
National and Kapodistrian University of Athens
School of Sciences

Department of Informatics and Telecommunications

PhD THESIS

Mining and Managing User-Generated Content and Preferences

Georgios Valkanas

Athens
August 2014

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Σχολή Θετικών Επιστημών

Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Διδακτορική Διατριβή

Εξόρυξη και Διαχείριση Περιεχομένου Παραγόμενο από Χρήστες
και Προτιμήσεων

Γεώργιος Βαλκανάς

Αθήνα
Αύγουστος 2014

PhD Dissertation Thesis

Mining and Managing User-Generated Content and Preferences

Georgios Valkanas

Advisor
Dimitrios Gunopulos, Professor, NKUA

Main Advisory Committee
Dimitrios Gunopulos, Professor, NKUA
Ioannis Ioannidis, Professor, NKUA
Efstathios Hadjiefthymiades, Associate Professor, NKUA

Examination Committee
Dimitrios Gunopulos Ioannis Ioannidis
Professor Professor
NKUA NKUA

Efstathios Hadjiefthymiades Manolis Koubarakis
Associate Professor Professor
NKUA NKUA

Apostolos N. Papadopoulos Panayiotis Tsaparas
Assistant Professor Assistant Professor
Aristotle University of Thessaloniki University of Ioannina

Theodoros Lappas
Assistant Professor
Stevens Institute of Technology, USA

Examination Date: August 4, 2014

Διδακτορική Διατριβή

Εξόρυξη και Διαχείριση Περιεχομένου Παραγόμενο από Χρήστες
και Προτιμήσεων

Γεώργιος Βαλκανάς

Επιβλέπων
Δημήτριος Γουνόπουλος, Καθηγητής, ΕΚΠΑ

Τριμελής Επιτροπή Παρακολούθησης
Δημήτριος Γουνόπουλος, Καθηγητής, ΕΚΠΑ
Ιωάννης Ιωαννίδης, Καθηγητής, ΕΚΠΑ
Ευστάθιος Χατζηευθυμιάδης, Αναπληρωτής Καθηγητής, ΕΚΠΑ

Επταμελής Εξεταστική Επιτροπή
Δημήτριος Γουνόπουλος Ιωάννης Ιωαννίδης
Καθηγητής Καθηγητής
ΕΚΠΑ ΕΚΠΑ

Ευστάθιος Χατζηευθυμιάδης Μανόλης Κουμπαράκης
Αναπληρωτής Καθηγητής Καθηγητής
ΕΚΠΑ ΕΚΠΑ

Απόστολος Ν. Παπαδόπουλος Παναγιώτης Τσαπάρας
Επίκουρος Καθηγητής Επίκουρος Καθηγητής
ΑΠΘ Πανεπιστήμιο Ιωαννίνων

Θεόδωρος Λάππας
Επίκουρος Καθηγητής
Τεχνολογικό Ινστιτούτο Στήβενς, ΗΠΑ

Ημερομηνία Εξέτασης: 4 Αυγούστου 2014

Abstract

The World Wide Web is evolving, as new technologies constantly
emerge. Online services and applications are more pervasive nowa-
days, making the boundaries between the physical and online world
less transparent. Users are able to share online aspects of their ev-
eryday life; most importantly they feel comfortable with doing so. This
sharing takes place in various forms, ranging from simple button clicks
(e.g., "Like", "+1") to structured and semi-structured data (e.g., filling
in forms, selecting from pre-defined options), to totally unstructured
information (e.g., natural language, online videos). New technologies
have also shifted the roles of end users: they are no longer simple in-
formation consumers, but they actively participate in the content cre-
ation process, providing feedback and voicing their opinions and in-
terests.
To make the most of this unprecedented abundance of information,
and make next-generation services more engaging for the user, we
need techniques that are more expressive in terms of the returned
results, and allow us to better understand the data at hand. In other
words, we need techniques to better manage and mine the available
information, which is, for the most part, generated by users. Clearly,
these techniques must be highly efficient to cope with the volumes
available in the "Big Data" era. For these reasons, in this thesis, we
present techniques to manage the results of expressive queries, such
as skyline, and mine online content that has been generated by users.
Given the numerous scenarios and applications where content mining
can be applied, we focus, in particular, to two cases: review mining
and social media analysis.
More specifically, we focus on preference queries, where users can
query a set of items, each associated with an attribute set. For each
of the attributes, users can specify their preference on whether to min-
imize or maximize it, e.g., "minimize price", "maximize performance",
etc. Such queries are also know as "pareto optimal", or "skyline queries".
A drawback of this query type is that the result may become too large
for the user to inspect manually. We propose an approach that ad-
dresses this issue, by selecting a set of diverse skyline results. We
provide a formal definition of skyline diversification and present effi-

cient techniques to return such a set of points. The result can then be
ranked according to established quality criteria. We also propose an
alternative scheme for ranking skyline results, following an information
retrieval approach.
Preference queries, such as the aforementioned, can be used to re-
trieve items in a pre-usage scenario. User preferences, however, can
be explicitly expressed in post-usage scenarios, through the writing
of reviews or similar feedback. In particular, several platforms allow
users to submit their feedback and opinions on a service (e.g., staying
at a hotel) or a product they bought (e.g., a camera). Mining reviews
has gained considerable attention over the years due to its direct fi-
nancial impact. In our work, we used reviews as a means to extract
how well a product covered the needs of users, and build a rigid, for-
mal framework for mining competitors. We proposed algorithms to
efficiently retrieve the top-k most competitive items, given an item of
interest, and evaluated our approach with a user study, demonstrating
the efficacy of our formalism.
Finally, social media are currently some of the most prolific platforms
in terms of content generated by users. Characteristic examples in-
clude Twitter, Facebook, Tumblr, etc. Unlike earlier online platforms
where users were able to upload content, such as blogs, these ser-
vices have two distinct characteristics: i) fast pace and ii) huge num-
bers of active, connected users. Therefore, the volume of generated
content reaches exceptional levels, and results in a stream of data.
With users talking constantly about their interests and surroundings,
we are given the opportunity to identify in real time interesting infor-
mation, such as events. Event detection is of paramount importance
in several cases, ranging from crisis management to resource alloca-
tion. We present techniques that aim to identify events, as they occur,
and operate in an online fashion to cope with the streaming nature of
incoming data. We resort to affective theories of emotions, which give
our analysis a dual perspective, in terms of the psychological impact of
events on users. This is especially important as new disciplines gain
rise, namely computational journalism and computational psychology.
In addition to detecting events, our analysis reveals some interesting
properties regarding the underlying medium and the discussions that
take place therein.

Subject area: Web Mining, Text Mining
Keywords: web mining, review mining, event detection, user prefer-
ences

Περίληψη

ΟΠαγκόσμιος Ιστός εξελίσσεται, καθώς νέες τεχνολογίες προκύ-
πτουν συνεχώς. Οι σημερινές διαδικτυακές υπηρεσίες και εφαρ-
μογές είναι πιο διαδεδομένες, κάνοντας τα όρια μεταξύ του φυ-
σικού και του δικτυακού κόσμου πιο ασαφή. Οι χρήστες έχουν
τη δυνατότητα να μοιράζονται διαδικτυακά πτυχές της καθημε-
ρινής τους ζωής. Σημαντικότερο, μάλιστα, είναι το γεγονός ότι
νιώθουν άνετα να κάνουν κάτι τέτοιο. Αυτός ο διαμοιρασμός
πληροφορίας λαμβάνει χώρα υπό ποικίλες μορφές, που κυμαί-
νονται από απλά πατήματα κουμπιών (π.χ. "Like", "+1"), μέχρι δο-
μημένα και ημιδομημένα δεδομένα (π.χ. συμπλήρωση φόρμας,
προεπιλεγμένες επιλογές), αλλά και εντελώς αδόμητη πληρο-
φορία (π.χ., φυσική γλώσσα, διαδικτυακά βίντεο). Αυτές οι νέες
τεχνολογίες έχουν, επίσης, μετατοπίσει τους ρόλους των τελι-
κών χρηστών: δεν είναι πλέον απλοί καταναλωτές πληροφορίας,
αλλά συμμετέχουν ενεργά στην διαδικασία δημιουργίας περιε-
χομένου, προσφέροντας ανατροφοδότηση και εκφράζοντας τις
απόψεις τους και τα ενδιαφέροντά τους.
Για την αξιοποίηση στο έπακρο αυτής της πληθώρας πληροφο-
ρίας, και προκειμένου οι υπηρεσίες της νέας γενιάς να κάνουν
τους χρήστες να συμμετέχουν πιο ενεργά, χρειαζόμαστε τεχνι-
κές που είναι πιο εκφραστικές ως προς τα αποτελέσματα που
επιστρέφουν, και μας επιτρέπουν να κατανοούμε καλύτερα τα
υπάρχοντα δεδομένα. Με άλλα λόγια, χρειαζόμαστε τεχνικές
για να μπορούμε, με καλύτερο τρόπο, να διαχειριζόμαστε και να
εξορύσουμε την διαθέσιμη πληροφορία, η οποία, στην πλειονό-
τητα των περιπτώσεων, παράγεται από χρήστες. Φυσικά, αυτές
οι τεχνικές απαιτείται να είναι ιδιαίτερα αποδοτικές, για να μπο-
ρούμε να ανταπεξέλθουμε στον όγκο των δεδομένων που είναι
διαθέσιμα στην εποχή των "ΜεγάλωνΔεδομένων". Για τους προ-
ηγούμενους λόγους, στην παρούσα διδακτορική διατριβή, πα-
ρουσιάζουμε τεχνικές που διαχειρίζονται τα αποτελέσματα εκ-
φραστικών ερωτημάτων, όπως τα ερωτήματα κορυφογραμμής,
και εξορύσουμε περιεχόμενο που υπάρχει διαδικτυακά και παρά-
γεται από τους χρήστες. Δεδομένων των πολυάριθμων σεναρίων

και εφαρμογών όπου μπορεί να εφαρμοστεί η εξόρυξη περιεχόμε-
νου, επικεντρωνόμαστε σε δύο περιπτώσεις: εξόρυξη πληροφο-
ρίας από κριτικές και ανάλυση κοινωνικών μέσων.
Πιο συγκεκριμένα, εστιάζουμε σε ερωτήματα προτιμήσεων, όπου
οι χρήστες μπορούν να κάνουν ερωτήματα πάνω σε ένα σύνολο
αντικείμενων, όπου κάθε ένα συσχετίζεται με ένα σύνολο χαρα-
κτηριστικών. Για κάθε ένα από τα χαρακτηριστικά, οι χρήστες
μπορούν να προσδιορίσουν την προτίμησή τους, αναφορικά με
την ελαχιστοποίησή ή την μεγιστοποίησή του (του χαρακτηριστι-
κού), λ.χ., "ελαχιστοποίηση τιμής", "μεγιστοποίηση απόδοσης",
κ.λπ. Τέτοια ερωτήματα είναι γνωστά ως "Pareto βέλτιστα" ερω-
τήματα ή "Ερωτήματα Κορυφογραμμής". Ένα μειονέκτημα αυ-
τού του τύπου ερωτημάτων είναι ότι το αποτέλεσμα μπορεί να γί-
νει υπερβολικά μεγάλο, προκειμένου ο χρήστης να το επιθεωρή-
σει με μη αυτόματο τρόπο. Προτείνουμε μια προσέγγιση αντιμε-
τώπισης αυτού του προβλήματος, επιλέγοντας ένα σύνολο δια-
φορετικών αντικειμένων που ανήκουν στο αποτέλεσμα ενός ερω-
τήματος κορυφογραμμής. Δίνουμε έναν τυπικό ορισμό του προ-
βλήματος της διαφοροποίησης της κορυφογραμμής και παρου-
σιάζουμε αποδοτικές τεχνικές που επιλύουν αυτό το πρόβλημα.
Το αποτέλεσμα μπορεί εκ των υστέρων να βαθμονομηθεί σύμ-
φωνα με καταξιωμένα ποιοτικά κριτήρια. Προτείνουμε επίσης
ένα εναλλακτικό σχήμα για την βαθμονόμηση των αποτελεσμά-
των που προκύπτουν από ερωτήματα κορυφογραμμής, ακολου-
θώντας μια προσέγγιση που βασίζεται στην Ανάκτηση Πληροφο-
ρίας.
Τα ερωτήματα προτιμήσεων, όπως αυτά που περιγράφηκαν προη-
γουμένως, μπορούν να χρησιμοποιηθούν για την ανάκτηση αντι-
κειμένων σε ένα σενάριο προ-χρήσης. Οι προτιμήσεις χρηστών,
ωστόσο, μπορούν να εκφραστούν ρητά και σε περιπτώσεις κατό-
πιν της χρήσης ενός αντικείμενου, μέσω της συγγραφής κριτι-
κών ή παρεμφερούς ανατροφοδότησης. Συγκεκριμένα, ποικίλες
πλατφόρμες επιτρέπουν στους χρήστες να υποβάλλουν την ανα-
τροφοδότησή τους και τις απόψεις τους αναφορικά με μία υπη-
ρεσία (π.χ., τη διαμονή σε ένα ξενοδοχείο) ή ένα προϊόν που αγό-
ρασαν (π.χ., μία φωτογραφική μηχανή). Η εξόρυξη δεδομένων
από κριτικές έχει αποκτήσει σημαντικό ενδιαφέρον τα τελευταία

χρόνια, εξ αιτίας του άμεσου οικονομικού αντίκτυπου. Στην ερ-
γασία μας, χρησιμοποιήσαμε διαδικτυακές κριτικές για να εξά-
γουμε πόσο καλά ένα προϊόν ικανοποίησε τις ανάγκες χρηστών,
και να χτίσουμε ένα τυπικό πλαίσιο για την εξόρυξη ανταγωνι-
στών. Προτείναμε αλγορίθμους για την αποδοτική ανάκτηση
των k πιο ανταγωνιστικών προϊόντων, δοθέντος ενός αντικείμε-
νου που μας ενδιαφέρει, και αποτιμήσαμε την προσέγγισή μας με
μία μελέτη χρηστών, καταδεικνύοντας την αποτελεσματικότητα
του φορμαλισμού που προτείνουμε.
Τέλος, τα κοινωνικά μέσα είναι, στην παρούσα φάση, από τις πιο
γόνιμες πλατφόρμες, αναφορικά με το περιεχόμενο που παράγε-
ται από τους χρήστες. Χαρακτηριστικά παραδείγματα περιλαμ-
βάνουν το Twitter, το Facebook, το Tumblr, κ.λπ. Σε αντίθεση με
προηγούμενες διαδικτυακές πλατφόρμες όπου οι χρήστες μπο-
ρούσαν να ανεβάζουν περιεχόμενο, όπως τα ιστολόγια (blogs),
αυτές οι υπηρεσίες έχουν 2 διαφορετικά χαρακτηριστικά: 1) γρή-
γορο ρυθμό ανανέωσης και 2) τεράστιους αριθμούς ενεργών,
διασυνδεδεμένων χρηστών. Συνεπώς, ο όγκος του παραγόμε-
νου περιεχομένου φθάνει σε εξαιρετικά επίπεδα, και οδηγεί σε
μια ροή δεδομένων. Δεδομένου ότι οι χρήστες συζητάνε διαρ-
κώς για τα ενδιαφέροντά τους και τον περιβάλλοντα χώρο τους,
μας δίνεται η δυνατότητα να εξάγουμε σε πραγματικό χρόνο
ενδιαφέρουσες πληροφορίες, όπως γεγονότα. Η ανίχνευση γε-
γονότων είναι υψίστης σημασίας σε αρκετές περιπτώσεις, από
την σωστή κατανομή των πόρων μέχρι και την διαχείριση κρί-
σεων. Προτείνουμε τεχνικές που στοχεύουν στην ανίχνευση γε-
γονότων, καθώς αυτά προκύπτουν, και λειτουργούν κατά , για
να ανταπεξέλθουν στην συνεχόμενη ροή των εισερχόμενων δε-
δομένων. Για την επίτευξη αυτού του στόχου, καταφεύγουμε σε
θεωρίες συναισθημάτων, που προσδίδουν στην ανάλυσή μας μια
διττή προοπτική, αναφορικά με τον ψυχολογικό αντίκτυπτο που
έχουν τα γεγονότα στους χρήστες. Επιπροσθέτως, η ανάλυσή
μας αποκαλύπτει ορισμένα πολύ ενδιαφέροντα χαρακτηριστικά
για το μέσο που εξετάζουμε (Twitter) και τις συζητήσεις που λαμ-
βάνουν χώρα σε αυτό.

Συνοπτική Παρουσίαση της Διδακτορικής Διατριβής

Ο Παγκόσμιος Ιστός έχει αλλάξει δραματικά με το πέρασμα των
χρόνων σε σχέση με την αρχική του ιδέα, και εξακολουθεί να
εξελίσσεται καθώς νέες τεχνολογίες προκύπτουν διαρκώς. Οι
διαδικτυακές υπηρεσίες και εφαρμογές είναι σήμερα πιο διαδε-
δομένες, επιτρέποντας στους χρήστες να μοιράζονται στο διαδί-
κτυο πτυχές της καθημερινότητάς τους. Πιο σημαντικό είναι το
γεγονός ότι οι χρήστες νιώθουν άνετα να κάνουν κάτι τέτοιο, το
οποίο αποτελεί σημαντική μετατόπιση αναφορικά με την αντιμε-
τώπιση της ιδιωτικότητας στα ψηφιακά περιβάλοντα. Αυτή η
γενική αλλαγή στη συμπεριφορά των χρηστών έχει κάνει τη δια-
χωριστική γραμμή μεταξύ τουψηφιακού και τουφυσικού κόσμου
περισσότερο ασαφή.
Αυτός ο διαμοιρασμός της πληροφορίας πραγματοποιείται υπό
ποικίλες μορφές, που κυμαίνονται από απλά πατήματα κουμπιών
(π.χ. "Like", "+1"), μέχρι δομημένα και ημιδομημένα δεδομένα
(π.χ. συμπλήρωση φόρμας, προεπιλεγμένες επιλογές), αλλά και
εντελώς αδόμητη πληροφορία (π.χ., φυσική γλώσσα, διαδικτυακά
βίντεο). Σημειώνεται ότι αυτή η πληροφορία δεν παράγεται πλέον
από μεγάλες εταιρίες ή ακαδημαϊκά ινστιτούτα, όπως γινόταν
στις απαρχές του Παγκόσμιου Ιστού. Αντιθέτως, δημιουργείται
από πραγματικούς χρήστες, των οποίων ο ρόλος έχει αλλάξει
από αυτόν του παθητικού καταναλωτή πληροφορίας σε αυτόν
του ενεργού συμμετέχοντα στην διαδικασία παραγωγής περιε-
χομένου. Είναι επίσης ενδιαφέρον ότι οι εταιρίες πλέον ενθαρ-
ρύνουν την ανατροφοδότηση από χρήστες - αν και προσπαθούν
κατά καιρούς να υποσκάψουν τους σχετικούς μηχανισμούς του
συστήματος - και οι χρήστες αναζητούν γνώμες από άλλους, προ-
κειμένου να σχηματίσουν εμπεριστατωμένες γνώμες και να λά-
βουν τεκμηριωμένες αποφάσεις.
Ο κοινός παρανομαστής αυτών των περιπτώσεων είναι ότι οι χρή-
στες εκφράζουν τις προτιμήσεις τους και τις προσωπικές τους
απόψεις πάνω σε μία σειρά θεμάτων, όπως μουσική, προϊόντα,
πολιτική, κ.λπ. Αν και οι νέες τεχνολογίες προσφέρουν τα απαραί-
τητα πλαίσια ώστε οι χρήστες να μπορούν να εκφραστούν, απαι-

τούνται καινοτόμες ιδέες για να μετατρέψουν τα διαθέσιμα δε-
δομένα σε χρήσιμη και αξιοποιήσιμη πληροφορία. Η ανάγκη αυτή
μεταφράζεται, επί της ουσίας, σε ενδιαφέρονται και δύσκολα
ερευνητικά ερωτήματα τα οποία οφείλουμε να αντιμετωπίσουμε,
ώστε να προσφέρουμε τις υπηρεσίες της επόμενης γενιάς. Για
παράδειγμα, χρειαζόμαστε πιο εκφραστικούς τύπους ερωτημά-
των, όπου οι προτιμήσεις των χρηστών θα λαμβάνονται σοβαρά
υπόψη. Συγχρόνως, οφείλουμε να αναπτύξουμε τεχνικές οι οποί-
ες εξάγουν ουσιαστικές και διορατικές πληροφορίες από το ογκώ-
δες περιεχόμενο που παράγεται από τους χρήστες.
Τα ερωτήματα κορυφογραμμής και τα τοπ-k ερωτήματα είναι
δύο χαρακτηριστικά παραδείγματα τέτοιων ερωτημάτων. Τα τοπ-
k ερωτήματα επιστρέφουν τα k καλύτερα αντικείμενα σύμφωνα
με μια συνάρτηση βαθμολόγησης f () των αντικειμένων. Από
την άλλη πλευρά, τα ερωτήματα κορυφογραμμής υποστηρίζουν
πολυ-κριτηριακή βελτιστοποίηση και είναι σχεδιασμένα ώστε να
επιστρέφουν αντικείμενα με διαφορετικές ισορροπίες. Συγκε-
κριμένα, το ερώτημα αυτό ορίζεται πάνωσε ένα σύνολο χαρακτη-
ριστικών, και το αποτέλεσμα περιλαμβάνει εκείνα τα αντικείμενα
για τα οποία δεν μπορούμε να βρούμε καλύτερη εναλλακτική
ως προς όλα τα χαρακτηριστικά. Και οι δύο τύποι ερωτημάτων
έχουν τα δικά τους πλεονεκτήματα και μειονεκτήματα. Για παρά-
δειγμα, τα ερωτήματα τοπ-k ελέγχουν το μέγεθος του αποτελέ-
σματος μέσω της παραμέτρου k. Ωστόσο, το αποτέλεσμα εξαρ-
τάται παρά πολύ από την συνάρτηση βαθμολόγησης f () και η
επιλογή μιας καλής τέτοιας συνάρτησης f () δεν είναι καθόλου
εύκολη διαδικασία. Από την άλλη, τα ερωτήματα κορυφογραμμής
είναι ευκολότερα ως προς την κατανόησή της, δεδομένου ότι οι
προτιμήσεις ορίζονται πάνω σε κάθε χαρακτηριστικό ξεχωριστά,
όμως, το μέγεθος του αποτελέσματος μπορεί να γίνει εύκολα
υπερβολικά μεγάλο. Σε αυτές τις περιπτώσεις θα ήταν πολύ κου-
ραστικό για τον χρήστη να κοιτάξει όλα τα αποτελέσματα χειρο-
κίνητα. Συνεπώς, χρειαζόμαστε τεχνικές που συνδυάζουν τα
πλεονεκτήματα και των δύο ερωτημάτων. Η ενσωμάτωση επι-
πλέον περιορισμών κατά την επιλογή των αποτελεσμάτων, όπως
π.χ. η διαφορετικότητα των αντικειμένων, θα ήταν ιδιαίτερα

επιθυμητή, ιδιαίτερα αν θεωρήσουμε το γεγονός ότι τα ερωτή-
ματα κορυφογραμμής στοχεύουν να επιστρέφουν σημεία με δια-
φορετικές ισορροπίες.
Και οι δύο αυτοί τύποι ερωτημάτων καταγράφουν τα ερωτήματα
των χρηστών σε σενάρια προ-χρήσης, με χαρακτηριστικές τις
περιπτώσεις όπου οι χρήστες αναζητούν νέα αντικείμενα ή πλη-
ροφορία. Οι χρήστες, ωστόσο, μπορούν να εκφράσουν τις προ-
τιμήσεις τους και σε μετά-χρήσεως περιπτώσεις, υπό την μορφή
της ανατροφοδότησης (feedback). Σε ορισμένους τομείς, η ανα-
τροφοδότηση μπορεί να δίνεται ρητά μέσω των ενεργειών των
χρηστών. Για παράδειγμα, η επιλογή ενός αποτελέσματος στα
πλαίσια μιας αναζήτησης στο διαδίκτυο (web search) είναι μια
μορφή θετικής ανατροφοδότησης, ενώ η παράλειψη / υπερπή-
δηση αποτελεσμάτων αποτελεί αρνητική ανατροφοδότηση για
τα αντικείμενα που δεν επιλέχθηκαν. Ομοίως, η επιλογή ενός
καταλόγου όπου θα αποθηκευτεί ένας διαδικτυακός πόρος είναι
μια ρητή μορφή ανατροφοδότησης για τη συγκεκριμένη εφαρ-
μογή. Η υποστήριξη των ενεργειών των χρηστών μέσω της κρι-
τικής αξιοποίησης τέτοιας ανατροφοδότησης θα μπορούσε να
βελτιώσει σημαντικά των εμπειρία του χρήστη (user experience).
Η ανατροφοδότηση από τους χρήστες μπορεί να λάβει και άλλες
μορφές, όπως για παράδειγμα ημι-δομημένη πληροφορία και ε-
λεύθερο κείμενο. Οι διαδικτυακές κριτικές (online reviews) απο-
τελούν ένα χαρακτηριστικό παράδειγμα της τελευταίας μορφής,
που έχει προσελκύσει ιδιαίτερο ενδιαφέρον τα τελευταία χρόνια.
Αυτό το αυξημένο ενδιαφέρον οφείλεται στον αντίκτυπο που
έχουν οι κριτικές στην εμπορευσιμότητα των προϊόντων. Μάλι-
στα, έρευνες έχουν δείξει ότι οι χρήστες προτιμούν προϊόντα
για τα οποία υπάρχουν κριτικές, ώστε να γνωρίζουν τα θετικά
και τα αρνητικά τους, και να μπορούν, επομένως, να λάβουν
τεκμηριωμένες αποφάσεις. Μέσω του συνδυασμού της ανατρο-
φοδότησης από τους χρήστες και των τεχνικών προδιαγραφών
των προϊόντων, μπορούμε να εξάγουμε ένα στιβαρό πλαίσιο για
την ανάλυση και τη σύγκριση τέτοιων προϊόντων. Πιο συγκεκρι-
μένα, βασιζόμενοι στις ανάγκες των χρηστών - όπως αυτές προ-
κύπτουν μέσω της ανατροφοδότησης που παρέχουν - και το βαθ-
μό στον οποίο ένα προϊόν μπορεί να καλύψει συγκεκριμένες ανά-

γκες - όπως προκύπτει από τα τεχνικά χαρακτηριστικά του -, είμα-
στε σε θέση να αναγνωρίζουμε πόσο ανταγωνιστικά είναι τα προϊ-
όντα. Αυτό είναι ιδιαίτερα χρήσιμο, τόσο για τους παραγωγούς
των προϊόντων (δλδ., τις εταιρίες), όπως και τους καταναλωτές
(δλδ, τους τελικούς χρήστες). Παρ' όλη τη σημασία του, μέχρι
πρότινως δεν υπήρχε ένα τέτοιο τυπικό πλαίσιο, που θα αναγνω-
ρίζει ανταγωνιστικά προϊόντα. Η πρόσφατη διαθεσιμότητα των
διαδικτυακών κριτικών μας επέτρεψε να ελέγξουμε τόσο την
αποδοτικότητα όσο και την αποτελεσματικότητα τεχνικών που
επιστρέφουν τα k πιο ανταγωνιστικά προϊόντα, δοθέντος ενός
αντικείμενου που μας ενδιαφέρει.
Παρά την έκρηξη του πλήθους των διαδικτυακών κριτικών, ο
όγκος αυτός δεν συγκρίνεται επουδενί με τον όγκο των δεδο-
μένων που παράγεται από τα μέσα κοινωνικής δικτύωσης (social
media). Τα πιο δημοφιλή κοινωνικά μέσα έχουν υιοθετηθεί από
ένα πραγματικά μεγάλο πλήθος χρηστών, με την εταιρία Face-
book να καυχιέται παραπάνω από 1.28 δισεκατομμύρια ενεργούς
χρήστες κάθε μήνα (στοιχεία μέχρι και 31 Μαρτίου, 2014), και
την εταιρία Twitter - που ιδρύθηκε αργότερα - να έχει περισσότε-
ρους από 255 εκατομμύρια ενεργούς χρήστες το μήνα (μέχρι
και τον Ιούλιο 2014). Μια κινητήρια δύναμη των τεχνολογικών
αυτών πλαισίων είναι το συστατικό της δικτύωσης, με τους συμ-
μετέχοντες να συνδέονται μεταξύ τους, ως προαπαιτούμενο για
το διαμοιρασμό πληροφορίας.
Αναμφίβολα, τα κοινωνικά μέσα αποτελούν μια από τις πιο γόνι-
μες ερευνητικές περιοχές σήμερα, όχι μόνο λόγω της υψηλής
αποδοχής από χρήστες, αλλά και λόγοω της χρησιμότητας των
δεδομένων τους για ποικίλες επιστήμες και κλάδους: πληροφο-
ρική, ψυχολογία, κοινωνιολογία και δημοσιογραφία είναι μόνο
μερικές χαρακτηριστικές περιπτώσεις. Επιπροσθέτως, υπάρχουν
πρακτικές εφαρμογές όπου τα δεδομένα μπορούν να αξιοποιη-
θούν. Διαφημιστικές εκστρατείες (advertising) και η ανίχνευση
κοινοτήτων (community detection) είναι τυπικά παραδείγματα, ενώ
η αναγνώριση συμβάντων (σε πραγματικό χρόνο), η ανάλυση αλ-
ληλεπιδράσεων μεταξύ χρηστών (interaction analysis), και η κατα-
νόηση της συμπεριφοράς των χρηστών (user behavior analysis)

λαμβάνουν ολοένα και περισσότερη προσοχή. Η αποκωδικοποί-
ηση του περιεχομένου που παράγεται από τους χρήστες σε αυτά
τα μέσα είναι ιδιαίτερα δύσκολη, λόγω του όγκου των δεδομένων
και της ποικιλομορφίας του περιεχομένου, που οφείλεται στον
αντίστοιχο πληθυσμό και τα ενδιαφέροντά τους.
Η εξόρυξη δεδομένων σε τόσο μεγάλο όγκο πληροφορίας για
την ανεύρεση γεγονότων, που είναι άξια για δημοσιοποίηση, εί-
ναι κάθε άλλο παρά εύκολη. Προηγούμενες τεχνικές επικεντρώ-
θηκαν στην παρακολούθηση γεγονότων, υπονοώντας ότι το γε-
γονός έχει ήδη ανιχνευθεί ή είναι με κάποιο τρόπο γνωστό. Άλ-
λοι ερευνητές απλοποιούν το πρόβλημα με το να ψάχνουν για
συγκεκριμένες λέξεις-κλειδιά, τα οποία μπορούν να περιγράψουν
επαρκώς ένα γεγονός. Η ανίχνευση γεγονότων, ανεξαρτήτως
τύπου (π.χ. πολιτική, αθλητικά, κλπ), και χωρίς πρότερη γνώση
αναφορικά με λέξεις που μπορούν να το περιγράψουν , απαιτεί
μια διαφορετική προσέγγιση. Ως εναλλακτική, καταφεύγουμε
σε θεωρίες που στηρίζονται στην ψυχολογία, σύμφωνα με τις
οποίες τα γεγονότα έχουν επιπτώσεις στον ανθρώπινο ψυχισμό
(και πιο συγκεκριμένα στην συναισθηματική του κατάσταση), ε-
ξωθώντας τους να εξωτερικεύσουν τις σκέψεις τους. Υποστηρί-
ζουμε ότι γεγονότα που είναι άξια προς δημοσιοποίηση θα έχουν
επίπτωση σε μεγάλες ομάδες χρηστών, και μέσω της παρακολού-
θησης της συναισθηματικής κατάστασης της ομάδας, θα μπο-
ρούμε να εντοπίσουμε απότομες μεταβολές, τις οποίες μπορού-
με να συσχετίσουμε με την πηγή, δλδ, το συμβάν.
Στα πλαίσια αυτού του ερευνητικού προβλήματος, ωστόσο, υπάρ-
χει μια πληθώρα άλλων ερωτημάτων που πρέπει να απαντηθούν.
Για παράδειγμα, πρέπει να αναγνωρίζουμε την τοποθεσία όπου
έλαβε χώρα ένα γεγονός, το οποίο θα μπορούσε να μας βοηθήσει
να το περιγράψουμε, ή ακόμα καλύτερα, να το εξηγήσουμε. Η
εξαγωγή της συναισθηματικής κατάστασης είναι ένα δύσκολο
πρόβλημα, ακόμα και αν εστιάζουμε σε ένα μεμονωμένο χρήστη,
πόσο μάλλον σε μία ομάδα χρηστών. Η αναγνώριση απότομων
μεταβολών απαιτεί μια προσεκτική μοντελοποίηση του προβλή-
ματος, καθώς επίσης και αποδοτικές τεχνικές, λόγω του υψηλού
όγκου δεδομένων, τα οποία πρέπει να επεξεργαστούμε σε πραγ-
ματικό χρόνο. Η παρουσίαση / οπτικοποίηση της πληροφορίας

με κατάλληλο τρόπο, ώστε να γίνεται εύκολα κατανοητή, είναι
ένα άλλο ζήτημα που πρέπει να λάβουμε υπόψη.

