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Abstract—In this paper, a sparsity promoting adaptive algo-
rithm for distributed learning in diffusion networks is developed.
The algorithm follows the set-theoretic estimation rationale. At
each time instance and at each node of the network, a closed
convex set, known as property set, is constructed based on the
received measurements; this defines the region in which the
solution is searched for. In this paper, the property sets take the
form of hyperslabs. The goal is to find a point that belongs to
the intersection of these hyperslabs. To this end, sparsity encour-
aging variable metric projections onto the hyperslabs have been
adopted. In addition, sparsity is also imposed by employing vari-
able metric projections onto weighted ¢, balls. A combine adapt
cooperation strategy is adopted. Under some mild assumptions,
the scheme enjoys monotonicity, asymptotic optimality and strong
convergence to a point that lies in the consensus subspace. Finally,
numerical examples verify the validity of the proposed scheme
compared to other algorithms, which have been developed in the
context of sparse adaptive learning.

Index Terms—Adaptive distributed learning, diffusion net-
works, projections, sparsity.

I. INTRODUCTION

PARSITY, i.e., the presence of a small number of nonzero

coefficients in an unknown signal/parameter vector, which
is to be estimated, has been recently attracting an overwhelming
interest under the Compressed Sensing (CS) framework [1], [2].
Such techniques have been applied in a wide range of appli-
cations such as data compression, echo cancellation, spectrum
cartography, medical signal processing, to name but a few, e.g.,
[3]-[5]. However, most of the efforts, so far, have been invested
in developing algorithms which are appropriate for batch mode
of operation. Accordingly, the estimation of the signal param-
eters can be achieved only after a fixed number of measure-
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ments has been collected and stored. If a new measurement
becomes available, the whole estimation process has to be re-
peated from scratch. As the number of measurements increases,
the computational burden becomes prohibitive for real time ap-
plications. On the contrary, time-adaptive/online updating im-
proves the current estimate dynamically as new measurements
are obtained. Moreover, batch methods are not directly suited
for time varying scenarios, where the parameter vector changes,
as time evolves. Online learning techniques overcome the pre-
viously mentioned limitations. Online techniques for sparsity-
aware learning have recently become the focus of intense re-
search activity, e.g., [6]-[8].

In this paper, the task of sparsity-aware learning is treated
in the context of distributed processing [9]-[12]. To be more
specific, we consider the typical setup of a wireless sensor net-
work, in which the estimate of the unknown parameter vector
is based on noisy measurements sensed by a number of spa-
tially distributed nodes. This task can be fulfilled following sev-
eral approaches. In the so called centralized scenario, the nodes
transmit the measured information to a central node, called fu-
sion center, which carries out the full amount of computations.
Nevertheless, the existence of a fusion center is not always fea-
sible due to power or geographical constraints. Furthermore,
this approach lacks robustness, since if the fusion center is mal-
functioning then the network collapses. Hence, in many appli-
cations, a decentralized philosophy has to be followed, in which
the nodes themselves take part in the computation task. The
most celebrated examples of such networks are:

* The incremental one, in which each node is able to commu-
nicate with only one neighbouring node and, henceforth,
the nodes are part of a cyclic pattern, e.g., [13], [14]. This
topology requires small bandwidth, albeit it is not robust
to cope with malfunctioning nodes; once a node fails, the
network collapses.

¢ The diffusion, where each node shares information with a
subset of nodes. Despite the fact that the diffusion topology
requires larger bandwidth, compared to the incremental
one, it is robust to cope with node failures, and its imple-
mentation turns out to be easier, compared to the imple-
mentation of an incremental one, when large networks are
involved [9], [10], [12], [15].

Although there are a few sparsity promoting methods for batch
processing in distributed learning, e.g., [3], [16], to the best of
our knowledge there is no algorithm, yet, capable for time-adap-
tive/online processing to operate in diffusion networks. The al-
gorithm to be presented here addresses both needs: a) that of
the sparsity promotion and b) that of operation in diffusion net-
works. Its development follows the set-theoretic estimation ra-
tionale [17]; that is, instead of seeking for a (unique) optimum
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vector, we search for a set of points that are in agreement with
the received set of measurements. To this end, at each time in-
stance, a closed convex set is defined by the currently received
input-output training data pair, and any point that lies within this
set is considered to be in agreement with the current measure-
ments. In this paper, these convex sets are chosen to be hyper-
slabs. Moreover, following similar philosophy as in [6], in order
to exploit the a-priori knowledge concerning the sparsity of the
unknown vector, we constrain the search for a solution within
sparsity-promoting weighted ¢; balls. Thus, the goal becomes
that of finding a point that lies in the intersection of the infinite
number of hyperslabs with the previously mentioned constraint
sets; this is successfully solved (see for example [18]-[20]) by
employing a sequence of projections onto the hyperslabs and
the weighted £; balls. In the current study, the previous scheme
is enhanced with respect to its sparsity promoting potential; this
is achieved by reformulating the projection operators appropri-
ately so as to exploit further the a-priori information concerning
the sparsity of the unknown vector. To this end, the variable
metric projections rationale is adopted, e.g., [21]. As a con-
sequence, the variable metric projections improve the conver-
gence speed, when seeking for a sparse vector, since different
weights are assigned at each coefficient of the updated vector,
and through this procedure, small coefficients are forced to di-
minish faster. The reasoning of assigning different weights at
each coefficient is also met in the so called proportionate algo-
rithms [22], [23]. The main contributions of this paper are the
following.

* An adaptive distributed algorithm suitable for estimating
sparse unknown vectors in diffusion networks is devel-
oped. As we have already mentioned, this is the first time
that a sparsity promoting distributed adaptive algorithm is
presented.

+ The algorithm builds upon variable metric projections and
the variable metric projection on a weighted ¢; ball is
derived.

* The previous choice of projections leads to a time varying
induced inner product and at the same time the constraints
on the weighted #; balls are time varying as well. Con-
vergence for such a task is also provided, for a first time.
Moreover, since our focus is on diffusion learning strate-
gies, consensus is also established .

The paper is organized as follows. In Section II the general
problem is described and in the next section, adaptive strate-
gies for estimating sparse signals are provided. In Section IV,
we shed light on basic concepts regarding adaptive distributed
learning and in Section V the proposed algorithm, together with
its theoretical analysis, is discussed. Finally, in Section VI the
performance of the proposed algorithm is validated and in the
Appendices the theoretical background is discussed, and full
proofs of the theorems are given.

The notation which will be used throughout the paper is
the following. The set of all real numbers and the set of
all nonnegative integers are denoted by R and Z>q, respec-
tively. Given two integers ji,jz, with j;3 < 72, we define
Ji1.d2 = {41....,42}. The stage of discussion will be the
Euclidean space R™, where m is a positive integer. We denote
vectors by boldface letters, e.g., b, and matrices with upper-case
boldfaced letters. Furthermore, we define the weighted inner

5413

product as follows: Yh;, he € R™, (hy, ho)y = thhg, and
the weighted norm Vh € R™, | h|lv = +/{h, h)v, where the
m X m matrix, V, is positive definite, and the notation (-)T
stands for the transposition operator. The Euclidean norm,
i.e., |||, is a special case of the previously mentioned norm,
and occurs if V. = 1I,,, where I,, is the m X m identity
matrix. Moreover, the 2-norm of a matrix, say A, is denoted
by ||A||. Given a vector h = [hy,...,h,]T € R™, the 4,
norm is defined ||hll; := >°",|h;|, and the support set,
supp(h) := {i € 1,m : h; # 0}. Finally, the £y “norm” is the
cardinality of the support set, i.e., ||k||o := |supp(h)|, where
given a set, say S, the notation |S| stands for its cardinality.

