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ABSTRACT

Assessing how the performance of a decentralized wireless 
sensor network (WSN) algorithm's implementation scales, in 
terms of communication and energy costs, as the network 
size increases is an essential requirement before its field 
deployment. Simulations are commonly used for this 
purpose, especially for large-scale environmental monitoring 
applications. However, it is difficult to evaluate energy 
consumption, processing and memory requirements before 
the algorithm is really ported to a real WSN platform. We 
propose a method for emulating the operation of 
collaborative algorithms in large-scale WSNs by re-using a 
small number of available real sensor nodes. We 
demonstrate the potential of the proposed simulation-driven 
WSN emulation approach by using it to estimate how
communication and energy costs scale with the network’s 
size when implementing a collaborative algorithm we 
developed in [12] for tracking the spatiotemporal evolution 
of a progressing environmental hazard. 

Index Terms— WSN implementation, continuous object 
tracking, energy consumption, environmental hazard.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) are becoming a 
mature technology that is used increasingly for tracking
single or multiple moving targets (e.g. vehicles, humans, 
animals, objects etc.) [1-3]. The rapidly dropping cost of 
WSNs has spurred a lot of interest towards large-scale WSN 
solutions for detecting and tracking diffusive hazardous 
phenomena, such as wildfires, noxious gases, oil slicks, etc. 
[4-11]. Generating accurate and timely predictions of a
hazard's spatio-temporal evolution characteristics (e.g. its 
direction and speed etc.) is of great importance to the
authorities trying to confront the situation and manage its 
potentially catastrophic consequences.

Tracking a spreading hazard is, however, a 
fundamentally different problem from tracking individual 
target(s), since a diffusive phenomenon, also referred to as 

“continuous object”, may cover a large geographical region 
and its size and shape may change continuously and in 
complex ways. The key idea of the methods proposed in the 
literature for continuous object tracking [4-11] is to try to 
delineate its boundaries, by identifying, at each time step,
the sensor nodes that are located closest to it. Hence these 
methods suffer, by construction, from the severe limitation 
that they require unrealistic sensor node densities (i.e. 
thousands of deployed sensor nodes per km2) to achieve 
reasonable accuracy, a fact that renders them impractical 
even for medium-scale environmental monitoring 
applications. Another disadvantage of these methods is that 
they do not provide information of predictive value 
regarding the spatiotemporal evolution of the hazard.

To address these severe limitations we have introduced 
in [12,13] a distributed approach which is based on 
probabilistic modeling and can continuously estimate, with 
high accuracy, the space- and time-varying evolution 
characteristics (direction and speed) of a progressing hazard
using low density WSNs. As for all WSN schemes, 
computer simulations can be used to assess the expected 
estimation accuracy as a function of the network's density. 
However simulations fail to provide: a) accurate energy 
consumption estimates and how they scale with the size of 
the network, and b) information about the processing and 
memory requirements of the distributed algorithm's 
implementation. Since having such estimates is very 
important before attempting to deploy a large-scale WSN for 
environmental monitoring application the real question
becomes, how can we meet this requirement without having 
to deploy a large-scale WSN?

To address this question we introduce a method which
allows us to emulate the operation of a large-scale WSN 
deployment for environmental applications by reutilizing
only a small number of real sensor nodes. The key idea of 
the proposed method is to re-allocate (virtually reposition)
the available sensor nodes so that they implement WSN 
nodes located close to the hazard’s front line as it evolves.
Sensor nodes re-allocation has been used before in [14] to 
evaluate the performance of geographical routing protocols
in large scale WSN. The scheme used in [14] has been 
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specifically designed for evaluating routing protocols before 
network deployment and cannot be applied for the 
evaluation of energy aspects of collaborative WSN 
algorithms in general. To the best of our knowledge our
proposed emulation scheme is the first attempt to use a small 
number of sensor nodes to realistically estimate the energy 
consumption of a collaborative algorithm in a large-scale
WSN implementation. We demonstrate its capabilities using
the distributed algorithm we introduced in [12,13] for 
estimating the spatiotemporal evolution parameters of 
diffusing environmental hazards. WSN emulation provides 
convincing evidence that the collaborative algorithm is
suitable for large-scale WSN deployment since it respects 
the memory, processing and energy constraints of 
commodity sensor nodes used in WSN implementations.  