Contents

1 Introduction 35
1.1 The Web 2.0 era and beyond 35
1.2 Contributions and roadmap of this thesis 38

2 Managing user preferences 41
2.1 Introduction . 41
2.2 Skyline diversification 43

2.2.1 Motivation . 43
2.2.2 Related Work 46
2.2.3 Problem Definition 50
2.2.4 Straight-Forward Techniques 53
2.2.5 The SkyDiver Framework 55

2.2.5.1 Phase 1: Fingerprinting withMinHashing 55
2.2.5.2 Phase 2: Selection of Diverse Skyline

Points 59
2.2.5.3 The LSH-Based Method 65

2.2.6 Experimental Evaluation 67
2.2.6.1 Algorithms and Data Sets 67
2.2.6.2 Experiments and Results 68

2.3 Skyline ranking with IR techniques 77
2.3.1 Introduction . 77
2.3.2 DP-IDP weighting scheme 79

2.3.2.1 Inverse Dominance Power 79
2.3.2.2 Dominance Power 80
2.3.2.3 Putting it all together 81

2.3.3 Ranking the Skyline 82
2.3.3.1 Bounding the score 83
2.3.3.2 The SkyIR technique 88

2.3.4 Performance Evaluation 90

2.4 Summary . 94

3 Mining user preferences 97
3.1 Introduction . 97
3.2 Review Mining for Competitor Identification 98

3.2.1 Motivation . 98
3.2.2 Related Work 101
3.2.3 Formalizing Competitiveness 102

3.2.3.1 Competitiveness via Coverage 102
3.2.3.2 Computing Coverage 105

3.2.4 Finding the Top-K Competitors 108
3.2.5 The CMiner Algorithm 109

3.2.5.1 The CMiner Algorithm 112
3.2.5.2 Algorithmic Complexity 115

3.2.6 Weight-Estimation for Feature-Subsets 115
3.2.7 Subset Ordering 116
3.2.8 Experimental Evaluation 118
3.2.9 Computational Time 121
3.2.10 A User Study 124

3.3 Summary . 126

4 Mining user-generated content 129
4.1 Introduction . 129

4.1.1 Research questions in Online social networks . 132
4.2 Towards principled solutions for mining online content . 133

4.2.1 Faceted crawling of the Twitter service 133
4.2.1.1 Related Work 134
4.2.1.2 Twitter API Background 135
4.2.1.3 Faceted Crawler Architecture 136
4.2.1.4 Use Cases 140

4.2.2 Harvesting content from Hidden-web databases 143
4.2.2.1 Related Work 145
4.2.2.2 Background 146
4.2.2.3 Rank-Aware Crawling 147
4.2.2.4 Ranking Distances 150
4.2.2.5 Experimental Evaluation 151

4.2.3 Mining data using execution engines and declar-
ative languages 155

4.2.3.1 Related Work 158
4.2.3.2 In-Network Data Analysis with a Declar-

ative Language 160
4.2.3.3 Query Refactoring 163
4.2.3.4 Experimental Evaluation 169

4.3 Comparing sampling policies 175
4.3.1 Related Work 177

4.3.1.1 Spatio-temporal analysis of Twitter feeds177
4.3.1.2 Sampling Social Data Streams 178

4.3.2 The Data . 178
4.3.3 Geo-location Coverage 179
4.3.4 Sentiment Analysis 182
4.3.5 Popular Topic Detection 183

4.3.5.1 Top-most retweeted posts 183
4.3.5.2 Retweet Burstiness 186

4.3.6 Graph Evolution 188
4.3.6.1 Temporal Retweet Graph 188

4.3.7 Linguistic Analysis 190
4.3.8 Efficiency . 191

4.4 Detecting Events with User-Generated Content 192
4.4.1 Related Work 196
4.4.2 Modeling & Detecting Events 198

4.4.2.1 Approximating the Emotional State Dis-
tribution 201

4.4.2.2 Event Detection 203
4.4.3 Extracting Spatial Information 204

4.4.3.1 Related Work 206
4.4.3.2 Problem definition 207
4.4.3.3 Problem setting 208
4.4.3.4 Online geocoding 209
4.4.3.5 Data Cleaning 209
4.4.3.6 Algorithmic description 210

4.4.4 The TwInsight System 212
4.4.5 Event Extraction Workflow 215
4.4.6 Experiments 217

4.4.6.1 Experimental Setup 217
4.4.6.2 Geocoding Results 218
4.4.6.3 Event Detection Results 224

4.4.7 Visualizing Results 234

4.4.7.1 Visualizing Emotions 234
4.4.7.2 Visualizing Spatial Information 236
4.4.7.3 Visualizing Event Description 237
4.4.7.4 Putting It All Together 240

4.5 Summary . 242

5 Conclusions and future directions 245
5.1 Summary of the thesis 245
5.2 Future Directions . 249

5.2.1 Skyline diversification and novel query types . . 249
5.2.2 Competitor identification and review mining . . . 250
5.2.3 Mining user-generated content and social me-

dia analysis . 250

6 References 253

List of Figures

2.1 Example of the skyline on a set of hotels with 2 attributes 42
2.2 Graph with dominance relations. 44
2.3 Solutions to dispersion problems. 52
2.4 Domination of MBRs. 59
2.5 Buckets and bit-vectors of skyline points. 66
2.6 Time for generating MinHash signatures vs signature

size. 68
2.7 Time for generating MinHash signatures of size 100 for

synthetic data sets. 69
2.8 Runtime for k = 10 diverse skyline points vs dimension-

ality. 70
2.9 Runtime vs number of diverse points (k). 71
2.10 Quality vs number of diverse points (k). 72
2.11 LSH vs MinHashing, for k = 10 diverse skyline points,

with signature size fixed to 100 73
2.12 Example for the Dominance Power 80
2.13 Example of skyline and bipartite domination graph . . . 84
2.14 Collaborative upper bound 86
2.15 Total runtime versus cardinality for IND, k=5 91
2.16 Total runtime for various prioritization with IND, CB . . 92
2.17 Total runtime for ANT distribution 92
2.18 Forest cover . 93
2.19 Maximum memory consumption for CB, k=5 94
3.1 Simplified example of our competitiveness paradigm . . 100
3.2 Geometric interpretation of pairwise coverage 105
3.3 An example of the skyline pyramid structure 111
3.4 Cumulative distribution of items across the first 6 layers

of the skyline pyramid. 119
3.5 Distribution of feature subset weights 120

3.6 Average time (per item) to compute top-k competitors
for the various datasets 122

3.7 Average number of computed coverages to find the top-
k competitors for the various datasets 123

3.8 Average (per item) #evaluated feature subsets, before
sequentially computing competitiveness scores 124

3.9 Results of the user study comparing our competitive-
ness paradigm with the Nearest-Neighbor approach. . . 126

4.1 Architectural designs of both classic web crawler and
our Twitter faceted crawler 137

4.2 The IRanker interface 138
4.3 Schematic representation of Crawl Flow examples. . . 140
4.4 Comparing raw counts between crawled and geocoded

locational information 140
4.5 Crawling comparison for basic user information 141
4.6 Average crawler performance for harvesting (a) user in-

formation and (b)-(c) user timelines. 142
4.7 Collective performance of the crawlers used for har-

vesting user timelines. 142
4.8 Sampling scenario statistics. 143
4.9 Effectiveness in harvesting information fromHiddenWeb

sites . 153
4.10 Syntax for Defining an Intensional Extent. 161
4.11 Example schema of two streams expressed in SNEEql. 162
4.12 Creating a Linear Regression Classifier. 162
4.13 Using the TropForestLRF intensional extent. 162
4.14 Creating a D3 outlier detection extent. 163
4.15 Using the d3od intensional extent. 164
4.16 SNEE optimization stack: (left) original stack, (right)

query refactoring approach for data analysis techniques.164
4.17 Creation of a templated Linear Regression classifier. . 165
4.18 Templated subquery for computing (a, b) values 165
4.19 General form of a query using the LRF extent 166
4.20 General form of a refactored query using Linear Re-

gression . 167
4.21 Refactored Query of Fig. 4.13. 167
4.22 Subquery of (ab_COMP) in Fig. 4.21 168

4.23 Refactored query of D3 outlier detection algorithm. . . . 169
4.24 Example of Linear Regression computation for Naïve,

LC and SNEE-A approaches. 171
4.25 Average number of sent messages compared to the av-

erage network length for LR 172
4.26 Average number of sent bytes compared to the average

network length for LR 172
4.27 Transmission energy consumption compared to the av-

erage network length for LR 173
4.28 Reception energy consumption compared to the aver-

age network length for LR 173
4.29 CPUenergy consumption compared to the average net-

work length for LR . 174
4.30 Radio-CPU contribution(%) to power consumption. . . 174
4.31 Average total energy consumption compared to aver-

age network length for D3 174
4.32 Comparing default and Gardenhose samples for vol-

ume over time . 179
4.33 Bounding boxes of Table 4.8, Crawl1: Green, Crawl2:

Orange, Crawl3: Red, Crawl4: Blue 181
4.34 Different crawls from London 181
4.35 Comparing tweets with sentiment 183
4.36 Comparing the top-10000 most retweeted items 184
4.37 Burstiness of retweeting information 186
4.38 Statistical properties of the extracted retweet graph, over

time . 189
4.39 Tweets reflecting real-life events. 194
4.40 A timeseries on the daily emotions identified in the Twit-

ter stream, between March 15 and May 24 2012 194
4.41 An example assignment of groups to virtual sensors. . 200
4.42 Approximating the data distribution in a sliding window. 202
4.43 Distribution of users based on how they discolse their

location . 205
4.44 Schematic interaction of our system's components . . . 216
4.45 Efficiency of geocoding using the Full and the Small

gazetteers . 220
4.46 Number of mapped, unmapped and overmapped loca-

tions by gazetteer usage 221

4.47 Effectiveness of our approach using the two gazetteers 223
4.48 #Times a trigger was raised, compared to the window

size. a = 1min, r = 0.01, p=0.1 226
4.49 #Times a trigger was raised, compared to the window

size. a = 5min, r = 0.01, p=0.1 227
4.50 Cardiograms of emotions, for three distinct timestamps

in the United States 235
4.51 Summary of two events shown to the end-user, regard-

ing the Champions League Final 238
4.52 List of identified events (and their summary), related to

the eurovision contest 239
4.53 The overall GUI that the user sees. 240

List of Tables

2.1 k-max-coverage vs k-dispersion 49
2.2 Frequently used symbols 51
2.3 Evaluated algorithms 67
2.4 Basic data set characteristics 68
2.5 Comparing SkyDiver andContour Representation tech-

niques, Independent Dataset 74
2.6 Comparing SkyDiver andContour Representation tech-

niques, Forest Cover 76
2.7 Dataset Statistics . 91
3.1 Feature-subsets and their respective value-spaces. . . 108
3.2 Dataset Statistics . 119
4.1 Restrictions for some major query types. 136
4.2 Fields of the QueryLog relation 139
4.3 Jaccard Similarity between the GPS enabled crawls us-

ing the Streaming API 141
4.4 Crawling configurations 152
4.5 First 15 query terms by configuration 154
4.6 Template variables mapping for the query in Fig. 4.13. . 167
4.7 Structural properties of the topologies used in the ex-

perimental evaluation. 170
4.8 Description of the the GPS-driven crawls 180
4.9 Jaccard Similarity between the GPS-driven crawls . . . 181
4.10 Comparison of languages extracted from samples . . . 191
4.11 Efficiency of experiments (seconds) 191
4.12 Location dataset characteristics 218
4.13 Confusion matrix for the "oracle" experiment 222
4.14 #Times a trigger was raised, compared to the neighbor-

hood range. a = 1min, w = 30, p = 0.1 225

4.15 Average Component Processing Time (ms) 228
4.16 Sample Summary of 15 Prominent Events Identified By

TwInsight . 231
4.17 Mapping of emotions to colors, and examples of corre-

sponding tweets. 234

Preface

This research has been co-financed by the European Union (Euro-
pean Social Fund - ESF) and Greek national funds through the Op-
erational Program "Education and Lifelong Learning" of the National
Strategic Reference Framework (NSRF) - Research Funding Program:
Heracleitus II. Investing in knowledge society through the European
Social Fund.

Mining and Managing User-Generated Content and Preferences

Chapter 1

Introduction

1.1 The Web 2.0 era and beyond

The World Wide Web has changed dramatically over the years since
its initial inception, and is still evolving as new technologies emerge.
Online services and applications are more pervasive nowadays, al-
lowing users to share online aspects of their everyday lives. More
importantly, users feel comfortable with doing so, which is a major
shift in their attitude regarding privacy in digital environments. This
general change in behavior has made the boundaries between the
physical and online world less transparent.
Sharing of information takes place in various forms, ranging from sim-
ple button clicks, (e.g., "Like", "+1"), to structured and semi-structured
data, (e.g., filling in forms, selecting from pre-defined options), to to-
tally unstructured information, (e.g., natural language, pictures, online
videos). Note that this information is no longer produced by large (aca-
demic) institutions and corporations, which was the case in the early
days of the web. Rather, it is being generated by actual users, whose
role has shifted from information consumers to active participants in
the content creation process. It is also interesting that companies cur-
rently encourage user feedback -- although, they occasionaly try to
game the system --, and users actively seek out opinions from others,
in order to make informed decisions.
The common denominator is that users express their preferences and
personal opinions on various topics, such as music, products, politics,
etc. Although new technologies provide the necessary framework(s)
for the users to express themselves, novel techniques are required to

35 G. Valkanas

turn the available data into useful and actionable information. Such a
need translates into interesting and challenging research questions,
which we have to address, in order to provide the next generation
services. For instance, more expressive query types are needed,
whereby user preferences can be taken into account. At the same
time, we should develop techniques that extract meaningful and in-
sightful information from this high-volume, user-generated content.
Skyline and top-k queries are two such indicative examples. Top-k
queries retrieve the k best items according to some scoring function
f (). On the other hand, skyline queries support multi-objective opti-
mization and are geared towards returning items with different trade-
offs. In particular, the query is specified over a set of attributes, and
the result contains those items for which we can not find an alterna-
tive that is better in the selected attributes. Both query types have their
advantages and disadvantages. For example, top-k queries control
the output size through the parameter k. However, the result is highly
dependent on the ranking function f (), and selecting a good f () is not
a trivial task. On the other hand, skyline queries are easier for the
user to grasp, given that preferences are defined on each attribute
separately, but their query output size can become extremely large. It
would, then, be very tedious for the user to inspect all the results man-
ually. Consequently, we need techniques that combine the merits of
both query types. Incorporating additional constraints in the result se-
lection process, such as diversification of items, would also be highly
desirable, especially if we consider the fact that skyline queries aim to
return points with trade-offs.
Both of these query types capture user preferences in a pre-usage
scenario, typically when users are searching for new items or informa-
tion. Users may also express their preferences in a post-usage sce-
nario, in the form of feedback. Within certain domains, feedback can
be explicitly provided through a user's actions. For example, clicking
on a result during a web search session is a form of positive feedback,
whereas skipping results provides negative feedback for the skipped
item. Similarly, selecting the directory where to save a web resource
is an explicit form of feedback for this application scenario. Supporting
user activities by making judicious use of such feedback would greatly
improve the user experience.
User feedback can be provided in other formats as well, such as semi-

G. Valkanas 36

Mining and Managing User-Generated Content and Preferences

structured and free text. Online reviews are a characteristic example
of the latter form, that has received considerable attention in recent
years. This increased attention is due to the impact that reviews have
in themarketability of products. In fact, surveys have shown that users
prefer products that have already been reviewed, so that they know
the item's pros and cons, and can, therefore, make informed deci-
sions. Through a combination of user feedback and product speci-
fications, we can derive a rigid framework to analyze and compare
such products. More specifically, based on the users' needs -- pro-
vided through their feedback -- and the extent to which a product can
cover similar needs -- given by its characteristics --, we can identify
how competitive products are. This is extremely useful for both item
producers (e.g., the companies), as well as item consumers (e.g., the
end users). Despite its importance, a formal framework to identify
competitive items had been largely missing until now.The recent avail-
ability of online reviews has allowed us to test both the efficiency and
efficacy of techniques that return the top-k most competitive products,
with respect to a given item of interest.
Although online reviews have seen a sharp increase in numbers over
the years, they are nowhere near the data volume produced in so-
cial media. Popular social media platforms have extremely high user
adoption, with Facebook boasting more than 1.28 billion active users
per month (as of March 31, 2014), and Twitter -- a later founded com-
pany -- having more than 255 million active users per month (as of
July 2014). A driving force of these frameworks is their networking
component, with people linking to one another, as a prerequisite to
share information.
Undoubtedly, social media is among the most prolific areas for re-
search nowadays, not only because of the user adoption, but also
due to the usefulness of the data in various diverse disciplines: com-
puter science, psychology, sociology and journalism to name a few.
Moreover, there are practical applications where the data can be used.
Advertising and community detection are typical use cases, whereas
(real-time) event detection, interaction analysis, and user behavior un-
derstanding increasingly gain attention. Making sense of the user-
genereated content in these mediums is also extremely challenging,
because of the data volume and content diversity, which is as high as
the underlying population and their interests.

37 G. Valkanas

Mining high volumes of data to identify (newsworthy) events is far from
trivial. Previous techniques have focused on event monitoring, imply-
ing that the event is already identified or somehow known. Others
simplify the problem by searching for specific keywords, which can ac-
curately describe the event. Being able to identify events, regardless
of their type, and without prior knowledge of any descriptive keywords,
requires a different approach to tackle the problem. As an alternative,
we can resort to psychological theories, according to which events
impact the user psychologically (and most specifically their affective
state), compelling them to externalize their thoughts. We argue that
newsorthy events will impact large groups of users, and by monitor-
ing a group's aggregate affective / emotional state, we will be able to
capture abrupt changes and trace them back to the source, i.e., the
event.
Within this research question, however, there are several other issues
that need to be resolved first. For example, we must be able to identify
an event's location, which could help us describe it, or better explain
it. Extracting the affective state of a single user is challenging on its
own, let alone for an entire group. Capturing abrupt changes requires
a careful formulation of the problem, as well as efficient computation
techniques, due to the high volumes of real-time data we are dealing
with. Presenting the information in a suitable form, so that it is easily
understandable, is another aspect we need to consider.

1.2 Contributions and roadmap of this thesis

The remainder of this thesis is organized as follows
• Chapter 2 discusses query types that incorporate user prefer-
ences. We discuss existing approaches and their shortcomings
and suggest techniques to address them. In particular, we present
a framework that can reduce the output size for skyline queries, by
selecting a set of divserse skyline points. We formally define di-
versification in the context of skylines, and propose efficient algo-
rithms to select the top-k most divserse skyline points. Moreover,
we propose an approach to rank skyline points using an Informa-
tion Retrieval-inspired scheme. Finally, we briefly discuss other

G. Valkanas 38

Mining and Managing User-Generated Content and Preferences

techniques that combine notions from skyline and top-k queries,
and attempt to control the output size.

• In Chapter 3 we talk about user preferences in two post-usage
scenarios. More specifically, we propose a framework to identify
competitors by leveraging information extracted from online re-
views. We present efficient techniques to extract the top-k most
competitive items, given an item of interest, and experimentally
evaluate our algorithms using real datasets. We also evaluate
experimentally the efficacy of our proposed formalism through
a user study. In an alternative setting, we discuss how we can
take feedback into account, to facilitate a user-initiated process.
More specifically, we present a machine-learning framework to
aid users in selecting the right directory during a download pro-
cess. We discuss the features that we use for this particular prob-
lem, and conduct a user study to evaluate our approach.

• In Chapter 4 we propose techniques to mine social media data,
with a focus on Twitter. Our goal is to detect events, as discussed
by the users, while having Twitter as our only source of informa-
tion. The constraint for using Twitter as a single source stems
from a desire to report events as early as possible, with respect
to their time of occurrence. After an initial review of the literature,
we present our methodology for detecting events, using cognitive
and affective theories of emotions developed in the psychology
domain. We present efficient techniques that extract geographical
information of users. We propose a classification-based frame-
work to extract the affective state of users, and discuss how we
can group users together, to monitor their aggregate emotional
state. We formalize the problem of event detection in our setting,
and experimentally evaluate the entire system, in terms of both
efficiency and effectiveness. Detected events are displayed in a
contextual user interface, conveying as much information as pos-
sible in a concise manner, to support decision making.

• Finally, Chapter 5 concludes this thesis, summarizing our key find-
ings and contributions. We also discuss future steps to further our
work in the various research axis presented herein.

39 G. Valkanas

Mining and Managing User-Generated Content and Preferences

Chapter 2

Managing user preferences

2.1 Introduction

Skyline queries, in the context of databases, were initially proposed
in [42] and since then, they have attracted considerable attention by
the database and data analysis community, as they perform multi-
objective optimization without the need for user-defined scoring func-
tions. The only input required by the user is the preferences regard-
ing the minimization / maximization of attribute values. For example,
if price and quality are two of the attributes, then users prefer to min-
imize price and maximize quality, selecting items which are (objec-
tively) better than (i.e., dominate) others.
More formally, we assume a data set D composed of n points in a
d-dimensional space. For each dimension, independently of the oth-
ers, the user can define a specific preference, such as min or max,
depending on whether they are interested in minimizing or maximiz-
ing the respective attribute. We say that a point p dominates another
point q, where p, q ∈ D, and denote p ≺ q, if p is at least as good as
q in all dimensions, and it is strictly better in at least one. The result S
of a skyline query contains those points inD which are not dominated
by any other.
To illustrate with an example, let us assume that our dataset consists
of a set of hotels, for which we are interested in their price (y-axis)
and distance to the beach (x-axis). We can present these items in a
2-dimensional plot, as shown in Fig. 2.1. In such a scenario, we want
to minimize both attributes, i.e. select hotels as close to the beach
as possible and as cheap as possible. The skyline consists of hotels

41 G. Valkanas

e

a

g
b

f

i

j
h

n

c

l

kd

m

p
ri
ce

distance

Figure 2.1: Example of the skyline on a set of hotels with 2 attributes

{a, g, e, n}, for which there is none cheaper and closer to the beach
at the same time. On the other hand, we have no reason to select one
of the other hotels -- assuming only these two dimensions --, as there
is always a better alternative.
Past research on skyline queries in the context of databases has fo-
cused primarily on the efficiency aspect of the problem, i.e. how to
compute the skyline set as quicklly as possible. In their seminal pa-
per that introduced the Skyline Operator, Börzsönyi et al proposed two
algorithms for this problem: a Block-Nested-Loop (BNL) and a divide-
and-conquer (D&C) approach. BNL was later improved by presorting
the points according to a monotone scoring function, resulting in Sort-
Filter-Skyline (SFS) [59]. Kossman et al [121] proposed an algorithm
based on nearest-neighbor search. Papadias et al. proposed Branch-
and-Bound Skyline (BBS) [165], which uses a multidimensional index
and it is proven to be I/O optimal. Processing of skyline queries re-
ceived significant attention in other domains as well, including Peer-2-
Peer networks, Mobile Ad-hoc Networks (MANETs), Parallel and Grid
computing [30, 222, 111, 141, 132, 220, 66].
A major problem of the skyline, is that, depending on the data distribu-
tion and dimensionality, it is very likely that the result will contain a sig-
nificantly high number of points. More formally, Bentley et al showed
that for a randomly generated set of n points in d dimensions, the ex-
pected skyline cardinality is |S| = m = O((lnn)d−1) [38]. In a data
set containing 109 points, having about 103 skyline points may not be

G. Valkanas 42

Mining and Managing User-Generated Content and Preferences

that much compared to the data set cardinality. However, in an era
when "ten blue links" may sometimes seem too many [125], returning
approximately 103 skyline points for manual inspection immediately
negates the advantages of skyline queries, i.e., selecting high-quality
points. Therefore, more sophisticated solutions are required.

2.2 Skyline diversification

2.2.1 Motivation

As already discussed, skyline queries suffer from the skyline cardi-
nality explosion problem. Simply put, depending on the dataset char-
acteristics, e.g., cardinality, dimensionality, distribution of points, the
size of the skyline size may become too large. To overcome this is-
sue, two main directions have been followed, both of which focus on
the selection of a fixed-size subset of k skyline points.
The first alternative considers the entire dataset, selecting a set of k
skyline representatives, which collectively dominate as many distinct
points as possible [136]. The second alternative considers the skyline
set alone, and selects k skyline points that best describe the skyline
contour. Techniques that fall under this category include [238, 200]
and make use of Lp norms as distance functions.
In this research, we also address the skyline cardinality explosion
problem, by diversifying the skyline set, i.e. computing a subset of
k skyline points with high diversity. The need for diversification arises
in any context where there are users with varying tastes, e.g., web
search [12, 18]. The skyline setting is no exception, considering that
the query itself is designed to return results with varied trade-offs. For
instance, some users may be looking for a "cheap" buy, whereas oth-
ers for a "quality" one. Moreover, there may be some users who are
interested in having an investigative look before proceeding with their
purchase, therefore some (manual) post-processing is necessary to
fulfill their needs [62, 166, 195]. Without knowing the user's true inter-
ests, our safest bet is to diversify the skyline result, to fulfill the needs
of as many users as possible.
To this end, we propose ameasure of diversity for skyline points which

43 G. Valkanas

is meaningful and intuitive given the setting, and, most importantly,
builds upon the most fundamental skyline concept: the dominance
relation. In particular, each skyline point is associated with its domi-
nated set Γ(p), i.e., the set of points that p dominates. The dominated
set is an established measure of quality of skyline points [136, 230],
thereby making it suitable as a building block for our diversification
model.
More formally, the diversity between two skyline points p and q is de-
fined as the Jaccard distance Jd of their corresponding dominated
sets, i.e.,

Jd(p, q) = 1− |Γ(p) ∩ Γ(q)|
|Γ(p) ∪ Γ(q)|

When Γ(p) and Γ(q) largely overlap, the diversity score will be small;
conversely, sharing few dominated points results in high diversity. Fi-
nally, our diversification model inherently encourages large domina-
tion sets, because for a fixed number of commonly dominated points,
the selected pair will be the one that collectively maximizes the domi-
nation score. The choice of Jd arises naturally, taking into considera-
tion that it is the most widely used similarity measure for sets.
To motivate our approach further, consider Figure 2.2, where a set of
points has been split into its skyline (upper) and the set of dominated
points (lower). A directed edge exists to signify that the skyline point
dominates the corresponding point at the bottom. This representation
abstracts a multitude of domains:
• Nodes are product reviews and an edge exists when a product is
at least as good as another.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

b c da

Figure 2.2: Graph with dominance relations.

G. Valkanas 44

Mining and Managing User-Generated Content and Preferences

• Nodes are web pages and a node dominates another if it contains
at least as much information on a topic of interest.

• Nodes are web search results and an edge exists if a user se-
lected one result over the others. The selected document be-
comes part of the skyline, whereas the rest (e.g., higher ranked
documents) belong to the dominated set.

Note that the entire representation only relies on the dominance rela-
tion because this may be all we have. For instance, in our third ex-
ample, we only know that a user preferred some documents over the
rest, without explicitly knowing "why". Similarly, the data may belong
to a 3rd party who has anonymized or obfuscated it and we are only
presented with this dominance graph, but not the actual data values.
This practically translates into an inability to build and use a multi-
dimensional index.
We stress that diversification, as an objective, is different from cover-
age. Coverage focuses on the selection of skyline points that maxi-
mize the number of unique points that are being dominated. For exam-
ple, in a 2 max-coverage approach, i.e., selecting the 2 skyline points
that maximize the number of dominated points, the result would be
the pair (b, c). However, their domination sets largely overlap, mean-
ing that little new information will be provided. Similarly, d discusses
topics already covered by both b and c. On the contrary, a may pro-
vide truly fresh information that none other does, despite the fact that
it dominates a single point. An approach focusing on diversification,
as the one that we propose, would return the pair (c, a): c dominates
the most points and addresses a lot of the information found in b and
d; a provides truly new information compared with c, and will attract
users with a varied taste better than any other combination.
Overall, our contributions are briefly described as follows:
• We define a novel and intuitive measure of skyline diversity, which
is solely based on the dominance property. In particular, the diver-
sity between skyline points is computed as the Jaccard distance
of their associated dominated sets. This makes our technique
suitable for settings, such as partially-ordered domains or data
with (multi-valued) categorical feature. Moreover, our formalism
maintains the scale invariance property of skyline queries, con-

45 G. Valkanas

trary to other techniques, which also suffer from a need for addi-
tional distance functions or user input. Therefore, we advocate
this measure as an intuitive approach for (dis)similarity computa-
tion between skyline points.

• Given our similarity measure, we proceedwith presenting the prob-
lem of k-most diverse skyline points. The problem is mapped
naturally to the k-dispersion problem. Since k-dispersion is NP-
hard [123], we obtain a 2-approximation with respect to the opti-
mal solution, by applying a greedy-based heuristic.

• To efficiently approximate the optimal solution, we propose the
SkyDiver framework. Our framework may be applied regardless
of the existence of an index; naturally, the use of an index may
improve performance by reducing I/O operations. In particular,
we employ MinHash signatures and provide theoretical guaran-
tees for the effectiveness of our approach. Alternatively, Locality
Sensitive Hashing (LSH) can be used, as a space-efficient ap-
proximation to MinHashing.

• We provide an extensive and comprehensive experimental eval-
uation of SkyDiver, using both real-life and synthetic datasets to
verify our theoretical study, and experimentally portray the bene-
fits of our approach against other alternatives that select a fixed
subset of the skyline set.

The rest of this section is organized as follows. Related work is sum-
marized in Section 2.2.2. Section 2.2.3 introduces some fundamental
concepts with respect to the domain, and formally defines the prob-
lem. Some straightforward techniques to addressing the problem are
discussed in 2.2.4, along with their inefficiencies. Our algorithms are
studied in detail in Section 2.2.5 and evaluated experimentally in Sec-
tion 2.2.6, using real-life and synthetic data sets.

2.2.2 Related Work

Diversity is a topic studied in several disciplines. Since the literature
is very rich, we will briefly discuss in the following the most basic con-
tributions that are closely related to ours.

G. Valkanas 46

Mining and Managing User-Generated Content and Preferences

Operations Research. Diversification in Operations Research has
been used as a means of dispersion in optimization problems. In par-
ticular, this concept has applications in facility location, where the lo-
cations of k new stores or warehouses must be determined in order
to be convenient to deliver products to clients. The intractability of the
problem was first investigated in [123], where it was shown to be NP-
Hard. Therefore, only approximation algorithms can be used to solve
the problem in polynomial time, unless P = NP . Some heuristic-
based algorithms are studied in [78], whereas [174] discusses prob-
lem variations in detail. They also showed that a 2-approximation is
the best that we can get when the distance measure respects the tri-
angular inequality. In [88] the authors provided a uniform treatment
of the different dispersion problems and experimented with random-
ized heuristics. Finally, we note the work of [168] which studied upper
bounds and exact algorithms for dispersion problems.
Information Retrieval. The need for some degree of result diversi-
fication became evident in the Information Retrieval (IR) community
quite early [43]. It may serve as a means to cover various tastes or
resolve query ambiguity [192], even after personalization factors have
been taken into consideration. A diverse set of results may also serve
as a good starting point for further query refinement or exploratory
search [62]. In [12] a systematic approach to diversifying results is
presented, aiming to minimize the risk of dissatisfaction of the aver-
age user. The problem is shown to be NP-hard, therefore, approxima-
tion algorithms are used to solve it efficiently. Finally, [18] investigates
new scoring functions that take into account both the relevance and
the diversity of the result set.
Database Management. The diversification problem has been also
addressed by the database community. Diversification of XML results
is studied in [140]. In [103], diversification is studied for points in Eu-
clidean space and access methods are used. In [212], the DivDB
system is developed, which provides result diversification by using an
SQL interface, whereas [74] studied the dynamic case of the prob-
lem. Our research contributes to the data management discipline, by
investigating diversification in the result of a skyline query[42], which
is widely used to reveal the best items according to user preferences.
Among the different algorithms proposed in the literature for skyline

47 G. Valkanas

query processing, BBS [165] is preferred the most, because of two
significant properties, namely result progressiveness and I/O optimal-
ity. However, in cases where indexing cannot be applied, one must
resort to other alternatives. Two efficient algorithms for skyline com-
putation without the use of an index are proposed in [69] and [191].
The first one is designed for the streaming case and performs multiple
passes over the data returning approximate results. In contrast, the
second one is designed for the I/O model and always provides correct
results. In the following, we take a closer look at existing techniques
that are mostly related to our work.
Skyline Diversity. Representing the skyline contour [200] has been
suggested as an alternative for skyline diversification [238]. Both tech-
niques use an Lp norm (Euclidean distance in particular) as the mea-
sure of diversity between skyline points. This choice may be problem-
atic in the following cases:
• the dimensions correspond to attributes that are difficult to com-
bine (e.g., price and quality),

• the skyline is computed over a partially-ordered domain [234], and
• the attributes contain non-numerical values, e.g., when operating
over a document collection where the attributes may be terms,
q-grams or topics.

