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ABSTRACT

In this paper, a novel algorithm for bandwidth reduction in adap-
tive distributed learning is introduced. We deal with diffusion net-
works, in which the nodes cooperate with each other, by exchanging
information, in order to estimate an unknown parameter vector of
interest. We seek for solutions in the framework of set theoretic esti-
mation. Moreover, in order to reduce the required bandwidthby the
transmitted information, which is dictated by the dimension of the
unknown vector, we choose to project and work in a lower dimension
Krylov subspace. This provides the benefit of trading off dimension-
ality with accuracy. Full convergence properties are presented, and
experiments, within the system identification task, demonstrate the
robustness of the algorithmic technique.

Index Terms— Adaptive distributed learning, Krylov sub-
spaces, projections.

1. INTRODUCTION

Wireless sensor networks (WSNs) have attracted considerable inter-
est over the recent years, due to the plethora of applications in which
they contribute. Typical examples of these are: acoustic source lo-
calization, life sciences, e.t.c. A typical WSN consists ofa number
of nodes, which sense an amount of data from the environment,and
perform the essential computations, in order to estimate anunknown
vector of interest. This paper deals with the case where all the nodes
take part in the computations, which is known as the decentralized
mode of operation. In such a scenario, nodes do not act as indi-
vidual learners, but cooperate with each other. Such a cooperation
is known that results in an enhanced performance, [1]. Two types
of decentralized solutions have been proposed. The incremental, in
which each node communicates with only one node, called neigh-
bour, and henceforth the network has a cyclic topology, e.g., [2], and
the diffusion, where a node, sayk, is able to communicate with a
number of nodes, that constitute the neighbourhood ofk, e.g., [1, 3].

In this paper, we consider a diffusion network in which the nodes
are scheduled to estimate, adaptively, an unknown, yet common to
all the nodes, parameter vector, which is assumed to live in them-
dimensional Euclidean spaceRm. The problem is attacked within
the set theoretic framework; instead of seeking for a singlesolution,
we seek for a set of possible solutions. This set is formed by the
intersection of a sequence of closed convex sets. Each one ofthese
convex sets defines a region inRm, which consists of all the points
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that are in agreement with a measurement point in the training data
set. The term in agreement means that it results in an error that obeys
a bounding condition. Such an approach is in line with robuststatis-
tics loss functions, which were recently popularized in thecontext
of Support Vector Regression. For the specific error bounding con-
dition adopted in this paper, the aforementioned closed convex sets
take the form of hyperslabs.

In addition, since cooperation implies the exchange between
nodes, at every time instant, of them coefficients of the obtained
estimates, the required communications bandwidth is directly re-
lated to the dimensionality ofRm. In order to reduce the bandwidth
budget, we choose to project and work in a subspaceR

D, D ≤ m,
of lower dimension. In order to “control” the optimality of the
projection, theRD subspace is selected to be the respective Krylov
one, due to its strong connection with the optimal Wiener solution
[4, 5]. It turns out that the basic recursion of the developedalgorithm
consists of projections of points, lying in the Krylov subspace, onto
the intersection of this subspace with hyperslabs defined inR

m. An
analytic formula will be presented, as well as the theoreticanalysis
of the algorithm, which enjoys a number of nice convergence prop-
erties. Finally, experiments verify the robustness of the algorithm
even in cases when the subspace is of significantly lower dimension
than the original unknown vector.

.

2. NETWORK AND PROBLEM FORMULATION

The set of real numbers and the set of non-negative integers will be
denoted byR andN respectively. Moreover, vectors will be denoted
by boldface letters, matrices by uppercase letters, and(·)T will stand
for the transpose of the respective vector or matrix. Finally, ‖ · ‖ will
stand for the Euclidean norm andE{·} for the expectation operator.

