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We investigate the characteristics of a relativistic magnetized fluid flowing around a corner. 
If the outflow is faster than the fast-magnetosonic speed (or sound speed for a non-magnetized 
fluid) the non-smooth boundary induces a rarefaction wave propagating in the body of the flow. 
The subsequent expansion is accompanied with a very efficient increase of the flow bulk speed 
and Lorentz factor. We apply this “rarefaction acceleration mechanism” to the Collapsar model 
of gamma-ray bursts, in which a relativistic jet initially propagates in the interior of the 
progenitor star, before crossing the stellar surface with a simultaneous drop in the external 
pressure support.  We integrated the steady-state equations using a special set of partial 
solutions, called r – self similar. The use of these solutions degrades the system of the complex, 
non-linear, 2nd order partial differential equations into a system of two 1st order ordinary 
differential equations whose integration is straightforward. For the conditions expected in a 
GRB, a fully analytical solution can also be obtained. The aim of this work is to give insight to 
the results of recent time-depended numerical simulations and show that rarefaction is a 
plausible mechanism for these phenomena.
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1. Introduction

If a flow passes a vertex of an angle and its velocity exceeds the velocity of the fastest 

propagating disturbance (sonic speed for an unmagnetized plasma, or fast magnetosonic speed 
in a magnetized fluid) the information of the non-smooth boundary propagates in the body of 
the outflow via a weak discontinuity called rarefaction wave1. In general three regions are 
formed: the unperturbated flow, the perturbated/rarefied region and the void space. Due to their 
importance and application in a wide range of phenomena, rarefaction waves have been 
extensively studied in various physical regimes and the theory of the classical hydrodynamical 
waves is presented in many textbooks; see [1] for example. It has been proposed lately by 

Komissarov et al. [2] that rarefaction operates well in relativistic magnetized gamma-ray burst 
(GRB) outflows. While in most magnetohydrodynamic (MHD) jet acceleration mechanisms the 
acceleration and final Lorentz factor is strongly correlated with the opening angle of the jet

( ~ 1 ), the acceleration associated with the rarefaction makes it possible for this product to 

become 1 � being in agreement with the panchromatic breaks in the afterglow light curves.

In our study we investigate analytically the results that time – depended numerical 
simulations obtained [2, 3] considering the steady state problem. We describe the outflow using 
the relativistic MHD equations (section 2) and we solve the resulting expressions using a special 
set of similar solutions called r self-similar solutions (section 3). Under this set the system of the 
2nd order partial and highly nonlinear equations degrades to a system of a couple 1st order 
ordinary differential equations, which is easily integrated using a common numerical algorithm 

(results are given in section 4). For the conditions expected in GRB outflows (cold, ultra –
relativistic) we can proceed further and obtain purely analytical solutions (section 5). Finally we 

consider an application of our model at the Collapsar scenario of GRB (section 6).

2. Equations – Assumptions

The special relativistic steady state MHD equations in a covariant and vector form are:
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where ,P  are the pressure and density, w e p  the enthalpy density (  ˆ 1e P   the

internal energy density), 2h w c its normalized value and ̂ the usual polytropic index; all 

the above quantities are defined/measured in the comoving system. On the other hand quantities 

                                               
1 Weak discontinuity is a discontinuity on the derivatives of the quantities describing the outflow rather than 

on the quantities itself
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,vu v


are the 4-velocity and the conventional spatial velocity, ,E B
 

are the electric and 

magnetic field and 0 ,J c J


the charge and current density, all measured at any frame. 

The electromagnetic properties of the fluid are governed by Maxwell’s equations
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and Ohm law determines the coupling between matter and emf. For a perfectly conducting flow:
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(5)

In what follows, we assume planar symmetry  0y   and degrade our problem in 2-dim, as

in most analytical works ([1, 4]). This limits our application in collapsars at distances small 
comparing to the radius of the star, at least in the transverse direction. We also assume that the 

magnetic field is in the ŷ direction, ie. its component on the poloidal  ˆ ˆ,x z plane is negligible, 

but this doesn’t affect the validity of our application (see section 6).
The manipulation of equations is done via the following quantities:
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where  is the poloidal stream-function per transverse length; integration is done on a 

rectangular surface  at the transverse  ,x y plane and as in the classical case is used to label 

every poloidal streamline. Quantity  is the magnetization function, defined as the ratio of the 

energy flux carried by the electromagnetic field over the energy flux carried by the matter. The 

above expression of enthalpy assigns to a polytropic gas, where
ˆ

P Q , a result of eq.(3). 

A partial integration of the equations yields the following integrals of motion:
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where  is the total energy to energy-mass flux ratio,  an integral related to the electric field 

and L is related to the the angular momentum.
Using the above integrals two expressions remain: a purely algebraic equation, the 

Bernoulli equation (coming from the identity    2 22 2 21 p yv c v c     ):
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and a partial differential, highly nonlinear equation that assigns to the projection of the energy-
momentum equation normal to the poloidal streamlines (transfield equation)
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It seems hopeless to seek for the general solution of this equation and so we focus on the quest 
for partial solutions that describe the phenomenon.