In situations such as the above, a multidimensional index can not be
used, rendering previously proposed techniques infeasible or even
inapplicable. Additionally, the Euclidean distance is sensitive to di-
mension scaling, meaning that a weighted distance measure might
be more appropriate. Therefore, by selecting an off-the-shelf distance
measure, the scale independence property of skylines is disregarded.
More notable is the fact that only the skyline set S is used to deter-
mine a solution, disregarding the rest of the points. Note that this is
in contrast with existing literature that accepts dominance power, i.e.,
the size of the dominated set |Γ(p)|, as a predominant quality charac-
teristic of a skyline point [165, 230].
Coverage-based techniques. The techniques in [136, 84, 68] also
consider the problem of reducing the skyline size and suggest to select

G. Valkanas 48

Mining and Managing User-Generated Content and Preferences

a subset of k skyline points according to a maximum coverage crite-
rion. In particular, the optimization goal is to maximize the number of
distinct non-skyline points dominated by at least one of the k selected
skyline points. Despite its set-oriented nature, this technique essen-
tially solves a different problem, aiming to maximize the dominated
set of the selected skyline points, and not to diversify them. Note that
such a solution would have been highly attractive in conjunction with
a greedy heuristic, as shown by the following lemma.
Lemma 1 ([47]) The greedy algorithm on a set-cover problem with
finite VC-dimension v, yields an approximation ratio of O(v log vc),
where c is the optimal solution.
The set system of such a max-coverage instance has a finite VC-
dimension [210] of d (d being the dimensionality of the problem) due
to the axis-aligned hyper-rectangles of dominating regions, anchored
to the upper right corner of the d-dimensional space [145]. From
Lemma 1 and a reduction of max-coverage to set-cover, we can also
expect a better approximation than the 1−1/e of the general case. To
the best of our knowledge, such a remark has been largely overlooked
in the skyline literature.
To better illustrate the difference between our objective and the one
in coverage-based techniques, we have performed the following ex-
periment: We computed the diversity and coverage scores, both by
a k-dispersion and a k-max-coverage algorithm, for various data sets

Table 2.1: k-max-coverage vs k-dispersion
k-max-coverage k-dispersion

Dataset k coverage diversity coverage diversity

IND5M4D
2 98.4% 0.064 95.5% 1.000
10 99.9% 0.064 95.8% 0.916
50 100% 0.018 98.3% 0.553

FC5D
2 93.7% 0.304 88.6% 1.000
10 98.9% 0.088 88.9% 0.941
50 99.8% 0.032 93.2% 0.714

REC5D
2 70% 0.634 56.2% 1.000
10 93.1% 0.328 56.7% 0.997
50 98.6% 0.142 68.6% 0.864

49 G. Valkanas

(see Section 2.2.6 for details). Table 2.1 contains the results of this
experiment.
We draw the following conclusions:
• Clearly, we can not solve the diversity problem through coverage.
Coverage selects points with high overlap in their dominating re-
gions, which sharply reduces diversity.

• When the objective is diversity, coverage is not as high as when
aiming for coverage per se, but it is still high enough. This was
expected, since the diversity measure tends to select points that
cover a good portion of the dataset from their own viewpoint.

2.2.3 Problem Definition

Let D be a d-dimensional dataset, where without loss of generality
smaller values are preferred, i.e., we are interested inminimizing each
attribute.1 We say that p = (p.x1, ..., p.xd) ∈ D dominates q = (q.x1, ...,
q.xd) ∈ D (and write p ≺ q), when: ∀i ∈ {1, ..., d}, p.xi ≤ q.xi ∧ ∃j ∈
{1, ..., d} : p.xj < q.xj. The skyline S ⊆ D, is composed of all points
in D that are not dominated by any other point.
Given a data setD, the skyline set S and an integer k, k ≥ 2, the goal
of the diversification process is to return a subset Sk ⊆ S containing
k skyline points, aiming to maximize their diversity, i.e., the dissimilar-
ities among the skyline points. To quantify the diversity between two
skyline points we need a distance function d : S × S → <. Table 2.2
depicts the basic notations that are used frequently.
To overcome the limitations discussed in Section 2.2.2, we propose to
use the Jaccard distance for diversity computation. Each skyline point
p is associated with a subset of D, containing all points dominated by
p, denoted as Γ(p), i.e.

Γ(p) = {q ∈ D|p ≺ q}

The domination score of p is the cardinality of Γ(p). The similarity
between p and q is defined as the Jaccard similarity between the sets

1We focus on numerical attributes for ease of presentation. Our approach applies to categorical ones equally
well.

G. Valkanas 50

Mining and Managing User-Generated Content and Preferences

Table 2.2: Frequently used symbols
Symbol Description
D, n = |D| the data set and its cardinality
S, m = |S| the skyline set and its cardinality
sj the j-th skyline point
k number of diverse skyline points
t size of each signature
M , M̂ domination and signature matrix
ξ LSH similarity threshold
ζ number of zones for LSH
Γ(p) set of points dominated by p
Js(p, q) Jaccard similarity between p, q
Jd(p, q) Jaccard distance between p, q

Ĵd(p, q) Jaccard distance for signatures

Γ(p) and Γ(q), i.e.,

Js(p, q) =
|Γ(p) ∩ Γ(q)|
|Γ(p) ∪ Γ(q)|

and ranges between 0 and 1. The corresponding distance measure
is thus Jd(p, q) = 1 − Js(p, q) and it is well known that it satisfies all
metric properties. The selection of the Jaccard distance as a measure
of diversity was based on the following rationale:
i) it relies solely on the dominance relations among points, there-
fore, no user-defined distance function or other input is required,

ii) the quality of the resulting set of points does not depend on the
skyline S alone, but on the characteristics of D as well

iii) it leads to elegant ways of diversity computation by means of min-
wise independent permutations, and

iv) it is the most widely accepted measure for set (dis)similarity.
To facilitate diversification, we take the perspective of [74], viewing k-
diversity as a dispersion problem. In k-dispersion, the goal is to find k

51 G. Valkanas

objects such that an objective function of their distance is optimized.
The optimal solution of the k-dispersion problem is given by:

OPT = argmax
A⊆S
|A|=k

f (A)

There are two basic alternatives for the objective function: i) in the
k-MSDP (Max-Sum Dispersion Problem) the goal is to maximize the
sum of the pair-wise distances, and ii) in the k-MMDP (Max-Min Dis-
persion Problem) the goal is to maximize the minimum pair-wise dis-
tance. Although either alternative can be employed, we choose to
work with k-MMDP because it leads to 2-approximation algorithms,
instead of the 4-approximation of k-MSDP [174].
Example 1 Figure 2.3 illustrates the output of a k-MMDP and a k-
MSDP for k=3. For simplicity, assume that objects are 2D points and
the L2 distance is used as the measure of diversity. By inspecting
the two solutions, we observe that the solution for k-MMDP returns
points that are more distant to each other than k-MSDP. Both solu-
tions contain the objects a and b. However, k-MMDP returns d as the
third point, whereas k-MSDP returns c. Observe that the distance be-
tween a and c is smaller than the distance between a and d. Thus, in
k-MSDP, although the sum of distances between the returned points
is maximized, small distances may still occur, because they are com-
pensated by larger ones.

a

d

b

c

(a) solution for 3-MSDP

a

d

b

c

(b) solution for 3-MMDP

Figure 2.3: Solutions to dispersion problems.

G. Valkanas 52

Mining and Managing User-Generated Content and Preferences

2.2.4 Straight-Forward Techniques

Before going into the particulars of our proposed framework, we de-
scribe briefly some straight-forward approaches and we report on their
efficiency and effectiveness.
Brute-Force. This algorithm generates all pair-wise distances be-
tween skyline points, evaluates all

(
m
k

)
alternatives and selects the

optimal solution. Clearly, thismethod suffers from performance degra-
dation by increasing the number of skyline points or the value k. In
addition, there is a O(m2) cost to compute all pair-wise distances of
the skyline points.
Simple Greedy. This method avoids the computation of all pair-wise
distances among skyline points, by employing a heuristic-based al-
gorithm, which guarantees a 2-approximation of the optimal solution.
The main drawback of this approach is that in order to compute the
Jaccard distance of two skyline points p and q, range queries must be
executed to determine the cardinalities of the dominating sets Γ(p),
Γ(q) and Γ(p) ∩ Γ(q). Evidently, the cost of such an approach is pro-
hibitive, both with respect to I/O and CPU time, even when an aggre-
gate multidimensional index is available.
Sampling-Based. One may be inclined to think that sampling S or
D−S will lead to a reduction of the cost to compute the k-most diverse
skyline points. Taking a sample from S means that less thanm skyline
points will participate in the selection process, whereas sampling from
D−S results in fewer points that will contribute to the computation of
the Jaccard distance between skyline points. In our case, sampling is
not helpful as we discuss in the sequel.

Lemma 2 Let S be a set of m items in a metric space and ∆ the
diameter (maximum pair-wise distance). Any one-pass deterministic
or randomized algorithm, that uses less than or equal to m/2 items,
will fail with probability at least 1/2 to compute ∆ exactly or provide a
2-approximation.

Proof 1 We focus on data sets containing exactly m points. Each
point is uniquely identified by its id between 1 andm. Define the data
setsD1, D2, ..., Dm as follows. Each data setDi contains a set ofm−1

53 G. Valkanas

points that are clustered together in a minimum bounding sphere with
diameter δ, whereas the point with id=i, 1 ≤ i ≤ m is located at
a distance 2δ + c from the center of the sphere, where c is a small
constant. Let A be a deterministic algorithm that uses s < m space.
A randomly chosenDi is selected and given as input toA. Each point
of Di is presented to A as a stream of points.
Algorithm A selects s points to maintain in a deterministic manner.
Each pair of nodes has the same probability of being the one with
the maximum distance. Since we have

(
m
2

)
different distances from

which exactly one is the maximum, with s points we can produce
(
s
2

)
pair-wise distances, meaning that the probability of success is

P (success) = s(s− 1)/m(m− 1)

and the probability of failure is
P (failure) = 1− s(s− 1)/m(m− 1)

Setting s = m/2 we get that

P (failure) =
3m− 2

4m− 4
≥ 1

2
,∀m ≥ 2

For the 2-approximation case, the difference is that the i-th element
must be included in the s points selected by the algorithm. The dis-
tance between pi and any of the other points lying inside the sphere
is guaranteed to be at least ∆/2. Thus, the success probability in this
case equals s/m and consequently, the failure probability is 1− s/m.
Therefore, even by maintaining m/2 elements from S any determin-
istic algorithm will err with probability 1/2.
Using Yao's minimax principle [228], the effectiveness of any one-
pass randomized algorithm cannot be better.
Basically, the previous result states that if one wants to get a success
probability larger than 1/2 in estimating the diameter ∆ (i.e., the opti-
mal solution to the 2-dispersion problem), at leastm/2 points must be
stored by any deterministic or randomized algorithm. The result may
be extended for any k. On the other hand, sampling from D − S is
not an effective solution either, because of the sparsity issue.

G. Valkanas 54

Mining and Managing User-Generated Content and Preferences

To illustrate this effect, assume that the data set is viewed as a dom-
ination matrix 2 M with n − m rows and m columns, m = |S| and
n = |D|. Therefore, each skyline point is represented by a single
column, whereas a dominated point is represented by a row. In this
matrix, the cell in the i-th row and the j-th column is 1 if the j-th skyline
point dominates the i-th data point and 0 otherwise. The sparsity of
the domination matrix depends heavily on the data distribution as well
as on the dimensionality of the data space. As an example, for 10,000
uniformly distributed points, in 3 dimensions the percentage of zeros
is 45%, in 5 dimensions it is 84% and in 7 dimensions the percentage
of zeros reaches 97%. The percentage of zeros is higher in anticorre-
lated data sets. It is evident that with the existence of sparsity it is not
possible to simply perform random sampling and then try to compute
the diversity among skyline points. Such an approach could miss im-
portant parts of the columns (containing 1's), resulting in erroneous
diversity computation.

2.2.5 The SkyDiver Framework

Given the shortcomings of the aforementioned solutions, more suit-
able techniques are required. In this section, we present the SkyDiver
framework for the skyline diversification problem, which consists of
two consecutive phases, fingerprinting and selection:
Phase 1: Fingerprinting. This phase generates a signature of re-
duced size for each skyline point, based onMinHashing. Alternatively,
Locality Sensitive Hashing (LSH) can be employed as a memory effi-
cient approximation of the MinHash signatures.
Phase 2: Selection. This phase is responsible for selecting the k
most diverse skyline points. This step may be applied to either the
MinHash or the LSH signatures.

2.2.5.1 Phase 1: Fingerprinting with MinHashing

The basic objective of the following method is threefold:
2This matrix is used only for illustration purposes and it is not constructed in practice.

55 G. Valkanas

1. to avoid the execution of range queries,
2. to avoid the computation of all O(m2) pairwise diversities, and
3. to be able to work either with or without an index.

In this respect, we propose the use of the MinHashing technique [46],
because it fits nicely with our diversity measure and requires a single
pass over the data. Each column of the domination matrix (i.e., skyline
point) is represented by a signature of size t, such that t << (n−m).
LetH = {h1, ..., ht} be a set of tmin-wise independent hash functions,
where each hi performs a random permutation of the rows. The car-
dinality ofH (i.e., the number of hash functions used) determines the
size of each signature. To generate random permutations of rows,
each hash function hi ∈ H is of the form

hi(x) = ai · x + bi mod P

where P is a prime number larger than n−m and ai, bi are randomly
chosen constants taking integer values in [1, P]. Although such a fam-
ily of hash functions does not satisfy themin-wise independence prop-
erty, it is used as an approximation that works very well in practice.
Moreover, it has been shown in [46] that the MinHash technique has
a very nice property that is directly related to the Jaccard similarity.
More specifically, if Js(p, q) is the Jaccard similarity between skyline
points p and q, then for each hash function hi it holds that

Prob[hi(p) = hi(q)] = Js(p, q).

Recall that each row of the domination matrix M corresponds to a
bit-array. If the j-th position of the i-th row is 1 then the j-th skyline
point dominates the i-th point. Each row is hashed t times using the
hash functions inH and the signature of each skyline point is updated
accordingly. Therefore, each signature is composed of t integer val-
ues, capturing the first row identifier with a non-zero element for each
permutation.
Index-Free Signature Generation. To speed up performance, most
techniques that deal with skyline queries assume the presence of a
multi-dimensional indexing scheme, e.g., an R-tree [100]. However,

G. Valkanas 56

Mining and Managing User-Generated Content and Preferences

there are many reasons why the data set may not be supported such
an index. Briefly, some of them are:
• high dimensionality, which deteriorates indexing performance,
• the data set may contain intermediate results and thus no index
is available yet,

• operations performed on a projection of the data set in specific
dimensions make the index inapplicable and

• the data set contains categorical attributes that preventmulti-dimensional
indexing.

Algorithm 2.1 outlines the signature generation process, when an in-
dex is not available. The algorithm takes as input the set of skyline
points S, the family of hash functionsH and the number t of signature
slots. The output is a matrix M̂ with t rows andm columns, wherem
is the cardinality of the skyline set. Each column of M̂ stores the Min-
Hash signature of the corresponding skyline point. Each data point
is scanned once (Line 2) and it is checked against the skyline points
to detect dominance relationships. If a skyline point sj dominates the

Algorithm 2.1 SigGen-IF
Input: D data set, S skyline set, H hash functions, t number of slots per signature
Output: M̂ signature matrix

1: Initialize all cells of matrix M̂ with∞;
2: for (rowcount← 1 to |D|) do /* read data points */
3: p← next data point;
4: if (p is a skyline point) then continue;
5: for j ← 1 to |S| do
6: if (sj ≺ p) then
7: UpdateMatrix(rowcount, j);
8: return(M̂);

Procedure UpdateMatrix(row, column)
9: for (i← 1 to t) do
10: vi ← hi(row); /* apply hash function */
11: M̂ [i, column]← min(M̂ [i, column], vi);

57 G. Valkanas

investigated point (Line 6), then the matrix containing the MinHash
signatures is updated accordingly (Line 7). The procedure to update
the signature matrix is given in Lines 9--11, where we iteratively apply
the hash functions.
Note that the index-free technique requires a single pass over the mul-
tidimensional data set, provided that the skyline set is available. The
advantage of this method is that no index is required, whereas the
sequential scan of the data set is expected to be efficient taking into
consideration that usually the data file is stored sequentially on the
disk. Most notably, such an approach does not require that attributes
are numeric, but can handle any domain (e.g., categorical, partially
ordered) as long as dominance is well-defined. However, in cases
where an index is already available, more efficient processing is pos-
sible, which we investigate in the next paragraphs.

Index-Based Signature Generation. Typically, data points that are
close in the multidimensional space are expected to be dominated by
the same subset of skyline points. This feature is unique in index-
based techniques since the sequential scan of data points does not
guarantee any locality of references, unless the data is presorted based
on a spatial proximity criterion (e.g., space filling curves). Therefore,
when an index is present, we can exploit this property and reduce
processing costs by avoiding index probes. We discuss in detail the
appropriateness of each approach in Section 2.2.6.
To better understand the index-based technique, we introduce two
concepts regarding the dominance of Minimum Bounding Rectangles
(MBRs), namely i) full and ii) partial dominance. MBRs are used
by multi-dimensional indexing methods (e.g., R-Trees) to organize
and group together data points that are close in the multidimensional
space. Full dominance means that the lower left corner of the MBR is
dominated. Partial dominance means that the MBR is not fully dom-
inated, but its upper right corner is. We illustrate with an example to
better explain the two notions.

Example 2 Consider the set of points in Figure 2.4, enclosed by the
minimum bounding rectangles R1, R2 and R3. The skyline set is com-
posed of a, b and c. Evidently, R1 is fully dominated by b, whereas R2

is fully dominated by a, b and c. Neither MBR is partially dominated.

G. Valkanas 58

Mining and Managing User-Generated Content and Preferences

R

R

1

2

R3

a

c

b

Figure 2.4: Domination of MBRs.

Therefore, for these two MBRs we avoid expanding the search toward
the leaf and update the signatures immediately. In contrast, we have
to increase the level of detail for R3, because although it is fully dom-
inated by c, it is partially dominated by b.

Algorithm 2.2 outlines the MinHash signature creation in the presence
of an aggregate R-tree. A priority queue PQ is used to store R-tree
entries that require further consideration. The algorithm removes the
top entry e from PQ (Line 11) and checks whether it is partially or
fully dominated by a skyline point (Line 14). Full dominance means
that the lower left corner of e is dominated, whereas partial dominance
means that e is not fully dominated, but its upper right corner is. Par-
tial dominance prevails and if both relations exist, we need to visit e's
subtree (Line 16) by queuing it in PQ. In case of exclusive full domi-
nance, UpdateFullDominance is called (Line 18), which updates the
signatures without probing the index, by iterating over the number of
enclosed objects in e (Lines 20--23).

2.2.5.2 Phase 2: Selection of Diverse Skyline Points

The next step involves the selection of k skyline points, aiming to max-
imize their diversity. To perform this step efficiently, we should avoid
the computation of the exact diversity score between all pairs of sky-
line points, since that would be a costly operation. In particular, as-
suming that an R-tree index is available, this process would perform

59 G. Valkanas

Algorithm 2.2 SigGen-IB
Input: D data set, S skyline set, H hash functions, t number of slots per signature
Output: M̂ signature matrix

1: rowcount← 1;
2: Initialize all cells of matrix M̂ with∞;
3: Initialize priority queue PQ;
4: for entry e in R.root do
5: DominatedRel(e, full, partial);
6: if (!partial.isEmpty) then
7: PQ.insert(e);
8: continue;
9: UpdateFullDominance(e, full);
10: while (!PQ.empty) do
11: e← PQ.removeTop();
12: node← R.read(e.id);
13: for each entry e′ in node do
14: DominatedRel(e′, full, partial);
15: if (!partial.isEmpty and !node.isLeaf) then
16: PQ.insert(e′);
17: continue;
18: UpdateFullDominance(e′, full);
19: return M̂ ;

Procedure UpdateFullDominance(e, fullDom)
20: for k ← 1 to e.count do
21: for j ← 1 to |fullDom| do
22: UpdateMatrix(rowcount, S.index(fullDomj));
23: rowcount++;

a quadratic number of range queries of large volume, to compute the
Jaccard distances. Alternatively, if an index is not available, we would
have to perform multiple passes over the raw data. Both of these
cases lead to significant computation costs.
Thus, in our framework we exploit the signatures only, avoiding ac-
cess to the raw data. We study two different techniques: the first one
is based solely on the MinHash signatures whereas the second ap-
plies Locality-Sensitive Hashing aiming to reduce memory consump-
tion and enable speed/accuracy trade-offs.

G. Valkanas 60

Mining and Managing User-Generated Content and Preferences

The Signature-Based Method. Let Ĵs(p, q) be the estimated Jaccard
similarity defined as the fraction of signature positions of p and q where
their values agree. The corresponding estimated Jaccard distance
Ĵd(p, q) is simply 1−Ĵs(p, q). Since we have t different hash functions,
formally we have:

Ĵs(p, q) =
|j : 0 ≤ j ≤ t, hj(p) = hj(q)|

t

Lemma 3 ([172]) The distance function Ĵd respects the triangular in-
equality.
According to the previous discussion, the set of signatures along with
the distance measure Ĵd is a metric space. We need this result to
apply a greedy heuristic for the k-dispersion problem that guarantees
a 2-approximation with respect to the optimal solution [174].
The algorithm first determines the two points with the maximum pair-
wise distance, and then greedily adds more points to the result set,
trying to maximize the minimum distance. The problem with this ap-
proach is that it requires quadratic complexity O(m2) to determine
the two most distant points. Here, we use a different technique with
O(k2m) complexity without sacrificing the 2-approximation guarantee.
The basic difference with respect to the work in [174] is that instead
of selecting the two most distant points, we start with the skyline point
with the maximum domination score and then use the greedy ap-
proach to include more points, until k points are determined. We
also resolve ties by selecting the points with highest domination score,
thereby treating coverage as a secondary objective.
The algorithm outline for selecting k diverse skyline points is given
in Algorithm 2.3. Next, we show that SelectDiverseSet achieves a 2-
approximation with respect to the optimal solution. This can be proved
by using the same rationale as the one used for the proof of Theorem
2 of [174]. Here, we give a simpler alternative.
Lemma 4 Algorithm SelectDiverseSet reports a set of k skyline points
in O(k2m) time, achieving a 2-approximation with respect to the opti-
mal solution.

61 G. Valkanas

Algorithm 2.3 SelectDiverseSet
Input: S skyline set, k number of required points, F (.) distance measure used
Output: A set of diverse skyline points

1: m← |S|; /* cardinality of skyline set */
2: p← skyline point in S with max dominance score;
3: A ← {p}
4: while (|A| < k) do
5: x← argmaxx∈S−A miny∈A{F (x, y)}, i.e., find a point x∈S-A such that themin distance

F (.) between x and the points in A is maximized;
6: Resolve ties by selecting the point with the max dominance score;
7: A ← A ∪ {x};
8: return A;

Proof 2 The first point is selected in O(m) time. To select the second
one we compute the distance between each of the m − 1 remaining
points and the one selected. To select the third point we need 2(m−2)
distance computations. Thus, to select all k points we need in total
m+ (m− 1) + 2(m− 2)+ ... +k(m− k) ∈ O(k2m) distance compu-
tations. Let, Sj denote the set containing the j skyline points selected
so far, where j ≤ k. Thus, when the first point is selected we have
|S1| = 1, whereas when all k points are selected |Sk| = k. Let p1 be
the first point selected. To select the second point p2, the algorithm
scans all skyline points and picks the one that maximizes its distance
from p1. Create a neighborhood N (si) for each skyline point si ∈ Sj,
such thatN (si) = {q ∈ D : F (si, q) < OPT/2}. We argue that there
must be a point in D not belonging to any of the j neighborhoods. If
this is not the case, then the optimal solution to the k-MMDP problem
could not be OPT , which is a contradiction. Thus, for any j ≤ k it is
guaranteed that the minimum distance between points in Sj is at least
OPT/2.
According to [71], if Ω(ε−3β−1 log(1/δ)) is the signature size, where ε
is the maximum allowed error (0 < ε < 1), then with probability at
least 1− δ it holds that

(1− ε)Js(p, q) + εβ ≤ Ĵs(p, q) ≤ (1 + ε)Js(p, q) + εβ

where 0 < β < 1 is the required precision. This essentially means

G. Valkanas 62

Mining and Managing User-Generated Content and Preferences

that the 2-approximate greedy heuristic using Ĵd as the distance mea-
sure, is applied on the (ε,δ)-approximation of the Jaccard distances,
for which the inequalities are

(1 + ε)Jd(p, q)− ε− εβ ≤ Ĵd(p, q) ≤ (1− ε)Jd(p, q) + ε− εβ

Consequently, by setting appropriate values for ε and δ, the signature
distances can be made very close to the original Jaccard distances
[63]. Due to distance distortions, as a result of embedding the dis-
tances in lower dimensionality, it is possible to obtain a sub-optimal
solution. The following theorem relates the true optimal solution, to
the one computed by working with MinHash signatures.
Theorem 1 Let OPT be the value of the optimal solution to the k-
diversity problem in the original space and let x, y denote the cor-
responding skyline points, i.e., Jd(x, y) = OPT . Similarly, let ÔPT
be the optimal value if the problem is solved using MinHash signa-
tures and let a, b be the corresponding skyline points, i.e., Ĵd(a, b) =

ÔPT . For a given ε and sufficiently small δ, it holds that: Jd(a, b) ≥
1+ε
1−εOPT − 2ε

1−ε.
Proof 3 The optimal solution is given by a set of k points,Ok = {o1, o2,
..., ok}, forming a k-clique, where nodes are skyline points and edges
are weighted with the Jd of the adjacent points. Each k-clique is repre-
sented by a single value, i.e., the minimum of the

(
k
2

)
distances among

any two points in the clique, R(Ok) = min∀oi,oj(Jd(oi, oj)). This rep-
resentation stems from our formalization of k-diversity as an instance
of the k-MMDP, where we are interested in maximizing the minimum
distance of the selected set. According to this abstraction,OPT is the
representative distance of the optimal solution.
For any set of k points, Pk = {p1, p2, ..., pk}, Pk 6= Ok, it holds that

R(Pk) = min
∀pi,pj

Jd(pi, pj) ≤ R(Ok) = OPT

In other words, any other k-clique will either be at most as good asOk
but never better, e.g., containing an edge with equal minimum weight,
or it will contain at least one distance strictly worse than OPT .

63 G. Valkanas

Let Ôk be the set of k points that we select as the optimal solution in the
MinHash signature space and ÔPT be their representative distance
defined by the skyline points a and b, i.e. Ĵd(a, b) = ÔPT . It is not
hard to verify that if Ôk = Ok, or Ôk contains R(Ok) but no worse
edge, then Jd(a, b) = Ĵd(a, b) = OPT and the inequality surely holds.
The challenging case is when Ôk contains some points whose edge is
worse in the original space than in the signature space. Specifically,
the problem arises when in the signature space Ĵd(a, b) ≥ Ĵd(x, y),
despite that Jd(a, b) < OPT in the original space.
Let DO be any distance from the optimal solution Ok in the original
space, OPT ≤ DO. It holds,

OPT ≤ DO
ε>0===⇒ (1 + ε)OPT − ε ≤ (1 + ε)DO − ε

Simply put, underestimating a higher value thanOPT could also yield
a sub-optimal result, but the worst case is obtained when we under-
estimate OPT itself. The same holds for overestimating Jd(a, b) and
lower values. On the other hand, overestimating a value Jd(w, z),
Jd(w, z) < Jd(a, b) < OPT so that Ĵd(w, z) ≥ Ĵd(a, b) ≥ Ĵd(x, y)

contradicts our assumption that Ĵd(a, b) is the optimal solution in the
signature space; otherwise, Ĵd(w, z) would have been selected. For
the worst case scenario to occur, i.e., Ĵd(a, b) ≥ Ĵd(x, y), where Jd(a, b)
has been overestimated andOPT has been underestimated, it should
hold:

Ĵd(a, b) ≥ Ĵd(x, y)⇔ (1− ε)Jd(a, b) + ε ≥ (1 + ε)OPT − ε⇔

Jd(a, b) ≥
(1 + ε)

(1− ε)
OPT − 2ε

1− ε

Corollary 1 Let a and b be the two skyline points defining the solution
of the 2-approximation heuristic for the k-diversity problem, when run
over the MinHash signatures, where Jd(a, b) is their corresponding
distance. Also, let OPT be the optimal distance. Then, the following
holds: Jd(a, b) ≥ 1

2

(1+ε)

(1−ε)OPT − ε
1−ε.

G. Valkanas 64

Mining and Managing User-Generated Content and Preferences

For the previous bounds to work, we have assumed that the parameter
δ is very small. This is because if the distances are not well-preserved
in the signature space, then we cannot have a guarantee about the
solution in the original space.

2.2.5.3 The LSH-Based Method

A limitation of the MinHash signature-based approach is that the size
of the signatures may have to be increased significantly in order to re-
duce the error probability, resulting in: i) increased processing costs
during distance computation and ii) increased memory requirements.
Keeping the signature size as small as possible has a direct negative
impact on accuracy, due to Theorem 1, a result we also experimen-
tally validate. To address this problem we propose to apply Locality
Sensitive Hashing (LSH) [113].
Recall the signature matrix that we introduced earlier, where columns
represernt skyline points and rows correspond to hash function. We
split the signature matrix to ζ zones, each containing r rows such that
ζ ·r =m. For each zone, a hash function is applied and each signature
part is hashed to a bucket.
Based on this scheme, the probability that two skyline points s1, s2,
will hash to different buckets in all zones equals 3 (1 − Js(s1, s2)

r)ζ,
whereas the probability that they will hash to the same bucket in at
least one zone equals 1 − (1 − Js(s1, s2)

r)ζ . Our target is to select
skyline points that are hashed in different buckets in all zones or if
this is not possible, to minimize the number of skyline points that fall
in the same bucket in some of the zones. The values of r and ζ are
controlled by the value of the threshold ξ, which is selected such that
ζ · r = m and ξ ≈ (1/ζ)(1/r). Basically, the threshold ξ controls the
shape of the sigmoid function 1− (1− Js(s1, s2)

r)ζ. For example, we
may assume that we consider two points similar if their similarity is
more than 20%, 50% or 80%.
Let B denote the number of buckets used per zone. Each skyline
point is seen as a bit-vector containing ζ · B dimensions, where a

3To be precise, we should use Ĵs(s1, s2), but since the distortion of the similarities can be made arbitrarily
small, we can safely assume that Ĵs(s1, s2) ≈ Js(s1, s2).

65 G. Valkanas

value of 1 (0) denotes that the skyline point is hashed (not hashed) to
the corresponding bucket. Consequently, two skyline points s1, s2 are
dissimilar if they both have a value of 1 in as few bit-vector positions
as possible. Therefore, the diversity is quantified by the Hamming
distance between their corresponding bit-vector representations. In
particular, we observe that the number of buckets where two skyline
points disagree equals half the Hamming distance between their cor-
responding bit-vectors. Note also that since each skyline point is nec-
essarily hashed in exactly one bucket in each hashtable, the L1 norm
of its bit-vector is equal to ζ, i.e., ||bv(si)||1 = ζ, ∀i ∈ [1,m].

Example 3 Figure 2.5 depicts a possible distribution of signatures into
buckets, when ζ=4 and B=3. The number shown in the upper-right
corner of each bucket corresponds to the position in the bit-vectors,
which are presented on the right. Each bit-vector contains ζ · B=12
bits, where exactly four of them are set. By observing points a and
b we see that they are never hashed to the same bucket. Therefore,
their distance should be equal to 4, whereas one can easily verify that
the Hamming distance between bv(a) and bv(b) is 8.

bv(a)= 100 010 010 100

001 001 100 001bv(d)=

bv(c)= 010 001 100 001

bv(b)= 010 100 001 001

0

1

2

a

b,c

d

b

a

c,d

4

3

5

b

a

c,d

6

7

8

b,c,d

11

10

a

9

(a) hashtables for the zones (b) skyline bit-vectors

Figure 2.5: Buckets and bit-vectors of skyline points.

Since the Hamming distance satisfies the triangular inequality, the
2-approximation heuristic is immediately applicable. Thus, to deter-
mine the k most diverse skyline points, algorithm SelectDiverseSet of
Algorithm 2.3 is applied by using the Hamming distance on the bit-
vectors instead of the signature-based distance that has been used
previously. We denote this algorithm as SkyDiver-LSH.

G. Valkanas 66

Mining and Managing User-Generated Content and Preferences

2.2.6 Experimental Evaluation

In this section, we report on the results of a comprehensive set of
experiments, towards comparing the various techniques covered in
the previous sections. First, we present the implemented algorithms
as well as the data sets used.