Our general goal is to estimate a parameter vector of interest
w∗ ∈ R

m, through measurements collected at theN nodes of the
diffusion network. We assume that each node,k, at time instancen,
has access to the measurements(dk(n),uk,n) ∈ R × R

m, which
are related according to the linear system

dk(n) = u
T
k,nw

∗ + vk(n), (1)

wherevk(n) is the noise process with standard deviation equal toσk.
The general concept of a diffusion network can be summarizedas
follows. Each sensor collects information from its environment, i.e.,
the measurement pair(dk(n),uk,n), in order to proceed to the adap-
tation step, and it also exploits the estimates transmittedby its neigh-
bouring nodes. From now on,Nk will stand for the neighbourhood
of nodek, i.e., the nodes with which communication is possible.
Such a scenario can be seen as a fusion of the estimates collected by
the nodes of the neighbourhood,wl(n), l ∈ Nk. For nodek, at time
instancen, the most common example of a combination strategy is:



φk(n) =
∑

l∈Nk
ck,lwl(n), whereck,l = 0 if l /∈ Nk, ck,l > 0

if l ∈ Nk and
∑

l∈Nk
ck,l = 1. It has been verified ([3]), that

for a properly chosen adaptation algorithm, the combination strat-
egy can lead to asymptoticconsensus, which implies that the nodes
will reach the same estimate, and that the performance of therespec-
tive adaptive filters is better, compared to the case where the nodes
work individually, e.g., [6]. Depending on the way with which this
fused information takes part in the computations, we can define the
following combination strategies: combine-adapt, in which the in-
formation collected by the neighbourhood is fused under a certain
protocol and then is put into the adaptation step, e.g., [1, 3]. Adapt-
combine, where the adaptation step precedes the combination part,
e.g., [6], and consensus based, where the computations are made in
parallel and there is no clear distinction between the combine and
the adapt steps, e.g., [7].

3. THE ALGORITHMIC FRAMEWORK

A set, C ⊂ R
m, will be called convex if∀b1, b2 ∈ C and ∀α ∈

[0, 1], αb1 + (1 − α)b2 ∈ C. This implies that every line segment
with endpointsb1, b2 will lie in C. Moreover, the projection map-
ping, PC onto C, is the mapping which takes aw to the uniquely
existing point,PC(w) ∈ C, such that‖w − PC(w)‖ = inf{v ∈ C :
‖w − v‖}.

The algorithm, to be described, belongs to the family of the
Adaptive Projected Subgradient Method (APSM) [8]. The general
notion is to find points that are inagreementwith the measurements.
To be more specific, every pointw that satisfies the bounded condi-
tion 1

Sn := {w ∈ R
m : |d(n)− u

T
nw| ≤ ε}, (2)

will be in agreement with the current measurements set. All the
points that are defined by (2) lie in a hyperslab inR

m. The user-
defined parameterε determines the hyperslab’s width, and it is cho-
sen so as to account for the noise, e.g., [3]. Our initial task, now, be-
comes to seek for points lying in the intersection of these hyperslabs,
which “arrive” sequentially. This can be achieved by a sequence of
projections onto them, and the occurring algorithmic scheme is

w(n+ 1) = w(n) + µ(n)

(

n
∑

j=n−q+1

ωjPSj
(w(n))−w(n)

)

,

(3)
whereq determines the number of hyperslabs considered at time
n, and controls the convergence speed [9],µ(n) is the step-size
that guarantees convergence,

∑n

j=n−q+1 ωj = 1 andPSn(·) stands
for the projection operator ontoSn, given by: PSn(w) = w +
βnun, ∀w ∈ R

m with

βn =



















d(n) − uT
nw + ε

‖un‖2
, d(n) − uT

nw < −ε,

0, |d(n) − uT
nw| ≤ ε,

d(n) − uT
nw − ε

‖un‖2
, d(n) − uT

nw > ε.

4. REDUCED RANK DIFFUSION ALGORITHM

A modified version of (3) with application to diffusion networks was
presented in [3]. The steps of the algorithm, in each node, are the

1Here, the subscript which denotes the node is suppressed.

following 2

φk(n) =
∑

l∈Nk

ck,lwl(n), (4)

wk(n+ 1) = φk(n) + µk(n)×
(

n
∑

j=n−q+1

ωk,jPSk,j
(φk(n))− φk(n)

)

, (5)

whereSk,j andωk,j are defined in a similar way as in (2). It can
be readily seen that (4) is the combination step, whereas (5)is the
adaptation one. Hence, the algorithm belongs to the family of the
combine adapt algorithms.

From (4) it is not difficult to see that every node, at every time
instance, transmits its estimate to the neighbouring nodes, which
amounts tom coefficients to be transmitted. In order to reduce this
number, a possible strategy is to restrict the initial solution space
(Rm) to a subspace of lower dimension, sayD, whereD < m. In
this paper, we will consider Krylov subspaces for dimensionality re-
duction (see also [4, 5]). For a given matrixA (m×m) and a vector
c (m × 1), the definition of theD-dimensional Krylov subspace is
KD(A, c) = span{c,Ac, . . . ,AD−1c}.