The rest of the paper is organized as follows: Section 2 
presents the basics of the distributed algorithm in [12] to the
extent needed to follow the rest of the paper. Section 3 
presents the WSN implementation of the algorithm. WSN 
emulation results are presented and discussed in section 4. In 
section 5 we conclude by summarizing our findings.

2.  IN-NETWORK PROCESSING ALGORITHM FOR 
HAZARD EVOLUTION ESTIMATION

The main idea of the distributed processing algorithm
presented in [12,13] is as follows: Depending on its 
communication range every sensor node has a defined 
neighborhood (see Figure 1a). As the hazard’s front enters a 
neighborhood and gets detected, an ad-hoc cluster of three 
nodes is formed dynamically. It consists of the Master node, 
which is responsible for forming the ad-hoc cluster, and two 
additional Helper nodes, used to assist the Master in 
performing a hazard's local model update. Each sensor node 
is initialized with a prior model which represents the 
evolution characteristics (speed, direction, orientation) of a 
local front line segment of length equal to the diameter of 
the node’s ideal circular communication region (see Figure 
1b). Every time the model is updated, the posterior model
parameters are propagated to the rest of the neighbors.
In the algorithm, a sensor node may at any time assume one 
of the following statuses:
Quiescent: Default and initial status.
Master: Responsible for cluster formation and for updating 
the local front’s model parameters.
Slave: Responsible for monitoring the phenomenon upon 
receiving a Master’s request. A Helper is a special Slave.
The algorithm can be separated into three phases. To 
facilitate their presentation we will use a simple example.
    Cluster formation: When sensor node S0 detects (say at 
time t0) the approaching hazard’s front (red dashed curve in 
Figure 1b), it checks to see if it satisfies some necessary 
conditions (presented in [12,13]) to become a Master node. 
If the conditions are met, S0 initiates a local timer and
broadcasts a message to notify its neighbors about its newly 

   (a)                                           (b)
Figure 1: (a) Sensor node neighborhood. An ad-hoc cluster is 
formed as soon as the hazard is detected. (b) Local front model 
updating procedure. See text for details.

assumed Master status. When the neighbors receive this 
message they become its Slaves. In the sequel, Master S0
waits until it receives two hazardous event detection 
messages from two Slaves (those to be used as its Helpers) 
before initiating the prior model’s updating procedure.

Model updating: Let’s assume that at local times t1 and 
t2 (relatively to t0) Master node S0 receives the two detection 
messages it has been waiting for from Slaves S1 and S2
respectively w.l.o.g. (see Figure 1b). Using times t1,t2 and 
the Euclidian distances d1,d2 of the Helpers’ locations from 
S0’s local front line (see Figure 1b), Master S0 can estimates 
the coordinates of two new points K, M, (shown as red dots 
in Figure 1b) and use them to determine the orientation of 
the updated (moved) local front line. Finally, using the 
analytical solutions (algebraic expressions) of a KL-
divergence minimization problem formulated and solved in 
[12], S0 can estimate the parameters of its posterior belief 
model, to complete the updating of its model. 

Model propagation: After the model’s update, Master 
node S0 broadcasts a propagation message containing its 
new model parameters. When the enslaved neighbors
receive this message, they replace their prior model with the 
new one. In addition, Master S0 sends to the Helper that 
detected most recently the hazard (w.l.o.g. it is assumed to 
be S2) a unicast become-the-new Master message. If S2
satisfies the necessary conditions to assume the Master’s 
role it accepts the request and initiates a new cluster 
formation procedure. If S2 does not satisfy the necessary 
conditions, it rejects S0’s offer. When S0 receives a rejection 
message from S2, it attempts the same negotiation with its 
other Helper, S1. If S1 also declines the offer, Master S0 gives 
up with its two Helpers, broadcasts in its neighborhood a 
propagate-my-model message (containing its posterior 
model parameters) and returns to Quiescent status. When its 
neighbors receive this message they also broadcast a similar 
message in order to further push S0’s posterior model out to 
their neighbors.