2.2.6.1 Algorithms and Data Sets

Wehave implemented four different algorithms, presented in Table 2.3.
We remind the reader that our proposed approaches, SkyDiver-MH
and SkyDiver-LSH, can be applied regardless of having an index in
place.

Table 2.3: Evaluated algorithms
Algorithm Reference
Brute-Force (BF) Brute-force algo. (Sec. 2.2.4)
Simple-Greedy (SG) Simple greedy algo. (Sec. 2.2.4)
SkyDiver-MH (MH) MinHash-based algo. (Sec. 2.2.5.1)
SkyDiver-LSH (LSH) LSH-based algo. (Sec. 2.2.5.3)

Wehave generated synthetic data sets following the independent (IND)
and anticorrelated (ANT) distributions, using the methodology pre-
sented in [42]. In addition, we have used two real-life data sets: For-
est Cover (FC) downloaded from UCI Machine Learning Repository
(http://kdd.ics.uci.edu) and Recipes (REC) [127] (Sparkrecipes.com),
where each data point is a recipe and its attributes are the nutritional
values for several common compounds, e.g., carbohydrates, protein,
calcium etc. Table 2.4 summarizes the basic dataset characteristics,
with default values underlined. For the real datasets, we select the
first d dimensions to compare the techniques against dimensionality.
The code was written in C++ and all experiments were run on a Quad-
Core @3.5GHz machine, with 4Gb RAM, running Linux. Each data
set was indexed by an aggregate R*-tree, with a 4Kb page size. An
associated cache with 20% of the corresponding R*-tree's blocks was
used with every experiment. Timings reported in the graphs are in
seconds, measured as CPU processing time and assuming a default

67 G. Valkanas

Table 2.4: Basic data set characteristics
Data set Cardinality Dimensionality
Independent (IND) 1M, 2M, 5M, 7M 2, 3, 4, 6
Anticorrelated (ANT) 1M, 2M, 5M, 7M 2, 3, 4, 6
Forest Cover (FC) ∼ 581K 4, 5, 7
Recipes (REC) ∼ 365K 4, 5, 7

value of 8ms per page fault. Unless stated otherwise, all values re-
ported below refer to the 2-step process of finding the k-most diverse
skyline points, without the cost of finding the skyline itself as it does
not affect the relative performance of the algorithms. Regarding effec-
tiveness, we report the minimum (Jaccard) distance among the pair
of points that has been selected by each approach.

2.2.6.2 Experiments and Results

We begin by evaluating when signature creation should use an index
(IB) or not (IF), in case we have such an option. We then evaluate the
efficiency of all techniques compared to various parameters, using the
IB approach, since BF and SG use the index as well. We finally report
on result quality and memory consumption.
Signature Generation. Our first experiment focuses on the cost for
signature generation and how the index affects this step. Figures 2.6(a)-

 0

 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800
 2000

50 100 200 400

T
im

e
 (

s
e

c
)

Signature Size

FC4D-IB
FC4D-IF

FC5D-IB
FC5D-IF

FC7D-IB
FC7D-IF

(a) FC

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

50 100 200 400

T
im

e
 (

s
e

c
)

Signature Size

RC4D-IB
RC4D-IF

RC5D-IB
RC5D-IF

RC7D-IB
RC7D-IF

(b) REC

Figure 2.6: Time for generating MinHash signatures vs signature size.

G. Valkanas 68

Mining and Managing User-Generated Content and Preferences

 10

 100

 1K

 10K

 100K

1 2 5 7

T
im

e
 (

s
e

c
)

Cardinality (Millions)

IND-IB
IND-IF

ANT-IB
ANT-IF

(a) CPU time

 10

 100

 1K

 10K

 100K

1 2 5 7

Cardinality (Millions)

IND-IB
IND-IF

ANT-IB
ANT-IF

(b) Total time

 10

 100

 1K

 10K

 100K

 1M

2 3 4 6

Dimensions

IND-IB

IND-IF

ANT-IB

ANT-IF

(c) CPU time

 10

 100

 1K

 10K

 100K

 1M

2 3 4 6

Dimensions

IND-IB

IND-IF

ANT-IB

ANT-IF

(d) Total time

Figure 2.7: Time for generating MinHash signatures of size 100 for synthetic data sets.

(b) show the signature generation time as a function of the signa-
ture size, for all dimensions of FC and REC data sets, respectively.
Clearly, by increasing the signature size, the signature generation
phase requires more time. Nevertheless, selecting IB or IF seems
to be unrelated to signature size. We have obtained similar results for
the IND and ANT distributions.
Figures 2.7(a)-(d) report the time taken to generate the signatures,
depending on whether an index was used (IB - index based) or not
(IF - index free), for varied cardinalities / dimensionalities of IND and
ANT data sets. More specifically, figures 2.7(a) and 2.7(b) report CPU
and total time -- I/O's included -- respectively, for varying cardinalities
and default dimensionality d = 4. ANT data consistently favor the
IB approach. However, for IND data, the IF method is more efficient
when total time is concerned. On the contrary, when taking only CPU
time into account, IB is better. This is due to a lot of I/Os on the R-tree,
more than what a linear scan on the actual data set requires.
Even more interesting is the case when we vary the dimensionality,
as shown in Figures 2.7(c) and 2.7(d). In particular, for ANT data sets,
low dimensionality favors the IF approach. In this case, the costs are
mostly due to I/Os. However, as dimensionality increases, more dom-
inance checks are executed, which IF performs naïvely. On the other
hand, IB saves on CPU costs, by utilizing the index. For IND data,
IB and IF differ marginally for few dimensions and as d increases, IB
is favored. For 2D, the R-tree saves several I/O operations, and the
overall cost of IB is much lower. However, for average dimensionality,
the I/O cost sharply increases for IB, making it less suitable. Basically,
partial dominations of MBRs have dramatically increased, which ne-
cessitate that we decompose them further, resulting in additional I/Os.

69 G. Valkanas

 1

 10

 100

 1K

 10K

 100K

 1M

 10M

2 3 4 6

T
im

e
 (

s
e
c
)

Dimensions

BF

SG

MH100

LSH100

(a) IND

 100

 1K

 10K

 100K

 1M

2 3 4 6

Dimensions

SG MH100 LSH100

(b) ANT

 10

 100

 1K

 10K

 100K

 1M

 10M

4 5 7

Dimensions

BF

SG

MH100

LSH100

(c) FC

 10

 100

 1K

 10K

 100K

 1M

 10M

4 5 7

Dimensions

BF

SG

MH100

LSH100

(d) REC

Figure 2.8: Runtime for k = 10 diverse skyline points vs dimensionality.

Specifically, we observe an∼ 70× increase in the number of I/Os from
2D to 3D, but the I/O increase is niche as d increases from that point
onwards. A big part of the R-tree has to be traversed when d ≥ 3, yet
several dominance checks are saved, explaining why CPU-costs do
not follow this trend. Given the efficiency when the signature size is
set to 100 and the fact that we achieve good quality (Figure 2.10), as
we discuss in the next paragraphs, we adopt it as the default signature
size for the rest of our evaluation.
User Guide. We propose the following scheme which is experimen-
tally validated: The IB method should be considered: i) when the R-
tree can be memory resident, assuming enough resources, whereas
for a disk-resident index ii) for average and high-dimensional data
(d ≥ 4) and iii) when d = 2, provided we are dealing with IND data.
In the few remaining cases, IF should be favored.
Runtime VS Dimensionality. We now turn our attention to the effi-
ciency of the techniques for selecting the k-most diverse skyline points.
Figures 2.8(a)-(d) demonstrate the performance of the employed algo-
rithms on all data sets, for varying dimensionalities. In particular, we
have plotted the overall time taken to compute the 10-most diverse
skyline points, including the time for generating the signatures (for the
cases of MH and LSH).
As expected, BF shows the worst performance, given that it searches
exhaustively for the optimal solution. By increasing the dimension-
ality, the number of skyline points increases too and, consequently,
so does the number of

(
m
k

)
enumerations. Moreover, unlike the other

techniques, BF's reported times are for k = 2; k = 10 yields even
more enumerations, since the skyline contains a few hundred points

G. Valkanas 70

Mining and Managing User-Generated Content and Preferences

 1K

 10K

 100K

 1M

2 5 10 50

T
im

e
 (

s
e

c
)

K diverse points

SG MH100 LSH100

(a) IND

 1K

 10K

 100K

 1M

2 5 10 50

K diverse points

SG MH100 LSH100

(b) ANT

 100

 1K

 10K

 100K

 1M

2 5 10 50

K diverse points

SG MH100 LSH100

(c) FC

 100

 1K

 10K

 100K

 1M

2 5 10 50

K diverse points

SG MH100 LSH100

(d) REC

Figure 2.9: Runtime vs number of diverse points (k).

at best. We even ran BF for k = 5, but none of the experiments had
concluded within a 10 day period of execution (in wall clock time). Not
surprisingly, BF is inappropriate for practical applications, even when
dealing with small skyline sets and reasonable values of k. For this
reason, we omit it from subsequent experiments.
The greedy algorithm SG, which computes the actual diversity scores
by performing range queries, is inferior to MH and LSH by, approxi-
mately 2-3 orders of magnitude. Note that we have boosted SG, by
maintaining in-memory the minimum distance of each non-selected
skyline point. Even so, most of the time is spent on I/Os due to range
queries for Jaccard distance computations, whereas CPU cost is only
a fraction. This validates our goal to keep range queries to a mini-
mum. SG performs better only for the IND data set and d = 2, where
there are very few skyline points (∼ 5 − 10) and signature creation
phase places enough overhead to make the signature-based tech-
niques slightly worse. In all other occasions, SG's performance is
worse; in fact it did not complete for the anticorrelated dataset with
6 dimensions (ANT 6D setting)8. Finally, though MH and LSH differ
slightly, at this granularity their difference is not discernible.
Runtime VS Number of Points (k). Figures 2.9(a)-(d) portray the
efficiency of the techniques with respect to the number of requested
points. The graphs clearly support our earlier findings that MH and
LSH are superior to SG by orders of magnitude, for reasonable values
of k. All three algorithms exhibit a consistent behavior in all data sets
and k values: MH and LSH perform almost identically for all k values,
with LSH being slightly better as shown in Figure 2.9(c)-(d), which
is one of the main reasons to consider it over MH. CPU costs are

71 G. Valkanas

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 5 10 50

D
iv

e
rs

it
y

K diverse points

SG MH100 LSH100

(a) IND

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2 5 10 50

K diverse points

SG MH100 LSH100

(b) ANT

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2 5 10 50

K diverse points

SG MH100 LSH100

(c) FC

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2 5 10 50

K diverse points

SG MH100 LSH100

(d) REC

Figure 2.10: Quality vs number of diverse points (k).

minimal for these techniques, accounting for no more than 45 sec for
ANT, and at most 2 seconds for the other data sets, with k=50 and
default values for the other parameters. On the other hand, for all
k values, SG is burdened with an excessive number of I/Os, due to
range queries, despite being boosted. The technique also shows a
noticeable increase in runtime for k=50, across all data sets, as a
result of increased CPU costs. This is because when increasing k, the
pair-wise Jaccard distance computations add-up to a more noticeable
amount, given that range queries require O(d) checks, and recursively
descend the R-tree if needed, to compute the intersection.
Quality of Results. We now turn our attention to the effectiveness
aspect of our approach. Figures 2.10(a)-(d) demonstrate the diversity
score, i.e., the minimum Jaccard distance in the original space, of
the selected set of skyline points, for different values of k (number of
selected points). As expected, by increasing k, the minimum Jaccard
distance is reduced. SG performs better than MH and LSH in general,
however, the latter two achieve very good performance, given their
efficiency savings. With the exception of REC data set, MH is only
slightly worse than SG for k values up to 10. In constrast, LSH has
a steeper decline in the diversity score, but requires less memory, as
shown in Figure 2.11(a)-(b) and explained in the sequel.
MinHashing VS LSH. Figure 2.11 depicts a comparison between MH
and LSH, demonstrating the memory vs accuracy trade-off. In partic-
ular, we have performed a series of experiments with a fixed k value
(k=10), while varying the parameters ξ (threshold) and B (number of
buckets per zone) for LSH, and (varying) the signature size for Min-
Hash. By increasing ξ, the number of zones ζ is reduced, which in-
creases memory savings. In addition, maintaining fewer buckets per

G. Valkanas 72

Mining and Managing User-Generated Content and Preferences

 0

 100K

 200K

 300K

 400K

 500K

 600K

 700K

 800K

 900K

0.1 0.2 0.3 0.4

M
e
m

o
ry

 (
b
y
te

s
)

Threshold

MH20

MH50

MH100

B10 B20 B50

(a) FC - Memory

 0

 200K

 400K

 600K

 800K

 1M

 1.2M

 1.4M

 1.6M

 1.8M

 2M

0.1 0.2 0.3 0.4

Threshold

MH20

MH50

MH100

B10 B20 B50

(b) REC - Memory

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

0.1 0.2 0.3 0.4

D
iv

e
rs

it
y

Threshold

MH20

MH50

MH100

B10 B20 B50

(c) FC - Quality

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

0.1 0.2 0.3 0.4

Threshold

MH20

MH50

MH100

B10 B20 B50

(d) REC - Quality

Figure 2.11: LSH vs MinHashing, for k = 10 diverse skyline points, with signature size fixed
to 100

zone reduces memory consumption further. The price we pay in this
case is a drop in accuracy. As expected, the accuracy of LSH is lower
than that of MH as shown in Figure 2.11(c)-(d), whereas the savings
in storage are more sensitive to the value of ξ, due to the high correla-
tion between ξ and ζ as shown in Figure 2.11(a)-(b). For example, by
using LSH with ξ = 0.2 and B=20, we need around 300Kb for the FC
data set, whereas MH requires almost 600Kb. Moreover, the corre-
sponding diversity score obtained by LSH is 0.88 when MH performs
marginally better obtaining a diversity score of 0.93. Overall, the sig-
nificant reduction in memory requirements make LSH a very attractive
alternative, in cases where we are willing to sacrifice accuracy, up to
an acceptable level.
Another key observation is that by simply reducing the signature size
in MinHashing does not give promising results. For example, using
a threshold of 0.2, with 10 buckets per zone, LSH obtains results of
similar or better quality, while requiring less memory than MH50. In
general, the accuracy of MinHashing drops rapidly by decreasing the
signature size, whereas by carefully controlling the threshold and the
number of buckets per zone, LSH can be effectively tuned.
Comparing against contour representation. As we have discussed
in earlier paragraphs, contour representation has been suggested as
an alternative for skyline diversification, where the measure of diver-
sity is given by the Euclidean distance (L2) of the skyline points. Un-
der the Euclidean distance, the problem is still formally defined as an
instance of k-MMDP.
Despite the disadvantages of these techniques, which we have out-
lined in the previous paragraphs (e.g., inapplicable in certain domains,

73 G. Valkanas

Table 2.5: Comparing SkyDiver and Contour Representation techniques, Independent
Dataset

SkyDiver Contour Representation
Dataset k Coverage Jaccard Lp distance Coverage Jaccard Lp distance

2 99.93% 0.0352 0.0353 99.93% 0.0352 0.0353
Indep 5 100% 8.2x10−4 8.3x10−4 100% 8.2x10−4 8.3x10−4

n=5M 10 100% 8.2x10−4 8.3x10−4 100% 8.2x10−4 8.3x10−4

d=2 25 100% 8.2x10−4 8.3x10−4 100% 8.2x10−4 8.3x10−4

50 100% 8.2x10−4 8.3x10−4 100% 8.2x10−4 8.3x10−4

2 99.12% 0.9927 1.0022 99.12% 0.9927 1.0022
Indep 5 99.20% 0.8426 0.1861 99.34% 0.5362 0.4855
n=5M 10 99.55% 0.5634 0.0470 99.72% 0.2863 0.2626
d=3 25 99.86% 0.2262 0.0470 99.93% 0.1484 0.1223

50 99.96% 0.1004 0.0312 99.97% 0.0810 0.0603
2 95.14% 0.9998 1.2568 95.14% 0.9982 1.3300

Indep 5 95.17% 0.9931 0.9887 95.18% 0.9692 1.1080
n=5M 10 95.30% 0.9392 0.1088 96.13% 0.7555 0.6934
d=4 25 96.51% 0.7269 0.1088 97.70% 0.5431 0.4106

50 97.83% 0.5716 0.0309 99.01% 0.3464 0.2617
2 85.20% 0.9999 1.6167 85.20% 0.9999 1.6167

Indep 5 85.21% 0.9990 0.9039 85.24% 0.9914 1.3525
n=5M 10 85.26% 0.9857 0.6747 85.54% 0.9083 0.9855
d=5 25 85.70% 0.9355 0.2138 88.35% 0.7950 0.6511

50 87.89% 0.8644 0.1170 93.26% 0.5647 0.4957

mandatory requirement of an index), it would be interesting to see how
they compare against our proposed approach. Note that the compar-
ison is only meaningful when both approaches are applicable, i.e.,
numerical attributes indexed by an R-tree.
Given that contour representation only considers the skyline, thereby
using considerably less information, a comparison in terms of effi-
ciency will not be particularly helpful. Therefore, our focus will be on
the quality of the produced solutions, namelyCoverage of the dataset,
minimum Jaccard distance of dominated sets andminimumEuclidean
distance of the selected skyline points. For this comparison, SkyDiver
employs the Simple Greedy approach, using the exact computation of
Jaccard distances. Recall that this is the upper bound of quality we
can achieve, and we can tune SkyDiver-MH or SkyDiver-LSH appro-
priately to reach these values.

G. Valkanas 74

Mining and Managing User-Generated Content and Preferences

Tables 2.5 and 2.6 summarize the result of two such experiments, for
an independent dataset with 5 million points and for the forest cover
dataset, respectively. In both cases, we have varied the dimension-
ality of the dataset. Higher values are always preferred, and we have
marked in bold the best value in each case. In case of a tie for a quality
measure, none of the values are emphasized.
For the independent case, we observe that in 2-dimensional data, the
two techniques are tied in all used measures. In fact, for k ≥ 5, we
observe that none of the techniques improve, which is expected, given
that the skyline only contains 5 points in this case.
Through careful inspection of Table 2.5 we observe that SkyDiver is
always better in terms of the Jaccard distance, whereas Contour Rep-
resentation is better in Lp distance. This means that either technique
performs the best for the objective function that it optimizes, which is
hardly surprising. What is interesting, however, for the independent
dataset is that contour representation is also better in terms of cov-
erage. Therefore, although the selected skyline points are far from
each other in the Euclidean space, they clearly correlate with cover-
age as an objective. Recall that we have already shown that coverage
is different from diversification, a result validated again with this exper-
iment, as diversity drops considerably with Contour Representation.
Since the independent dataset is a synthetic one, we would like to
draw some conclusions for a real dataset as well. For this reason, we
have performed the same experiment with the Forest Cover dataset,
and the results are given in Table 2.6. As with the independent dataset,
Contour Representation is better at Lp distance, whereas SkyDiver is
better at Jaccard.
Of particular interest is the fact that SkyDiver is sometimes also better
at coverage by a large margin (much larger than in the independent
case). For example, for d = 4 and k = 2, SkyDiver is better at cov-
erage over 5%, while for k = 5 by slightly less than 4%. For d = 5
and similar k values, SkyDiver achieves a better performance by 4%,
which drops to 3% for higher k values (same d). Meanwhile, for the
independent dataset, Contour was better by 5.5% in a single case
(d = 5, k = 50), whereas it was never better by more than 3% in all
other occasions (and less than 1% in many of them).
It is also interesting that Contour achieves better coverage for higher

75 G. Valkanas

Table 2.6: Comparing SkyDiver and Contour Representation techniques, Forest Cover
SkyDiver Contour Representation

Dataset k Coverage Jaccard Lp distance Coverage Jaccard Lp distance
2 99.99% 0.0729 0.0601 98.53% 0.0589 0.0446

FC 5 99.99% 0.0127 0.0115 99.99% 0.0062 0.0081
d=2 10 100% 0.0029 0.0028 100% 0.0029 0.0028

25 100% 0.0029 0.0028 100% 0.0029 0.0028
50 100% 0.0029 0.0028 100% 0.0029 0.0028
2 98.65% 0.9592 0.4515 93.52% 0.8803 0.8811

FC 5 99.60% 0.7110 0.1558 95.30% 0.4787 0.2917
d=3 10 99.80% 0.3640 0.0682 99.90% 0.1012 0.1260

25 99.93% 0.0461 0.0253 99.99% 0.0164 0.0378
50 100% 0.0029 0.0028 100% 0.0029 0.0028
2 98.64% 0.9595 0.4520 93.20% 0.9518 0.9249

FC 5 99.38% 0.7430 0.1748 95.65% 0.4175 0.3181
d=4 10 99.58% 0.4787 0.0727 99.88% 0.1133 0.1279

25 99.91% 0.1904 0.0365 99.99% 0.0554 0.0581
50 100% 0.0031 0.0028 100% 0.0031 0.0028
2 88.61% 0.9995 0.9308 84.49% 0.9991 1.2534

FC 5 88.67% 0.9918 0.5255 84.78% 0.9511 0.7740
d=5 10 88.90% 0.9411 0.3245 87.12% 0.7433 0.4470

25 90.76% 0.8320 0.1353 87.82% 0.6535 0.3075
50 93.19% 0.7135 0.0894 95.62% 0.2447 0.2249
2 84.67% 0.9999 1.1226 84.67% 0.9999 1.3434

FC 5 84.67% 0.9999 0.7711 85.16% 0.9595 0.8954
d=6 10 84.70% 0.9977 0.3088 86.55% 0.7857 0.6327

25 85.47% 0.9061 0.2572 88.72% 0.6734 0.4041
50 86.99% 0.8231 0.0827 91.44% 0.4386 0.3007

values of k (25, 50), and medium dimensionality (3 and 4). The rea-
son is that in these cases, the skyline contains less than 50 points.
Therefore, the 25 selected points are more than half the skyline. Note
that SkyDiver manages to be much better in terms of the Jaccard dis-
tance (though decreasing), even for half the skyline. On the other
hand, Contour increases its coverage by at least 7% (compared with
less than 5% for SkyDiver) and decreases its Jaccard score substan-
tially. This fact validates the claim that Contour selects points which
generally correlate with coverage, despite being far in the Euclidean
space.

G. Valkanas 76

Mining and Managing User-Generated Content and Preferences

Finally, when d ≥ 5, a lot more points belong to the skyline (≥ 1300).
Much like in the previous cases, for small k values (compared with
the skyline size) SkyDiver is better at coverage as well, but Contour
performs better as k grows larger. For k = 6, where more points
belong to the skyline (|S| = 2728), Contour is better at coverage for
as low as k = 3, since there are a lot more points to select from. Even
so, the technique is still worse regarding the Jaccard distance, which
drops to less than half for k = 50.
Consequently, in addition to the disadvantages of the Contour Rep-
resentation approach we have talked about, we have experimentally
shown that this technique favors coverage as a goal, and not diversity.
In other words, this technique solves a different problem from the one
that we proposed in this thesis.

2.3 Skyline ranking with IR techniques

2.3.1 Introduction

In Section 2.2 we presented an approach to address the skyline car-
dinality explosion problem by diversifying the skyline set. Meanwhile,
we briefly discussed some alternatives for tackling the same problem.
The common denominator of these techniques is to return a subset of
k skyline points, where k is a user- or application-defined parameter.
The subset has some specific properties, e.g., collectively maximizes
coverage [136], captures the contour of the skyline [200], diversifies
the skyline [209, 200], etc. Nevertheless, these techniques generally
fail to differentiate between the returned points in terms of some qual-
itative aspect. Moreover, they are mapped to NP-Hard problems, so
we can only efficiently approximate the solutions, unless P=NP.
As also discussed in the beginning of this chapter, top-k queries are
another technique to control the result size. Top-k queries require a
function f () : D → R, mapping data points to a real value, which can
be used to fully rank the dataset, and researchers have also investi-
gated ranking of the skyline set.
We identify two categories, depending on the amount of information
used to rank the points: In the first case, the entire dataset is used,

77 G. Valkanas

and the importance of a skyline point is given by the number of points
it dominates [165, 231]. The major shortcoming of this category is
that dominated points are equally important. For example, a point
p1 dominated by 10 skyline points and another one p2 dominated by
100 contribute the same weight to their dominators. Considering that
skyline queries have an inherent relation to sorting [38], and that dis-
tance measures for sorted lists heavily rely on the relative positions
of items, it feels counter-intuitive to use the same weight for all domi-
nated points.
The second category relies on the skyline S alone, and typically uses
dominance relations in all possible subspaces [215, 51]. As a result,
such techniques ignore the dataset characteristics, except for the sky-
line. They are also generally inefficient, as they need to consider O(2d)
non-empty subspaces. Moreover, they favor skyline points with ex-
treme values in a single dimension and have been shown to produce
correlated results, whereas some of them [215] have not been suffi-
ciently evaluated.
To address these shortcomings, we present a novel ranking scheme
for skyline points. The importance of a skyline point sp is given by
aggregating the importance scores of its dominated set, Γ(sp). We
argue that the importance of a dominated point should be affected by
the number of skyline points that dominate it, as well as the relative
position of that point in the dominated set.
To that end, we propose that the importance of a dominated point is
inversely proportional to the number of skyline points that dominate it.
Regarding the relative positions of dominated points, we propose that
points in the same (different) layer of minima with respect to the sp
should contribute equally (differently).
For instance, if sp1 ≺ a, sp1 ≺ b, and a and b do not dominate
each other, they contribute equally to sp1. Otherwise, if a ≺ b, then
score(a) > score(b). Note that the factor regarding the relative po-
sition of a dominated point p has a more local taste (i.e., per skyline
point), whereas the number of skyline points dominating p is a more
global aspect. Therefore, our technique promotes skyline points that
dominate genuine points, i.e., points which are not dominated bymany
others, and is a hybrid approach.
To capture both aspects in a single scoring function, we apply a modi-

G. Valkanas 78

Mining and Managing User-Generated Content and Preferences

fied version of the renowned Term Frequency -Inverse Document Fre-
quency (TF-IDF) weighting scheme and present efficient algorithms
that derive the top-k skyline points according to it. Our contributions
are briefly described as follows:
• We define a novel, generic and intuitivemeasure of importance for
skyline points. Inspired by the renowned tf-idf weighting scheme
from information retrieval, our method promotes skyline points
that dominate genuine points.

• We present efficient algorithms that compute the top-k most im-
portant skyline points, given our measure.

• We provide an extensive experimental evaluation, in terms of ef-
ficiency using both real-life and synthetic datasets.

The rest of this Section is organized as follows. Section 2.3.2 gives
the details of our scoring model, followed by Section 2.3.3 where we
present the algorithms to derive the top-k result. Section 2.3.4 con-
tains the experimental evaluation of our proposed techniques.

2.3.2 DP-IDP weighting scheme

Our proposed measure, dp-idp, which stands for Dominance Power -
Inverse Dominance Power, is inspired by the renowned tf-idf weight-
ing scheme from Information Retrieval. The general rationale is that
dominated points are not equally important, and that they impact sky-
line points differently. Therefore, their contribution depends on some
local (per skyline point) and some global characteristics (the entire
skyline), much like tf-idf uses local and global information to find im-
portant keywords in a document corpus. In the following paragraphs
we present our ranking scheme.

2.3.2.1 Inverse Dominance Power

We will start with inverse dominance power (idp), which is easier to
define, due to its more global view. The inverse dominance power of
a point p ∈ (D \ S) is the number of skyline points which dominate

79 G. Valkanas

p. This factor is similar to idf in the sense that the more frequently p
appears in a skyline point's dominated set, the lower the importance
of p. More formally:

idp(p) = log |S|
|{sp ∈ S : sp ≺ p}|

An interesting property of idp is the following: Assume a set of points
q1, q2, ..., qm dominated by all skyline points, i.e., ∀sp ∈ S, sp ≺ qj,
j = 1, ..,m. The contributing score of the qi's will be 0, due to the log
in the idp factor. Such points do not alter the ranking of S, either with
ours or simpler models (e.g., |Γ(sp)|), because they affect all skyline
points the same.

2.3.2.2 Dominance Power

There are several ways we could define the dominance power of a
dominated point. Given that we want to measure this factor with re-
spect to a skyline point sp, we argue that its relative position to sp
should matter. As a result, the same dominated point may contribute
differently to different skyline points.

B / 6

D / 5

C / 7

A / 3

1

1

3

2

B1

B2

C1

C2

3

2

2

3

4

Figure 2.12: Example for the Dominance Power

To avoid introducing more artifacts in our model, we choose the dom-
inance relation as our building block. More specifically, we find the

G. Valkanas 80

Mining and Managing User-Generated Content and Preferences

layer of minima 4 lm(p, sp) where the dominated point p falls in, with
respect to sp. The dominance power of that point is then given by the
inverse of the layer where it lies, i.e.,

dp(p, sp) =
1

lm(p, sp)

Figure 2.12 portrays the skyline of a dataset as black filled points, and
the dominance region for each skyline point. Moreover, it shows the
layers of minima for skyline pointsB andC, in dotted green and purple
respectively. We observe that the red-filled point, dominated by both
B and C, lies at different layers of minima. Being easier to reach it
from C, should render it more important for C. On the contrary, there
is an additional layer for skyline point B prior to reaching that point,
that decreases its importance. This is similar to term frequency, where
the same term is weighted differently, depending on its occurrence in
each document.

2.3.2.3 Putting it all together

Given our previous discussion, we can now formally introduce how
we compute the importance of a skyline point sp. We use an ad-
ditive model, because i) it is monotonous (dominating more points
increases the overall importance) ii) it is comprehensive and iii) it
leads to efficient computations, as we followingly discuss. Therefore,
the importance of a skyline point sp is given by:

score(sp) =
∑
p:sp≺p

1

lm(p, sp)
× log |S|

|{sp′ ∈ S : sp′ ≺ p}|

The additive model also favors skyline points that dominate more gen-
uine points, i.e., points dominated by few others in general (not just
skyline points). This is important, because those skyline points are
the reason why the dominated ones cannot be part of the skyline. For
example, if we remove B from the skyline in Figure 2.12 (e.g., a hotel

4In the literature, the term layer of maxima is more common. Here, we use the term layer of minima because
we assume that smaller values are preferred.

81 G. Valkanas

Algorithm 2.4 Baseline
Input: Skyline S, Dataset D, Integer k
Output: Top-k skyline points with highest score

1: for every sp ∈ S do
2: score(sp)← 0; layer← 1; lm← NextLayer(sp, ∅);
3: while (lm 6= ∅) do
4: for every p ∈ lm do
5: score(sp) += 1

layer
× log |S|

|{sp′:sp′≺p}| ;
6: lm← NextLayer(spi, lm); layer++;
7: Order by descending score(sp);
8: Return k highest skyline points;

being fully booked), the point next to it will enter the skyline at once
(similarly for the closest point dominated by A). Additionally, points
dominated by the entire skyline still have no effect. Finally, note that
the sum of tf − idf values is also used in IR systems, to score the
entire document against a query.

2.3.3 Ranking the Skyline

Algorithm 2.4 gives the baseline approach to rank the skyline S with
our proposed scheme. For each skyline point sp (line 1), we ex-
tract one-by-one its layers of minima(lines 2--6). NextLayer uses
BBS [165] internally. For every point in each layer (line 4), we find
howmany skyline points in S dominate it, and together with the layer's
index, we update the score of sp (line 5). After ordering the skyline in
decreasing score order (line 7), we return the top-k ranked items.
Unfortunately, this approach is computationally expensive, due to re-
peated evaluations. It does not perform any pruning, but computes
the exact score of all skyline points, despite our interest in the top-k
results alone. Finally, it lacks any notion of progressiveness, as we
need to rank the entire skyline first. For all these reasons, we present
an alternative approach, that relies on bounding the score of a skyline
point.