II. PROBLEM FORMULATION

Consider the problem of estimating an unknown parameter
vector k., € R™, exploiting measurements (dnaun)'nelzo €
R x R™, which are related via the linear system

d, = ugh* + vp, Y € Z5g )]
where v,, is the noise process and n. € 7> denotes the (discrete)
time index. We assume that h.. is sparse, i.e., ||k ||o < m, or, in
other words, it has a few number of nonzero coefficients. Sup-
pose that a finite number of measurements, say /V, is available.
In that case, (1) can be written as

d=Uh, +v,
where the regression matrix U = [ug,...,uy]? € RVX™,
d = [dl, ey dA"]T S R‘N, v = ['Ul, ey ’U]\r]T &€ IRJV. When

N < m, classical techniques, as for example the celebrated
least-squares method, fail to obtain a good estimate of the un-
known parameters, since the sparsity of h, is not taken into
consideration and, consequently, there is no guarantee that the
estimate will predict the support, i.e., the set of nonzero com-
ponents, while forcing the rest to become zero. This results
to an increased misadjustment between the true and the esti-
mated values, [24]. Nevertheless, one can resort to a sparsity
promoting technique, namely Least Absolute Shrinkage and Se-
lection Operator (Lasso), and overstep the previously mentioned
problem. Analytically, the Lasso estimator promotes sparsity by
solving the following optimization task

h= argmin ), <s|ld — Uh|?,

where the term ||d — Uh|| accounts for the error residual in the
estimation process; the £1 norm promotes sparsity by shrinking
small coefficient values towards zero, e.g., [4]. Most of the
emphasis in solving the Lasso problem has been given on
batch techniques, see, e.g., [25]. However, such techniques are
inappropriate for online learning, where data arrive sequen-
tially and/or the environment is not stationary but it undergoes
changes as time evolves.

III. SPARSITY PROMOTING ADAPTIVE ALGORITHMS

Although sparsity promoting adaptive algorithms have
drawn the attention of the signal processing community for
many years, see, e.g., [22], [23], it is only recently that the
topic is being treated in a more theoretically sound framework,
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within the spirit of ¢; regularization, e.g., [6]-[8], [26], [27].
The a-priori information concerning the underlying sparsity is
exploited by constraining the £; norm. Providing this a-priori
information, the convergence rate is improved significantly,
and the associated error floor in the steady state is also reduced.

As it is often the case, most of these efforts evolve along the
three main axes in adaptive filtering. One is along the gradient
descend rationale, as this is represented in the adaptive learning
by the LMS [7], [27]. The other direction follows Newton-type
arguments, as represented by the RLS [8]. The other route is
more recent and builds upon recent extensions of the classical
Projections Onto Convex Sets (POCS) theory, which allow for
applications in the online time-adaptive setting, e.g., [18]-[20],
[28]. Our new algorithm belongs to this last category and it ex-
ploits its potential to allow for convex constraints to be effi-
ciently incorporated within the algorithmic flow.

A. Set-Theoretic Estimation Approach and Variable Metric
Projections

In this paper, the set-theoretic estimation rationale e.g., [17],
[20], [29], will be adopted. The philosophy behind this family
of algorithms is that instead of adopting a loss function to be
optimized, one obtains an estimate that lies in the intersection
of an infinite number of convex sets. Each one of these (convex)
property sets is constructed using information which is provided
by the respective measurement pair (d,,, w,, ); based on this in-
formation as well as that of the noise source, a convex set/region
is constructed where the unknown vector lies with a high prob-
ability. We say that such a convex set is “in agreement” with the
received measurement pair. Moreover, when convex constraints
are present, each one of them defines a convex region and the
solution is searched in the intersection of all the involved sets;
those associated with the measurements as well as those with
the constraints.

A strategy to find a point that lies in the intersection of all
these convex sets was developed in [18]. This algorithmic
scheme can be seen as a generalization of the POCS theory
[17], [30], [31]. The difference lies in the fact that in the clas-
sical POCS theory a finite number of convex sets is involved.
On the contrary, in its adaptive version, an infinite number of
sets are involved. In the adaptive setting, the task of identifying
a point in the intersection of convex sets is accomplished by
projecting, in parallel, the currently available estimate over the
g (user-defined) most recently “received” sets. This provides
the new estimate. If convex constraints are present, e.g., [19],
further projections are performed, one for each of the constraint
sets (the definition of the projection is given in Appendix A).
Under some mild assumptions, the estimates converge to a
point that lies in the intersection of all the involved convex sets.

It has been pointed out (see, for example, [21]), that the spar-
sity-related a-priori knowledge can be “embedded” in the pro-
jection operators to the benefit of the algorithm’s performance.
To this end, the notion of the variable metric projection was in-
troduced. The result of a variable metric projection of a vector
onto a closed convex set (see also Appendix A) is determined
by: a) a positive definite matrix, which defines the induced inner
product; b) the specific convex set, onto which the projection
takes place; and c) the vector itself. As it will become clear later
on, for a properly chosen matrix, which is time-dependent and it
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is constructed via the current estimate at each time instance, the
variable metric projection pushes small coefficients to diminish
faster. In other words, by employing at each time instance a
different inner product in our Euclidean space, we manage to
change the topology of the space in order to favor sparse solu-
tion vectors.

In the current paper, the adopted property sets, which define
our solution set take the form of hyperslabs, i.e.,

Sp={heR"™:|d, - u£h| < e} 2)
where € > 0 is a user-defined parameter. The parameter € serves
as a threshold and it takes into consideration the noise, as well as
possible inaccuracies in the adopted model. In this setting, any
point that lies within this hyperslab is considered to be in agree-
ment with the current measurement. The choice of a hyperslab
is in line with criteria that have been proposed in the context
of the robust statistics rationale, e.g., [20], [32]. The variable
metric projection onto the respective hyperslabs is defined as
[33]:

vheR™, PCY(R):=h+ 8,6 u, 3
where
d,, 7'"-3: h+5 . T B
W’ if dn u,, h < €,
[-}'n, = Oa lfld'n — ufh‘ S €,
dy, *'U:ths . T
YA ifd, —u,h>e

n

Note that if G,, = I,,,, then (3) is the standard metric projection
onto a hyperslab. The positive definite diagonal matrix G/, Lis
constructed following similar philosophy as in [21], [23]. The