3. WSN IMPLEMENTATION

The WSN implementation of the distributed algorithm 
was based on the affordable Atmel Raven evaluation kit [15] 
consisting of AVRRAVEN boards (sensor nodes) and



RZUSBSTICK boards (sink node). The AVRRAVEN board
has three main modules [16]: The ATmega3290 8-bit  MCU 
which has 32 KB ISP flash memory, 1 KB EEPROM, 2KB 
SRAM and is responsible for handling the on board sensors.
The ATmega1284P MCU, which has 128 KB ISP flash, 
4KB EEPROM, 15KB SRAM, and is responsible for 
handling the 2.4GHz AT86RF230 radio transceiver
designed for low-cost IEEE 802.15.4 applications. Its
transmission power can be adjusted in the range [-17dBm,
3dBm] and its reception sensitivity was fixed to -101dBm.

The distributed algorithm was coded in C on the IPv6 
ready RTOS Contiki [17]. The RTOS and the C code were
loaded on the AVRRAVEN boards using the AVR Dragon
programmer [18] and occupied 71KB on the ATmega1284P,
i.e. 55.4% of its total ISP flash memory. We also designed a 
Java application, called RavenObserver, running on the host 
PC, to monitor the WSN and collect data from the sensor 
nodes during the conducted experiments.

Deploying a large-scale WSN to validate an in-network
algorithm is unrealistic. To overcome this fundamental 
limitation we developed a simulation-driven emulation 
procedure which allows us to mimic the behavior of a large-
scale WSN, during the evolution of a diffusive hazard, using 
only a small number of real sensor nodes. The basic idea of 
the proposed scheme is to cleverly re-use sensor nodes 
which are no longer able to participate in the distributed 
algorithm. Specifically we developed a technique which
allows us to virtually re-position these nodes forward, in the 
direction of the hazard’s front movement. For its virtual 
repositioning to be possible, a node should satisfy the 
following conditions: a) it must be at Quiescent state, and b) 
it must have detected the front of the phenomenon.

Using the Matlab-based WSN simulator presented in
[12,13] we were able to create simulation scenarios with 
different sensor node densities, deployment strategies, and 
progressing hazard front evolution characteristics. For our 
evaluation we modified the simulator so that it can also 
generate an ASCII file containing the following setup record
for each sensor node: {node ID, location coordinates, time 
of hazard’s detection, IDs of its neighbors}. Using this file
as input, the RavenObserver coordinates the re-use and 
virtual repositioning of the available sensor nodes (6 in our 
case), in order to emulate the behavior of the large-scale 
WSN as prescribed by the Matlab simulation. 

Assuming that N real sensor nodes are available when a 
WSN emulation experiment is initiated, RavenObserver
checks the Matlab generated file and extracts, for the N
nodes that have detected the phenomenon first, the
aforementioned setup records. Then, the WSN sink node 
takes over and sends this information to the available N real 
sensor nodes. Upon reception, the RavenObserver starts an 
internal timer and checks in the Matlab generated file the
hazard's expected detection times for the aforementioned
sensor nodes. When the timer reaches the detection time of a
sensor node, RavenObserver asks the sink to send a special 

message to it in order for that node to start emulating the 
detection of the hazard. Upon reception of this message, the 
node changes its status and acts as prescribed by the
algorithm. Finally, when a node is no longer able to 
participate in the algorithm, it sends a special message to the 
sink, which in turn informs RavenObserver that this sensor is 
available for re-allocation. Then RavenObserver finds the 
record for the node that is expected to detect the 
phenomenon next (according to the hazard's evolution 
simulation) and asks the sink to forward this record to the
freed sensor node. This emulation method works w.l.o.g 
with any number N of available sensor nodes (N>3), albeit
the emulation time depends on that number.

