with
a word generation w

(k)
P , which ends with the letter A

(B) for even (odd) k. This means that the PD sequence
can be constructed solely from its local symmetries, by
successively creating larger prefix palindromes from
the repetition of the previous prefix palindrome with
an additional central letter xk , which follows a period
1 oscillating sequence, (xk)k�0 = A, B, A, B, ...:

Beginning with π0 = x0 ≡ w
(0)
P = A, we have

π1 = π0x1π0 = AB A, π2 = π1x2π1 = AB AAAB A,
..., and, in general,

πk = πk−1xkπk−1 (k � 1). (56)

In this way, we obtain the relation

w
(k)
P = πk−1xk, (57)

as a recursive palindromic construction of the PD
sequence via the “directive” periodic sequence (xk).
We note that, although very simple, we are not aware
of a previous presentation of this construction of wP

based on its local symmetries.
The palindrome complexity function of the PD

sequence, i.e., the number of different contained palin-
dromes of length l, has been explicitly computed in
Ref. [30], and is given by

pwP (l =odd � 5)= pwP (2l−1)= pwP (2l+1), (58a)

pwP (l = even � 4) = 0, (58b)

with starting palindromes P1(wP) = {A, B}, P2(wP)

= {AA} (this being the only palindrome with even
length), P3(wP ) = {AAA, AB A, B AB}, P5(wP ) =
{AAB AA, AB AB A, B AAAB, B AB AB}, and P7

(wP ) = {AAAB AAA, AB AAAB A, AB AB AB A}.
Nevertheless, we note that, for any odd l � 5, the

palindromes of length 2l − 1 are not maximal (see the
inset of Fig. 9a), that is,

M(l=odd�5)
2l−1 (wP ) = ∅. (59)

Further, even for lengths l ∈ {Lr }, not all palindromes
are maximal; e.g., M3(wP ) = {AB A}, M5(wP ) =
{AB AB A}, and M7(wP ) = {AB AAAB A} (since
B B /∈ P(wP ) and pwP (4) = 0).

The return maps of the local symmetry dynamics of
the PD lattice are shown in Fig. 9b. Their structures very
much resemble, qualitatively, the maps for the copper
w1,2 sequence: The subsequences of maps for lengths
Lr with odd and even r are intertwined in exactly
the same way by antidiagonally collinear map points.
Quantitatively, however, the PD local symmetry spac-
ings evolve more regularly along the lattice than for the
copper Fibonacci sequence, with characteristics which
are invariant (as opposed to asymptotic) in increasing r ,
as follows: For all odd r (red circles in Fig. 9b), there
are now two occurring spacings D(r)

1 , D(r)
2 (and not

asymptotically two, as in w1,2) with repeated D(r)
1 , and

three non-repeated spacings for even r . In each sub-
sequence, all spacings are doubled in the subsequent
symmetry range,

D(r+2)
i = 2D(r)

i ∀ i. (60)

Further, the two map subsequences are fixed to each
other by the relations

D(r=odd)
i = D(r+3)

i , i = 1, 2, (61)

so that each odd map has two common points with the
second next even one. The scaling of local symme-
try spacings along the range sequences is also fixed as
D(r)

2 /D(r)
1 = 3 for all r and D(r)

3 /D(r)
1 = 7 for even r .

Finally, the spacing trajectories for even and odd r
are shown in Fig. 9c. Again, the (renormalized) trajec-
tories are generated by the original inflation rule σP .
For even r , we have the alphabet mapping

{A = D(r)
1 D(r)

3 , B = D(r)
1 D(r)

2 D(r)
1 D(r)

2 }; (62)

for odd r it is the same but with D(r)
1 = D(r)

2 , and with

additional starting spacing dP [0] = d(r)
0 = D(r)

1 .

3.4 Thue–Morse lattice

We now turn to another 1D lattice case with doublet
local symmetry sequences, corresponding to the well-
known (standard) Thue–Morse (TM) sequence, wT ,
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which shares the non-quasicrystalline spectral charac-
terization of the PD lattice [1,20]. Identifying {A, B}
with {even, odd}, wT can be defined as the parity
sequence of the sum of digits of base-2 represented
integers, and is otherwise ubiquitously present in vari-
ous fields of mathematics and physics [53].