{n)
+aip
where « € [0, 1) is a parameter, that determines to which extend
the sparsity level of the unknown vector will be taken into con-
sideration, and hgn) denotes the ¢th component of h,,. Now, in
order to grasp the reasoning of the variable metric projections,
consider the ideal situation, in which G, ! is generated by the
unknown vector k.. It is easy to verify that g, > g; %, if i €
supp(h.), and i’ ¢ supp(h.). Hence, employing the variable
metric projection, the amplitude of each coefficient of the vector
used to construct G, determines the weight that will be as-
signed to the corresponding coefficient of the second term of the
right hand side in (3). That is, components with smaller mag-
nitude are multiplied with small coefficients of G, ! Loosely
speaking, the variable metric projections accelerate the conver-
gence speed when tracking a sparse vector, since by assigning
different weights pushes the coefficients of the estimates with
small amplitude to diminish faster. The geometric implication
of it is that the projection is made to “lean” towards the direc-
tion of the more significant components of the currently avail-
able estimate. Another viewpoint, as documented in [23], is the
following. The coefficients of the matrix G, ! which are mul-
tiplied with the second term of the right hand side in (3), can
be seen as m individual step-sizes, one for each coefficient. As
it is by now well established in adaptive filter community (see
for example [34]), the larger the step-size the faster the con-
vergence. Hence, coefficients of large amplitude are assigned
a large “step-size”, whereas the rest are multiplied by a smaller

1-«
m

ith coefficient of its diagonal equals to g, 5 =
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hy

Fig. 1. Illustration of a hyperslab, the standard metric projection of a vector i
onto it, denoted by Ps,, (h), and the variable metric projection onto it.

hs

By, [wy, p)

f\ By, [1,p]

i T

Fig.2. Illustration of a weighted ¢, ball (solid line magenta) and an unweighted
€, ball (dashed line blue).

“step-size”. This results to a faster convergence speed compared
to the case where the same step-size is adopted to each one
of coefficients; the latter case results in G,, = 1I,,, as it has
been shown in [22], [23]. Obviously, since h. is unknown, the
weights rely on the available estimates, i.¢., h,,, at each time in-
stance. These concepts are depicted in Fig. 1.

Remark 1: The variable metric projections rationale is in line
with the so called proportionate algorithms [22], [23], [35]. At
the heart of these algorithms lies the fact that at every time in-
stance different weights are assigned to the coordinates of the
vector, which produces the next estimate. [ |

In this paper, we go one step further, as far as sparsity is con-
cerned. In a second stage, additional sparsity-related constraints,
which are built around the weighted ¢; ball, are employed, [2].
A sparsity promoting adaptive scheme, based on set-theoretic
estimation arguments, in which the constraints are weighted #;
balls, was presented in [6]. Given a vector of weights w,, =
[wgn), ceey 11),(;'LL)]T, where 11)§n> >0,Vi=1,...,m, and a pos-
itive radius, p, the weighted #; ball is defined as: By, [w,,, p] :=
{heR™: Y, wgn)|h,¢| < p}. Notice, that the classical £1
ball occurs if w,, = 1, where 1 € R™ is the vector of ones. The
projection onto By, [wy, p], is given in [6, Theorem 1], and the
geometry of these sets is illustrated in Fig. 2.

It was shown that the estimates of the algorithm proposed
in [6] converge asymptotically to a point, which lies arbitrarily
close to the intersection of the hyperslabs with the weighted ¢,
balls, with the possible exception of a finite number of outliers.
In this paper, a generalized version of the algorithm presented
in [6] will be developed in the next section.
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Remark 2: The weighted ¢; ball is determined by the vector
of weights, and the radius. Strategies of constructing the
weights have been proposed in [2], [6]. More specifically, the

rule w( n = T 1 =1,...,m , where €, is a sequence
(™ |+,

of positive numbers, was used in order to avoid divisions by
zero. It has been shown, e.g., [6], that by choosing the weights
according to the previously mentioned strategy, a necessary
condition that guarantees convergence of the algorithm to the
unknown parameter is to set p > ||h.]|o, since then it holds that
h, € Be, [wn. p]. [ ]

Here we should note that in [6], standard metric projections
onto the hyperslabs and the weighted ¢; balls take place. How-
ever, since we employ variable metric projections onto the hy-
perslabs, the induced inner product is time varying and it is de-
termined by the matrix G,, (see also Appendix D). This fact
forces us to employ variable metric projections onto the respec-
tive #; balls too.

1) Claim 1: Recall the definition of the diagonal matrix
G,,. The variable metrlc projection onto By, [wy,, p] is given by

(Gn) _ 3 2
By, [wn,p] — Gn P By, [G,, 1w717p]G71,-

Proof: The proof is given in Appendix B. ]

IV. ADAPTIVE DISTRIBUTED LEARNING

We now come to the main point of this paper. Our task is
to derive an algorithm, for distributed learning, to estimate
the sparse unknown parameter vector b, € R'™, by exploiting
measurements collected at the K nodes of a network which
comply with the diffusion topology. An example of such a
network is illustrated in Fig. 3. The node set is denoted by

{1,..., K} and we assume that each node is able to
communicate, i.e., to exchange information, with a subset of
N, namely N, k = 1,...,K. This set, hereafter, will be
called the neighbourhood of k. Moreover, each node has access
to the measurement pair (dks"v""km)n,ezzu , k € N, where
ur, € R™ and di,, € R, and the measurements are related
according to dy ,, = u;{ nPs + Uk, Where vy ,, stands for the
additive noise at each node. In a nutshell, what differentiates
the adaptive distributed learning from its classical adaptive
counterpart is the fact that in the former case, each node,
besides the locally received measurement pair, also exploits
information received by its neighboring nodes. For a fixed
node, say & and at every time instance, this extra information
comprises the estimates of the unknown vector, which have
been obtained at the previous time instance and from the nodes
with which communication is possible, i.e., ¥/ € A. The use
of this extra information results in a faster convergence speed,
as well as a lower steady state error floor, compared to the case
where the measurement pair is solely used, e.g., [9], [12]. One
more objective, which makes the exchange of the estimates
crucial, is that the distributed “nature” of our problem imposes
the need for consensus; this means that the nodes will have to
converge to the same estimate. It has been shown that, if the
nodes exchange their estimates and exploit this information
properly, asymptotic consensus can be achieved [10], [11],
[36], [37].

Depending on the way with which the estimates are exploited,
the following cooperation strategies have been proposed:
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Node 7
Node 1
diy Ui
Node 5
dsny s
Fig. 3. Illustration of a diffusion network with ' = 7 nodes.

* Combine -Adapt, in which, at every node the estimates
from the neighborhood are fused under a certain protocol,
and then the aggregate is put into the adaptation step [9],
[11], [38].

* Adapt—Combine, where the adaptation step takes place
prior to the combine one, [12], [37]. More specifically,
at each node a temporary estimate is computed based on
the received measurements. In the sequel, this is combined
with the temporary estimates, which are received from the
neighborhood in order to produce the final estimate, at each
time instance.

* Consensus-based, where the computations are made in par-
allel and there is no clear distinction between the combine
and the adapt steps [10], [36]. The general philosophy of
these algorithms is to impose constraints, which force the
nodes of the network to converge to the same estimate.