G. Valkanas 82

Mining and Managing User-Generated Content and Preferences

2.3.3.1 Bounding the score

Bounding the score of a skyline point sp will help us reduce compu-
tations, by pruning away those that will not make it to the top-k posi-
tions. To achieve this, we use the number of points that sp dominates,
|Γ(sp)|. We can then derive lower and upper bounds of the score of
a skyline point, as shown in the next paragraphs.
Loose Bounds. In the simplest case, we can consider each skyline
point independently of the others. In that case, bounds are derived as
follows. A skyline point obtains its maximum score when all the points
it dominates are in the same (first) layer, and they are not dominated
by any other skyline point. In that case, the upper bound is:

score(sp) = |Γ(sp)| × log |S|

On the other hand, the lower bound is obtained when every point is
dominated by the entire skyline S. In that case, the score is 0, due
to the idp(sp) factor. However, this bound only holds for the skyline
point spmin with the minimum |Γ(spmin)|, unless, of course, every point
in the skyline dominates every dominated point. The rest of the sky-
line dominates some points, which can not be dominated by spmin.
Consider, for instance, that |Γ(spmin)| = 3 and that |Γ(sp′)| = 5. By
definition, the 2 additional points dominated by sp′ can not be domi-
nated by spmin, otherwise |Γ(spmin)| = 5. Therefore, the surplus will
be dominated by |S| − 1 skyline points, and a correlated distribution
will give the lowest score value. In a correlated distribution, each point
is a layer of minima on its own, which reduces the dp factor. This im-
proves slightly the lower bound:

score(sp) = log |S|
|S| − 1

×
n−minΓ∑

1

1

i

Collaborative Bounds. Despite their simplicity, the above bounds
have limited pruning capability. Assume, for instance, a dataset D,
with |D| = 1M and |S| = 800. If |Γ(sp)| = 300K, then score(sp) '
871K, and score(sp) ' 3 × 10−3. Note that a skyline point sp′ with

83 G. Valkanas

|Γ(sp′)| = 1, has an upper bound of ∼2.9, making it eligible for con-
sideration in the second round! Apparrently, the computational gains
of such bounds are easily swept away.
To address this issue, we derive stricter bounds, through additional in-
formation from other skyline points. To better illustrate this approach,
we visualize the problem as a bipartite graph. Figure 2.13 shows a
dataset, with its skyline and dominance regions on the left, and the re-
sulting bipartite graph on the right. The bipartite graph has the same
semantics as the one in Fig. 2.2. The left hand side of the graph
contains the skyline, whereas the right hand side has the dominated
points. There is an edge between a skyline point sp ∈ S and a domi-
nated point p ∈ D \ S, iff sp ≺ p.
We start with the upper bound. Due to the additive model, the score of
a skyline point is maximized when the contribution of each dominated
point is maximized. It is easy to see that dp is maximized when the
dominated point is at the earliest possible layer. To maximize idp, we
rely on the Pigeonhole Principle. For any two skyline points sp1, sp2,
if Γ(sp1) + Γ(sp2) > |D|, then at least |D| − (Γ(sp1) + Γ(sp2)) dom-
inated points are shared by sp1 and sp2. Dominating more common
points reduces idp(), so this factor is maximized when the overlap is
minimized. Given this information, the question now becomes "How
should we assign the common edges to maximize the score of a sky-
line point"? Lemma 5 answers this question.

1

3
4

3

1

2 3

2

2
B / 6

D / 5

C / 7

A / 3

(a) Motivating Example

A / 3

B / 6

C / 7

D / 5

p1

p2

p3

p4

p5

p6

p7

p8

p9

(b) Bipartite Form

Figure 2.13: Example of skyline and bipartite domination graph

G. Valkanas 84

Mining and Managing User-Generated Content and Preferences

Lemma 5 Let sp be a skyline point, px and py two dominated points,
where sp ≺ px and sp ≺ py and lm(px) = lm(py) = l. Assigning
an edge to the point dominated by more skyline points gives a higher
score(sp).
Proof 4 Let Sx, Sy be the current sets of skyline points dominating px
and py, respectively. Assigning an edge to either px or py gives two
different bipartite graphs, with S ′x and S ′y being the new dominating
sets of these points. It holds that |S ′x| = |Sx| + 1 (same for S ′y), due
to the new edge, i.e., one more dominating skyline point. The result-
ing bipartite graphs differ only in the assignment of this edge, which
impacts the weights of px and py. The weights of all other dominated
points remain unchanged. Assume that adding the edge to px yields
a higher score. It so holds:

1

l
× log |S|

|S ′x|
+

1

l
× log |S|

|Sy|
>

1

l
× log |S|

|Sx|
+

1

l
× log |S|

|S ′y|
⇒

log(|S|
|S ′x|
× |S|
|Sy|

) > log(|S|
|Sx|
× |S|
|S ′y|

)⇒ |Sx| · |S ′y| > |S ′x| · |Sy| ⇒

|Sx| · (|Sy| + 1) > (|Sx| + 1) · |Sy| ⇒ |Sx| > |Sy|
The above result tells us that a higher score is achieved by adding the
extra edge to the dominated point that currently has the highest inde-
gree. Such a result can also be efficiently integrated in an algorithm
to compute the upper bound of a skyline point's score. Figure 2.14(b)
shows the edge assignment for the upper bound of skyline points B,
using the above result.
A naive implementation of the upper bound can be very inefficient 5,
because it requires too many counter updates for the commonly dom-
inated points. Since we must compute the bound of each skyline point
sp independently and repeatedly, as new layers are extracted, we
need a more efficient approach. Algorithm 2.5 presents this improved
technique.

5Our experiments showed that this step alone can make up for up to 10 seconds of CPU processing time,
for the datasets that we consider in our experiments.

85 G. Valkanas

A / 3

B / 6

C / 7

D / 5

p1

p2

p3

p4

p5

p6

p7

p8

p9

(a) Dominance set

A / 3

B / 6

C / 7

D / 5

p1

p2

p3

p4

p5

p6

p7

p8

p9

(b) Upper Bound for B

Figure 2.14: Collaborative upper bound

The improved algorithm takes as input the dataset D, the skyline S,
the skyline point of interest poi, and two values minIDP and layer.
As we extract more layers for poi, we must compute the number of
skyline points dominating each of the extracted points, which we need
for the idp value. The minimum value that we have seen this far is
stored in minIDP , and is different for each skyline point. This value
practically tells us that any point in subsequent layers will be domi-

Algorithm 2.5 Score Upper Bounding
Input: D, S, Skyline Point poi, minIDP , layer
Output: Upper bound of poi

1: vidp.push(minIDP); vpnd.push(pending(poi));
2: Sort S, in decreasing |Γ(sp)|;
3: for every sp ∈ S, sp 6= poi do
4: surplus = |Γ(poi)| - seen(poi) + |Γ(sp)| > |D|
5: if (surplus > 0) then
6: vpnd[last] = vpnd[last] - surplus;
7: vpnd.push(surplus);
8: vidp.push(vidp[last] + 1);
9: ub← 0;
10: for (i = 0; i < vidp.size(); i++) do
11: ub← 1

layer+1
∗ vpnd[i] ∗ log |S|

vidp[i]

12: Return ub;

G. Valkanas 86

Mining and Managing User-Generated Content and Preferences

nated by at least minIDP skyline points, due to dominance being a
transitive relation. The layer tells us which was the index of the last
layer of minima extracted for poi.
The algorithm uses two vectors, storing the minIDP value and the
number of unseen points, that have not yet been extracted for poi
(line 1). For example, if |Γ(poi)| = 100, and we have extracted 30
points, then unseen(poi) = 70. In simple terms, the vectors store, in
aggregate, how many points (vPND) can be dominated by that many
skyline points (vIDP). We sort the skyline points in decreasing order
of their dominance power (line 2). We iterate over them (line 3), and
select those points that will share common edges with poi, using the
Pigeonhole Principle (lines 4--5). The surplus of points is removed
from the last position (line 6) and is appended, incremented by 1 (lines
7--8). With these values, we can compute the upper bound according
to the DP-IDP scheme (lines 10-11).
To better explain lines 5--7, assume vpnd[last] = 60, vidp[last] = 4, and
surplus = 25. This means that 60 points will be dominated by 4 skyline
points and the current sp will share at least 25 dominated points with
poi. As a result, we must add an edge (i.e., increment the idp) for an
equal number of unseen points from poi. Thesemust be selected from
the points with maximum current idp, due to Lemma 5. Processing
the skyline in decreasing order of dominance power ensures that we
are properly assigning edges, and that the maximum idp is in the last
positition. Given these values, 25 points will be computed with an idp
of 5, which we append, whereas 60-25=35 will remain with an idp of
4, which we update.
For the lower bounds we could follow a similar reasoning. Unfortu-
nately, the edge assignment problem in this case is not as straight-
forward. Although certain properties are self-evident, e.g., dp de-
creases with a correlated distribution, they do not necessarily result
in the lowest possible score for a point. The reason is that a corre-
lated distribution enforces certain constraints with respect to the dom-
inance relations among points in the skyline. For example, in a cor-
related distribution, as soon as a point is dominated, any other point
in a subsequent layer will also be dominated, due to the transitivity of
dominance, i.e., if a ≺ b and b ≺ c, then a ≺ c.
Consequently, a correlated distribution does not ensure a minimum

87 G. Valkanas

score for the skyline points, unless we violate the constraint of the
number of points that they dominate. Therefore, we may have to reas-
sign edges, and, possibly, reconsider the layer where some points are,
i.e., break the correlated distribution, to minimize the score. There-
fore, in our current work, we proceed with the collaborative upper
bounds.

2.3.3.2 The SkyIR technique

Now that we have shown how we can efficiently bound the score of
a skyline point, using easily extracted information, we turn our focus
to finding the top-k most important skyline information, according to
our DP-IDP weighting scheme. Algorithm 2.6 shows the general idea
of execution of our technique, to efficiently compute the top-k skyline
points. Our algorithm processes the points according to a prioritization
scheme, and employs pruning of skyline points that will certainly not
be in the final top-k result.
The algorithm starts by initializing appropriate information of the sky-
line points (lines 1-4), such as their dominance count, known score,
and priority value, according to the prioritization scheme that we use
(see below). This information is essential to compute the bounds of
skyline points, using the techniques of the previous section.
We add each skyline point to a priority queue, using its priority value
(line 4). We also initialize the k-th value, i.e., the value of the k-th
ranked skyline point, to 0. We then enter a loop, each time extracting
the top-most item from the priority queue, poi (line 7). If the upper
bound of that point's score is below the k-th value, there is no need
for further examination (lines 8 -- 10). In this case we discard it and
proceed with the next one from the priority queue. Otherwise, we
extract the next layer of poi, provided there is one (lines 11--12). We
update the point's score using this layer (line 13) and try to add poi in
the top-k result. If the point was not added, i.e., its value was below
the k-th known score, and it can not be further updated, we discard
it and proceed with the next point from the priority queue (lines 14-
-17). If the point was added, we keep track of the k-th value in the
top-k result. If we can further update the point's score, we compute
its new priority and add it back in the priority queue (lines 20--21). The

G. Valkanas 88

Mining and Managing User-Generated Content and Preferences

Algorithm 2.6 SkyIR
Input: Skyline S, Dataset D, Integer k
Output: Top-k skyline points with highest score

1: for every sp ∈ S do
2: spΓ ← |Γ(sp)|
3: spscore ← 0;
4: priorityQueue.enqueue(spprior, sp);
5: kScore← 0;
6: while (!priorityQueue.empty()) do
7: poi← priorityQueue.dequeue();
8: if (UpperBound(poi)) < kScore) then
9: Discard poi;
10: continue;
11: if (pending(poi) > 0) then
12: lm← NextLayer(poi, lm);
13: poiscore ← updateScore(poi, lm);
14: added← topk.insert(poi, poiscore);
15: if (!added AND pending(poi) == 0) then
16: Discard poi;
17: continue;
18: if (topk[k] > kScore) then
19: kScore← topk[k]
20: if (pending(poi) > 0) then
21: priorityQueue.enqueue(spprior, sp);
22: Return topk;

loop ends when the priority queue becomes empty, meaning no other
points can update their score. The top-k list contains the final result.
Priority Schemes. Our SkyIR algorithm relies on a prioritization scheme
to process the skyline points. In this thesis we experiment with the fol-
lowing prioritization schemes.

• Round Robin (RRB): Items are processed in a round robin fash-
ion. According to this scheme, we can not process the same sky-
line point twice, unless we have processed every other skyline
point first. This scheme also allows for an implementation that
relies on arrays rather than the general priority queue, leading to
faster (main memory) acceses.

89 G. Valkanas

• Pending (PND): The priority of an item is the number of points
that it has not yet processed. For example, if a skyline point dom-
inates 100 points, and it has already "seen" 30, its priority will be
70. Therefore, skyline points with more dominated points through
which they can update their score will have a higher priority.

• Upper Bound (UBS): The priority of a skyline point is given by the
upper bound of its score. In other words, its priority is its potential
to achieve a high final score. Similarly to the previous scheme, a
higher upper bound results in a higher priority for the skyline point.
Given that the upper bound can be used as a point's priority, it is
even more important to have an efficient technique to compute it,
like the one we presented in Algorithm 2.5.

2.3.4 Performance Evaluation

In this section, we report on the results of our experimental evaluation.
The experiments were run on a Quad-Core @2.5GHz machine, with
8Gb RAM, running Linux. The code was written in C++ and compiled
with g++ 4.7.2, with -O3 optimization. The datasets we consider were
indexed by an aggregate R*-tree, with a 4Kb page size. An associated
cache with 20% of the corresponding R*-tree's blocks was used with
every experiment. Unless stated otherwise, the reported timings are in
seconds, measured as CPU processing time and assuming a default
value of 8ms per page fault.
Datasets and Algorithms. We generated datasets with independent
(IND) and anticorrelated (ANT) distributions, as in [42], and also use
Forest Cover 6. Table 2.7 shows their basic properties. Although the
datasets that we consider seem rather small in size (up to 500K), one
should keep in mind that our weighting scheme extracts all of the min-
imal layers for each skyline point. This problem is known to be difficult
for high dimensionality even in the RAM model [48]. We also discuss
approaches in the following sections to address this issue.
The algorithms that we evaluate are Baseline and SkyIR. For SkyIR
we want to compare the performance of the Loose (LS) and Collab-
orative (CB) bounds, and how the three prioritization schemes affect

6http://kdd.ics.uci.edu

G. Valkanas 90

Mining and Managing User-Generated Content and Preferences

Table 2.7: Dataset Statistics
Data set Cardinality Dimensionality

Independent (IND) 100K, 200K, 500K 2,3,4
Anticorrelated (ANT) 100K, 200K, 500K 2,3,4
Forest Cover (FC) 580K 2,3,4

the results. We use the abbreviations as suffixes to indicate what we
compare each time.
Runtime. Figure 2.15(a) shows the total runtime for the independent
distribution, when varying the dataset cardinality, with k=5. The naive
approach is the worst, whereas SkyIR with collaborative bounds per-
forms the best of the techniques, and we have obtained similar results
when varying dimensionality and k.
As seen in Figure 2.15(b), the UBS prioritization scheme outperforms
all others, resulting in up to 3× improvement compared to the base-
line. Similar results are obtained for different priorities with the loose
bounds, but the differences are less pronounced. An important ob-
servation from these plots is that the problem we are solving is not
linear with the cardinality of points. The reason is that as the cardi-
nality increases, there are more layers of minima to extract, and the
computational costs are increased substantially, as a result of both
more CPU processing and page faults.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

100K 200K 500K

T
im

e
 (

s
e
c
)

Cardinality

Baseline
SkyIR-LS-RRB

SkyIR-CB-RRB

(a) Techniques

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

100K 200K 500K

T
im

e
 (

s
e
c
)

Cardinality

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(b) Prioritization for CB

Figure 2.15: Total runtime versus cardinality for IND, k=5

Figures 2.16(a)-(b) demonstrate how each prioritization scheme per-
forms with the collaborative bounds. Figure 2.16(a) shows the perfor-

91 G. Valkanas

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 3 4

T
im

e
 (

s
e
c
)

Dimensionality

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(a) VS Dimensionality (k=5)

 500

 600

 700

 800

 900

 1000

 1100

 1200

3 5 10

T
im

e
 (

s
e
c
)

K

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(b) VS k (d=3)

Figure 2.16: Total runtime for various prioritization with IND, CB

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2 3 4

T
im

e
 (

s
e
c
)

Dimensionality

SkyIR-LS-PND
SkyIR-LS-UBS

SkyIR-CB-PND
SkyIR-CB-UBS

(a) VS Dimensionality

 1800

 1820

 1840

 1860

 1880

 1900

 1920

 1940

 1960

3 5 10

T
im

e
 (

s
e
c
)

K

SkyIR-LS-PND
SkyIR-LS-UBS

SkyIR-CB-PND
SkyIR-CB-UBS

(b) VS k

Figure 2.17: Total runtime for ANT distribution

mance when varying the data dimensionality. We observe that UBS
performs the best for d = 3, 4, while being slightly worse for d=2. The
reason for that is our array-based implementation, which is faster than
the reordering of the priority queuemaintained by PNDandUBS. How-
ever, as seen in Figure 2.16(b) there is a huge improvement with UBS
for d>2. The improvement increases with lower values of k, going
up to 40%, because the collaborative bounds can prune away more
points, reducing the computational costs.
Figures 2.17(a) and (b) demonstrate how the prioritization schemes
perform for the anticorrelated distribution (ANT), versus dimension-
ality and k, respectively. Once again, UBS is better than PND. The
loose bounds appear to be slightly better than the collaborative, but

G. Valkanas 92

Mining and Managing User-Generated Content and Preferences

not considerably. The difference comes from the fact that the loose
bounds are less computationally intensive. The more interesting fact,
however, is that ANT appears to be easier when compared to IND.
In particular, for d=4, it takes ∼6000 seconds for CB to compute the
top-5 for IND, whereas it takes ∼4000 seconds for ANT. The reason
is again that IND has more layers to extract, and is more CPU hungry.
Even though ANT has a lot of page faults, its CPU time is minimal.
Finally, Figure 2.18 compares the loose and collaborative bounds,
when applying the UBS technique on the real dataset FC. We ob-
serve that the CB technique performs better than LB for all tested di-
mensions.

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 3 4

T
im

e
 (

s
e

c
)

Dimensionality

SkyIR-LS-UBS SkyIR-CB-UBS

Figure 2.18: Forest cover

Memory Consumption. Finally, we compute the maximum number
of items that we must maintain in memory while computing the top-k
result. Figures 2.19(a) and (b) show this for IND and ANT, respec-
tively, using the CB technique. We observe that the number of main-
tained items increases as the cardinality of IND also increases. On
the other hand, increasing the dimensionality of ANT, does not have
a similar effect: the number of memory points increases as we go from
2D to 3D, but drops again as we proceed to 4D. This may be explained
again by the fact that ANT has less layers of minima to retrieve. For a
fixed cardinality, more dimensions spread the points more, increasing
the points retrieved with each layer. This decreases the information
we must store to proceed to the next layer, giving as the plot of Fig-
ure 2.19(b).
Generally speaking, the schemes RRB and UBS behave almost the
same (with the exception of ANT). We should stress the fact, however,

93 G. Valkanas

 0

 500K

 1M

 1.5M

 2M

 2.5M

 3M

100K 200K 500K

M
e
m

o
ry

 (
it
e
m

s
)

Cardinality

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(a) IND

 0

 1M

 2M

 3M

 4M

 5M

 6M

 7M

2 3 4

M
e
m

o
ry

 (
it
e
m

s
)

Dimensionality

SkyIR-RRB
SkyIR-PND

SkyIR-UBS

(b) ANT

Figure 2.19: Maximum memory consumption for CB, k=5

that the pending scheme (PND) always results in less memory utiliza-
tion. This is because the scheme will stick to a single point and try to
reduce its number of pending points asmuch as possible, whereas the
other schemes will rotate more over different points. This is an inter-
esting outcome, because PND would be a good alternative in systems
with limited resources.

2.4 Summary

Skyline queries are a very expressive and intuitive query type, allowing
the user to define their preferences on each attribute individually. The
result contains a set of items from the dataset, for which there are no
other points which are better in all dimensions.
A major issue with skyline queries is that the size of the skyline result
may become too large, depending on the dataset characteristics (car-
dinality, dimensionality, distribution). In this thesis, we proposed tech-
niques to tackle this issue, by selecting a subset of k skyline points,
which have maximum diversity. We presented how diversification can
be applied to the skyline context, by employing a distance function that
is based entirely on the most fundamental concept of skyline queries:
the dominance relationship. Consequently, no artificial distance func-
tions are required.
In particular, we quantified the diversity between two skyline points as

G. Valkanas 94

Mining and Managing User-Generated Content and Preferences

the Jaccard distance of their corresponding domination sets, capturing
dataset characteristics in the process. To confront the NP-hardness
of the problem, we resort to a 2-approximation greedy heuristic. To
achieve better performance, at the (slight) expense of quality, we em-
ploy MinHash signatures and Locality Sensitive Hashing.
Our framework is applicable even when an index is not available, but
we presented techniques which can take advantage of an R-tree like
multi-dimensional indexing scheme, to boost performance. We ex-
perimentally validated the performance of our approach using real-
life and synthetic data sets, achieving orders of magnitude better run-
time performance in comparison to straight-forward techniques, with-
out sacrificing quality too much. Our experiments also demonstrated
a clear difference between our proposed formalism and other tech-
niques which select a subset of k skyline points.
In addition to selecting a set of k high-quality skyline points, we also
presented techniques that rank such points in a way that reflects their
individual quality. Inspired by the renowned tf-idf weighting scheme
from Information Retrieval domain, we presented a novel model that
incorporates both local and global characteristics of the skyline points
to be ranked. We proposed efficient techniques for finding the top-k
result, by bounding the maximum score of a skyline point and em-
ploying pruning, combined with different ordering schemes to process
the points. We also experimentally evaluated the proposed bounding
and prioritization schemes in terms of runtime efficiency and memroy
consumption.

95 G. Valkanas

Mining and Managing User-Generated Content and Preferences

Chapter 3

Mining user preferences

3.1 Introduction

In the previous Chapter, we discussed how preferences can be taken
into account, in order to identify meaningful and interesting objects for
the user. In these cases, preferences are provided in advance as part
of the input, where the user specifies, for instance, those attributes
she cares about, as well as whether they should be minimized or max-
imized. In that sense, preferences are defined in a pre-usage scenario
of the potential items or services, i.e., when the user is searching and
exploring the available information, but before they have actually used
it.
However, user preferences over items can be provided in other forms
as well, such as user feedback. Online platforms allow feedback to be
given in various forms, such as totally structured with strict semantics,
e.g., clicking on a "Like", "+1" or other endorsement-like button, or
(semi-)structured, such as controlled vocabularies and free text. In
the latter cases, information extraction techniques come into play, to
mine and better understand the available information.
A characteristic example of such unstructured information is online re-
views, where users express their opinions regarding products or ser-
vices and discuss which aspects they liked (or did not like), how much
they enjoyed the product as a whole and each feature individually, etc.
Typically, this type of user feedback is provided in semi-structured or
free text form. Review mining, i.e., the domain of applying text and
data mining techniques to online reviews with the purpose of convert-
ing textual information into structured data, has seen a considerable

97 G. Valkanas

surge over the past years, due to the monetary power of that informa-
tion. Building upon existing techniques that extract information from
reviews, in this thesis, we present techniques that utilize the extracted
information and develop a robust, formal framework to identify com-
petitors. Such a framework has been missing until now, and, to the
best of our knowledge, our work is the first one to fill this blank.

3.2 Review Mining for Competitor Identification

3.2.1 Motivation

Competitiveness is a challenge that every product or service provider
has to face, regardless of the application domain. A significant amount
of relevant work has demonstrated the strategic importance of iden-
tifying and monitoring an entity's competitors [170]. In fact, a long
line of research from the marketing and management community has
been devoted to empirical managerial methods for competitor identifi-
cation [72, 61, 82, 39, 169], as well as to methods for analyzing com-
petitors [56], defending against competitive incursions, and devising
appropriate response strategies [86, 57]. Our own work focuses on
competitor identification, a key step for any competitiveness-driven
study or application. Contrary to the significant amount of available
work by the marketing community, the problem has been largely over-
looked by computer scientists. For the latter, the challenge is to pro-
pose formalizations and competitor-identification algorithms that can
utilize the vast amounts of rich data that is nowadays available on the
web and other digital sources. Some progress toward this direction
has beenmade by the information systems community [134, 144, 133,
31, 164, 233]. While the proposed approaches help motivate the prob-
lem, they present significant shortcomings. These include the lack of
a formal definition of competitiveness, as well as the existence of as-
sumptions that limit the applicability of these approaches. Specifically,
these techniques are based on mining comparative expressions (e.g.
''Item A is better than Item B'') from the Web or other textual sources.
Even though such expressions can be indicators of competitiveness,
they are absent in many domains. For example, consider the domain

G. Valkanas 98

Mining and Managing User-Generated Content and Preferences

of vacation packages (e.g flight-hotel-car combinations). In this case,
the items have no assigned name by which they can be queried or
compared with each other. Further, the frequency of textual compar-
ative evidence can vary greatly across domains. For example, when
comparing brand names from the domain of technology (e.g. "Google
Vs Yahoo" or "Sony Vs Panasonic"), it is indeed likely that compar-
ative patterns can be found by simply querying the web. However,
it is trivial to consider other mainstream domains where such find-
ings are extremely scarce, if not non-existent(e.g. shoes, jewelery,
hotels, restaurants, furniture). Finally, even in domains where such
approaches are applicable, they cannot actually evaluate the com-
petitiveness relationship between any two items. Instead, they can
only identify a subset of the competitors, based on the available ev-
idence. Our own work overcomes these drawbacks, by providing a
formal definition of competitiveness that is applicable across domains.
On a high-level, the fundamental problem we address in our work is
the following:
Problem 1 We are given a set of items I, defined within the feature
space F of a particular domain. Then, given any pair of items I, I ′

from I we want to define a function CF(I, I
′) that computes the com-

petitiveness between the two in the context of the domain.
As mentioned in the statement of the problem, our notion of compet-
itiveness is based on the feature-space F of the corresponding do-
main. Our competitiveness paradigm is based on the following obser-
vation: the competitiveness between two items is based on whether
they compete for the attention and business of the same group of
users (i.e. the same market share), and to what extent. For example,
two restaurants that exist in different countries are obviously not com-
petitive to each other, since there is no overlap between their target
groups. In the ideal scenario, we would have access to the complete
set of users that could be interested in a given item. Then, given any
two items, we could trivially compete their competitiveness based on
the overlap of their respective sets. In practice, however, this is clearly
not an option. Taking this into consideration, we formalize the compet-
itiveness between two items based on their respective features. For
example, if the considered items are MP3 Players, F could consist
of the features price, sound quality, battery life, connectivity, capacity

99 G. Valkanas

and design. Our motivation is that, regardless of the domain, users
compare and evaluate items based on their features. Therefore, by
attaching our formalization to the feature space, we ensure the avail-
ability of a consistent and informative resource for competitiveness
evaluation. We provide a (simplified) overview of our approach in Fig-
ure 3.1.

Figure 3.1: Simplified example of our competitiveness paradigm

The figure illustrates the competitiveness between three different items
I1, I2 and I3. Each item is mapped to the set of features that it can offer
to the users. Three distinct features are considered in this example:
A,B and C. Note that, for this simple example, we only consider bi-
nary features (i.e. available/not available). Our actual formalization
accounts for a much richer space of binary, categorical and numeri-
cal features. The left side of the figure shows three groups of users
(g1, g2, g3). The example assumes that these are the only groups in
existence. Users are grouped based on their preferences with respect
to the features. For example, the users in group g2 are only interested
in features A and B. As can be seen by the figure, items I1 and I3
are not competitive to each other, since they simply do not appeal to
the same groups of users. On the other hand, I2 is in competition with
both I1 (for groups g1 and g2) and I3 (for g3). Finally, another interest-
ing observation is that I2 competes with I1 for a total of 4 users, and
with I3 for a total of 9 users. In other words, I3 is a stronger competitor
for I2, since it claims a much larger portion of I2's market-share than
I1. In our work, we propose ways to deduce these user-groups from

G. Valkanas 100

Mining and Managing User-Generated Content and Preferences

sources such as query logs and customer reviews, and describemeth-
ods to estimate the size of the market share that they represent. Our
work is the first to utilize the opinions expressed in customer reviews
as a resource for mining competitiveness.
The formal definition of the competitiveness CF(Ii, Ij) between two
items Ii and Ij, in the context of their domain's feature-spaceF , is the
first contribution of our work. As we demonstrate in our experiments,
the evaluation of competitiveness can be a major computational chal-
lenge when dealing with real datasets of hundreds or even thousands
of items. Motivated by this, we propose an algorithm for the natural
problem of finding the top-k competitors of a given item.The proposed
framework is geared toward scalability and efficiency, which makes it
applicable to domains with large populations of items.
In Section 3.2.3 we introduce our formalization of competitiveness.
In Section 3.2.4 we show how we use this formalization toward an
efficient framework for finding the top-k competitors of a given item.
In Section 3.2.2 we discuss previous related work. The experimental
evaluation of our work is presented in Section 3.2.8.

3.2.2 Related Work

To the best of our knowledge, our work is the first to consider domain-
invariant competitor mining. Nonetheless, our work has ties to previ-
ous work on relevant fields.
Competitor Mining. A previous line of work [134, 133, 31, 225] fo-
cuses onmining competitors based on comparative expressions found
in web results and other textual corpora. The intuition is that the fre-
quency (i.e. statistically significant) occurrence of expressions like
"Item A is better than Item B" or "item A Vs. Item B" are indicative of
the competitiveness relationship between the two items. However, as
we have already discussed in the introduction, such comparative evi-
dence are typically scarce, or even non-existent in many mainstream
domains. As a result, the applicability of such approaches is greatly
limited.
Finding Competitive Products. Recent work [217, 218, 237] has
explored competitiveness in the context of product design. The first
step in these approaches is the definition of a dominance function

101 G. Valkanas

that represents the value of a product. This can measure domina-
tion of other items or potential customers. The goal is then to use
this function to create items that are not dominated by other, or max-
imize items with the maximum possible dominance value. A similar
line of work [224, 223] represents items as points in a multidimen-
sional space and looks for subspaces where the appeal of the item
is maximized. While relevant, the above projects have a completely
different focus from our own, and hence the proposed approaches are
not applicable in our setting (and vice versa).
Skyline computation. Our work leverages concepts and techniques
from the extensive literature on skyline computation [42, 121, 165].
These include the dominance concept among items, as well as the
construction of the skyline pyramid used by our CMiner algorithm.
Our work also has ties to the recent publications in reverse skyline
queries [213, 214]. Even though the focus of our work is different, we
intend to utilize the advances in this field to extend the functionality
and improve the efficiency of our framework in future work.

3.2.3 Formalizing Competitiveness

In this section, we describe how we can formalize and measure the
competitiveness between any two items within a given domain. This
formalization serves as the building block of our framework. Note that
our definition can be easily extended to handle more than two items
at a time.

3.2.3.1 Competitiveness via Coverage

In order to synthesize a competitor-mining method that works across
domains, we need a formalization of competitiveness that is both ac-
curate and flexible. Motivated by this, we build upon a crucial factor
that remains consistent across domains: user preferences. In every
market, the ultimate goal is to convert users into customers by meet-
ing their individual requirements. Consider a single user u, interested
in a specific domain (e.g. restaurants). While the domain may contain
numerous items, the user will ultimately choose only one to spend his
money on. In a typical scenario, the user follows the following steps:

G. Valkanas 102

Mining and Managing User-Generated Content and Preferences

1. Encode requirements and preferences in a query.

2. Submit the query to a search engine and retrieve the matching
items.

3. Process matching items and make the final choice.

We observe that the items that do not match the user's criteria are
never considered. In other words, they never get the chance to com-
pete for his attention. As far this single user is concerned, the set
of competitors consists of the matching items retrieved by the search
engine. Consider the following motivating example:
Example: A user is trying to pick a restaurant for dinner. He has
a very limited budget and is only interested in Italian restaurants in
the Boston Area. Only the restaurants that satisfy these criteria will
compete for the user's attention. On the other hand, Chinese restau-
rants, restaurants from New York, and expensive establishments are
not truly competitors with respect to this particular user, since they are
outside the boundaries of his personal requirements and thus never
had a chance to be chosen.
In this example, the user is interested in the features {price range,
location, food type}. The respective values that encode the user's
requirements are {Cheap, Boston, Italian}. Clearly, any other assign-
ment of values could be specified for the same query (e.g. {Cheap,
Chicago, Chinese}). In fact, each possible value-assignment repre-
sents the preferences of a different user. Formally, given a subset of
featuresF ′, let VF ′ be the complete space of all possible value assign-
ments over the features in F ′. We observe that every item covers a
portion of the entire space VF ′, and, hence, covers the corresponding
population of users. For example, a cheap restaurant in Boston that
serves both Italian and American food covers a user who is interesting
in cheap Italian food in Boston, as well as a user who is interested in
cheap American food in the same city.
In order to evaluate the competitiveness of two given items Ii, Ij in the
context of a subset of features F ′, we need to compute the number of
possible value assignments over F ′ that are satisfied by both items.
Formally, we define pairwise coverage as follows:

103 G. Valkanas

Definition 1 [Pairwise Coverage]Given the complete set of features
F in a given domain of interest, let VF ′ be the complete space of all
possible value-assignments over the features in a subset F ′ ⊆ F .
Then, the coverage cov(VF ′, Ii, Ik) of a pair of items Ii and Ij with
respect to VF ′ is defined as the portion of VF ′ that is covered by both
items.
Considering the above definition, we observe that the coverage of
each dimension (i.e. each feature F ∈ F ′) is independent of the oth-
ers. Therefore, we first compute the percentage of each dimension
that is covered by the pair. We can then optimally compute the cover-
age of the entire space VF ′ as the product of the respective coverage
values V{F} for every F ∈ F ′. Formally:

cov(VF ′, Ii, Ij) =
∏
F∈F ′

cov(V{F}, Ii, Ij) (3.1)

This computation has a clear geometric interpretation: The portion of
the space VF ′ that is covered by a pair of items can be represented as
a hyper-rectangle in |F ′|-dimensional space. For each dimension F ,
cov(V{F}, Ii, Ij) gives us the portion of the dimension that is covered by
the two items. Finally, by multiplying the individual coverage values,
we are essentially computing the volume of the hyper-rectangle that
represents the entire space VF ′.
Figure 3.2 illustrates the pairwise coverage provided by two items
I1, I2 in the context of the two dimensional space defined by two fea-
tures F1 and F2. As shown in the figure, the two pairwise coverage of
the the two items is defined by the highlighted rectangle. The three
points q1, q2, q3 represent different value assignments for these two
features. Every assignment that falls within the rectangle is covered
by both items.
Definition 1 allows us to evaluate the coverage provided by a pair of
items to (the value space of) any subset of features F ′. Conceptu-
ally, F ′ captures the fraction of the population that is interested in
the features included in F ′. In practice, the size of the correspond-
ing population varies across subsets. For example, in the domain of
restaurants, the subset {food quality, price range} is arguably of inter-
est to more users than the subset {Wi-Fi availability, delivery options}.