4. EVALUATION RESULTS

We now present experimental results, obtained using the 
available ATMEL Raven sensor nodes that helped us assess 
the processing, communication and energy efficiency of the 
collaborative algorithm and how it is expected to scale with 
the WSN's size in practice. Since the main contribution of 
the specific algorithm is its ability to estimate accurately the 
hazard's evolution parameters using low density WSNs, in 
our experiments we used node densities that are considered 
low for environmental applications. Specifically we used 5 x 
10-5, 7.5 x 10-5, 10-4 sensors/m2, which correspond to 50, 75 
and 100 sensor nodes deployed within an area of 1 km2.  In 
order to establish that we have a connected network we use
the transmission (Tx) powers shown in Figure 3. A Matlab 
program was used to generate random sensor node 
deployments. With N AVR Raven nodes available, we can 
emulate deployments in which every sensor node has at most 
N-1 neighbors, and N is larger than 3.

To simulate realistically the behavior of a diffusive 
hazard we used a wildfire simulation software called FLogA 
(Fire Logic Animator) developed in our group [19]. FLogA 
is a web-based interactive software tool which allows us to 
draw a forest area on Google Earth anywhere in Europe, 
insert ignition points, simulate realistically and geo-animate 
the behavior of the evolving fire line under different 
prevailing wind conditions. Using FlogA we have generated 
five different fire scenarios affecting the same square forest 
area of 1 km2 in Hymettus mountain, Attica, Greece. For 
each scenario, the fire ignition points were placed at 
different locations, giving rise to very different wildfire front 
evolution patterns. The duration of each wildfire experiment 
was set to 180min in order to guarantee that most of the
forest area would be affected by the wildfire.

During the emulation of the network's operation 
RavenObserver collects the following information from the
available Raven sensor nodes: a) the number of the 
received/transmitted (Rx/Tx) messages b) the number of the
Rx/Tx Bytes c) the energy consumed by Rx/Tx operations 
and d) the computation time required for each model update.
This data is collected by the sink node. At the end of the 



Figure 2: Mean and stdev of received/transmitted Messages/Bytes, 
at the Cluster and Network level for different WSN densities.

emulation, it is analyzed at two levels: (a) Network-level:
Considers the data of all sensor nodes participating in the 
simulation, (b) Cluster-level: Analyzes the data of the nodes 
participating in the local front's model updating procedure 
(Master and its two Helpers).

Figure 2 provides, for each analysis level, the mean of 
the Rx/Tx Messages and Bytes and their stdev, for three
density scenarios. The statistics for each scenario were
computed considering all the corresponding Rx and Tx
Messages/Bytes for the 50 different simulation runs (10 
random deployments * 5 wildfires). We observe that the bar 
plots for the Messages (Bytes) follow similar trends as the 
number of deployed sensors increases. This is as expected
due to the direct relation between Messages and Bytes for a 
given density. From the cluster-level analysis, we observe 
that as the number of deployed sensors increases the number 
of the Rx and Tx Messages and Bytes decreases a little. This
behavior is justified if we consider that: a smaller number of 
sensor nodes in a given area implies fewer neighbors which 
in turn implies that it is more difficult for a Master node to 
“inherit” its Master status to one of its Helpers. As 
mentioned in section 2 (Model propagation), when a Master
cannot find a new qualified Master, it is forced to broadcast 
a message to its Helpers, so that they can propagate its 
updated model to their neighbors. These extra “negotiations” 
are responsible for the small increase of Messages (Bytes) as 
the number of the deployed sensors decreases. However, at
the network level an increase in the number of deployed 
sensor nodes leads to an increase in the total number of 
model updates, and therefore the total number of the Rx and 
Tx Messages and Bytes increases accordingly.
     Figure 3 provides, for the 100 sensor nodes density
scenario, the mean and stdev of energies consumed for
Rx/Tx. Similar trends are followed for the other densities
and the corresponding plots have been skipped due to lack 
of space. For both levels of analysis, the energy plots show 
that the required Rx energy is on average larger than the Tx 
energy. At a first glance this may seem counterintuitive, but 
it can be explained if we consider that most of the messages
are of broadcast type, which means that a single Tx 
corresponds to many Rxs (by nodes in the same 
neighborhood). Furthermore, a more detailed analysis at the 
cluster level shows that the Master consumes for Tx (blue