Now, let us shed light on the combination of the estimates,
which are received from the neighborhood of each node. Recall
the previous discussion; an arbitrary node, &, is able to com-
municate with every node that belongs to A,. We assume that
the following hold true: k € N, Vk € A and! € N, <—
k € Ny, Vk,1 € N'. Moreover, we consider that the network is
strongly connected, i.e., there is a, possibly multihop, path that
connects every two nodes of the network. These assumptions
are very common in adaptive distributed learning (see for ex-
ample [9], [10]). As stated earlier, the received from the neigh-
borhood estimates are fused under a certain protocol. The most
common strategy is to take a linear combination of the estimates.
To be more specific, we define the combination coefficients, for
which we have that ckJ(n) > 0, ifl € Ny, CkJ(n) = 0,if
I ¢ Ny and 3y, cki(n) = 1. From the previous definition,
it can be readily seen that every node assigns a weight to each
one of the estimates, which are received from the neighborhood.
Two well known examples of combination coefficients are: the
Metropolis rule, where

m, if{ € ./\/rk and [ 7é k,

L= ienon cra(n), ifl =4k,
0 otherwise.

cri(n) =

and the uniform rule, in which the coefficients are defined as

cra(n) = {

Collecting all the coefficients for a network, we define the
combination matrix C,, in which the k,I!th component is
¢r,1(n). This matrix gives us information about the network’s
topology; that is, if the %, [th entry is equal to zero, this implies

k

0,

er‘, ifl € Ny,
otherwise.
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that the nodes %, [ are not connected. The opposite also holds
true, since a positive coefficient implies that the nodes are
connected. Finally, we define the K x K'm consensus matrix,
P, =C, &I, where the symbol ® stands for the Kronecker
product. Some very useful properties of this matrix can be
found in Appendix C.

V. PROPOSED ALGORITHMIC SCHEME

The goal is to bring together the sparsity promoting “’tools”,
which where discussed in Section III, and to reformulate them
in a fashion that is appropriate for distributed learning. We will
proceed by adopting the combine-adapt strategy, which was pre-
sented in the previous section. The main steps of the algorithm,
for node % and at time instance 7, can be summarized as follows:

Algorithm:
1) The estimates from the neighborhood are re-
ceived and combined with respect to the

adopted combination strategy, in order to produce
i = Dien, ha(Mhbin, V€N,

Exploiting the newly received measurements dy ,, Ui n
the following hyperslab is defined: Si,, = {h € R™ :
|dgn — u{nh| < €k}, where the parameter ¢;, is al-
lowed to vary from node to node. The aggregate @, ,, is
projected, using variable metric projections, onto the ¢
most recent hyperslabs, constructed locally; in the sequel,
their convex combination is computed. Analytically, the
sliding window 7,, := max{0,n — ¢+ 1}, n is defined,
and it determines the hyperslabs that will be considered
at time instance n. Given the set of weights Vj € 7,
wy,j, where 37, - wy; = 1L,Vk € N, the convex
combination of the projections onto the hyperslabs, i.e.,
> ied. Wk,jpéf;)(¢k7n) is computed. The effect of pro-
jecting onto a ¢ > 1 number of hyperslabs is to speed up
convergence [6].

The result of the previous step is projected onto the sparsity
constraint set, i.e., the weighted ¢; ball.

The previous steps can be encoded in the following mathemat-
ical formula:

2)

3)

4)

hk,n—i—l

_ plGx)
B PBél [w,,,p] (¢k,n + Hokn

x ( Z wk’sjp‘éﬁ?)(qsk,n) - ¢k7,7l>>7 (5)
JETn

where pig , € (0,2My ,,), and

2
D e, @ia|| P (Gh ) bhn
(G ) 2
My = szeﬂﬂ Whi Ps " (@hn) =t (6)
/ e (G.)
if Zjej.,, (‘f'k::;jjjskhJ (¢k,'n) 7& ¢k,n
1, otherwise.

The algorithm has an elegant geometrical interpretation which
can be seen in Fig. 4.

From the theoretical analysis concerning convergence, it
turns out that the weighted ¢; ball, as well as G,,, have to be
the same for every node of the network, which implies that this
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Skn—1

h*

hy

Fig. 4. Geometrical interpretation of the algorithm. The number of hyperslabs
onto which ¢, ,, is projected, using variable metric projections, is ¢ = 2. The
result of these two projections, which are illustrated by the dash dotted black
line, is combined (red line) and the result is projected (solid black line) onto the
sparsity promoting weighted £, ball, in order to produce the next estimate.

information cannot be constructed locally. This fact, as it will
be established in the theoretical analysis of the algorithm, is
essential in order to guarantee consensus. Hence, a reasonable
strategy is to construct w,, and G,,, using the methodology
described in Section III, via hkm;n, where k,p: is the node
with the smallest noise variance. It is obvious that this requires
knowledge, in every node, of hy,,, ., something that is in
general infeasible. However, it is not essential to update the
parameters at every time instance. Instead, w, and G, can
be updated at every, »’ > 1, time instances, where n' are
the time steps required for hy,, » to be distributed over the
network. Experiments regarding the robustness of the pro-
posed algorithm with respect to n’ are given in the Numerical
Examples section. Moreover, as it will become clear in the
Numerical Examples section, it turns out that the algorithm is
robust in cases where the knowledge of the less noisy node is
not available, and/or in cases where the assumption that these
quantities must be common to all nodes is violated and each
node uses the locally available values. It should be pointed out
that such discrepancies in the adaptive filtering between theory
and practices are common. The most celebrated example is
the so called independence assumption adopted in the LMS,
which is commonly employed to prove convergence, although
in practice it does not hold, e.g., [34].

Regarding the complexity of the algorithm, it has been shown
in [6], that if standard metric projections take place, then the
complexity of the respective algorithm is O(gm) coming from
the projection operators and O(mlog,m) occurring from the
projection onto the weighted #; ball. If we employ the vari-
able metric projections, at each node, it is obvious that the term
G, 'uy j, j € Ty has to be computed, and this adds grn multi-
plication operations.

Remark 3: The algorithm presented in [6] is a special case
of the scheme in (5), if K = 1 and GG,, = I,,. The same also
holds for the IPNLMS [23]ifwelet K = 1,9 = 1,¢; = 0 and
P]gcj)[wmp] = I, where I stands for the identity operator. |

As it will be verified in Appendix D, the algorithm in (5)
enjoys monotonicity, asymptotic optimality and strong conver-
gence to a point that lies in the consensus subspace. The assump-
tions under which the previous hold are the following.
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Assumptions:
(@) Define Vo €  Zsg. Q, = DBglwy,p] N

Niea. Nren Sk, j) . Assume that there exists

Ty € ZZO’ such that 2 := ﬂn>no Q, ?é @

(b) There exists n; € Z>p, such thatG,, = G, =: G,Vn >
n1. In other words, the update of the matrix G,, pauses
after a finite number of iterations!.

(c) Assume a sufficiently small e;, such that Vi €
./\/7 Jﬁ{lnn € [61,2 — 81].

(d) AssumeVk € N @y = inf{wy ;1 j € Tn,n € L0} >
0.

(e) Define € := QN O, where the cartesian product space

Q:=Q x - x . We assume that rip§2 # (}, where this
—_——

term standsl}or the relative interior of € with respect to O
(see Appendix A).