Let us defineR = E{unu
T
n} andp = E{d(n)un}, where

d(n),un are related according to (1); the celebrated Wiener-Hopf
equation [10] states thatw∗ = R−1p. It has been proved, e.g.,
[5], that the reduced rank Wiener filter, of dimensionD, belongs to
KD(R,p). In other words, it is a reasonable strategy to seek for a
possible solution in this subspace. However, in distributed networks,
despite the fact that every node seeks for the same unknown vector,
the statistics in each node may be different. This implies that a dif-
ferent viewpoint has to be followed. Let us define the mean square
error loss functionL : Rm → [0,+∞), for the whole network

L(w) =
1

N

N
∑

k=1

E
{

(dk(n)− u
T
k,nw)2

}

=
1

N

N
∑

k=1

(wT
Rkw − 2wpk + σ2

dk
)

= w
T
R

′
w − 2wp

′ +
1

N

N
∑

k=1

σ2
dk
, (6)

where σdk = E{d2k(n)}, R′ = 1
N

∑N

k=1 E{uk,nu
T
k,n} =

1
N

∑N

k=1 Rk andp′ = 1
N

∑N

k=1E{dk(n)uk,n} = 1
N

∑N

k=1 pk.
It can be seen, that the solution minimizing (6) is given byw∗ =
R′−1p′. This argument indicates that it may be reasonable to select
R′ andp′ (i.e., the average values) in order to construct the respec-
tive Krylov subspace. The question, now, is how to constructR′,p′,
since we assume that there is no a-priori knowledge ofRk, pk. A
possible strategy, followed also in [4], is to resort to approximations
of the unknown quantities, in which the measurements,dk(n),uk,n,
are exploited. To be more specific,̂Rk,n = γR̂k,n−1 + uk,nu

T
k,n

and p̂k,n = γp̂k,n−1 + dk(n)uk,n, whereγ ∈ (0, 1] is the for-
getting factor, also met in the RLS algorithm [10]. The previous
relations, imply that in order to construct the respective subspace,
every node must have access to measurements coming out from
the other nodes of the network, something that is, in general, in-
feasible in distributed networks. However, it is not essential to
updateR̂k,n, p̂k,n at every time instance; we assume, instead, that

2In [3], an extra step which was a projection ofφk(n) onto a hyperslab
took place. Here, for simplicity purposes this step is omitted.
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Fig. 1. Illustration of a hierarchical network withL = 5. The solid
lines denote the simple communication links, whereas the dashed-dotted
ones the hierarchical communication links. At every time instant, nodes
have to transmit to their neighbourhoodD coefficients. In addition to that,
at time instancen node1 transmits to node2, u1,n′ , d1(n′), at n + 1,
u4,n′ , d4(n′), atn+2, u5,n′ , d5(n′) and atn+3, u6,n′ , d6(n′). Node2,
at time instancen, transmits to3, u2,n′ , d2(n′), u7,n′ , d7(n′). At n + 1,
u1,n′ , d1(n′), u8,n′ , d8(n′), atn + 2, u4,n′ , d4(n′), u10,n′ , d10(n′), at
n + 3, u5,n′ , d5(n′), u9,n′ , d9(n′) and atn + 4, u6,n′ , d6(n′). The rest
of the communications follow similar philosophy. The largest bandwidth is
needed for node2 and amounts toD + 4, whereD originates from theD
coefficients of the estimate and the rest4 from the information needed to
construct the subspace.

R̂k,n, p̂k,n will be updated everyL time instances and the approx-
imations, now, are given by:R̂k,n′ = γR̂k,n′−1 + uk,n′uT

k,n′

and p̂k,n′ = γp̂k,n′−1 + dk(n
′)uk,n′ , with n′ = b n

L
c + 1,

whereb·c denotes the floor function. If one recalls thatuk,n′ =

[uk,n′ uk,n′−1 . . . uk,n′−m+1]
T , it can be readily seen that inside

a time window, of sizeL, the newly arriving information from
each node consists of two numbers:uk,n′ and dk(n

′), and this
information must be delivered to the other nodes of the network.