Figure 3: Mean and stdev of energy consumed for Rx and for Tx 
operations (as a function of the node’s Tx power). Network and 
Cluster-level analysis for the 100 nodes scenario.

line) about 5 times more energy than both of its Helpers 
combined (green line). This happens because the Master 
transmits many more messages than its Helpers during the 
model’s forward propagation (see section 2). The large stdev
observed for the Helpers Tx energy is due to the negotiation
which takes place between the Master and either one, or 
both, of its Helpers (in sequence) during the model's
propagation phase.
    Measuring the energy consumed by the nodes for
processing and sensing tasks during emulation was not 
feasible since the AVRRAVEN nodes do not provide such 
functions. However, since it is well known [20,21] that the
radio communication is the prominent energy consumer in a 
WSN, we can safely conclude that the provided Rx/Tx 
Network level energy results provide a good estimate of the 
lower bound of the total WSN energy consumed by the 100 
nodes during the 180min of operation captured by the 
wildfire simulation. This conclusion is further supported by 
the fact that the sensor nodes activate (exit the Quiescent 
status) only for the time period where the fire front line is 
close to their vicinity (emulated period). Furthermore, the 
mean computation time for a model update, required by the 
8-bit ATmega1284P MPU of the Raven sensor node clocked 
at 8MHz, is about 510msec. (with a stdev of 5msec).

5. CONCLUSIONS

We introduce a simulation-driven WSN emulation 
procedure which allows us to estimate, even by using a small 
number of sensor nodes, the energy consumption and 
scalability of collaborative algorithms as the WSN's size 
increases. We demonstrate the validity of the approach by 
evaluating an algorithm developed in [12,13] for tracking 
the spatiotemporal evolution of spreading hazards. The 
results clearly indicate that this algorithm is suitable for a 
large-scale WSN deployment, since it respects WSNs'
communication, processing, memory and energy constraints. 
The same emulation approach can be followed to assess the 
practicality of large-scale WSN deployment of other in-
network algorithms of similar nature for environmental 
monitoring applications. 