As a symbolic sequence, wT is generated by the
inflation rule

σT (A, B) = (AB, B A), (63)

and can be generalized in a similar manner as for
the Fibonacci substitutions studied above [42], see
Eq. (29). The corresponding recursive concatenation
scheme now has a two-component form [42]

w
(k)
T = w

(k−1)
T v

(k−1)
T , v

(k)
T = v

(k−1)
T w

(k−1)
T (64)

for k � 1, starting with w
(0)
T = A, v

(0)
T = B, and the

length sequence coincides with that of wP : |w(k)
T | = 2k .

The combinatorial palindromic properties of the TM
sequence have, among others, been studied in Refs. [37,
54,55], where its palindrome complexity is also given,
and connected to its Hamiltonian spectrum in Ref. [12].

Like for the PD sequence, we see that the standard
TM substitution is very similar to the copper Fibonacci
rule σ1,2, where now B is sent to the “conjugate” image
B A of A, instead of the square AA. On the other
hand, σT leads to the occurrence of the square B B
in wT . As a consequence, the local symmetries in wT

will have ranges different from wP , but partly feature
similar structural characteristics, with depleted num-
ber of symmetry ranges due to the absence of the cube
AAA.

In Fig. 10a the local symmetry distribution of wT is
shown. Indeed, we see again a doublet structure of two
symmetry range subsequences (Lr ), but now every sec-
ond doublet bundle is missing compared to wP or w1,2.
This is also reflected in the length sequences them-
selves, which are “squared” with respect to the wP case
[cf. Eq. (54)]:

Lr=odd = |w(k= r−1
2 )

T |2 = 22k, (65a)

Lr=even = 3

22 |w(k= r
2 )

T |2 = 3

22 · 22k, (65b)

with k = 1, 2, .... There is now no “residue” letter(s) to
reach (a multiple of) the w

(k)
T generation lengths [like

the −1 for wP in Eq. (54)], so that both subsequences

Fig. 10 Thue–Morse lattice, wT . Local symmetry a distribu-
tion and b spacing return maps (like in Fig. 9a, b, respectively).
Spacing trajectories coincide with the ones in Fig. 9c

have the same, constant scaling throughout the lattice,
Lr+2/Lr = 22. Also, in contrast to the PD case, here
all Lr are even except for the second one L2 = 3 (and,
of course, L1 = 1).

The depletion of local symmetry ranges in the TM
lattice is also evident in the spacing return maps, shown
in Fig. 10b: Every second return map in each subse-
quence is now missing with respect to the PD case,
so that no “overlap” between maps occurs, and the
spacings are accordingly multiplied by four at sub-
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sequent symmetry ranges, D(r+2)
i = 22 D(r)

i . For the
remaining symmetry ranges, the (fixed) spacing scal-
ing, D(r)

2 /D(r)
1 = 3, D(r=even)

3 /D(r)
1 = 7, is identical

to the PD lattice.
Remarkably enough, their spacing trajectories are

also identical. That is, despite the different inflation
rules σT and σP , and although the Lr in wT are differ-
ent (one letter larger) from the corresponding ones in
wP , the spacings in the TM case are exactly the same
as for the PD case, and follow the trajectories shown
in Fig. 9c for odd and even r . This suggests a subtle
(renormalization) relation between the TM and PD lat-
tice, so that the former is also structurally conformed
to its maximal palindrome spacing trajectories. Indeed,
the TM lattice AB B AB AAB B AAB AB B A · · · can be
transformed into the PD lattice [52] by the (2-to-1, sur-
jective) map

AA, B B → A; AB, B A → B. (66)

This more or less “hidden” relation between the two
maps is here directly (i.e., prior to any renormalization)
reflected in the coincidence of their local symmetry
dynamics.

3.5 Cantor lattice

Having analyzed the local symmetry distribution and
dynamics of some typical binary lattices with aperiodic
order, we finally examine an extreme case with inherent
palindromic self-similarity, the standard Cantor lattice.
In general, a 1D (m-fold) Cantor construct is obtained
by dividing a finite segment into (m equal) parts, “delet-
ing” a chosen number (n < m) of them which are not
consecutive, and repeating this procedure recursively
on each remaining segment ad infinitum (thus generat-
ing an “m-by-n” Cantor fractal). Mapping the resulting
full and empty intervals onto a binary alphabet (A and
B, respectively), an infinite fractal letter sequence is
obtained. The sequence can be obtained equivalently
by a substitution rule on the letters corresponding to the
above partitioning scheme. We here consider the homo-
geneous 3-by-1 (or “ternary”) Cantor lattice [56,57],
which is obtained by recursively applying the inflation
rule

σC (A, B) = (ABA, BBB) (67)

with starting letter A, yielding the sequence wC .