3. r-self similar solutions

The method of self-similarity has been applied and extended both in relativistic and 

magnetized fluids. As a relative example we refer here to [5] where a semi-analytical solution to 
jet acceleration has been obtained. The basic concept of this method is to assume a form 

 iFr f  for all the flow quantities and determine exponents iF in such a way that the variables 

,r  are separable. Every such set will lead to a class of partial solutions; in our case we find:

     
 1 1ˆ 1

2

,F

F F

F F

r f h h L const

Q const const

     


 



     

   
(10)

Notice that the above choice is the most general; the cases considered in [1, 4] in which the flow 

depends solely on the angle theta, correspond to a specific choice of 1F  . Under these forms 
partial eq.(9) degrades to an ordinary one:
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In the above expression we have introduced angle : tan x zv v   , identical with  used in 

[1, 4], and choose to study our solution in terms of
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instead of  f  purely for algebraic reasons. Except these two ordinary differential equation 

the system is completed with two other algebraic equations
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and the Bernoulli
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The procedure is to give the physical quantities at the base of the flow  const  , calculate 

the integrals and solve the system for  , , ,h y  quantities. Using the known values of these 

quantities one is able to determine all the physical quantities along a reference streamline and by 
similarity along every other streamline. The integration of this system is easy and can be 

performed by a simple numerical algorithm (we used Matlab and its Adams Algorithm).

4. Numerical results

As we stated in our introduction the main purpose of our study is to apply the solutions at
the GRB-Collapsar model.  Due to the uncertainty on the magnitude of the magnetic field we 

present two limiting cases. In the first one we consider a cold magnetized flow (Cld Model), 
while in the second an unmagnetized, purely hydrodynamic flow (Ht Model). In both cases we 

assume the same initial Lorentz factor 100i  and the same total energy to mass flux ratio 

( 500  ). The initial inclination of the streamlines was taken in ẑ -direction ( 0i  ).

Model ̂ F ,y iu ih  Model ̂ F ,y iu ih 
Cld 5/3 1.1 0 1 4 Ht 4/3 1.1 0 5 0

Fig. 1 shows the shape of the streamlines and the Lorentz factor for both models:

fig. 1: The shape of the poloidal streamlines as produced by self-similarity and Lorentz factor evolution (color) 
for Cld (left) and Ht model (right).

Note that we used an arbitrary distance ir to scale the results; we choose here the initial x̂ -

distance of the reference streamline. The three regions are shown: at the beginning of the 
outflow we have the unperturbated region separated from the rarefied region via a rarefaction 

wave (black line). The perturbated region extends up to a maximum angle max .

In the magnetized case, the acceleration is faster and the flow tends to be more collimated. 
In Fig. 2 we show how Lorentz factor evolves along a line. In order to quantify this figure we 

mention that rarefaction occurs at 50 ir in the magnetic dominated model and 300 ir at the 

thermal one. In both cases almost all of the energy is converted to kinetic and the Lorentz factor 

reaches 90% of its maximum value ( ~f  ) at 410 ir in the Cld model and 72 10 ir in the Ht
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fig. 2: The “energetic” aspect along the reference line for both models Cld (left) and Ht (right). We plotted Lorentz 

factor (green), magnetization parameter (red) and specific enthalpy (cyan) in contrast with the total energy to 
energy-mass flux ratio (blue). In the diagram we exhibit also where rarefaction begins (dashed line).

Finally in the diagrams below we sketch the evolution of various quantities of the outflow 

as a function of y (monotonically decreasing function along a line)2. Notice that all quantities 

tend to zero as expected.

  
fig. 3: Varius physical quantities of the outflow for Cld (left) and Ht model (right).

5.Asymptotic analysis – Cold outflow

In some asymptotic cases equations (11)-(14) are simplified and fully analytical solutions 

are obtained. Here we present the cold approximation ( 1h  ), under which equations become:
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while eq.(12) remains unaltered. Notice that we changed the variable of integration h 
using eq.(13) and we chose the differential form of Bernoulli for convenience. 

Combining equations for , y we obtain:

                                               
2 This choice is because the scalling law derived at the next section is in terms of this quantity rather than r .
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which is integrated analytically:
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The asymptotic behaviour 3/2~y  can be used in eq.(15) to find the rarefied area:
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In the above relationship i is the angle where the wave occurs. This angle is easily calculated 

by the vanishing of the denominator of eq.(15):
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6. Conclusions – Collapsar Application

As we already stated magnetic acceleration in GRBs suffers by the ~ 1 problem and 

rarefaction was proposed by Komissarov et. al. [2] as a solution to this problem. Rarefaction 

occurs as the outflow breaks the star envelope and propagates from an area of external pressure 
(interior of the star) to an area of zero pressure. In GRB we expect that the poloidal magnetic 
field at the point of rarefaction is negligible since, as most MHD models indicate, any possible 
poloidal field at the beginning of the outflow soon will end up as an azimouthial field (bending 
of wires, [5]). In our study the results we obtained above refer to an area close to the breaking of 
the envelope and to a small region compared to the radius of the progenitor star. From the
results presented in section 4 and as a conclusion we might state that rarefaction is indeed a 
plausible mechanism for the GRB acceleration. Though this is the case in both situations, in 
magnetically dominated plasmas the acceleration is completed in much shorter distances.
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