In order to improve the network’s flow, we adopt a hierarchi-
cal model [6], in which the nodes are clustered, under a predefined
protocol, and we can classify them into two subclasses: the hierar-
chical and the non-hierarchical ones. The former are able tocom-
municate over three hops, whereas the latter are not, and every non-
hierarchical node is connected to a hierarchical one. An example
which illustrates how the information is distributed over the network
can be seen in Fig. 1. Obviously, for a given network and a spe-
cific value ofL, different scenarios can be adopted. The critical
point is that the information related to the updates ofR̂′ and p̂′,
can be spread overL, thus reducing the bandwidth demand. Now,
assume thatKn is am × D matrix3, whose columns form an or-
thonormal basis ofKD(R̂′

n′ , p̂′
n′ ), with R̂′

n′ = 1
N

∑N

k=1 R̂k,n′

and p̂′
n′ = 1

N

∑N

k=1 p̂k,n′ . It holds that∀w ∈ KD(R̂′
n′ , p̂′

n′)

there existsw̃ ∈ R
D s.t. w̃ = KT

n w. The resulting algorithm in
the lower dimension space is.

φ̃k(n) =
∑

l∈Nk

ck,lw̃l(n) =
∑

l∈Nk

ck,lK
T
n wl(n), (7)

w̃k(n+ 1) = φ̃k(n) + µ̃k(n)×
(

n
∑

j=n−q+1

ωk,jPS̃k,j
(φ̃k(n))− φ̃k(n)

)

, (8)

whereS̃k,n := {w̃ ∈ R
D : |dk(n) − ũT

k,nw̃| ≤ εk}, with ũk,n =

3This is constructed locally, with the Gram-Schmidt method.

KT
n uk,n. Furthermore,̃µk(n) ∈ [0, 2M̃k,n] where

M̃k,n =







∑n
j=n−q+1 ωk,j‖PS̃k,j

(φ̃k(n))−φ̃k(n)‖2

∑
n
j=n−q+1

‖ωk,jPS̃k,j
(φ̃k(n))−φ̃k(n)‖2

, if φ̃k(n) /∈ ⋂n

j=n−q+1 S̃k,j ,

1, otherwise.
(9)

The complexity of the algorithm is of order:O(qD) coming4 from

(8), O(Nm
L

) from the update ofR̂′
n′ , p̂′

n′ , andO(Dm2

L
) due to the

computation ofKn, [4].

Claim 1 Eq. (7) is equivalent to

φk(n) =
∑

l∈Nk

ck,lwl(n),

wk(n+ 1) = Kn+1K
T
n

(

φk(n) + µk(n)×
(

n
∑

j=n−q+1

ωk,jPSk,j∩KD(R̂′

n′
,p̂′

n′
)(φk(n))− φk(n)

))

,

andµk(n) ∈ [0, 2M̃k,n].

Proof: Proof is omitted due to lack of space.
Remark 1: From (7), it can be seen that the estimate transmitted

from the nodes, at every time instance, is of lengthD. In the sim-
ulations section it will be verified that even a smallD can provide
considerably good performance of the respective algorithm.

Remark 2: Following a similar philosophy as in [4], it can be

proved that (7) tracksP (R′)

KD(R′,p′)(w
∗), where withP (R′)

KD(R′,p′) we
denote the projection onto the subspace, in theR′ norm sense, in-
stead ofw∗.

Theorem 2 Monotone Approximation: Assume that there exists a
non-negative integer, sayn0, for whichΩ =

⋂

n≥n0
Ωn 6= ∅ where

Ωn = KD(R̂′
n′ , p̂′

n′) ∩ Ω′
n with Ω′

n :=
⋂N

k=1

⋂n

j=n−q+1 Sk,j .
Then it holds that

‖w(n+ 1)−w∗‖ ≤ ‖w(n)−w∗‖, ∀n ≥ n0,

wherew∗ =
[

wT
∗ . . .wT

∗

]T ∈ R
Nm, ∀w∗ ∈ Ω and w(n) =

[

wT
1 (n) . . .w

T
N(n)

]T ∈ R
Nm. The previous inequality states that

every iteration leads us closer to the feasible region, i.e., the inter-
section of the respective hyperslabs with the Krylov subspace. Notice
here, that we let a finite number of outliers not to share intersection,
without affecting the convergence of the algorithm.

Asymptotic Consensus: As mentioned in section 2, a desir-
able property of distributed learning is consensus. Under the pre-
viously mentioned assumptions and if there existsn1 such that
R̂′

n = R̂′
n1

, ∀n ≥ n1 and p̂′
n = p̂′

n1
, ∀n ≥ n1

5 then asymptotic
consensus holds, i.e.,

lim
n→∞

‖wk(n)−wl(n)‖ = 0, ∀k, l ∈ 1, . . . , N.