G. Valkanas 104

Mining and Managing User-Generated Content and Preferences

F 1

F2

I
12

y

1
y

2
x

1
x

I
2

1
q

2
q

3
q

1

10

Figure 3.2: Geometric interpretation of pairwise coverage

To account for this in our definition of competitiveness, we attach a
popularity weight w(F ′) to each feature subset. We revisit the com-
putation of these weights in Section 3.2.6, where we discuss practical
methods for learning the weights from sources such as query logs
and customer reviews. For the remaining of our analysis, we assume
that the weights are provided as part of the input. Further, we define
Q to be the collection of subsets with a non-zero weight. Formally:
Q = {F ′ ∈ 2F : w(F ′) > 0}. Taking the above into consideration, we
formally define the competitiveness of two items Ii, Ii as follows:
Definition 2 [Competitiveness] Given the complete set of features
F of a domain of interest, letQ be the set of all subsets ofF that have
a non-zero popularity weight. Then, the competitiveness of two given
items Ii and Ii is defined as:

CF(Ii, Ij) =
∑
F ′∈Q

w(F ′)× cov(VF ′, Ii, Ij) (3.2)

where cov(VF ′, Ii, Ij) is the portion of VF ′ that is covered by both Ii
and Ij.

3.2.3.2 Computing Coverage

Our definition of competitiveness between two given items is based on
the pairwise coverage that they provide to the value space of the differ-
ent subsets of features. We observe that the value space is complex,

105 G. Valkanas

since it can contain different types of features. By supporting virtually
every reasonable feature-type (numeric, ordinal, boolean, categori-
cal), our framework guarantees the flexibility required to encode the
requirements of virtually any potential customer. Next, we discuss the
different types of features that we consider in our work, and show how
coverage is defined for each of them.
Categorical Features. In this thesis, we identify two sub-types of
categorical features: single-value and multi-value. For a single-value
feature F , each item assumes exactly one value from the respective
value-space V{F}, e.g. the brand of a digital camera. Clearly, boolean
features are simply a special case of this group, assuming values from
{YES, NO}. The pairwise coverage of two items Ii, Ij, given a single-
value feature F , is defined as follows:

cov(V{F}, Ii, Ij) =
{
1 if Ii[F] = Ij[F]
0 otherwise (3.3)

For a multi-value feature F , each item can be mapped to any subset
of values from the respective value-space V{F}. Assume, for example,
the feature parking from Table 3.1, referring to the parking facilities of
a restaurant. Since a restaurant can in fact provide any number of
these options (even all of them), parking is a multi-value categorical
feature. We define the pairwise coverage of two items Ii, Ij for a multi-
value feature F , as follows:

cov(V{F}, Ii, Ij) =
|Ii[F] ∩ Ij[F]|
|V{F}|

(3.4)

Conceptually, the covered portion is defined as the overlap between
the sets of values that are mapped to each item, divided by the total
number of possible values for F . Clearly, the dividend is always a
value in [0, 1].
Ordinal Features. The value space V{F} of an ordinal feature F as-
sumes values from a finite ordered list: V{F} = {v1, v2, v3, ...}. De-
pending on the nature of the feature, higher or lower states may be
preferable. For example, for the feature price range, lower values are

G. Valkanas 106

Mining and Managing User-Generated Content and Preferences

preferable. On the other hand, for the feature stars rating, higher val-
ues are better.
First, let us introduce two functions that will aid us in our definition of
coverage in the context of ordinal features. Given an ordinal feature F
and two values v1, v2 ∈ V{F}, let loser(F, v1, v2) return the least prefer-
able between the two values. In addition, let weq(F, v1) return the set
of values that are worse or equal to v1. For example, for the price
range feature discussed above, weq(F, $$$)={$$$, $$$$}. Then, the
pairwise coverage of two given items to the value space is defined as
follows:

cov(V{F}, Ii, Ij) =
|weq(loser(F, Ii[F], Ij[F]))|

|V{F}|
(3.5)

As in the case of categorical features, cov(V{F}, Ii, Ij) takes values in
[0, 1].

Numeric Features. A numeric feature F takes values from a contin-
uous pre-defined range. Without loss of generality, we assume that
all numeric features are normalized to take values in [0, 1]. Higher or
lower values may be preferable, depending on the nature of the fea-
ture. As in the case of ordinal features, we define loser(F, v1, v2) to
return the least preferable of two given values for a feature F . Then,
given two items Ii, Ij, the pairwise coverage of the value space V{F}
is defined as:

cov(V{F}, Ii, Ij) = loser(F, Ii, Ij) (3.6)

Conceptually, the value space that is commonly covered by the two
items is bounded by the one with the least preferable value. Now that
we have provided a definition of coverage for every supported feature-
type, we present the following example.

Example: Consider the subset of features F ′ shown in Table 3.1.
The respective representations for two items Ii, Ij are { $$$, Boston,
{Street, Valet}, 0.8 } and { $$, Boston, {Street, Priv. Lot}, 0.6 }. Then,
following Eq. 3.1, the pairwise coverage of the two items of is com-

107 G. Valkanas

Table 3.1: Feature-subsets and their respective value-spaces.

Feature Type Value-Set V{F}

price range ordinal {$, $$, $$$, $$$$}
location categorical (single) {Boston, New York}
parking categorical (multi) {Street, Priv. Lot, Valet}
food quality numeric [0, 1]

puted as follows:

cov(VF ′, Ii, Ij) =
2

4
× 1× 1

3
× 0.6 = 0.1

3.2.4 Finding the Top-K Competitors

In the previous section we presented a formal definition of the com-
petitiveness between any two items. Given this definition, we study
the natural problem of finding the top-k competitors of a given item.
Formally, the problem is defined as follows:
Problem 2 We are given a set of items I, defined within the feature
space F of a domain. Then, given a single item I ∈ I, we want to
identify the k items from I \ {I}, that maximize the pairwise compet-
itiveness with I :

I∗ = argmax
I ′∈I\{I}

CF(I, I
′) (3.7)

A naive algorithm for this problem would iterate over all items in I ′ ∈
I\{I}. For each such item I ′, it would computew(F ′)×cov(VF ′, I, I ′)
for every subsetF ′ ∈ Q, whereQ is the collection subsets with a non-
zero weight. It would then be trivial to obtain the top-k competitors for
the given item. However, considering that I can contain thousands of
items, the computational cost can be overwhelming. We demonstrate
this in our experiments, where we compare our own CMiner technique
with the naive approach.

G. Valkanas 108

Mining and Managing User-Generated Content and Preferences

3.2.5 The CMiner Algorithm

Motivated by the inefficiency of the naive approach, we present CMiner,
a new algorithm for Problem 2. Our approach combines scalability
with the ability to handle the online arrival of new items. The latter is
crucial in many mainstream domains. As an example, consider the
case when items are vacation packages. In such a domain, an arbi-
trary number of new packages can be introduced at any point in time.
Hence, we would like to preprocess the data in a way that allows us to
compute the competitors of a new package without having to repeat
the entire computation effort.
First, we define the concept of item dominance, which will aid us in
our further analysis:

Definition 3 [Item Dominance]: Given two items Ii, Ij from a set I
defined within a feature-spaceF , we say that an item Ii dominates an
item Ij if both of the following conditions are true:

1. Ij[F] ⊆ Ii[F], for every multi-value categorical feature F ∈ F
2. Ii[F] ≥ Ij[F], for every ordinal, numerical, or single-categorical

feature F ∈ F .

Conceptually, an item dominates another if it has better values for all
features of the considered space F . Clearly, if Ii dominates Ij, then it
is also more competitive with respect to any other item from I (since
it covers at least as much coverage to any possible sub-space as Ij).
This observation motivates us to utilize the skyline of the entire set
of items I. The skyline is a well-studied concept that represents the
subset of points in a set that are not dominated by any other point in
the set [42]. We refer to the skyline of a set of items I as Sky(I). The
concept of the skyline leads to the following lemma:

Lemma 6 Given the skyline Sky(I) of a set of items I and an item
Ii ∈ I, let Y contain the k items with the highest CF(·, Ii) values from
Sky(I). Then, an item Ij ∈ I can only be in the top-k competitors of
Ii, if Ij ∈ Y or Ij is dominated by one of the items in Y .

109 G. Valkanas

Proof 5 We will prove this by contradiction. Let Ij be an item that
is not included in Y , and has a competitiveness value that is higher
or equal to that of some item I ∈ Y . The assumption is that Ij is
not dominated by any of the items in Y . Observe that Ij cannot be
in the skyline, since its competitiveness would have included it in Y .
Hence, it is guaranteed to be dominated by at least one of the items
in the skyline. This means that there is an item I ′ ∈ Sky(I) with
a competitiveness higher or equal to that of Ij. However, since Ij
has a greater (or equal) value than one of the items in Y , the same
applies for I ′ which is guaranteed to be included in Y . This leads to a
contradiction, since we assumed that none of the items in Y dominate
I ′.

By applying Lemma 6, we do not need to consider the entire set of
items in order to find the top-k competitors of a given item I∗. Instead,
it is sufficient to recursively check for the items that are dominated by
the current top-k items from the upper levels. In order to fully utilize this
observation, we construct a structure that greatly reduces the number
of items that need to be considered for the computation of the top-
k competitors set. We refer to this structure as the skyline pyramid.
The pyramid can be constructed by recursively computing the skyline
and removing the skyline points from the current set, until the entire
collection of items has been exhausted. Standard techniques can be
used for computing the skyline on each iteration [165], as well as for
updating the pyramid in case new items are introduced [121]. Each
item from the ith layer of the skyline is assigned an inlink from the
item from ith level that dominates it. If multiple such dominators exist,
we simply choose one randomly. This is simply done to avoid re-
checking the dominated item during the competitor-finding process,
and does not affect the optimality of the result. An example of the
skyline pyramid is shown in Figure 3.3. The left side of the figure
shows the complete dominance graph for a given set of items. An
edge Ii → Ij means that Ii dominates Ij. The right side of the figure
shows the skyline domination pyramid.

Lemma 7 Assume the skyline pyramid structure on a set of items I.
We can retrieve the optimal top-k competitors set with respect to an

G. Valkanas 110

Mining and Managing User-Generated Content and Preferences

I
9

I
4

I
1 0

I
8

I
2

I
5

I
1

I
6

I
3

I
7

I
4

I
1 0

I
2

I
5

I
1

I
9

I
8

I
6

I
7

I
3

Figure 3.3: An example of the skyline pyramid structure

item I∗, iff we maintain exactly one edge for each item Ii+1 in layer
i + 1 from any item Ii in layer i, such that Ii dominates Ii+1.
Proof 6 First, we will show that we need to maintain at least one such
edge, between an item from layer i+ 1 and an item from layer i. The
proof is immediately derived from Lemma 6, since a top-k competitor
could be an item from layer i+1, which is dominated by some point in
layer i. If we do not maintain such an edge, then item Ii+1 will never be
checked and the top-k result will not be optimal. Therefore, we need
to maintain at least one such edge, for any item that is dominated by
some other.
We will now show that it is sufficient to maintain at most one such
edge, i.e., if item Ii+1 is dominated by two or more points from Ii, say
I1 and I2, keeping only one of these edges will yield the optimal result.
The proof is given by contradiction. Assume 3 points, I1, I2 and I3,
with I1 and I2 being in the i-th skyline layer and I3 in the (i+1)-th layer,
and that both I1 and I2 dominate I3. Additionally, assume that I1 and
I3 should be in the top-k result, but I2 should not, and that from the two
edges I1 → I3, I2 → I3, we keep the latter (I2 → I3). If I2 is not in the
top-k result, then ∃Ik s.t. CF(I∗ I2) < CF(I∗, Ik). However, CF(I∗, I3)
< CF(I∗, I2), because that is how the skyline pyramid is constructed.
Therefore, CF(I∗, I3) < CF(I∗, Ik) and I3 should not be in the top-k
result, hence the contradiction.
A corollary from the above proof is that for an item I to be taken into
consideration as a candidate for the top-k set, all of its masters should
have been eligible for consideration in the previous round. That is all
of I 's masters should be among the top-k competitors. Since all of

111 G. Valkanas

I 's masters need to be in the top-k result, we could maintain the edge
J → I for the point J that is farthest from I , with respect to some
predefined criteria (e.g. L1 distance, or CF(J, J)).
The pseudocode for the pyramid-extraction process is given in Algo-
rithm 3.1. We refer to this process as PyramidFinder. The input to
PyramidFinder is the set of items I. The output is the skyline pyra-
mid DI. In our experiments, we explore the construction of the skyline
pyramid for large datasets, discuss its characteristics, and demon-
strate its usefuleness in the context of top-k competitor search.
Algorithm 3.1 PyramidFinder

Input: Set of items I
Output: Dominance Pyramid DI

1: DI [0]← Sky(I)
2: Z ← I \ Skyline(I)
3: level ← 1.
4: while Z is not empty do
5: DI [level]← Sky(Z)
6: for every item Ij ∈ DI [level] do
7: for every item Ii ∈ DI [level − 1] do
8: if Ii dominates Ij then
9: Add a link Ii → Ij
10: break
11: Z ← Z \ skyline(Z)
12: level ← level + 1

3.2.5.1 The CMiner Algorithm

Next, we present CMiner, an optimal algorithm for finding the top-k
competitors of any given item. Our algorithm makes use of the sky-
line pyramid described earlier in this section, in order to reduce the
number of items that need to be considered and minimize the number
of required coverage computation. The intuition is that, since we only
care about the top-k competitors, we can incrementally compute the
score of each candidate and stop when it is guaranteed that the top-k
have emerged. The pseudocode is given in Algorithm 3.2.
The input to the algorithm includes the set of items I, the set of fea-
tures F , the item of interest I∗, the number k of top competitors to

G. Valkanas 112

Mining and Managing User-Generated Content and Preferences

Algorithm 3.2 CMiner
Input: Set of items I, Item of interest I∗ ∈ I, feature space F , CollectionQ of feature-subsets with non-zero
weights, skyline pyramid DI , int k
Output: Set of top-k competitors for I∗ from I \ {I∗}

1: TopK ← masters(I∗)
2: if (k ≤ |TopK|) then
3: return TopK

4: k ← k − |TopK|
5: LB ← −1
6: low(I)← 0, ∀I ∈ X .
7: up(I)←

∑
F ′∈Q

w(F ′)× (cov(V ′
F ′ , I∗, I∗)), ∀I ∈ X .

8: X ← getSlaves(TopK,DI) ∪ DI [0]
9: while (|X | != 0) do
10: X ← updateTopK(k, LB,X)
11: if (|X | != 0) then
12: TopK ← merge(TopK,X)
13: if (|TopK| = k) then
14: LB ← TopK[k]

15: X ← getSlaves(X ,DI)

16: return TopK

17: Procedure updateTopK(k, LB, X)
18: localTopK ← ∅
19: for every F ′ ∈ Q, in sorted order do
20: sc← w(F ′)× cov(V ′

F ′ , I∗, I∗)
21: localTopK ← ∅
22: for every item I ∈ X do
23: up(I)← up(I)− sc+ w(F ′)× cov(V ′

F ′ , I∗, I)
24: if (up(I) < LB) then
25: X ← X \ {I}
26: else
27: low(I)← low(I) + w(F ′)× (cov(V ′

F ′ , I∗, I))
28: localTopK.add(I, low(I))
29: if (|localTopK| = k) then
30: LB ← localTopK[k]

31: if (|X | ≤ k) then
32: break
33: for every item I ∈ X do
34: for every remaining F ′ ∈ Q do
35: low(I)← low(I) + w(F ′)× cov(V ′

F ′ , I∗, I)

36: localTopK.add(I, low(I))

37: return localTopK

retrieve, the collection Q of feature-subsets with non-zero weights,
and the skyline pyramid DI.

113 G. Valkanas

In lines 1-4, the algorithm usesmasters(I∗) to retrieve the set of items
that dominate I∗. Note that this set can be easily pre-computed for
all the items during the pyramid-construction phase. These items are
guaranteed to have the maximum possible competitiveness with I∗.
If at least k such items exist, we can just report them and conclude.
Otherwise, we append them to the final result and decrement our bud-
get of k accordingly. The LB variable maintains the lowest lower
bound from the current top-k set. This is used as pruning thresh-
old for the candidates. In lines 6-7 we initialize the upper and lower
bounds for each candidate. In line 8 we initialize the set of candidates
X as the union of the items in the first layer of the pyramid and the
items dominated by those in the TopK. The latter is returned via calling
getSlaves(TopK,DI).
In every iteration of lines 9-15, the algorithm does the following: (i) it
feeds the set of candidates X routine, which prunes items based on
theLB threshold, (ii) updates the TopK set via the (merge)(·) function,
(iii) updates the pruning threshold LB, (iv) expands the set of items
by including the items that they dominate.
Discussion of UpdateTopK(). This routine processes the items inX
and finds at most k with the highest competitiveness scores among
X , subject to the condition that this score is higher than the global
pruning threshold LB. The approach uses two bounds low and up,
for every I ∈ X . low(I) maintains the competitiveness score of item
I , as new feature subsets are considered. up(I) is an optimistic upper
bound on I 's competitiveness score. Therefore, up begins with the
maximum possible competitiveness score, CF(I∗, I∗).
For every feature subset, we examine all items in X and update their
up value. If at any point up(I) < LB (line 24), item I can be safely
removed from the X . If, at any point, |X | becomes less or equal to k,
the loop over the subsets comes to a halt. In lines 33-36 we update
the lower bounds of the remaining items in X . We do this outside
the loop, in order to avoid unnecessary bound checking and improve
performance. Observe that the routine processes subsets in sorted
order. In Section 3.2.6, we elaborate on the impact of the ordering on
the performance of CMiner.

G. Valkanas 114

Mining and Managing User-Generated Content and Preferences

3.2.5.2 Algorithmic Complexity

The complexity of CMiner depends on the number of points in each
layer ofDI. According to Bentley et al. [38], for n uniformly-distributed
d-dimensional data points (items), the expected size of the skyline is
Θ(ln

d−1n
(d−1)!). Since we need to examine at most k skyline layers to find

the top-k result, this value is upper-bounded by Θ(k ∗ lnd−1n
(d−1)!). This

bound naively assumes that each layer should be considered entirely.
In practice, however, we only need to check a small fraction of items
that are dominated by the items considered in the previous layer. For
instance, for uniform distribution, with consecutive skyline layers of
similar sizes, the number of points to be considered will be in the order
of k, since links will be evenly distributed among the skyline points.
As we only expand the top-k items in each step, at most k new items
will be introduced. Therefore, for small values of k, the complexity of
CMiner is written as O (|I| * |Q| * k2), where Q is the set of feature
subsets with non-zero weights.

3.2.6 Weight-Estimation for Feature-Subsets

Our analysis has assumed that the weight w(F ′) of each subset of
features F ′ is provided as input. In this section, we discuss methods
for computing these weights.
The motivation of assigning a different weight to each feature-subset
stems from the real-life observation that not all features are equally
important to users. Based on this, a straightforward approach is to
consider the weight of each individual feature separately, and then
aggregate to the subset-level. This aggregation could be achieved
by selecting the sum, average, median, maximum or minimum over
all the individual features in a set. This approach assumes indepen-
dence among the features of an item. This assumption, however, is
not always valid. For example, it may be the case that people who are
interested in the screen resolution of a laptop computer are also more
likely to be interested in the included graphics card. This motivates
an approach that considers the popularity of feature-subsets instead
of individual features. We identify two sources from which we can

115 G. Valkanas

learn the popularity of a subset of features: query logs and customer
reviews.
Query logs. The first source is the query logs of the search engine on
the website where the items are hosted. Regardless of the interface
through which the user encodes his preferences in a query, the set
of selected feature is always recorded in a dedicated log. Assuming
the existence of a large enough user-base, we can simply estimate
the popularity of a feature-subset based on the number of times that
it was queried upon by the users.
Customer reviews. In cases when query logs are unavailable or in-
adequate, the weights of the subsets can be estimated by considering
the reviews that are available for the items in the domain. As an ex-
ample of such a dataset, consider the union of the review sets that
are available for all the digital cameras offered on amazon.com. Each
of these reviews comments on a particular subset of attributes from
the digital-camera domain. Hence, the review corpus serves as an
intuitive way to access user preferences. For example, a user who
is greatly interested in the wheelchair-accessibility of a restaurant is
more likely to discuss this feature in his review. We implement and
employ review mining as means for estimating the weights of feature-
subsets in our experiments. In practice, one can choose to ignore
subsets that appear less frequently than a set threshold. In our own
experiments, we consider all subsets that appear at least once.

3.2.7 Subset Ordering

Given an item of interest I∗, CMiner iterates over the given set of
subsets and computes the coverage provided by I∗ and each candi-
date item to the value-space that corresponds to each subset. Given
our definition of competitiveness, we next consider IC, an ordering
scheme that, given an item of interest I∗, processes subsets in de-
scending order of w(F ′) × cov(V ′F ′, I∗, I∗) values. As stated in the
following lemma, IC achieves the optimal convergence rate (i.e. there
exists no ordering that can result to a faster convergence).

Lemma 8 [IC Convergence Rate]: Given two items Ii, Ij, the ordering
imposed by the IC scheme results in the fastest possible convergence

G. Valkanas 116

Mining and Managing User-Generated Content and Preferences

to the target-value CF(Ii, Ij) (i.e. the true competitiveness between
the two items)

Proof 7 Assume that we want to compute the competitiveness be-
tween the target item I∗ and a candidate I ′. Let li and ui be the lower
and upper competitiveness bounds, after checking F ′i , the i-th fea-
ture subset imposed by the IC scheme. For ease of notation, we use
CF ′

i
(I1, I2) = w(F ′i) × cov(VF ′

i
, I1, I2), for any two items. Every time

a new subset is considered, li and ui are updated, until finally all the
subsets have been evaluated and both variables converge to the ac-
tual competitiveness score CF(I

∗, I ′). We now define Ti = ui − li.
Since both li and ui ultimately converge to CF(I∗, I ′), Ti converges to
0. Also, Ti ≥ 0,∀i. The convergence rate of Ti is:

Ti

Ti−1
= 1−

CF ′
i
(I∗, I∗)

ui−1 − li−1
(3.8)

Also, we know that:

ui = CF(I
∗, I∗)−

i∑
j=1

CF ′
j
(I∗, I∗) +

i∑
j=1

CF ′
j
(I∗, I∗)

and

li =
i∑

j=1

CF ′
j
(I∗, I ′)

By immediate replacement in Eq. 3.8, the convergence rate becomes:

Ti

Ti−1
= 1−

CF ′
i
(I∗, I∗)

CF(I∗, I∗)−
i−1∑
j=1

CF ′
j
(I∗, I∗)

(3.9)

As it can be seen by Eq. 3.9, the convergence rate depends only on
the score of the target item I∗. The IC ordering scheme processes

117 G. Valkanas

subsets in decreasing order ofCF ′
j
(I∗, I∗), which is the maximum pos-

sible coverage that any item can jointly achieve with I∗. Thus, the nu-
merator is equal to the ith maximum possible value among all feature-
subsets. Similarly, the difference in the denominator is minimized,
since the subtracted sum maintains the highest possible value (and
CF(I

∗, I∗) is constant).

Given IC's optimality with respect to the convergence rate, we adopt
it as the standard ordering scheme for CMiner. In Section 3.2.8, we
present experiments that demonstrate the superiority of ICwhen com-
pared with other sub-optimal ordering schemes. In fact, it will become
obvious that the order in which the subsets are processed can have a
tremendous impact on the overall efficiency of the algorithm.

3.2.8 Experimental Evaluation

For our experimental evaluation, we compiled the following datasets:

Digital Cameras from Amazon.com: The features of this domain in-
cludes the objective attributes of each camera (e.g. price, number of
megapixels), as well as numeric attributes representing the opinions
of the users on the item's different characteristics (e.g. photo quality,
video quality). These were extracted via the opinion method by Ding
et al. [73], which assigns a numeric opinion-value to each feature of
an item, given the corpus of reviews. All scores were normalized to be
in [0, 1], with higher scores being preferable. The same method was
also used for the datasets from Booking.com and TripAdvisor.com.

Hotels from Booking.com: The feature-set for this domain consists
of objective features (e.g. price, location) and the opinion values ex-
tracted from the relevant reviews on different attributes (e.g. cleanli-
ness, service quality).

Restaurants in New York from TripAdvisor.com: The feature-
set for this domain consists of objective features (e.g. type of food
served) and the opinion values extracted from the relevant reviews

G. Valkanas 118

Mining and Managing User-Generated Content and Preferences

on different attributes (e.g. food quality,service quality etc.)
Recipes from Sparkrecipes.com: The feature-set for each recipe
consisted of the different nutritional values (e.g. grams of protein and
carbohydrates), which are available on the website.
The datasets were intentionally selected from different domains to por-
tray the cross-domain applicability of our approach. Table 3.2 sum-
marizes some basic statistics for each dataset.

Table 3.2: Dataset Statistics
Dataset #Items #Feats. #Subsets Skyline Layers
Cameras 579 21 14779 5
Hotels 1283 8 127 5

Restaurants 4622 8 64 12
Recipes 100000 22 133 22

For each dataset, the second, third, fourth and fifth columns include
the number of items, the number of features, the number of distinct
feature-subsets, and the number of layers in the respective skyline
pyramid, respectively. The feature subsets were extracted from the
set of reviews that is available for each dataset; the frequency of each
subset of features is equal to the number of times they were included
together in a review. To conclude the description of our datasets, we
present some statistics on the skyline-pyramid structure constructed
for each corpus. Figure 3.4 shows the distribution of items in the first

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

C
u
m

u
la

ti
v
e
 #

P
o
in

ts
 %

Layers of the Skyline Pyramid

Recipes
Hotels

Cameras
Restaurants

Figure 3.4: Cumulative distribution of items across the first 6 layers of the skyline pyramid.

119 G. Valkanas

 0.01

 0.1

 1

 10

 50

 1 10 100 1000 10000

F
re

q
u

e
n
c
y
 O

c
c
u

rr
e
n
c
e

 %

Feature Subset Weight

Cameras Dataset

(a) Restaurants

 0.5

 1

 10

 45

 1 10 100 1000 10000

F
re

q
u
e
n
c
y
 O

c
c
u
rr

e
n
c
e
 %

Layer

Recipes Dataset

(b) Recipes

Figure 3.5: Distribution of feature subset weights

6 skyline layers of each dataset.
We observe that, for all datasets, nearly 99% of the items can be found
within the first 4 layers, with the majority of those falling within the first
2 layers. This is due to the large dimensionality of the feature space,
which makes it difficult for items to dominate one another. As we show
in the following experiment, the skyline pyramid helps our CMiner al-
gorithm to clearly outperform the baselines with resepect to compu-
tational cost. This is despite the high concentration of items within
the first layers, since CMiner can effectively traverse the pyramid and
consider only a small fraction of the included items.
Recall that in Section 3.2.6, we argued that the feature subsets are not
all equally important and for that reason we applied a different weight,
learned from query logs or user reviews. Figures 3.5a-b), show the
distribution that the feature subset weights follow for the cameras and
recipes datasets. They portray, for each dataset, the portion of sub-
sets that have a specific weight. For example, in the cameras dataset
in Fig. 3.5(a), nearly 30% of all feature subsets have been queried
only once, whereas subsets that have been queried approximately 10
times make up for 1% of the entire feature subset set. Clearly, for the
cameras dataset, the feature subset weights follow a power-law dis-
tribution. A similar tendency can be observed for the recipes dataset,
in Fig. 3.5(b). This observation could be taken into account to devise
even more efficient algorithms, for the identification of the top-k com-
petitors. Though we have not pursued this direction in this work, we

G. Valkanas 120

Mining and Managing User-Generated Content and Preferences

plan to do so in our future work.
Baselines. We compare our CMiner algorithm with two baselines.
The first is the Naive approach described in Section 3.2.4. The sec-
ond is a clustering-based approach that works as follows. First, it
iterates over the considered feature-subsets. For each subset F ′, it
identifies the set of items that have the same value assignment for
the features in F ′, and places them in the same group. Thus, F ′ is
mapped to different groups of items with the save value-assignments
over its features. The algorithm then iterates over the reported groups.
For each group, it updates the pairwise coverage provided to V ′F by
the target item I∗ and an arbitrary item from the group (it can be any
item, since they all have the same values with respect to F ′). The
computed coverage is then used to update the competitiveness of all
the items in the group. The process continues until the optimal com-
petitiveness scores for all items have been computed. Assuming there
are at most M groups per feature-subset, the runtime complexity is
O(|I| * M * |Q|). Obviously, when each group is a singleton, the
algorithm degrades to the Naive case. We refer to this technique as
GMiner.
To demonstrate the effect of ordering feature subsets on efficiency,
and evaluate the performance of our IC ordering scheme presented in
Section 3.2.6, we have performed a set of related experiments. Over-
all, we compare the following ordering schemes:
• W-ASC: Ascending order by weight (i.e. w(F ′))
• W-DSC: Descending order by weight
• IC: Descending order by w(F ′)× cov(V ′F ′, I∗, I∗)

All experiments were run on an desktop with a Quad-Core 3.5GHz
Processor and 2GB RAM.