Theorem 1: Under the previous assumptions, the following

hold:

(1) Monotonicity. Under assumptions (a), (b), (c), it holds
that Vn > zp, Yk € €,||h, 1 — hllg < |k, — hle.
where zy := max{ng,n1}, G is the K'm x Km block-
diagonal matrix, with definition G := diag {G, ..., G},

~———

K
andh, = [hi ..., k%, ]T € RE"™ V¥n € Z5.

(2) Asymptotic Optimality. If assumptions (a), (b), (c), (d)
hold true then lim,, — o max{d(hy 11,5%;) : 7 €
Jn} =0, Yk € N, where d(-, S ;) denotes the dis-
tance of Ay, ;41 from S ; (see Appendix A). The pre-
vious implies that the distance of the estimates from the
respective hyperslabs will tend asymptotically to zero.

(3) Asymptotic Consensus. Consider that assumptions
(), (b), (¢), (d) hold. Then lim,, — oo [|Akn — Bin|| =
0, Vk,l € N.

(4) Strong Convergence. Under assumptions (a), (b), (¢),
(d), (e), it holds that lim,, — . h, = h,,h, € O. So,
the estimates for the whole network, converge to a point
that lies in the consensus subspace.

Proof: The proof is given in Appendix D. [ |

VI. NUMERICAL EXAMPLES

In this section, the performance of the proposed algorithm
is validated within the system identification framework. Due to
the fact that the online algorithmic schemes, which have been
proposed in the literature, cover nondistributed learning sce-
narios, in the first experiment we compare the proposed algo-
rithm against others in the context of a nondistributed system
identification task. This essentially allow us to evaluate the use
of the variable metric projections scheme, since this is one of
the contributions of this paper. More specifically, we compare
the proposed algorithm with the Adaptive Projection based al-
gorithm using Weighted #; Balls (APWLI1) [6], with the On-
line Cyclic Coordinate Descent Time Weighted Lasso (OCCD-
TWL), the Online Cyclic Coordinate Descent Time and Norm
Weighted LASSO (OCCD-TNWL), both proposed in [8], and
with the LMS-based, Sparse Adaptive Orthogonal Matching

INotice that the matrix G, is constructed via hkaptvn’ hence Yn > nj,
the variable metric projections is determined by b, ., - In practice, for suffi-
ciently large 21, the algorithm has converged and the fact that G, is not updated
does not affect the performance of the algorithm.
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Pursuit (Spadomp) [27]. The unknown vector is of dimension
m = 512 and the number of nonzero coefficients, equals to
20. Moreover, the input samples t,, = [tn, ..., Un mi1]’ are
drawn from a Gaussian distribution, with zero mean and stan-
dard deviation equal to 1. The noise process is Gaussian with
variance equal to o2 = 0.01. Finally, the adopted performance
metric, which will be used, is the average Mean Square Devi-
ation (MSD), given by MSD(n) + Z{il s — bl
and the curves occur from an averaging of 100 realizations for
smoothing purposes.

In the projection-based algorithms, i.e., the proposed and the
APWLI, the number of hyperslabs used per time update equals
to ¢ = 55, the width of the hyperslabs equals to e = 1.3 x o,
and the step-size equals to p,, = 0.2 x M,,, where M,, is given
in (6), where the node subscript is omitted. It should be pointed
out that the performance of the algorithm turns out to be rela-
tively insensitive to different choices of the parameter €. A de-
tailed experimental analysis on how different choices of ¢ affect
the projection-based algorithms, has taken place in [6]. More-
over, for the weights we choose w,, = L These choices are
not necessarily optimal, albeit they lead to a good trade-off be-
tween the convergence speed and the steady state error floor.
Regarding the choice of q, the larger the ¢ the faster the con-
vergence. This behaviour is also met in the Affine Projection
Algorithm (APA), where the larger the number of affine sets,
employed at each time instance, the faster the convergence. The
parameter g is not a critical parameter, and one can choose it de-
pending on the complexity load that can be afforded by the algo-
rithm in real time operations. The radius of the weighted ¢; ball
equals to p = ||h«||o and the weights are constructed according
to the discussion in Section III. It should be stressed out that we
experimentally observed that the proposed algorithm is rather
insensitive to overestimated values of the sparsity level, which
implies that even if we do not know the exact value of ||h.]|o,
if we set p > ||h.||o the proposed algorithm exhibits a good
performance; this behavior was also observed in [6]. Further-
more, we set €, = 10”2, The weighting matrix G,, is defined
according to the strategy presented in Section III. Regarding the
parameter o, we observed that a value close to 1 leads to a fast
convergence speed but it increases the steady state error floor,
and vice versa. So, at the beginning of the adaptation, we choose
o = 0.99 and at every 250 time instances, we set o« = 5. Fi-
nally, w,, and G,, are updated at every time instance, i.e.,n’ = 1.
In the OCCD-TWL and the OCCD-TNWL, the regularization
parameter is chosen to be Arwr, \/ 202nlogm, A\tnwL =

1/ 202n4?10gm, respectively, as adviced in [8]. The step size,
adopted in the Spadomp, equals to 0.2, due to the fact that this
choice gives similar steady state error floor with the projec-
tion-based algorithms2. The forgetting factor of OCCD-TWN,
OCCD-TNWL and Spadomp equals to 1 since, in the specific
example, the system under consideration does not change with
time. From Fig. 5, it can be seen that the proposed algorithm
exhibits faster convergence speed compared to the APWLI1 to
the common error floor. Moreover, the proposed algorithm out-
performs the Spadomp, since it converges faster and the steady
state error floor is slightly better. We should point out, that the

2Extensive experiments have shown that a choice of a smaller step-size, re-
sults in a slower convergence speed, without significant improvement in the
steady state error floor.
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Fig. 5. MSD for the experiment 1.

complexity of the Spadomp is O(vn), which implies that for the
previously mentioned choice of ¢, the proposed algorithm is of
larger complexity. Compared to the OCCD-TWL, we observe
that its performance is slightly better, compared to the proposed
one, albeit the complexity of the algorithm is O(rn?). Finally,
the OCCD-TNWL outerforms the rest of the algorithms, at the
expense of a higher complexity, which is approximately twice
that of OCCD-TWL.

In the second experiment, we consider a network consisted
of K = 10 nodes, in which the nodes are tasked to estimate an
unknown parameter k. of dimension 1 = 256. The number
of nonzero coefficients, of the unknown parameter equals to
20 and each node has access to the measurements (di ., %k n ),
where the regressors are defined as in the previous experiment.
The variance of the noise at each node is o’ﬁ = 0.01g, where
sk € [0.5,1], following the uniform distribution. We compare
the proposed algorithm with the distributed APWLI, i.e., if we
letG,, = I,,, and the distributed Lasso (Dlasso) [3]. The Dlasso
is a batch algorithm, which implies that the data have to be avail-
able prior to start the processing. So, here we assume that at
every time instance, in which a new pair of data samples be-
comes available, the algorithm is re-initialized so as to solve a
new optimization problem. For the projection-based algorithms,
q = 20 and the rest of the parameters are chosen as in the pre-
vious experiment. Moreover, the combiners ¢, ;(n) are chosen
with respect to the Metropolis rule. Finally, the regularization
parameter in the Dlasso is set via the distributed cross-valida-
tion procedure, which is proposed in [3]. From Fig. 6, we ob-
serve that the Dlasso outperforms the projection-based algo-
rithms and that the proposed algorithm converges faster than
APWLI1. However, the complexity of the proposed algorithm is
significantly lower than that of the Dlasso. Dlasso, at every time
instance, requires the inversion of a rn X 71, matrix.