6. REFERENCES

[1] J. Liu, J.E. Reich and F. Zhao, “Collaborative in-network 
processing for target tracking,” EURASIP, J. Appl. Signal 
Processing, vol.2003, pp. 378-391, Mar. 2003.
[2] L. Chen, M. Cetin, and A.S. Willsky, “Distributed Data 
association for multi-target tracking in sensor networks,” in Proc. 
Int. Conf. Information Fusion Philadelphia, PA, July 2005.
[3] J. Liu, M. Chu, J.E. Reich, “Multitarget Tracking in Distributed
Sensor Network,” Signal Processing Magazine, vol.24, issue 3, pp.
36-46, May 2007.
[4] X. Ji, H. Zha, J. J. Metzner, and G. Kesidis, “Dynamic Cluster
Structure for Object Detection and Tracking in Wireless Ad-Hoc
Sensor Networks,” In Proc. of the IEEE Int. Conf. on 
Communications, 2004, pp. 3807-3811.
[5] J. Kim, K. Kim, S. Chauhdary, W. Yang, M. Park, “DEMOCO:
Energy-Efficient Detection and Monitoring for Continuous Objects
in WSN”, IEICE Trans.on Comm, vol.E91-B, pp. 3648-3656,
Nov.2008.
[6] W. Chang, H. Lin, Z. Cheng: “CODA: A Continuous Object
Detection and Tracking Algorithm for Wireless Ad Hoc Sensor
Networks”. Consumer Communications and Networking Conf, pp. 
168-174, 2008.
[7] C. Zhong, M. Worboys, “Energy Efficient Continuous 
Boundary Monitoring in Sensor Networks” Technical Report, 
2007. Available: http://ilab1.korea.ac.kr/papers/ref2.pdf.
[8] M. S. Jin, F. Yu, S. Park, E. Lee, S.-H. Kim, “Localized 
Mechanism for Continuous Object Tracking and Monitoring in 
Wireless Sensor Networks,” in Proc. of the IEEE Conf
Autonomous Decentralized Systems, pp. 1-8 2009.
[9] W. Lee; Y. Yim; S. Park; J. Lee; H. Park; Sang-Ha Kim, "A 
Cluster-Based Continuous Object Tracking Scheme in Wireless 
Sensor Networks," Vehicular Technology Conference (VTC Fall), 
2011 IEEE , vol., no., pp.1,5, 5-8 Sept. 2011.
[10] S. C. Tu, G.Y. Chang, J.P. Sheu, W. Li, and K.Y. Hsieh, 
“Scalable continuous object detection and tracking in sensor 
networks ” J. Parallel Distrib. Comput. 70(3):212-224 (2010).
[11] C. Yang; Q. Li; J. Liu, "A multisink-based Continuous Object 
Tracking in wireless sensor networks by GIS," Advanced 
Communication Technology (ICACT), 2012 14th International 
Conference on , vol., no., pp.7,11, 19-22 Feb. 2012.
[12] D. V. Manatakis, E. S. Manolakos, “Collaborative Sensor
Network algorithm for predicting the spatiotemporal evolution of 
hazardous phenomena,” In Proc. SMC 2011 (special session on 
Collaborative Wireless Sensor Networks), Anchorage-Alaska, 
October 2011, pp. 3439-3445.
[13] D. V. Manatakis, E. S. Manolakos, “Predictive Modeling of 
the Spatiotemporal Evolution of an Environmental Hazard and its 
Sensor Network Implementation” In Proc. ICASSP 2011, May
2011, Prague-Czech pp. 2056-2059.
[14] B. Pavkovic , J. Radak, N. Mitton, F. Rousseau, I.
Stojmenovic, “From real neighbors to imaginary destination: 
emulation of large scale wireless sensor networks ”ADHOC-
NOW'12 Proc. of the 11th int. conf. on Ad-hoc, Mobile, and 
Wireless Networks, pp. 459-471, isbn: 978-3-642-31637-1.

[15] AVR Raven – Atmel Corporation 
http://www.atmel.com/tools/AVRRAVEN.aspx. Last accessed
(20/10/2013).
[16] AVR2016: RZRAVEN Hardware User's Guide
http://www.jm.pl/karty/ATAVRRZRAVEN.pdf Last accessed 
(20/10/2013).
[17] A. Dunkels, B. Gronvall, and T. Voigt. “Contiki: A
lightweight and Àexible operating system for tiny networked 
sensors”. In Proc. of the 29th Ann. IEEE Int. Conf. on Local 
Computer Networks, LCN ’04, pp. 455–462, Wash., DC, 2004.
[18] AVR Dragon – Atmel Corporation 
http://www.atmel.com/tools/avrdragon.aspx. Last accessed
(20/10/2013).
[19] N. Bogdos, E. S. Manolakos, “A tool for simulation and geo-
animation of wildfires with fuel editing and hotspot monitoring 
capabilities,'” Elsevier Journal of Environmental Modeling and 
Software, Vol.46, August 2013, pp. 182-195.
[20] E Shih, S Cho, N Ickes, R Min, A Sinha, A Wang and A 
Chandrakasan “Physical layer driven protocol and algorithm 
design for energy-ef¿cient wireless sensor networks”, In Proc. of 
ACM MobiCom’01, pp. 272-287 Rome, Italy.
[21] Raghunathan, V.; Schurgers, C.; Sung Park; Srivastava, M.B., 
"Energy-aware wireless microsensor networks," Signal Processing 
Magazine, IEEE , vol.19, no.2, pp.40,50, Mar 2002.