3.2.9 Computational Time

In this experiment we compare CMiner with the two baselines (Naive
and GMiner), in terms of computational time. First, we use each of
three algorithms to compute the set of top-k competitors for each item
in the four datasets. We repeat the process for k ∈ {3, 10, 50, 150, 300},

121 G. Valkanas

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3 10 50 150 300

S
e
c
o
n
d
s

Number of Competitors (k)

Naive CMiner GMiner

(a) Cameras

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

3 10 50 150 300

S
e
c
o
n
d
s

Number of Competitors (k)

Naive CMiner GMiner

(b) Hotels

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

3 10 50 150 300

S
e
c
o
n
d
s

Number of Competitors (k)

Naive CMiner GMiner

(c) Restaurants

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3 10 50 150 300

S
e
c
o
n
d
s

Number of Competitors (k)

Naive CMiner GMiner

(d) Recipes

Figure 3.6: Average time (per item) to compute top-k competitors for the various datasets

i.e., reasonable values in practical application scenarios. The results
for the four datasets are shown in Figures. 3.6a-d). The x-axis holds
the different values of k. The y-axis holds the respective computa-
tional times (in seconds). We report the average time for each item.
The figures motivate some interesting observations. First, the Naive
algorithm consistently reports the same computational time regardless
of k, since it naively computes the competitiveness of every single item
in the corpus with respect to the target item. Thus, any trivial variations
in the required time are due to the process of maintaining the top-k set.
In general, Naive is outperformed by the two other algorithms, and is
only competitive for very large values of k for the Hotels Dataset.
For the Cameras dataset, CMiner and GMiner, exhibit almost identical
running times. The similarity between the last two algorithms is due
to the very large number of distinct feature-subsets for this dataset,
in comparison with the other 3. In particular, this dataset has 14779
different subsets and GMiner identifies, on average, 443.63 groups
per subset. This means that the algorithm saves roughly a total of
(579− 443)× 14779 = 2009944 coverage computations per item, al-
lowing it to be competitive to the otherwise superior CMiner. In fact,
for the other datasets, CMiner displays a clear advantage. This ad-
vantage is maximized for the Recipes dataset, which is the most pop-
ulous of the four, in terms of included items. The experiment on this
dataset also illustrates the scalability of the approach with respect to
k. For the Hotels and Restaurants datasets, even though the com-
putational time of CMiner appears to rise as k increases for the other
three datasets, it never goes above 0.035 seconds. For the Cameras
dataset, the large number of considered subsets has an adverse of
the scalability of CMiner, since it results in larger number of required

G. Valkanas 122

Mining and Managing User-Generated Content and Preferences

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06
3 1
0

5
0

1
5
0

3
0
0

3
5
0

4
5
0

5
7
9

A
v
g
.
#
C

o
m

p
u
ta

ti
o
n
s
 p

e
r

It
e
m

Number of Competitors (k)

W-ASC W-DSC IC

(a) Cameras

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

3 1
0

5
0

1
5
0

3
0
0

4
5
0

7
0
0

1
0
0
0

1
2
8
3A

v
g
.
#
C

o
m

p
u
ta

ti
o
n
s
 p

e
r

It
e
m

Number of Competitors (k)

W-ASC W-DSC IC

(b) Hotels

 0

 50000

 100000

 150000

 200000

 250000

 300000

3

 1
0

 5
0

1
5
0

3
0
0

4
5
0

7
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
6
2
2A

v
g
.
#
C

o
m

p
u
ta

ti
o
n
s
 p

e
r

It
e
m

Number of Competitors (k)

W-ASC W-DSC IC

(c) Restaurants

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

3 10 50 150 300

A
v
g
.
#
C

o
m

p
u
ta

ti
o
n
s
 p

e
r

It
e
m

Number of Competitors (k)

W-ASC W-DSC IC

(d) Recipes

Figure 3.7: Average number of computed coverages to find the top-k competitors for the
various datasets

computations for larger values of k. Recall that, for our experiments,
we considered all subsets that appear at least once. However, our
findings motivate us to consider pruning the set of subsets by setting
a lower bound on their observed frequency.
Ordering Efficiency. In Fig. 3.7, we evaluate the impact of the order-
ing scheme on efficiency, for all four datasets, for different values of
k. The figures show the average number of computed coverages for
every item in the dataset, when finding its top-k competitors. That is,
for every feature subset, we store the number of items for which we
must update their bounds. Evidently, IC needs to compute a lot less
coverage scores than the other two methods -- less than half than the
second best in most occasions --, validating in practice Lemma 8. As
k grows larger (x-axis), more scores need to be computed for all tech-
niques, reaching the maximum value when k is equal to the dataset
size (last set of bars). This is expected, since setting k equal to the
dataset size asks that we fully rank all items in the dataset. Note that
fewer coverage computations imply that more points are discarded in
each iteration, inside the updateTopK procedure of our CMiner algo-
rithm.
One could argue that IC prunes away some points initially, but per-
forms as many iterations as the other two ordering schemes, which
would also result in fewer coverage evaluations. For this reason, we
have also plotted the graphs in Fig. 3.8, depicting the average number
of feature subsets that need to be processed within the updateTopK
procedure, before each scheme falls back to a sequential scan on the
(at most) k remaining items (lines 33-36 in Alg. 3.2). The fact that IC
examines fewer queries (y-axis) is a clear indication of its faster con-

123 G. Valkanas

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

3 1
0

5
0

1
5
0

3
0
0

3
5
0

4
5
0

5
7
9

#
Q

u
e
ri
e
s

Number of Competitors (k)

W-ASC W-DSC IC

(a) Cameras

 0

 50

 100

 150

 200

 250

 300

3 1
0

5
0

1
5
0

3
0
0

4
5
0

7
0
0

1
0
0
0

1
2
8
3

#
Q

u
e
ri
e
s

Number of Competitors (k)

W-ASC W-DSC IC

(b) Hotels

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

3

 1
0

 5
0

1
5
0

3
0
0

4
5
0

7
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
6
2
2

#
Q

u
e
ri
e
s

Number of Competitors (k)

W-ASC W-DSC IC

(c) Restaurants

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

3 10 50 150 300

#
Q

u
e
ri
e
s

Number of Competitors (k)

W-ASC W-DSC IC

(d) Recipes

Figure 3.8: Average (per item) #evaluated feature subsets, before sequentially computing
competitiveness scores

vergence and, consequently, more aggressive -- but correct nonethe-
less -- pruning. Therefore, it reaches the number k of requested com-
petitors, and breaks out of the loop, sooner than the other two alter-
natives. Given that within the updateTopK we only alter the ordering
scheme, the procedure's input and output are the same across the
three alternatives. Therefore, the difference in performance can only
be attributed to the ordering scheme, demonstrating the superiority of
IC.
A final remark we should make from Fig. 3.8 refers to the fluctuations
in the number of queries, as we vary the number of competitors k. The
number of queries that CMiner will check depends largely on the num-
ber of given points, during each iteration of the updateTopK method.
More specifically, it depends on whether the provided points exceed
the requested number k. Take the cameras dataset for instance. Up
to the point that k = 350, IC needs to process, approximately, 4000
queries. However, after that point, the number of queries it uses to
prune away points drops dramatically (almost 0). The reason is that
the first skyline layer of the cameras dataset (Fig. 3.4) contains about
380 points. Therefore, when we request k = 400 points, the full sky-
line layer will be scanned, reducing significantly the number of bound
checks CMiner performs. The same holds for the other datasets.

3.2.10 A User Study

In order to validate our competitiveness paradigm, we conduct a user
study as follows. First, we select 10 random items from the Digital
Cameras corpus. We refer to these 10 items as the seed. For each

G. Valkanas 124

Mining and Managing User-Generated Content and Preferences

item I∗ in the seed, we compute its competitiveness with every other
item in the corpus, according to our definition. We refer to our ap-
proach as CMiner. We also rank all the items in the corpus based on
their distance to I∗ in the feature-space. The L1 distance was used for
numeric and ordinal features, and the Jaccard distance was used for
categorical attributes. We refer to this as the NN approach (i.e. Near-
est Neighbor). We then chose the two items with the highest score,
the two items with the lowest score, and two items from the middle of
the ranked list. This was repeated for both approaches, for a total of 12
candidates per item in the seed (6 per approach). We then created a
user study on the online survey-site kwiksurveys.com/. In total, the
survey was taken by 20 different human annotators. Each of the 10
seed-items was paired with each of its 12 corresponding candidates,
for a total of 120 different pairs. The pairs were shown to the anno-
tators in a randomized order. The users were also given access to a
table including the values of each item in the pair for every feature. For
each pair, the annotator was asked whether he would consider buying
the candidate instead of the seed item. The possible answers were
"YES", "NO" and "NOT SURE". The results are shown in Figure 3.9.
The y-axis holds the percentage covered by each approach. The fig-
ure shows 3 pairs of bars. The left bar of each pair corresponds to
our approach (CMiner), while the right bar to the NN approach. The
first two bars from the left represent the responses of the users to the
top-ranked candidates for each approach. The two bars in the mid-
dle represent the responses to the candidates ranked in the middle,
and, finally, the two bars on the right represent the responses to the
bottom-ranked candidates. Each bar captures the fraction of each of
the three possible responses. The lower, middle, and upper part of
the bar represent the "YES", "NO" and "NOT SURE" responses, re-
spectively. For example, the first bar on the left, reveals that about
90% of the annotators would consider our top-ranked candidates as a
replacement for the seed item. The remaining 10%was evenly divided
between the "NO" and "NOT SURE" responses.
The figure motivates some very interesting observations. First, we
observe that the vast majority of our top-ranked were identified by
the annotators as possible replacements for the seed item. These
are thus verified as strong competitors that could deprive the seed
item from potential customers and decrease its market share. On the

125 G. Valkanas

 0

 0.2

 0.4

 0.6

 0.8

 1

TOP MIDDLE BOTTOMP
e
rc

e
n
ta

g
e
 c

o
v
e
re

d
 b

y
 r

e
s
p
o
n
s
e

Groups of Candidates

NNCMiner CMiner NN CMiner NN

YES
NO

NOT SURE

Figure 3.9: Results of the user study comparing our competitiveness paradigm with the
Nearest-Neighbor approach.

other hand, the top-ranked candidates of the NN approach were often
rejected by the users, who did not consider these items to be compet-
itive. The middle-ranked candidates of our approach attracted mixed
responses from the annotators, indicating that it was not straightfor-
ward to determine whether the item is indeed competitive or not. An
interesting observation is that the middle-ranked candidates of the
NN approach were more popular than its top-ranked ones. The in-
terpretation is that this approach fails to emulate the way the users
perceive the competitiveness between two items. Finally, the bottom-
ranked candidates of our approach were consistently rejected by the
annotators, verifying their lack of competitiveness to the seed item.
The bottom-ranked items by the NN approach were also frequently
rejected, indicating that it is easier to identify items that are not com-
petitive to the target.
In conclusion, the survey demonstrated the ability of our paradigm
to capture the competitiveness between two items. Further, our ap-
proach consistently outperformed an intuitive baseline, indicating that
the task is non-trivial.

3.3 Summary

In this section of the thesis, we presented a formal definition of the
competitiveness between two items. Our formalization is applicable

G. Valkanas 126

Mining and Managing User-Generated Content and Preferences

across domains, overcoming the shortcomings of previous approaches.
We consider a number of factors that have been overlooked by previ-
ous approaches, such as the position of the items in the multi-dimens-
ional feature space, and the preferences and opinions of the users. A
user study was conducted to verify the validity of our notion of com-
petitiveness. Based on our competitiveness paradigm, we addressed
the problem of finding the top-k competitors of a given item. The pro-
posed framework is designed to be efficient and scalable, in order to
be applicable to domains with large populations of items. Our method-
ology was evaluated via an experimental evaluation on real data from
different domains.

127 G. Valkanas

Mining and Managing User-Generated Content and Preferences

Chapter 4

Mining user-generated content

4.1 Introduction

Despite the prevalence of online reviews and their economic power,
the most defining online service of the contemporary web is that of so-
cial media. Users actively participate in online networking sites, and
there is a plethora of these services, covering a wide spectrum of do-
mains. MySpace 1 is one of the first networking sites targeting musi-
cians, while Flickr 2 aims at photographers and LinkedIn 3 focuses on
professional networking. There are also general purpose social net-
works, mostly used for leisure, with Facebook 4 and Twitter 5 being
the most characteristic examples.
A major difference between these sites and other online services is
that the networking component is an integral part of the service itself.
For example, web forums -- the closest example of online user com-
munities prior to social media -- organized information hierarchically
by topic, subtopics, discussions (threads) within a subtopic and posts
made by the users. In other words, the primary focus was placed on
the written content itself and in the organization and retrieval of infor-
mation, and only secondarily, if at all, to the users posting it. This is
far from surprising, considering that web forums were primarily a tool
to help other users with similar problems (e.g., technological forums).

1https://myspace.com/
2http://www.flickr.com
3http://www.linkedin.com
4http://www.facebook.com
5http://twitter.com

129 G. Valkanas

For the same reason, there was no notion of following a user in order
to receive updates regarding what they post.
Contrary to these platforms, online social networks make the user a
first class citizen, and connections are their driving force. Users may
interact with each other, engage in discussions and talk about their
interests. In the end, the information that they will receive depends
greatly on who they have connected with. It is particularly interesting
that there is a strong interplay between network structure (i.e., user
connetions) and topical similarity between users [177].
However, the social component is not the only difference between so-
cial networks and earlier online platforms. For example, there has
been a major shift in the users' attitude towards privacy in online set-
tings. In particular, users tended to identify themselves through nick-
names and aliases in earlier years. On the contrary, they now tend to
use their real names, and, in fact, feel comfortable with doing so. The
number of active users are also largely apart. More specifically, online
social networks have hundreds of millions of active users (some up to
a billion), as opposed with the hundreds of thousands or few millions
users of earlier online platforms (e.g., web forums). Another differ-
ence is that the user base is very diverse in terms of demographics,
i.e., location, age, language, as well as discussed interests, which has
also been pointed in past research [139, 153]. Finally, as a result of
the aforementioned factors, and on occasions due to certain platform
restrictions, user discussions tend to be more conversational, rather
than individuallistic, as is the case with blogs. Given the large user
base, this leads to a continuous, real-time flow of information.
With the advent of these new platforms, several research opportuni-
ties arise. The networking component alone may be the subject of
research questions, such as community detection, outlier detection,
spammer identification, detection of common / frequent structural pat-
terns, graph similarity and so on. Most of these problems stem from
the modeling of the social network as a graph. Moreover, by allowing
users to express themselves more freely, without tying their partici-
pation to the service to a specific reason (e.g., seek for help), new
research problems can be formulated and solved. User profiling, per-
sonalization and recommendation are some well-studied problems in
the literature, even outside the social media domain. Finally, the na-
ture of the medium (real-time information flow) requires the use of fast

G. Valkanas 130

Mining and Managing User-Generated Content and Preferences

techniques, that can cope with the user-generated data streams.
Particularly interesting, however, is the fact that online social networks
are a prolific area for interdisciplinary reserach. The fact that people
are more open towards these services, interact with one another on a
regular basis, and share content online regarding their everyday lives
allows sciences very distinct from computer science, such as sociol-
ogy, psychology and medical science, to propose new hypotheses,
develop new theories or refine existing ones and, most significantly,
test these ideas at a large scale. The latter is very important for these
sciences, given that, until now, collecting the necessary data to test
ideas was a tedious process. As a result, algorithmic approaches
have been proposed to test these theories with real world data, that
are now readily available. This has led to the generation of new dis-
ciplines such as:

• computational psychology : The use of algorithmic techniques to
address questions from psychology. Characteristic examples in-
clude the identification of personality traits [171], understanding a
user's emotional state from what they write, as well as the effect
of external stimuli on their emotional state (known as emotional
contagion).

• computational sociology : The use of algorithmic techniques to
understand how people interact with each other within communi-
ties, who they connect with, who they talk to, how communities
are formed over certain topics (e.g., politics) and their structural
properties, role identification of certain users in a community, etc.

• health care informatics: The use of algorithmic techniques to sup-
port health care, identify health problems by location and their
spreading [67, 21] or food-related outbreaks [22]. Such applica-
tion scenarios are characteristic of the Big Data era.

It is easy to see that these research opportunities would not have been
made possible without the proliferation of social media. For exam-
ple, computational sociology relies heavily on the underlying network
structure, which is an integral part of these services, unlike past set-
tings. Similarly, computational psychology creates user profiles by uti-
lizing all possible generated content (and social ties), which is primarily

131 G. Valkanas

driven by the user's need to express themselves, and not by a need
to search for information. The last discipline covers a much broader
spectrum, such as organization and retrieval of medical records, privacy-
preserving techniques, etc. But there is a rising trend within it, to use
more and more social media information, because of its real-time na-
ture and cost effectiveness [104].

4.1.1 Research questions in Online social networks

From the previous discussion, it is easy to understand that there are
endless possibilities for research questions in social media. As a re-
sult, it would be practically impossible to consider all of them in a dis-
sertation, much less in a single chapter. Therefore, we will only con-
sider a small subset. Moreover, we will focus on Twitter, a prevalent
social media service. The service is generic in the sense that users
may talk about anything, is very diverse in both topics and users, and
imposes certain restrictions that make it unique.
In particular, the chapter is organized in a way that each section con-
siders and addresses a different problem that may arise in such a set-
ting. Section 4.2 considers principled techniques to collect, process
and analyze the data from social media. More specifically, we present
the architectural design and implementation details of a crawler for the
Twitter service, one of the most prevalent social media sites. We also
present techniques to harvest data from query-based interfaces, that
take into account the ranking of the returned results. Finally, query
execution engines have already been proposed for streaming data,
accepting queries in declarative languages (SQL variants), and exe-
cuting them efficiently, as they take into account the domain's partic-
ularities. When such engines are in place, it is time consuming, inef-
ficient and error-prone to build data mining techniques in an ad-hoc
fashion. As an alternative, we propose to accommodate them within
the declarative language, and present an approach that allows them
to be optimized by the execution engine as well. These ideas are ap-
plicable in any domain where a query execution engine is used, such
as social media, sensor networks and relational settings.
One of the reasons why Twitter has been so well received by the re-
search community is its data policy towards researchers. In particular,

G. Valkanas 132

Mining and Managing User-Generated Content and Preferences

Twitter provides Application Programming Interfaces (APIs) to retrieve
information of interest, including both content and the social compo-
nent. Moreover, it provides access to the stream of user generated
content with various sampling rates. Therefore, researchers have ac-
cess to a wide range of the platform's content. Regarding the provided
samples, the service offers two different schemes: a 1% sample and
a 10% sample, which is only provided upon request. Access to the
full stream (100%) is also provided, but only with a fee. Therefore,
the focus of Section 4.3 is to compare the two sampling ratios, and
identify their differences, other than the data volume.
Finally, Twitter has been characterized as a news reporting site [124],
due to the real-time nature of the information that its users generate.
Given the high diversity of the service's users, discussed events cover
a wide spectrum as well. For these reasons, in Section 4.4 we present
algorithmic solutions to identify (newsworthy) events, using Twitter
data as our only source of information. We discuss particular sub-
problems that arise in such a setting, and propose efficient solutions,
to cope with the real time nature of the data. Moreover, we present
the architectural design of our system, while also describing the data
flow between components. Section 4.5 concludes this chapter, and
summarizes our basic findings.

4.2 Towards principled solutions for mining online content

4.2.1 Faceted crawling of the Twitter service

Numerous prototypes have been built on top of social networks, rec-
ognizing their importance in a variety of occasions [124, 96, 221, 205,
116, 91, 89, 29, 32]. Depending on their objective, these applications
rely on different key properties of the underlying data. For example, in
the Big Data era voluminous data is the norm. Emergency manage-
ment and location based services require access to locational infor-
mation [14, 204, 76]. News reporting must have acces to newsorthy
and high-quality information from high-quality posters. Social graphs
are another major asset, integral to computational sociology, but also
important for community detection, node importance identification and

133 G. Valkanas

information diffusion, to name a few.
Building the infrastructure that retrieves the desired information is both
time consuming and technically challenging. For example, the Twitter
service offers two distinct Application Programming Interfaces (APIs)
to retrieve data, with distinct limitations: Access is restricted to au-
thenticated (i.e., registered) users, and to public tweets, i.e., tweets
visible to anyone. The default streaming API returns only 1% of pub-
lic tweets 6, while the REST API limits the number of requests issued
within a specific timeframe, imitating the politeness principle [58].
To address these problems, in this thesis, we also consider the prob-
lem of an efficient crawler for the Twitter service, to fetch content with
desired properties. Those properties refer to different facets of the
data (tweets, users, graph, location, etc.), giving rise to the faceted
crawling problem. We present our system's design and implementa-
tion details, and provide experimental evidence of our crawler's per-
formance. We also discuss lessons learned from our interaction with
the service's APIs.

4.2.1.1 Related Work

Harvesting web documents is as old a task as the web itself. Search
engines rely on web crawlers [45, 49, 106] to fetch online documents,
which they subsequently index andmake available. These are built for
the surface web, where webpages are reachable through hyperlinks.
However, Twitter's multiple information facets do not allow a straight-
forward modification of existing crawlers, which would also violate the
politeness policy, given the real-time nature of the medium. Similar
problems exist for crawlers of the Hidden Web [40, 85], where infor-
mation can be accessed through query forms. Given that we discuss
Hidden Web techniques in a subsequent section, we do not elaborate
more on this subject here.
Several libraries exist [6], to access Twitter's APIs programmatically,
one resource at a time. Therefore, these are not complete solutions,
whereas we facilitate faceted crawling through the crawl flow.
The work in [9] also discusses facets on Twitter, but in a conceptually
different way. More importantly, our research goals are different: [9]

6Elevated access can be granted for a fee.

G. Valkanas 134

Mining and Managing User-Generated Content and Preferences

is interested in enriching tweets with "context", whereas we aim at
the implementation of an efficient and robust crawler. Therefore, [9]
can be thought of as an application, that one can build on top of our
proposed infrastructure.

4.2.1.2 Twitter API Background

Twitter provides two main Application Programming Interfaces (APIs)
to access publicly available data, i.e., data that anyone can see: There
is i) a REST-ful one, which probes the service with HTTP requests,
and ii) a streaming API, which resembles a publish-subscribe mech-
anism. In both cases, the user can apply filters, to restrict the informa-
tion they are looking for. In both cases the user needs to be authen-
ticated through one of the available options. In the next paragraphs,
we give a more detailed overview of these two APIs.
REST API. The REST API uses HTTP requests (i.e., GET, POST)
to perform the communication between the end user and the Twitter
service. This API supports multiple query types, each of which can
be employed by contacting a carefully constructed URL, with all the
necessary information.
From the REST API specification [4], we identify four types of restric-
tions, which we must take into account in our crawler. Table 4.1 gives
additional details.
• Rate restrictions: The number of queries of a specific type that
the developer can issue within the 15 minute window.

• Maximum Result Size: The upper bound on the results of a par-
ticular query. For instance, even if a user has posted 5000 tweets,
we are only able to access the most recent 3200.

• Probing Result Size: The number of results that we can retrieve
each time we probe the service with that particular query. For in-
stance, a query for a user's timeline will return at most 200 tweets.

• Maximum Query Size: The number of objects that we can query
simultaneously with a single probe to the service. Typically this
is 1, (e.g., 1 tweet each time, using its id), but there are some
exceptions (e.g., lookup at most 100 users).

135 G. Valkanas

Table 4.1: Restrictions for some major query types.
Query Rate Max Result Probe Result API limit
User Lookup 180 ∞ 100 100
Tweet Show 180 1 1 1
Friends 15 ∞ 5000 1
Followers 15 ∞ 5000 1
Timeline 180 3200 200 1
Retweets 15 100 100 1

Streaming API. Through this API, one can receive data as a flow of
tweets. The API returns a 1% sample of all public posts, though not
uniformly [155]. Consequently, data received through this API may
reflect fluctuations of the actual stream, e.g., increase / decrease of
posts, temporal patterns of user interactions, etc. A drawback of this
API is that it can not be used for all information facets, e.g., it does not
return the social graph.

4.2.1.3 Faceted Crawler Architecture

Figure 4.1 shows the architecture of a classic web crawler [49] on the
left, compared against our Faceted crawler architecture, on the right.
The two designs appear to be similar for the most part. The contents
of the frontier queue, however, in the two cases are different, because
surface crawlers need only handle URLs of the next pages to fetch.
On the contrary, our crawler needs to handle different query types,
each of which takes different parameters.
The components Seeder, Ranker and Streamer are also different.
The latter exists to harvest data using the streaming API. The Seeder
allows support for various applications in a unified way. The Ranker
is separate from the scheduler to simplifyc application development,
and to combine multiple query types.
Streaming API. The Streamer component exists to obtain information
from the Streaming API, as shown in Figure 4.1. The component
opens a connection to the service, receives the stream of tweets, and
may forward it for processing, storage and seeding.
REST-based crawling. Aside the Streamer, the components in Fig-
ure 4.1 largely resemble a classic crawler architecture. However, the

G. Valkanas 136

Mining and Managing User-Generated Content and Preferences

(a) Classic Web Crawler (b) Twitter Faceted Crawler

Figure 4.1: Architectural designs of both classic web crawler and our Twitter faceted crawler

actual design is quite different. We have already pointed out the dif-
ference in the frontier queue. Moreover, each application may have
a different crawling process, therefore we need to efficiently multiplex
queries. For this reason, we have decoupled crawling (i.e., accessing
the service) from seeding.
Scheduler. A major component of our system is the Scheduler, re-
sponsible for queueing crawl tasks. A crawl task contains information
about the query type and all of the parameters that accompany it. The

Algorithm 4.1 Scheduler Algorithm
Input: Database db, Ranker ranker
Output: outQueue
Shared Queue queue, timedQueue

//Main Thread
1: while !stopped do
2: qry ← queue.dequeue();
3: data← ranker.getNext(qry);
4: outQueue.enqueue(qry, data);
5: db.store(qry.qryMeta);
6: timedQueue.enqueue(qry, NOW + qry.ival);

EventTrigger()
7: nextQuery ← timedQueue.dequeue();
8: top← timedQueue.top();
9: queue.enqueue(nextQuery);
10: resetTimer(top.TIME - NOW);

137 G. Valkanas

Scheduler is also responsible for enforcing the rate limits. To achieve
this, the component operates in an event-driven manner, shown in
Algorithm 4.1.
The component starts with the query types of the crawling process.
It will enqueue these queries to a timedQueue, and will trigger the
event, leading to the execution of the "EventTrigger()" method. The
queries that triggered the alarm are dequeued and passed to the queue
for crawling. We then reset the timer to trigger for the next query item.
Items in queue are processed one by one, by the main scheduler
thread. For the current query type, we probe th "Frontier Queue" (Line
3), implemented as a database relation, and pass the result for crawl-
ing. The scheduler stores metadata in the database (e.g., statistics)
and requeues the query for timely execution, computed through its
rate limit.
Ranker. As seen in Algorithm 4.1, the scheduler relies on a Ranker
object. A Ranker implements our IRanker interface, shown in Fig-
ure 4.2. The init() method is used to properly initialize resources
(e.g., database relations). The getNext()method returns the next item
to submit to a crawler as our next query. The id is decided by the
scheduler to simplify the architecture. The query also contains the
RateLimit information. This allows for a common interface across
queries.

public interface IRanker{
public void init();
public List getNext(long qid, Query query);

}

Figure 4.2: The IRanker interface

Seeder. As shown in Algorithm 4.2, the Seeder operates in an end-
less loop, much like the Scheduler. It receives information from the
result queue RQ (Line 2), where crawlers write the result of probing
Twitter. Results are forwarded for storage (line 3). We then update
the frontier in two steps. First, update the current query (line 4). The
result is a boolean value that determines whether we should move to
the second step, i.e., update subsequent frontiers (lines 5-8).
The QueryLog Relation. To restart after a (forceful) shutdown, and
monitor our system's performance, we store appropriate information,

G. Valkanas 138

Mining and Managing User-Generated Content and Preferences

Algorithm 4.2 Seeder Algorithm
Input: Database db, ResultQueue RQ, CrawlFlow CF

1: while !stopped do
2: (result, qry)←RQ.dequeue();
3: storeResult(result);
4: update = CF .stepSeeding(qry, result);
5: if (update) then
6: nxtQrs← CF .nextQueries(qryMeta);
7: for (i = 0; i < nxtQrs.size; i++) do
8: nxtQrs(i).stepSeeding(qry, result);
9: db.store(qry.qryMeta);

in a relational table, called QuerLog. A partial view is shown in Ta-
ble 4.2. Statistics of the system include rank time, seed time, etc (not
shown here). Fields qid and result are straightforward. Values of the
result field can be found in [5]. The next three fields ensure that the
rate limits are enforced in cases of failure or restarts.

Table 4.2: Fields of the QueryLog relation
Field Description
qid Unique Identifier for the Query
result Code Signifying how the query
toq The type of query associated with this tuple
crawler An identifier for a crawler
tssched Timestamp when this query was scheduled

Crawl Flow. To further simplify the crawling process, we introduce the
concept of a Crawl Flow. The idea is that on Twitter, a crawl is driven
by the underlying application, which can be generally expressed as
a sequence of faceted probes (with cycles). The Crawl Flow can be
thought of as a state automaton, and defines the sequence of the
queries to the service. Figure 4.3 shows a schematic representation
of two Crawl Flows that we provide, a user's timeline, and sampling
the social graph. Through the Crawl Flow, the user specifies:
• The general execution sequence of queries. The sequence may
contain loops (including self-loops), depending on the goal.

• An object implementing the IRank interface.

139 G. Valkanas

(a) Timeline (b) Sampling

Figure 4.3: Schematic representation of Crawl Flow examples.

• An object implementing the ISeed interface.

4.2.1.4 Use Cases

We have fully implemented our crawler in Java 1.6 and used the Twit-
ter4j library 7 for method probes. We used PostgreSQL 8.4 with its de-
fault configuration, but any SQL-compliant database will work. Each
component runs on a separate thread. Our experiments were run on
an Ubuntu Linux 64bit machine with a quad core @3.4GHz and 16Gb
of RAM, setting only half of it as Java's heap space.
Crawling by Location. Location is a very important aspect of tweets.
Tweets with location can be retrieved through a geographical filter,
specified as 2D bounding box with GPS. Despite its accuracy, GPS is
not the sole approach to geocode data. External geocoders [204] can
be applied directly to the streaming API. Figure 4.4 shows the number

7http://twitter4j.org

 100K

 1M

 10M

Any GPS UK North
America

CA, USA

C
O

U
N

T

Location

Crawled Geocoded

(a) Tweet Counts

 10K

 100K

 1M

 10M

Any GPS UK North
America

CA, USA

C
O

U
N

T

Location

Crawled Geocoded

(b) User Counts

Figure 4.4: Comparing raw counts between crawled and geocoded locational information

G. Valkanas 140

Mining and Managing User-Generated Content and Preferences

of tweets (on the left) and users (on the right). Custom geocoding
(Geocoded) can extract an additional 10% to GPS-filtered information
(Crawled).
Changing the bounding box of a crawl returns different results, even
when the boxes overlap. Table 4.9 depicts the similarities in terms
of received users (upper right, in red) and tweets (lower left, in blue),
where each crawler is configured to monitor the corresponding loca-
tion. Despite some commonly shared users and tweets, a lot of new
content is being delivered by each stream.

Table 4.3: Jaccard Similarity between the GPS enabled crawls using the Streaming API
Any GPS UK N Amer CA, USA

Any GPS 1.0 0.069 0.249 0.038
UK 0.057 1.0 6×10−4 0.001
N Amer 0.218 0.0 1.0 0.138
CA, USA 0.042 0.0 0.145 1.0

Crawling Basic User Information. User timelines are useful in sev-
eral cases, e.g., behavior analysis. To efficiently crawl a user's time-
line, it is best to know the number of expected results. We improve
user information extraction by 1%, as seen in Figure 4.5(a), through
the combination of two query types. Figure 4.5(b) depicts this im-
provement (blue line) as a percentage. The 1 less query out of every
4, shown in Figure 4.5(a), is due to our best-effort approach for crawl-
ing the service, which has tight time constraints.
Crawling the Timeline. Figure 4.6(a) shows how much time is spent

 17900

 17950

 18000

 18050

 18100

 18150

 18200

1 2 3 4 5 6 7 8 9 10 11 12

R
E

S
U

L
T

 C
O

U
N

T

Timeframe (15’)

Baseline Improved

(a) Results Received

 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

1 2 3 4 5 6 7 8 9 10 11 12

R
A

T
IO

Timeframe (15’)

Baseline

Improved

Increase %

(b) Improvement %

Figure 4.5: Crawling comparison for basic user information

141 G. Valkanas

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 500 1000 1500 2000 2500 3000 3500

D
B

 A
c
c
e

s
s
 T

im
e

 (
s
e

c
)

Iteration

N2 N5 N10

(a) Avg. getNext() for Lookup

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

Lookup Timeline

R
a

n
k
 +

 S
e

e
d

T
im

e
 (

s
e

c
)

Query Type

N2 N5 N10

(b) Avg. Rank+Seed time

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 500 1000 1500 2000 2500 3000 3500

E
la

p
s
e

d
 T

im
e

B
e

tw
e

e
n

 S
c
h

e
d

u
lin

g

Iteration

N2 N5 N10

(c) Avg. Elapsed Time for Schedul-
ing Timeline

Figure 4.6: Average crawler performance for harvesting (a) user information and (b)-(c) user
timelines.

on the getNext method by the Ranker component, which is below
10ms. Both the getNext and stepSeeding methods do not take, on
average, more than 4ms (Figure 4.6(b)).
The average elapsed time between consecutive schedulings of Time-
line queries is shown in Figure 4.6(c). The interval does not increase,
but stabilizes over time. Even with multiple crawlers, our systemmain-
tains its performance. With 10 crawlers, we are at more than 98.5%
of the optimal case for Timeline queries (Figure 4.7(a)) perform simi-
larly for Lookup queries (Figure 4.7(b)). Evidently, more crawlers yield
more results faster (Figure 4.7(c)).
Sampling. For large networks, sampling is important. We have im-
plemented the Metropolis-Hastings algorithm [196], through the IRank
and ISeed interfaces. Instead of thinning, we use reservoir sampling

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 500 1000 1500 2000 2500 3000 3500

S
p

e
e

d
u

p
 R

a
ti
o

Iteration

N2 N5 N10

(a) Avg. Timeline Query Optimal
Ratio

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2000 4000 6000 8000 10000

S
p

e
e

d
u

p
 T

im
e

s

Iteration

N2 N5 N10

(b) Lookup Speedup

 0

 1M

 2M

 3M

 4M

 5M

 6M

 7M

 8M

 9M

Tweets Users

U
n

iq
u

e
 C

o
u

n
t

Result Type

N2 N5 N10

(c) Volume of crawled Information

Figure 4.7: Collective performance of the crawlers used for harvesting user timelines.

G. Valkanas 142

Mining and Managing User-Generated Content and Preferences

on the collected nodes, which has the same effect. Figure 4.8a) shows
the time required for ranking and seeding. This is the only case where
the timings are high, compared to other use cases, and eventually
reach an average of∼2.5 seconds. The reason is that sampling, syn-
chronizes on shared resources. Regardless, our implementation is
well within the timeframe between subsequent queries of this type (60
seconds).

 0

 1

 2

 3

 4

 5

 6

 500 1000 1500 2000

T
im

e
 (

s
e

c
)

Iteration

Seed Rank

(a) Runtimes

Figure 4.8: Sampling scenario statistics.