In the third experiment, we study the sensitivity of the pro-
posed algorithm to choice of the parameter n’, i.e., the frequency
at which w,, and G,, are updated. To this end, the parameters
are the same as in the previous experiment, but we set different
values to n’. Fig. 7 illustrates that the algorithm is relatively in-
sensitive to the frequency of the updates, since even in the case
where n’ = 20 the algorithm exhibits fast convergence speed.
This is important, since the robustness of the proposed scheme
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to choice of the parameter n’ makes it suitable to be adopted in
distributed learning.

In the fourth experiment, we validate the performance of the
algorithm in a nonstationary environment. It is by now well
established that a fast convergence speed does not necessarily
imply a good tracking ability [39]. More specifically, we con-
sider that a sudden change in the unknown parameter takes
place. So, until k. changes, the parameters remain the same
as in the second experiment, and after the sudden change, we
have that ||h.|jo = 15. The radius of the weighted ¢; ball is
set equal to 23, since we have observed that the performance
is relative insensitive to choices of p, as long as it remains
larger than ||h.|)o. Furthermore, we assume the algorithm is
able to monitor sudden changes of the orbit (A . )nez-,,
in order to reset the value of o when the channel changes.
To be more specific, we reset the value of «, if the ratio

M, Yk € N, is greater than a threshold, which is
Hhkm*hk‘n*l”

chosen, here, to be equal to 10. This strategy is adopted since
we observed that if the algorithm has converged, the previously
mentioned ratio takes values close to 1, whereas if an abrupt
change takes place in the unknown parameter, then the value of
the ratio increases significantly. From Fig. 8, it can be observed
that both the projection-based algorithms enjoy good tracking
ability, when a sudden change occurs. Moreover, as in the
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previous experiments, the proposed algorithm converges faster
than the APWLI to a similar error floor.

Finally, in the fifth experiment, we study the robustness of
the proposed scheme, with respect to adopting different strate-
gies in order to construct w,, and G,,. To this end, we consider
the following strategies: a) the previously mentioned quantities
are constructed using the node with the smallest noise variance
(Proposed a), b) w,, and GG, are generated via the node with the
largest variance (Proposed b) and ¢) w,, and G,, are constructed
locally at every node (Proposed c¢). Obviously, the latter one vi-
olates the theoretical assumption of having common weights to
all nodes. In order to verify whether the nodes reach consensus,
we plot the squared distance of h,, from the consensus subspace,

—n
i.e., ||h,—Po(h,)||?. Asin the previous experiments, the curves
occur from an averaging of 100 independent experiments. From
Fig. 9, it can be readily seen that the distance of h,, from the
consensus subspace, is decreasing as time steps increase. It is in-
teresting that even in the Proposed c, where the assumption for
achieving asymptotic consensus is violated, the estimates for the
whole network tend asymptotically to the consensus subspace.
Loosely speaking, even if there cannot be theoretical guaran-
tees that the nodes will achieve asymptotic consensus in the case
where each node constructs w,, and G, using local information,
the fact that the estimates received from the neighbourhood are
combined at each step, leads the nodes to asymptotic consensus.

VII. CONCLUSIONS

A sparsity promoting adaptive algorithm for distributed
learning has been proposed. The algorithm builds upon set-the-
oretic estimation arguments. In order to exploit the sparsity
of the unknown vector, variable metric projections onto the
hyperslabs, which define the region in which we search for the
solution. Moreover, extra projections onto sparsity promoting
weighted /1 balls are employed in order to further enhance the
performance of the proposed scheme. Full convergence anal-
ysis has been derived. Numerical examples, within the system
identification task, demonstrate the comparative performance
of the proposed algorithm against other recently published
algorithms.



5420

APPENDIX A
BASIC CONCEPTS OF CONVEX ANALYSIS

The stage of discussion will be R™ and the induced
inner product, given a positive definite m x m matrix V,
is (h1,ho)v = hiVhy. A set C C R™, for which it holds
that Vhy, ho € C and ¥Vt € [0,1], thy + (1 — {)hs € C, is
called convex. Moreover, a function © R™ — R will be
called convex if Vhy, ho € R™ and V¢t € [0, 1] the inequality
O(thy + (1 — t)he) < tO(h1) + (1 — t)O(hy) is satisfied.
Finally, the subdifferential of © at an arbitrary point, h, is
defined as the set of all subgradients of © at h ([40], [41]), i.e.,
IvyO(h) = {s € R" : O(h) + (z — h,s)v

< O(z), Yz e R}

The distance of an arbitrary point b from a closed nonempty
convex set C, with respect to V, is given by the distance function

d(V>(~,C) (R™ —[0,4¢)
th—inf {||h — z||yv : x € C},

and if we let V' be the identity matrix, the Euclidean distance
is given. This function is continuous, convex, nonnegative and
is equal to zero for every point that lies in C[41]. Moreover,
the projection mapping, Pév) onto C, is defined as Pév ) (h) =
argming..||/h—zx||y, and as in the distance function, ifV = I,
the standard metric projection is obtained.

Finally, the relative interior of a nonempty set, C, with respect
to another one, &S, is defined as

I‘IS(C) = {h €C:3eg > 0with® 75 (B(hU,EU) n S) C C}/

where B, ) is the open ball with definition B4, .y := {h €
R™ : |lh — ho|| < e0} (see for example [42]), with center hyg
and radius equal to £g.

APPENDIX B
VARIABLE METRIC PROJECTION ONTO THE WEIGHTED #; BALL

The variable metric projection of k, onto By, [w,,. p], is given

by

min h— z||2
i =l
Z'wz(")lwil <p
i=1
where T = [rl,.. ;)" However, |h — =l =
HGZ (h — a:) > = ||G h — €||?, where £ := sz Moreover,
r = ,2§ = o = J”L& = 1,...,m, where

&, are the coefficients of &. From the previous, it holds that

Y w™ || S\ i w{™|&;|. Hence the initial

optimization problem, is equlvalent to

1
min |Gk~ €]

m

S il < .
=1

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 10, OCTOBER 2012

The solution of the previous optimization, is the standard metric
1 1

projection of G2 h onto By, [G,, *w,,, p] and it can be found in

1
[6]. So, from the previous &,,, = 1 (Gih) —
) P By, [Gn Qlwn Yy
P (W=G,’P .  (Gih).
B, [G 2w, 0] Bey G ® wap]
APPENDIX C

PROPERTIES OF THE CONSENSUS MATRIX

Consider a Nm x Nm consensus matrix P,,. Then the fol-
lowing hold [37]:

M) 1P = 1.