Strong Convergence: Let us defineO := {z ∈ R
Nm : z =

[vT . . .vT ]T , v ∈ R
m}. If the previously mentioned assumptions

4In a parallel processing environment, this complexity drops toO(D).
5This assumption does not pose a problem to us, if the statistics of the

nodes remain unchanged, due to the fact that for a largen1 the approxima-
tions ofR′, p′ will be good and it will not be essential for the subspace to
change.
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Fig. 2. Average MSE in the first experiment.

hold, and under some other mild assumptions, which are omitted to
save space, there existŝw∗ ∈ O such that

lim
n→∞

w(n) = ŵ∗.

Proof: The proof is omitted due to lack of space. This theorem states
that the algorithm, for the whole network, converges asymptotically
to a point, inRNm, which respects the consensus property. Further-
more, the distance of the estimate occurring, at each node, from the
set of the desirable solutions, i.e., the intersection of the subspace
with the hyperslabs, tends to zero asn → ∞.

5. EXPERIMENTS

In this section, we present experiments within the system identifi-
cation task, in order to study the performance of the developed al-
gorithm. We compare the proposed algorithm with a modification
of the algorithm given in (4), (5), denoted as subsampled APSM
(sAPSM), where each node, instead of transmitting the wholeesti-
mate vector, at every time instance, transmits a subset ofD coeffi-
cients of it. Such a scenario falls within the spirit of partial updating.
To be more specific, at time instance1, the firstD coefficients are
transmitted, at time instance2, the coefficients#D + 1, . . . ,#2D
and so on. In the first experiment we consider a distributed net-
work consisted ofN = 10 nodes and the unknown vector to be
estimated is of lengthm = 160. The standard deviation of the
noise, which is assumed to be zero-mean and Gaussian, is given by
σk =

√
αk × 0.1 whereαk ∈ (0, 0.5) under the uniform distribu-

tion. Furthermore,uk,n = τkuk,n−1 + χk,n, whereτk ∈ (0, 0.5)
and respects the uniform distribution, andχk,n is zero-mean Gaus-
sian with standard deviation equal to1. We also chooseD = 10
for the Krylov based algorithms and for the sAPSM, andq = 4,

εk =
√
2 × σk, µk(n) =

M̃k,n

2
for all the algorithms. Finally, the

combinersck,l are chosen with respect to the Metropolis rule [1],
the experiments are averaged over100 experiments, for smoothing
purposes, and the comparative metric presented is the average Mean
Square Error (MSE), i.e.,1

N

∑N

k=1(dk(n) − uT
k,nwk(n)) . In the

first experiment (Fig. 2) we letγ = 1 and we alter the parameter
L. It can be seen that the smaller the update window, the fasterthe
convergence. This is expected, because for a small window weup-
date the estimate of the subspace more often, and we reach sooner
to a good approximation of it, compared to the case of a largerwin-
dow. Furthermore, it can be readily seen, that the Krylov-based al-
gorithms outperform significantly sAPSM. When the Krylov based
algorithms are compared with the standard APSM, i.e., full dimen-
sionality is used, we observe that there is a slight loss of performance
with respect to the error floor, although the Krylov based algorithms
converge faster. In the second experiment (Fig. 3), the parameters
remain the same as in the previous one, albeit atn = 1800 the chan-
nel suddenly changes. This experiment takes place in order to check
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the tracking ability of the proposed algorithm. Now, we fixL = 1
and we alterγ. From Fig. 3 it can be seen that until the channel
changes, the best performance is achieved forγ = 1 whereas for
smallerγ the steady state error floor is increased. However, as in the
RLS case [10], ifγ = 1, the algorithm has a long memory of the old
subspace that has to change and its tracking ability is not good. On
the contrary, the other choices ofγ provide a good tracking ability.
Of course for largeL the tracking ability may be affected. How-
ever, different scenarios can be considered, which will be presented
elsewhere due to lack of space.

6. CONCLUSIONS

A novel algorithm, for bandwidth reduction in adaptive learning in
diffusion networks, is introduced in the framework of set theoretic
estimation. To achieve this reduction, the estimates are forced to
lie in a lower dimension Krylov subspace. The results show that
substantial bandwidth reduction can be achieved at the expense of
only slight performance degradation, with respect to the error floor.
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