Fig. 11 Cantor lattice, wC . a Maximal palindromes in order
of occurrence in the letter sequence, the beginning of which is
shown in the upper inset. The magnification in the lower inset
demonstrates the self-similarity of the lattice. b Local symmetry
distribution (like in Fig. 3)

Obviously, σC inherently generates palindromes on
all scales with ever increasing lengths, distributed self-
similarly on a globally symmetric lattice. The hierar-
chical local symmetry structure is clearly evident in
Fig. 11a, where the maximal palindromes of wC are
plotted as horizontal segments, ordered in axis position.
In contrast to the (inhomogeneous) sequences seen so
far, wC has a well-defined global center, around which
the primary cluster of B’s is located, covering the cen-
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tral third of the total lattice. Secondary B-clusters are
created around the centers of the outer thirds, then on
the outer thirds of these, etc. Therefore, there will be
maximal palindromes of increasing length with axes
approaching these hierarchical symmetry centers, at
which their length jumps by a factor of three.

The above features are seen in the (partial) local
symmetry distribution of wC in Fig. 11b. As expected,
maximal palindromes now exist for any length l ∈ Z,
as they are constructed explicitly by the inflation rule,
so that Lr = r . The clustering of B at increasing
scale forms consecutive gaps along the αp-axis, since
palindromes of given length are maximal within the
B-clusters only at their borders (see upper inset in
Fig. 11a). The gaps gradually become smaller with
palindrome length and close at a larger l p, at which
position a prefix palindrome of length 3l p occurs. Com-
plete local symmetries thus form naturally with every
iteration of the σC inflation, with according ranges

Lr=3k =
∣∣∣w(k)

C

∣∣∣ = 3k (k = 0, 1, ...), (68)

that is, with scaling factor 3.
We here notice the characteristic similarity of the

Cantor local symmetry distribution with that of the
w1,10 in Fig. 8b. In both there are ∧ structures forming,
with (larger) prefix palindromes occurring at the points
where the legs would meet; however, in the w1,10 case
the gaps do not extend to the bottom, because of the
absence of pure B-clusters (to whose borders smaller
maximal palindromes would be restricted).

As can be anticipated from the symmetry distribu-
tion in Fig. 11b, also the spacings between maximal
palindromes take on all possible values with chang-
ing Lr . For fixed Lr , we expect the spacings to feature
increasing local maxima as the symmetry axis crosses
the boundaries of larger B-clusters deeper in the lattice,
until it reaches the globally central (and largest) cluster.
In between, the spacing must return to smaller values,
following the hierarchical structure of the lattice.

In Fig. 12a, this behavior is shown in terms of
the spacing return maps for selected local symmetry
ranges. As we see, there are no longer few-point orbits,
as in the aperiodic sequences studied so far. The number
of different spacings D(r)

i for any single given range Lr

rather increases indefinitely with lattice size, i.e., with
word generation k, and covers multiple orders of mag-
nitude. There is also, in general, no fixed nestedness of

Fig. 12 Local symmetry spacing a return maps and b trajec-
tories for selected symmetry ranges in the Cantor lattice. For
Lr = r = 3k (k = 1, 2, ...), represented here by r = 3, 81 (and
distinguished by empty circles), the spacing trajectory starts with
a “boundary anomaly” (see text)

consecutive maps through common or collinear points.
In spite of their very different individual characteristics,
however, all maps share a common asymptotic spacing
scaling, given again by the Cantor partitioning number:

lim
i→∞

D(r)
i+1

D(r)
i

= m = 3. (69)

Interestingly, there is here a “boundary anomaly” for
every L3k = 3k (k > 1): at these ranges, which coin-
cide with the Cantor generation lengths and thereby
with edge local symmetries, the very first axis distance
is half the minimal distance for the rest of the d(r)

q

sequence (seen as singly connected empty circles in
Fig. 12a).