(2) Any consensus matrix P,, can be decomposed as

P, =X, +BBT,

where B = [By,...,B;,] is an Km X m matrix, and
B, M, ey is am X 1 vector of zeros except the
kth entry, which is one and X ,, is an K'm x K'm matrix
for which it holds that ||X,7 | <1
P.h h, Vb € O {h € RE™ . p
BT,....hT]", b € Rm} The subspace O is the
S0 called consensus subspace of dimension m, and
By, k=1,...,m,constitute a basis for this set. Hence,

the orthogonal projection of a vector, A, onto this linear
subspace is given by P (h) := BB"h, Vh € RE™,

A3)

APPENDIX D
PROOF OF THEOREM 1

Monotonicity:
Lemma 1: Define the following nonnegative loss func-
tions, Vk € N:

Vi € Zso, Vh € R™, O, (h) ==
wg ;d o SkG) . ;
Zjel}_,,, = (G}‘(fi £ )d(G) (h7 Sk’,j)v lfIk,n 7& (/)
Oa ifIk,n = ®7
(7
where Iy, = {j € Tn ¢ @y, & Skyyand Ly, =

Zjejn wkyj('l(g)(¢k:n, Sk.;). Then (5) is equivalent to3

¥n € Z>07 vk € N hy mtl =

pe Orm(B1,) oy
Btl W] (‘p" n = Ak 67, . (6. )% Ok,n(‘ﬁk,n)) ;
if T #0, )
P& . B
Bgl w, 7/; (¢k‘ 'n) s lf Ik:,'n, — @;

where ©), . (¢, ,,) is the subgradient of the function and A ,, €
(0,2).

Proof: First of all, notice that if 7y, ,, # @, then there exists
Jo € Jp such that ¢kn ¢ Sk’,jo = d(G) (¢k,n7 Sk,jo) >
0. Hence, L. > (‘Uk:jod(G)((ﬁk’n,Sk-;jo) > 0, which implies
that the denominator in (8) is positive and the cost function is

3The time dependence on G,, is omitted for simplicity in notation.
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well defined. Now, a subgradient of the distance function, i.e.,
d(g)(*, Sk.5) is the following [43]:

hfpé?j h N
m if ¢ kg
o otherwise.

dig)(h. Si,j) = ©)

Recalling basic properties of the subdifferential (see for ex-
ample [41]), we have that

wr,;d Sk g )
ez Mdd(g)(h, Se.s),

Lin
a(-)ka" (h’) = if Ik’,n 7é V’
o}, if Ty 0y = .
t "oy

So, combining (9), (10) and if Z, ,, # # we have

wr 4@y (Px ns Sk 5)
Lk,n

@;ﬂ.n(¢k~,n) = Z

J€TL
fe.
i — P& (1)
d(e)(@s n» Sk.j)

= Lkl > o (b — P (900)

JE€Lk n
1 (©)
= Lk,n ; Wk, j <¢k,n - PS;M_]- (¢k,n))' (11)
Jedn

Nevertheless, since 7y, # @, then there exists jo € J, such
that ¢k,n ¢ Sk,.fo — Pé?i (¢k,'n) # ¢k,rL' SO’ ifz.k,"l # (A
then ©; , (¢, ,,) # 0. Following similar steps as in [6], it can
be proved that Vo > z, Vj € J., Yk € N, 0} .(d,) =
0 = 1 =2 ey, kaé?)} (@y.,,,). From this fact, if we
define piy, 5, := My Ak, and if we substitute (11) in (8) the
lemma is proved. y 5 . m

Claim 2: 1t holds that | Ph — h|l¢ < || — h|lg, Vh €
O,Vh € RE™ where P is a K'm x Km consensus matrix with
1P| = 1.

Proof: From the definition of || - ||, it can be readily seen

that |Ph - hllg = |G? (Ph—h)| = |GIP (h— k)|,
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hy
where this holds since E € O. Moreover, h = Co| L hy €
5 hy
u LE
Rk e Nandh €¢ O < h = [UJ ,h € R™. Re-
h

calling the definition of the consensus matrix, with coefficients
ce1, k.l € N, we have the following

K& 2ien, 1l (hl — ﬁ)
[tekaz (@_ h) = 5
—G% 2 leny CK (hl - 71)
[ Tien, c11G* (hz, — ﬁ)
| D renk CI(,;C% (hz _ fl)
F ot (hl B iz)
.y :
CHOE h)]
G: (h1 _ iz) -
<P
G: (ha B ) |
B Hh_ b G (12)
From (12), our claim is proved. .

First of all, given a convex function ® : R™ — R, with
nonempty level set, where the level set is defined lev<p® :=
{h € R™ : ©(h) < 0}, let us define the subgradient projection
mapping, as follows Té)G) : R™ — R™[43]:

o6 (h),

° h

he IGVS()@.,

where ©’(h) is any subgradient of ©, at h. Similarly, we define
the relaxed subgradient projection mapping, T(E)Gg(h) =TI+
AT (B) — ), A € (0,2), where I is the identity mapping.

Now, given a nonempty closed convex set, say C C R™, and
a convex function © : R™ — R, such that C Nlev<o® # @ it
holds that [43]:

VheR™ Yhelnleve O
2—A G
L5k~ PeTER ()

< lh = hlig — |PeTENR) ~ hlg. (13)
Following similar steps as in [6], it can be proved that
Vo > zo, ¢, € levegOrn <<= Iy, = 0 and
Y > 20,@p, & levao®Orn <= Zp, # (. Moreover,
leveo®Orn = MNjez, , Sk O @ D . Recall the definition
of the relaxed projection mapping; it can be readily seen that
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hpner = P[(),G)[w ® (()Ci) Ay, (@r). Exploiting this fact,

under Assumptions (a), (b), and (13) we have that

Vn > zo Yk e N,Vh € Q

o< P g, hk,nﬂné
Ak 2 g PO éfjl, ORI
< |\¢k,n—h||c,- HP(G).,, 160 (i)
— b3 (14)
Recalling the definitions h, = [h{,.... ki |7 € RE™,

P.h, =] 1T_n, cos in] € RE™ and (14), we have

Y > zg, VE e¢:
2 - )‘ 1
0 < min { 716’} (| P.h
k 2

n hﬂ-l—lHQQ

<|IPuk, — hllg — hllg.

an-‘,-l - (15)
Nevertheless, from Claim 2, the previous inequality can be

rewritten

0< Hpnﬁn - EHQQ - ||hn,+1 - EHQQ
<|lh, — hllg — I, 1 — hlg.
Hence,
Vn > zo, Vh € € ||hyyy — Rl < Ik, — Al (16)
which completes our proof. ]

Asymptotic Optimality: A well known property of the pro-
jection operator (see for example [43]), is the nonexpansivity,
i.e., given a nonempty setC, ||PéG) (hy)— PéG)(hg) llg < ||h1—
ha|lg,Vhi, ha € R™. Recall the definition of the algorithm
given in (8). Then, Yk € N, Vn > zg, vh € 2, we have

lhs i1 — Bl
Okn(Pr.n)
(G) k k,n
- n A 4757 £} ¢ n -
B/l w,,,p) (k k. ||(_) (¢k n)HG k ( k, )) o
G
| Pé[l) wn /) (¢k n
Orn(Prn) p©@ .
- )‘k‘.n— n(¢ n) w (h)
‘ ||@ (¢I< n)”G k h B/l[ n,ﬂ] a
(—)k 'L(¢k n)
¢;n_)\?-n—~ ¢ ,n - I (17)
ko = M G (B Ben) ~ |

where the equality in the second line holds since, by definition,
h € Q C By, |w,,p] and the inequality, from the nonexpan-
sivity of the projection operator. Assuming that ©} , (¢ ,,) #
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0,Vk € N, and rewriting (17) for all the nodes of the network
we have

~ 112
h,,—h
’ 41 144 Q
©1 n(¢1 'n) / 2
P P 1R 0 ,
¢1,n HOI 71(¢1,77)H2 1,n,(¢1,n)
< : —h
Ox n.(‘?f'A w)
n — -0
_¢Ix,n ||OI( 71(¢K ”) K n(¢ls n) ¢
r 2
¢1 n h
’ k T ¢k n))
= : +2 % —2
Ko il: keN k,n,(¢k,n)
_gb]x.n G G

CICARICNC N CE 3}

-2 Z Aeon , . (18)
ke [CATs]
Nevertheless,
¢1:rt - il
: = [|Pnh, — hllg <k, — hllg. (19)
¢K,n —h G
From the definition of the subgradient, we have
<(';);c,n(¢km)v (¢k,n - i"’) >G 2 (H)k n (¢k n)
_®k ’L( ) k n(¢k n) (20)

where the last equation, holds due to the fact that he —
O}, ,(h) = 0. Taking (19) and (20) into consideration, we
obtain

2

h,.i—h

Q
@k,n((lskm,)

)l Pl
S AR

< \ 1)

ZAkn

Here, notice that the sequence ‘

h, — i_zHG is bounded and

T

monotone decreasing, hence it converges. The latter fact im-
plies that
|

lim H
n— 00 =

Under Assumption (c), (21) can be rewritten

2 Oy, n(¢l. n)
2 ACARC NI E

- —EHQ) 0. (2

keN
ek n(¢k n)
S )‘k.n(2 - Ak,n)—’-
kEZ./\ ) ||Ok n(¢k‘,,n)||2G
~ 112
< |- & - [ -], (23)
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Taking limits in (23) and recalling (22) we have that

lim —®k n(Bin)
n—>oo ||Ok n(¢k n)”G

If we follow similar steps as in [6], it can be verified that
Vn € Z»y,Yk € N,Vh € R™ : ||©] 2Mlle < 1. So, if

(—)ﬁcm, (¢k;) # 0

=0, VkeN.

(;)A n(qsk,n)
a ||®k 17(¢k,’n)H2G

Obviously, recalling the previous discussion, ©) (¢ ,) =
0 <= Op.(Ps,) = 0, Vn > zp. Combining this fact
together with (24), we have that

N 11_)11’100 (-)k,n,(¢k,n) =0

O’i ﬂ(¢k n)

—0, n —00.

24

Vi € N, 25)

Now, following similar steps as in [6], it can be shown that there
exists D > 0 such that L ,, < D,Vk € N, Vn € Zxq.
From the definition of © ., and under Assumption (d), we have
Vk e N

(G) ¢k RS Sk‘,])
Lk,'n

D
()k‘ n ¢k‘n el
(U

=3 e

7€]n

D wk
e (b s Sk
Wk D }EZ;H @ ¢k, ka)

> max{d%g)((ﬁk,na Skj):J € Tn}.

Taking limits in the previous inequality, we obtain that

. h_)mOO max{d(g)(@y s Sk,j) : J € Tn} =0.  (26)
Combining (15) with the result of Claim 2, we have
Y > zg, VE ce:
. 2 - /\k.n 2
0< min { T} [|P.h, — hn+1||r)g
<k, — hllg — 1By .1 — hlE- (27)
Taking limits in (27) and recalling (22) gives us
. _ 2
n h—>nloc H‘Pﬂhn hn+1||g =0
. 2
— n h_r)noo Z ||¢kﬁ,n - hk’,,n+1”G =0. (28)
keN

Fix an arbitrary point v € Si ;,Vk € N, Vj € J,. Then
from the triangle inequality we have

e nt1 — vlle <lhenr1 — dralle

+¢5n —vlle =

vég{] Hhk‘;n-i-l - UHG < Hhk,'rL+1 - ¢k,n”G
+ véfslf 5, — vlle =

dia)(hipit 15 Sn,5) < ki1 — Prnlle

+ dG)(Pu,n: Skoi)- (29)
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If we take limits in (29), from (26) and (28), it can be seen that

lim dig)(hknt1,5;) =0, Vk € NYjed, —

7> 0o

lim Z d(G) (hk?.n+17 Sk:j) =0, Vk € N.

n—>oo
JE€ETn

(30)

The definitions of the distance function and the projection op-
erator, yield

d(Pent1, Skj) = |hrnt1
<k, nt1

— Ps, (hing1)ll
— Péﬁi(hk;n#»l)n' (31)

Nevertheless, the Rayleigh-Ritz theorem implies [44]Vh &

R™ : ||kl < mm”h”g, where 7, is the smallest eigenvalue
of G. Combining this fact as well as (31) we obtain

(A1, Sk i) < llhingr — PE (hini)]

<702 hinss — P (h
_Tm,j,n” kon+1 S/c,j( k,n—‘,—l)”G

— 0, n—o0, VkeN, (32)

where the limit holds from (30). From the previous, it is not
difficult to obtain that

lim max{d(hint1.5%;) 7€ Tn} =0,
n—r oo : ’
which completes our proof. [ |
Asymptotic Consensus: In [37] it has been proved, that
the algorithmic scheme achieves asymptotic consensus, i.e.,
|t — Bin|l — 0, n— oc, Vk,I € NV ifand only if

)l =0

Let Assumptions (a), (b), (¢), (d), hold true. We define the fol-
lowing quantity

lim ||k, — Po(h (33)
n—oc

€, = h‘n+1 P”h‘n' (34)
Obviously from (28)
lim ¢, =0. 35)
n—> 00

Now, if we rearrange the terms in (34) and if we iterate the
resulting equation, we have:

EnJrl :Pﬂ&n + €,
:P’HPnflhn 1 +P7l—nfl + & =
n n—j

_HPhU""ZHP” 1€; 1 T €,

j=11=0

If we left-multiply the previous equation by (I'x,, — BB"),
where Ig,, is the Km x Km identity matrix, and follow
similar steps as in [37, Lemma 2], it can be verified that
limy, — oo|| (Tgm — BBT) h, .|| = 0 which completes our
proof. [ |
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Strong Convergence: We will prove, that under assump-
tions (a), (b), (c), (d), (e), lim,, — ~ k, = h,. b, € O.Recall
that the projection operator, of an arbitrary vector b € RE&™
onto the consensus subspace equals to Po(h) = BBTh,Vh €
RE™  Taking into consideration Assumption (e) together with
(16), from [18, Lemma 1], we have that there exists h, € O
such that

lin Po(h,) = h,. (36)

n — oo

Now, exploiting the triangle inequality we have that

b, — k|| < llh, = Po(h,)|| + |, = Po(h,)I| =0, n— 0

(37)
where this limit holds from (33) and (36). The proof is complete
since (37) implies that lim,, s c b, = k. [ |
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