Each map possesses the characteristic structure orig-
inating from the underlying self-similarity in wC . This
hierarchical traversal of ever larger spacings is shown
in Fig. 12b for r = 2 and 3. For each Lr , as the local
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symmetry axis is swept along the lattice, the spacing
d(r)

q cycles recurrently on smaller return map orbits in
hierarchical order, until the next (larger) B-cluster is
reached, whereby a larger orbit is traversed.

Comparing the overall local symmetry properties of
the Cantor lattice with those of the previously exam-
ined binary sequences, we finally note the following.
Although the Cantor lattice is generated by an inflation
rule that explicitly produces palindromes (on a mini-
mal scale and, therefore, on all scales), its local sym-
metry dynamics is rather “irregular,” in the sense that
its spacing return maps are unbounded, have an infi-
nite number of points, and are quite different among
symmetry ranges—some even starting with the men-
tioned boundary anomalies. Further, all possible ranges
do occur, which is a characteristic shared statistically
by a totally random lattice. In contrast, the aperiodic
lattices of Fibonacci, PD, or TM type, which are gener-
ated by asymmetric inflation rules, are characterized by
invariant, few-point spacing maps, with simple scaling
laws along an ordered sequence of symmetry ranges.

4 Summary and conclusions

We have examined the local symmetry distribution
(positions of locally symmetric domains as a function
of their range) and dynamics (spatial evolution of the
distances between local symmetry axes for given range)
of one-dimensional aperiodic lattices generated by rep-
resentative binary sequences, including (generalized)
Fibonacci, period-doubling, Thue–Morse, and Cantor.
For each case, explicit scaling behaviors and correlation
properties were found numerically for the sequences
of occurring maximal local symmetry ranges, and for
their spacings along the lattice, in relation to the origi-
nal generating inflation rules or recursive schemes.

In particular, the generalized Fibonacci lattices were
shown to incorporate multiplet symmetry range subse-
quences with different structural features determined
by the asymptotic length ratio of the corresponding
binary word generations, with a dominant subsequence
containing all edge local symmetries (i.e., palindromic
word prefixes). Moreover, for the Fibonacci, PD, and
TM lattices, the number of different local symmetry
spacings is restricted to 2 or 3 for any symmetry range.
In terms of the subsequences of local symmetry spacing
return maps for given ranges, the (asymptotic) copper
Fibonacci lattice was shown to be structurally equiv-

alent to the period-doubling lattice, of which in turn
the Thue–Morse case constitutes a reduced version
(with two sub-subsequences discarded). Remarkably,
the aperiodic order of each type of lattice was found to
be encoded exactly in its local symmetry dynamics: For
each occurring local symmetry range, the renormalized
sequence of axis spacings is generated by the inflation
rule of the original aperiodic sequence. This reveals the
presence of a type of dynamical self-similarity, char-
acteristic for each type of lattice. The local symme-
try distribution of the above lattices was, finally, con-
trasted with the Cantor lattice, whose inflation rule
is inherently palindromic with gapped maximal sym-
metry distribution and unbounded symmetry spacing
return maps.

In conclusion, we have shown that a unified view
of different classes of aperiodic lattices is provided by
the distribution and, in particular, by the fixed range
spacing dynamics of their (maximal) local symmetries.
They yield a compellingly simple analysis tool to dis-
tinguish structural similarities as well as lower level
differences between given lattices. The encoding of the
corresponding inflation rule within any given symme-
try spacing trajectory further demonstrates that local
symmetries completely characterize deterministic ape-
riodic order at any scale.

The concept of local symmetry dynamics could thus
contribute to the investigation of emergent patterns in
more complex natural systems, by revealing structural
correlations at a deeper level of complexity in a com-
pactly encoded manner. Conversely, it could open the
perspective of generating novel types of deterministic
aperiodic order, by applying a set of local symmetry
operations according to a given type of dynamics. Fur-
ther, the systematic symbolic analysis performed here
serves as a rich platform for investigating wave scatter-
ing from the viewpoint of local symmetries in realiz-
able (electronic, photonic, acoustic, etc.) setups based
on aperiodic sequences. Together with the correspond-
ing framework of symmetry-induced spatial invariants
developed in Refs. [14–16], a deeper understanding of
the link between spectral response and structural order
may be established, thereby contributing to the desir-
able control of wave phenomena in complex media.
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