Retweet Graph. Retweets are a key concept in Twitter, allowing
users to re-post / endorse tweets of others. They can be used to
identify cascades of information, leaving the actual reason as a la-
tent feature to be explored. Crawling retweets has been implemented
through appropriate seeders / rankers in our framework.
Retrieve tweets by ID. Per Twitter policy, one may only disclose the
tweet IDs of their dataset. Therefore, this use case becomes very im-
portant for reproducibility of results and fair comparison of techniques.
Crawl Social Graph. We have also implemented a BFS traversal of
the social graph of Twitter, through Seeders and Rankers.

4.2.2 Harvesting content from Hidden-web databases

Although users have become accustomed to surfing the web by fol-
lowing hyperlinks, during the early years of this millenium, it became
apparrent that not all of the web information is accessible this way.
More specifically, early reports [40] suggested that there is an ever in-
creasing amount of information hidden behind Web search interfaces

143 G. Valkanas

and query forms. This information was not only estimated to be much
larger than the surface web, i.e., the portion of the web accessible
through hyperlinks, but also very high in quality. Consequently, re-
searchers focused on techniques to retrieve this content, which is col-
lectively known as the "Hidden Web".
Harvesting content from the Hidden Web originally focused on struc-
tured information stored in relational databases, but soon enough ex-
tended to accommodate textual information [159, 211, 114]. More-
over, despite the techniques being developped to collect as much
of the information as possible and to subsequently make it available
through a search engine's index, they can be used in any occasion
where a search field exists. For example, they can be applied in a
social media context to collect almost all information regarding a topic
of interest.
One thing that we should consider when crawling a Hidden Web site
is the ranking of the returned results. Most techniques assume that
when probing a Hidden Web site for information, the full information
will be retrieved. In practice, however, only a subset of the results
can be obtained, and which subset depends on how results will be
ranked by the search engine. Previous techniques did not account
for this fact. Given that the actual ranking function of the Hidden Web
site is unknown to us, as well as the features used, we propose tech-
niques that take into account the ranking of the returned information
in a generic way. In short, our contributions in this thesis are the fol-
lowing:
• We extend previous algorithmic techniques that cover the con-
tent of a Hidden Web site while taking ranking into account. Our
proposed approach is generic and uses domain-independent fea-
tures, so that it may be applied to numerous Hidden-Web sites
without major modifications.

• Since our technique determines which queries to use based on
the retrieved ranked results, we show that it manages to achieve
better coverage performance than previously existing techniques.

• We provide an experimental evaluation of our proposed technique,
by crawling YouTube. An interesting outcome of the evaluation is
that our techniques can be very easily parallelized in order to crawl
Hidden-Web sites.

G. Valkanas 144

Mining and Managing User-Generated Content and Preferences

The rest of this section is organized as follows: We start with related
work on the topic in Section Section 4.2.2.1. Section 4.2.2.2 formally
defines the problem, followed by Section 4.2.2.3 which introduces our
proposed approach. Our experimental findings are presented and dis-
cussed in Section 4.2.2.5.

4.2.2.1 Related Work

Crawling Hidden Web sites is related to several fields pertaining the
web, such as Web Mining and Web IR. The existence of the Hid-
den Web (HW) was brought to light in the early years of this millen-
nium [40]. Research on the subject has focused on various aspects,
such as understanding query forms [85, 186, 235], classifying the sites
based on their content [115], accessing it [105, 70] and searching the
surface web to discover HW entry points [211]. Our work focuses on
surfacing HW content, i.e. retrieving content from those sites, so that
it can be indexed, thereby it relates to the works in [159, 137, 147].
The general technique in these works, as in ours, is to probe queries
to the HW site, retrieve the actual content and then select the next
query with which to probe. These techniques focus on coverage, i.e.
retrieve as big a portion of the site's content as possible. The key
difference is that they do not take the ranking aspect into account.
Ranking has been extensively studied both within and outside the
scope of web-related disciplines. Its importance is significantly higher
in the web domain, due to the size of the web and the fact that users
rarely view more than the top ranked documents. It is, therefore,
an ever-going research topic, with various settings and applications.
To rank documents on the web, several approaches have been pro-
posed, such as machine learning [175], link structure [45], web con-
tent analysis and anchor text. Our current work differs in that we do
not aim at building a new ranking function for HW sites. Rather we
are interested in taking ranking performed by HW sites into account,
while retrieving their content. Ranking in the context of HW sites has
been studied in [20], where the authors want to identify the order in
which to probe sources, in order to provide users with appropriate in-
formation. Their work differs from ours in that we are interested in the
ranking performed by HW sites per se, not to globally rank the HW
sites themselves with respect to a user need. Moreover, the authors

145 G. Valkanas

in [20] perform sampling of HW sites, as an external step of their ap-
proach, whereas our primary goal is to crawl HW sites and crawling is
an integral part of our strategy.
Finally, our employed approach relates in notion to the active learning
paradigm [189]. Active learning is based on the idea that a classifier
"may achieve higher accuracy if it is allowed to choose the next train-
ing label from which to learn". To do this, a measure of the error that
is introduced by a potential label is required. Then, the label that is
expected to maximize the gain is selected and used to train the classi-
fier. Although existing crawling algorithms for HW sites mostly rely on
mathematical models to choose their next query, simplifying our tech-
nique's intuition, our work relates in the following manner: we choose
the term for which we can not accurately predict its global ranking,
had we used it to probe the database. Nevertheless, our work differs
from active learning approaches, as we do not use a machine learning
classifier, nor is it our primary concern to learn the ranking function of
each HW site. Moreover, we are interested in coverage as well. Fi-
nally, to the best of our knowledge, active learning approaches have
not been used in the context of Hidden Web sites.

4.2.2.2 Background

We start by formally defining the problem of ranking-aware Hidden-
Web crawling and our goals. To make our discussion more concrete,
we assume that a Hidden-Web site is associated with a database D,
containing documents D = {d1, d2, ..., d|D|}. We represent each doc-
ument di within D as a bag of words, i.e. di = {w1

i , w
2
i , ..., w

|wi|
i }.

Similarly, we represent the set of unique terms contained by all docu-
ments in D by T = {t1, t2, ..., t|T |}.
We define Dq ⊆ D to be the set of documents retrieved by query q.
These documents are the relevant ones w.r.t. q as they were returned
by the Hidden-Web site. Let R be a ranking (permutation) of Dq, i.e.
R = R(q,Dq) → {1, 2, .., |Dq|}. Note that we are only interested in
the rank (position) of each document. Also each document appears
only once in a ranking. Based on this notation, we can now formally
define our goal in rank-aware crawling of a Hidden-Web site:

G. Valkanas 146

Mining and Managing User-Generated Content and Preferences

Definition 4 Given a Hidden-Web site, identify the minimum set of
queries that covers the content from the site that allows us to approx-
imate the ranking of all potential queries.
Intuitively, we want to retrieve as much content from the Hidden Web
site as possible, while maintaining the queries probed to the site at a
minimum. At the same time, we are interested in the ranking that each
query is associated with. Since the set of unique terms inD is T , there
are |T | rankings for single-keyword queries, and 2|T | combinations of
queries. However, since keyword search commonly employs AND
semantics which restrict the results, we can achieve better coverage
by issuing only single keyword queries. Therefore, since coverage is
a basic goal, we want to issue fewer queries than |T | while being able
to approximate the ranking of any ti ∈ T that has been retrieved so
far.

4.2.2.3 Rank-Aware Crawling

In this section we develop and describe our proposed metric, to show
how we may include the ranking performed by a Hidden-Web site as
a paremeter while crawling it.
Efficiency. As we already discussed in the previous section, a funda-
mental goal of our techniques is to minimize the download cost when
crawling a Hidden-Web site while achieving high coverage. Similar
to [159], in order to compare among crawling techniques, we use the
notion of efficiency for a query term t, defined as:

Efficiency(t) =
Pnew(t)

Cost(t)

wherePnew is the fraction of new items (over all current items) that term
t is expected to retrieve and Cost is the overall cost associated with
issuing term t, measured for example in money, bandwidth, or com-
munications between the crawler and the Hidden-Web site. In [159]
the authors use the Efficiency metric described above to determine
which queries the crawler should issue to the Hidden-Web site. Their
goal is to maximize the coverage of the site using the minimum num-
ber of queries. Since we are also interested in coverage we will be

147 G. Valkanas

using the Efficiency metric as well. However, as we also aim at ap-
proximating the ranked results of the queries coming from a Hidden
Web site, we will extend this metric by considering the "ranking gain"
of the query term as discussed next.
Ranking Gain. Apart from the coverage aspect, we are also inter-
ested in the ranking associated with each term. First, we describe the
intuition behind the ranking gain of a term: it is a measure of the de-
gree to which we can approximate the term's ranking, i.e. the ordering
of results we would obtain by querying this term. In other words, we
evaluate how similar a derived ranking would be to the actual one. If
we are able to accurately reconstruct the ranking of a term, then that
term's gain (w.r.t. ranking) would be close to 0. On the contrary, if the
derived ranking introduces a big error in our attempt to approximate
the actual one, then, we would need to query this term. The need to
correctly derive the ranking of a term is important for several reasons,
both for single and multi-keyword queries. Finally, we note that al-
ready queried terms have a ranking gain of 0, as their actual ranking
is known.
Therefore, to evaluate the ranking gain of a term we would need to
know its actual ranking, so that we can measure the distance between
the two. However, in that case, we would not need to derive it in
the first place, hence, we take a different approach on computing the
ranking gain. The idea is that documents in which the term already
exists in may provide clues about the overall ranking for that term.
Even if they do not provide evidence for the actual ranking itself, they
can still be useful.
Once the ranked result of querying the site with term t has been re-
trieved, we parse the documents and extract the terms they contain.
For each term, we maintain a set of inverted indexes of the docu-
ments it is contained in with respect to each probed query, keeping
the ordering in which the result was returned. This results in a set
of orderings for each term, which we can aggregate to obtain a sin-
gle one and compute the ranking gain as their level of disagreement.
The more these rankings disagree among them, the more likely we
consider it to be that the inferred ranking will be misleading. That is
because their aggregate list, which seems as a natural choice for the
derived list, would try to average all distances, which would result in
a lot of information being lost. We can then define the measure used

G. Valkanas 148

Mining and Managing User-Generated Content and Preferences

to compute the ranking gain of a term t as:

RankingGain(t) =
N∑
i=1

d(ri, agg(t))

where agg(t) is the aggregate list of the N rankings ri, ∀i = 1, .., N ,
of term t and d is a distance function between two ranked inputs. An
aggregate list is one that minimizes the distance between itself and all
other input lists.
What we state in the above equation is that by querying t, what we gain
for its ranking aspect is equal to the overall disagreement of the rank-
ings that t belongs to already. Terms with identical rankings among
queries have a ranking gain of 0, as we do not benefit with respect to
this parameter. Terms with rankings that exhibit a strong correlation
will have a lower benefit for that factor compared to ones with higher
discordance.
A major drawback of this approach is that it needs to compute the ag-
gregate list of each term t. However, ranking aggregation is known
to be NP-Hard [75].Moreover, it can not be efficiently maintained in-
crementally. This entails recomputation of the aggregate lists from
scratch. Hence, it is in our best interest to avoid consuming the crawler's
resources on computing aggregate lists. Instead, we use the following
observation:
Observation 1 The bigger the distance is between two ranked inputs
of a term t, the bigger the ranking gain of this term will be.
We can then reformulate the ranking gain as

RankingGain(t) =
2

N ∗ (N − 1)

N∑
i=1

N∑
j=i+1

d(ri, rj)

hence computing the pair-wise distances between all ranked inputs of
a term. To avoid boosting inputs with bigger lengths, we take the aver-
age of pair-wise distances, by dividing with the number of all possible
pairs.
Putting it all together. Since we are interested in both maximiz-
ing coverage and achieving good results in approximating the ranking

149 G. Valkanas

of the Hidden-Web site, we combine the two cost models presented
above into a single one. More specifically, we use their weighted av-
erage as:

Gain(t) =
(1− w) ∗ Pnew(t) + w ∗RankingGain(t)

Cost(t)

The cost is paid only once, as it is related to the query term and to the
number of pages that it will retrieve, and is the same for both coverage
and ranking gain. Retrieved documents are parsed and terms are
extracted, and we select as the subsequent query the one with the
highest (overall) Gain.

4.2.2.4 Ranking Distances

There are several measures that are particularly suited to compute
the distance between two or more ordered lists, most of which aim
at finding the degree of correlation. Such rankings include Kendall τ ,
Spearman footrule and Spearman ρ, top-K variants, nDCG etc. We
have used the ones that are most commonly used in the bibliography,
due to several properties that they exhibit (i.e. extended Condorcet
criterion). In our work we experimented with different metrics for com-
puting ranking distances as they directly affect our crawling strate-
gies. More specifically, we experimented with Kendall tau, Spearman
Footrule, Top-K and variations of these, to account for potential ties
or different ranking lengths.
Kendall τ . Kendall τ measures the correlation of two given lists, as
the number of pairwise swappings, given by the equation

τ =
2 ∗ (nc − nd)

n ∗ (n− 1)

where nc is the number of concordant pairs, nd the number of discor-
dant pairs and n the number of distinct elements in both lists. We
normalize the result in the [0, 1] range.
We have also used Kendall τ − b to account for ties, following the
methodology in [79]

G. Valkanas 150

Mining and Managing User-Generated Content and Preferences

Spearman Footrule. Another commonly used ranking distance is the
Spearman footrule, where the distance of two rankings r1 and r2 is
given by:

D(r1, r2) =
n∑

i=1

|r1i − r2i|

and rij is the index of j − th element in ranking ri. To address the
problem of ranking length variation, we have also used scaled Spear-
man footrule (SSF), given by

D(r1, r2) =
n∑

i=1

| r1i
|r1|
− r2i
|r2|
|

Top-K. In essence, users are not interested in the entire ranking that
a web site performs but rather in the top ranked ones, known as the
top-k documents. Hence, the top-k distance captures the difference
between the first k ranked documents, disregarding all others. Given
a ranking r, we denote by r(k) its first k entries. Using the formula
from [80], the distance between r1 and r2 up to position i is given by

δi(r1, r2) =
|(r1(i) ∪ r2(i))− (r1(i) ∩ r2(i))|

2 ∗ i
This distance captures the fraction of non commonly shared items in
the first i positions. Then, to get the overall distance, we sum δ's, for
i = 1, ..., k. More formally

D(r1, r2) =
1

k

k∑
i=1

δi(r1, r2).

4.2.2.5 Experimental Evaluation

Experimental setup. We have conducted a set of experiments to
measure our approach in terms of effectiveness, on YouTube [232].
YouTube is a video sharing web site, where users may upload videos
and search for them through a simple keyword interface.

151 G. Valkanas

The YouTube service limits its results to 1000 items per query. How-
ever, there may be duplicates, i.e. the same video (identified by url)
appears in different ranking positions. In such cases, wemaintain only
the first occurrence, which is when a user will see it for the first time
and possibly select it. After removing duplicates, each query returns
∼800 results on average. This poses an upper bound on the number
of videos we expect to see. Our results are from crawling the site be-
tween March 1st and March 28th, 2011, and each crawler may probe
the service up to 300 times. Each configuration runs independently of
the others and computes its statistics based on the set of documents
that it has retrieved by itself.
We consider as documents the text-based information of the videos,
i.e. title, description and tags. We did not include the user comments
as they are not always directly related to the video itself.
Harvest rate. We start our presentation of the experimental results
by first evaluating the number of documents that each approach man-
ages to retrieve from the Hidden Web site. The keywords used to
probe the YouTube service are selected according to our discussion
in Section 4.2.2.3, and we employ various ranking distance functions,
as shown in Table 4.4. As a baseline comparison, we use the tech-
niques presented in [159].

Table 4.4: Crawling configurations
ID Distance
CVR None
KTA Kendall τ -a
KTB Kendall τ -b
SF Spearman Footrule
SSF Scaled Spearman Footrule
TOPK Top-X
cKTB KTB with Jaccard weighting
cSF SF with Jaccard weighting
cSSF SSF with Jaccard weighting
cTOPK TopX with Jaccard weighting

Figures 4.9(a) and 4.9(b) show the number of documents that each
configuration retrieved from the Hidden Web site. Knowing the upper
limit of YouTube query results (i.e. 800), we display our findings as

G. Valkanas 152

Mining and Managing User-Generated Content and Preferences

a percentage of the optimal retrieval case, where each new query re-
trieves the maximum number of new distinct documents. We note that
the approach that does not take ranking into account at all, performs
the lowest among all of the techniques.
The graphs in Fig. 4.9(a) are a direct application of the discussion
in Section 4.2.2.3, using different distances. We have also experi-
mented with a variation of these techniques, the results of which are
shown in Fig. 4.9(b). In this case, we have weighted the outcome of
the distance function by the Jaccard coefficient of the two rankings,
i.e. the fraction of their common documents.
As we observe from the graphs, different configurations (i.e., differ-
ent ranking functions) perform differently. Overall, all policies achieve
better coverage than [159], which does not account for result ranking.
The highest harvest rate is given by Kendall τ -a, followed by SSF. The
reason that the coverage-only approach performs the lowest, is that
it relies on static features alone, whereas YouTube ranks results in a
query dependent manner. Though we do not know the exact ranking
function of the Hidden-Web site, loosing the (explicit) coverage aspect
and increasing other, more dynamic, features seems to be beneficial.
Interestingly, we also observe that the policies start performing better
after issuing about 100 queries. This is due to the fact that the poli-
cies need to acquire some knowledge about the document collection
before they start selecting good queries to probe.
Empirical comparison of the approaches. Table 4.5 shows the 15

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

c
u
m

u
la

ti
v
e
 %

 n
e
w

 d
o
c
s

#queries

CVR
KTA
KTB

SF
SSF

TOP20

(a) Harvest rate (%) of approaches

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

c
u
m

u
la

ti
v
e
 %

 n
e
w

 d
o
c
s

#queries

CVR
cKTB

cSF
cSSF

cTOP20

(b) Harvest rate of approaches

Figure 4.9: Effectiveness in harvesting information from Hidden Web sites

153 G. Valkanas

Table 4.5: First 15 query terms by configuration
No Ranking KTa KTb SF SSF Top-20

soup soup soup soup soup soup
http http http http http http
twitter homemade parents annual prepares listening
www doneness retro bold coulis sausage

youtube panlasangpinoy residents casserole fresco nutrition
watch margarine traumatic acidity penne steamed
follow toweling deborah aparta unbelievable songifications
add fashioned ixzz beet mixer wonton
video foodwishes casserole antioxidants shawtayee siu
user foodies litre absorbable stvplayer intestines
center dmark hing acquire sinatras powders

subscription swirls hamburgers antibacterial larder enhances
machinima dmarkii mattar antiparasitic broadcaster intricate

tags secretlifeofabionerd sooji antiinflammatory gilbrook craftsmanship
high hungrynation drizzle acnes tyres luggage

first terms for each of the approaches. Apart from the 1st query, which
was the seed term and the 2nd one, where the ranking has not yet
taken effect, it is clear that all configurations differentiate from each
other as soon as the 3rd query. An interesting observation is that,
apart from the coverage approach, the first 10 query terms in all con-
figurations appear to be semantically related to the first one, i.e. food.
Figure 4.10(a) shows how the configurations correlate with each other
in terms of the selected queries. This grid map shows the number of
commonly queried terms between any two of our about 30 configura-
tions, measured as the percentage of their intersection. The closer the
value is to 1.0, the higher the correlation. It is clear from Fig. 4.10(a),
that certain configuration, not on the diagonal, exhibit a high correla-
tion. These in fact use the same distance measure (e.g. KTb), with
different weight w. Nevertheless, apart from these configurations, the
rest have very low correlation (below 25% in most cases). This means
that the query terms selected to probe the Hidden-Web site are en-
tirely different, despite the fact that all configurations started with the
same one.
Moreover, the fact that configurations probe with different queries is
not sufficient on its own, as they could be retrieving similar documents.
For this reason, Fig. 4.10(b) shows a similar map, measuring the cor-
relation of retrieved documents by each configuration. Again, this is

G. Valkanas 154

Mining and Managing User-Generated Content and Preferences

 0 5 10 15 20 25 30 35

 0

 5

 10

 15

 20

 25

 30

 35

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) Probed queries correlation among configura-
tions

 0 5 10 15 20 25 30 35

 0

 5

 10

 15

 20

 25

 30

 35

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) Retrieved documents correlation among config-
urations

computed as the pairwise intersection of documents for all configu-
rations. We can clearly see that unless the terms are the same, the
configurations retrieve entirely different portions of the Hidden Web
site. This is the main hint that using the ranking aspect results in a
more breadth-wise search.

4.2.3 Mining data using execution engines and declarative languages

The use of declarative languages to retrieve information has its mer-
its, and has been extended from the relational to other settings as
well, such as streaming environments [24, 44] and the web [25, 193].
Meanwhile, bridging classic query processing with data analysis and
mining techniques has long been of interest in the database commu-
nity, as exemplified by the numerous prototypes [102, 112, 157, 183,
143, 201, 219]. These prototypes generaly propose a new declar-
ative query language, or enhance the existing one, to support data
mining constructs. One of the advantages of declarative languages is
that they are typically processed by query execution engines, which
optimize for certain objectives, tied to the domain of application. As
a result, data mining techniques can greatly benefit from this type of
merging, given that they will be also optimized for the domain.
Although several alternatives have been proposed to merge data min-
ing with query processing, they typically suffer from the following short-
comings:
• they also propose their unique query language

155 G. Valkanas

• focus on specific algorithms, and
• are developed having a single domain in mind.

Most of them also rely on User Defined Functions (UDFs), which have
been generally criticized for being "black-boxes" and not optimization-
friendly [55, 154]. Sub-optimal plans, however, impact differently one
domain from the other, making these techniques unfit to port between
domains. For example, sensor networks are constrained on resources,
face a distributed setting and dynamic environment, and are substan-
tially different from a relational database setting. A poor execution
plan that runs in a relational database simply increases running time
of the query, leaving the user to wait. On the contrary, a poor plan
destined to run in a sensor network could completely drain nodes from
their energy and render the network useless. Therefore, it is impor-
tant to optimize the code for each setting of application, but doing so
manually is error prone and requires significant technical effort.
To successfully integrate query processing and data analysis, we iden-
tify the following desiderata:
i) The primary objective is to support data analysis andmining tasks,
such as clustering, classification, outlier detection, etc., in a con-
sistent way across domains, e.g. relational databases, distributed
databases, or streaming sensor networks.

ii) Efficiency is still a major concern, although its definition is highly
dependent on the domain. For instance, relational databases are
interested in reducing response time, whereas for a sensor net-
work energy consumption is a first-class citizen.

iii) Ease of programmability and development of data analysis tech-
niques is an additional goal, as it increases a programmer's pro-
ductivity. Note that the integration of new techniques needs to
satisfy the efficiency constraint we mentioned above.

iv) Maximize adoption and ease of use by the end-users.
To address these concerns, we propose an approach that allows users
to express datamining tasks through a high-level declarative language,
e.g. SQL. Our contributions in that respect can be summarized as fol-
lows:

G. Valkanas 156

Mining and Managing User-Generated Content and Preferences

i) We give an approach to define and execute data analysis tech-
niques using declarative queries. Themain advantages are speed
in development and deployment, a simple syntax and a system
that takes care of correctness implications.

ii) We conceptualize data analysis techniques as intensional extents,
i.e. sources whose data do not have to be acquired or stored,
as opposed to extensional ones, and derive a flexible framework
where we can combine these two types within the same query.

iii) We propose a query refactoring approach, motivated by the idea
that several data mining algorithms can be expressed as alge-
braic operators. Therefore, unlike UDFs, we can leverage the
optimizers that query processing engines already have.

We showcase our approach through two entirely different data analy-
sis techniques. We focus on the sensor network domain, and in par-
ticular aim for in-network execution of data mining techniques. The
selection of the domain is driven by two main reasons. First, sen-
sor networks need to take the temporal aspect into account, due to
the constraint on the resources of the sensing nodes and the fact
that the environmental conditions change over time. Therefore, the
sensing nodes can not maintain the entire history of sensed data,
so better models are required. The temporal aspect is also present
in social media data, as discussions and posted information typically
addresses current issues. Consequently, we would like to use an in-
frastructure that inherently supports temporal information. Secondly,
the limited capabilities of the nodes make the sensor network domain
a very demanding one. Therefore, if our proposed approach performs
well in such a demanding setting, it would be really worth considering
for other domains as well. Finally, there have been open sourced solu-
tions regarding query execution engines for sensor networks [], which
allow building upon both the execution engine and the language itself.
For the reasonsmentioned above, we built a prototype system, SNEE-
A, that enhances a query execution engine for the sensor network do-
main, so that it accommodates data mining techniques. We demon-
strate our approach through two different data mining techniques:
Online correlation: If we know there is a correlation between the val-
ues of two measured variables, e.g. temperature and humidity, is it

157 G. Valkanas

possible to predict humidity knowing only temperature readings and
can this be done efficiently?
Outlier detection: Given a sensor network deployment that measures
humidity and temperature, we want to be informed of anomalies in
readings.
The rest of the Section is organized as follows: Section 4.2.3.1 dis-
cusses related work. Section 4.2.3.2 presents the necessary lan-
guage extensions to integrate data analysis with standard query pro-
cessing, whereas Section 4.2.3.3 the neededmodifications to the query
engine. Our proposed approach is experimentally evaluated in Sec-
tion 4.2.3.4.

4.2.3.1 Related Work

We first focus on general approaches that bring together data mining
tasks and classic query processing, and then focus on more specific
approaches for the in-network setting, given the application domain.
Recall that sensor networks are similar to social media, assuming that
we are interested in temporal data types, so that we may consider and
analyze posted information as a stream.
Unifying query execution engines with data mining techniques under
a common query language has been a research topic since the mid
1990s. Support for association rule mining [102, 112, 182] and clas-
sification [157, 183] at the language level has been examined. These
approaches, however, were developed for the relational setting and
were too narrow on their supported algorithms. For example, both
classification techniques dealt with decision trees. More importantly,
though, they all employ UDFs to achieve their goals. UDFs have long
been critized as effectively being "black boxes" and not optimization-
friendly [55, 154]. However, the impact of non-optimizable query op-
erators may largely vary from setting to setting. For instance, a poor
execution plan in the relational setting results in longer execution times
and lower user satisfaction. On the other hand, poor optimization for
in-network processing is detrimental, because it can drain node en-
ergy very quickly, rendering the sensor network practically useless.
The work in [160] employs SQL queries to perform K-Means clustering
through the use of triggers and vendor-specific SQL scripting exten-

G. Valkanas 158

Mining and Managing User-Generated Content and Preferences

sions. However, the objective of that work is not to integrate data
mining with a query language, but rather to use (relational) database
technologies to perform K-Means clustering. Also note that the util-
ities used therein (i.e., triggers) operate differently in relational and
streaming environments.
Moreover, when moving from the classic relational domain to more
complex ones, e.g. streaming environments, the declarative language
itself is constrained in expressiveness. To overcome this, most pro-
posed systems and techniques introduced their own declarative query
language, which is usually an SQL variation for that setting, such as
CQL [24] (Continuous Query Language) and variants [118], ACQP
(Acquisitional Query Processing) [146] and SNEEql [44] (SNEE query
language). ESL, proposed in [143], employs User Defined Aggre-
gates (UDAs), a subset of UDFs, thereby inheriting their drawbacks.
These languages, however, for the most part, do not focus on data
analysis and mining support. MMDL [201], an ESL extension, is a
step forward in this direction for the streaming setting. However, as
pointed out in [219], memory requirements of UDAs (therefore ESL
and MMDL) cannot be clearly estimated from their syntactic structure,
which does not fit well the resource-limited sensor network setting.
We now briefly discuss query execution engines for sensor network,
as our application domain of choice is such. Typically, there are two
lines of work in this area: i) Gather all sensed data to a central node,
the sink and perform operations in a centralized environment or ii)
view the network as a distributed processing query engine, and (par-
tially or entirely) evaluate queries in-network.
Systems that fall under this category include STREAM (Stanford Stream
Data Manager) [23], Aurora [8], Borealis [7], TelegraphCQ [122] and
the more recent SMM (Stream Mill Miner) [201]. SMM is the only
one among them to target specifically at data mining support. It uses
UDAs, thus inheriting their drawbacks which we already discussed.
Works under the second category include the Cougar project [229],
which introduced database concepts in sensor networks, as well as
some in-network aggregation. Madden et al. developed one of the
most well-known in-network query processing frameworks, TinyDB [146].
Sensor readings are represented by a relational table, optimization is
limited to operator reordering and the same load is distributed among

159 G. Valkanas

the nodes in the participating set, disregarding their position in the net-
work topology. Despite their novelty in in-network query processing,
none of them considers data mining tasks.
SNEE (Sensor NEtwork Engine) [83], is a sensor network query exe-
cution engine, optimizing queries submitted in a declarative language,
SNEEql. SNEE considers multiple parameters that affect network ef-
ficiency, e.g. network topology, node availability, energy consumption
of operators. By default, SNEE optimizes node power consumption,
and maximizes network longevity. Quality of service requirements
may also be imposed (e.g. delivery constraints), which effectively alter
the optimization goal.
A hybrid approach is adopted by the recently presented AnduIN [118].
AnduIN uses a declarative, streaming language variant and supports
data analysis techniques through UDFs at the query level. Another
difference is that we model data analysis as algebraic operators and
leverage the execution engine's optimizer, whereasAnduIN usesUDFs
and evaluates code performance offline, through simulations.
Regarding in- and out of network custom data analysis and mining
techniques, there is a large body of literature [11], not to mention for
classic settings. However, these are stand alone solutions and not
integrated with a query processing engine, which we aim for. It has
also been discussed that they sometimes contradict established no-
tions of relational databases [53], let alone streaming environments.
Furthermore, in these cases, optimization issues are a responsibility
of the algorithm's designer, despite the existence of optimizers in the
processing engines, which we would like to take advantage of.

4.2.3.2 In-Network Data Analysis with a Declarative Language

Towards fulfilling our goals, we follow a holistic methodology that in-
volves:
a) extending the declarative language appropriately, so that data

analysis techniques are supported at the query language level.
b) implementing them as extensions to the query optimization stack,

building on the contribution that they can be denoted by inten-
sional extents.

G. Valkanas 160

Mining and Managing User-Generated Content and Preferences

For ease of discussion, we will use SNEE and SNEEql [44] as the
query execution engine and language respectively. We chose SNEE
due to its well-defined and modular query optimization stack, that ex-
tends the classical two-phase optimization approach from distributed
query processing [120], as well as for the various optimization goals
it supports. SNEEql is a declarative query language for sensor net-
works inspired by expressive classical stream query languages such
as CQL [24]. Nevertheless, we stress that our findings apply in similar
approaches where declarative languages are applicable.
Extending SNEEql. To support data analysis tasks at the declara-
tive level, we manipulate them as extensional extent (i.e. relation,
stream), leaving the query language syntax intact. As a distinction,
We refer to them as intensional extents, i.e. sources of information
for which it is not necessary that their tuples are acquired or stored.
Users create data analysis and mining tasks through CREATE state-
ments, much like creating a view in relational databases, which al-
ters SNEE's metadata to accommodate the new extent. To support
this functionality, we extend SNEEql's data definition language (DDL),
utilizing a hierarchical decomposition of data analysis categories and
their techniques. Figure 4.10 shows the updated DDL syntax. Tokens
in bold are reserved terms, while the rest are replaced by the corre-
sponding rule. Unmatched tokens refer to specific algorithms and their
respective parameters, e.g. the value k for k-Means.
Online correlation. Assume, for instance, the two extensional stream
extents of Fig. 4.11, one for the amazon forest that reports tempera-

DDLIntExtent ::= createClause fromClause;

createClause ::= CREATE dattype [datsubtype, datparams] identifier

fromClause ::= FROM (fromItem)
dattype ::= CLASSIFIER | CLUSTER | SAMPLE |

ASSOCIATION_RULE | OUTLIER_DETECTION |

PROBFN | VIEW
datsubtype ::= linearRegression | knn | d3 | kmeans | ...

datparams ::= paramListItem, dataparams | paramListItem

identifier ::= Any valid identifier
fromItem ::= Either an extent in the schema, or a sub-query

Figure 4.10: Syntax for Defining an Intensional Extent.

161 G. Valkanas

Schema:

AmazonForest:stream (id:int, time:ts, temperature:float)

TropicalForestData:stream (id:int, time:ts, temperature:float, humidity:float)

Figure 4.11: Example schema of two streams expressed in SNEEql.

ture values, and a more general tropical forest stream that reports
temperatures and humidity values.
Figure 4.12 shows the creation of a linear regression classifier over
TropicalForestData, using tuples within a 20 minute window to con-
struct it. We can then use that classifier in subsequent queries with
TropForestLRF as the extent's name, as shown in Fig. 4.13. Here we
wish to predict humidity values from the AmazonForest extent given
its current temperature (this is what `NOW' refers to). Incorporating in-
tensional extents in such a way also has a natural interpretation in
terms of query semantics: "Give me the humidity value of a tuple from
(virtual) relation TropForestLRF, for which the temperature is equal
to the current sensed temperature from AmazonForest". This makes
our approach easy to understand for users who are familiar with SQL
but not data analysis techniques.
Conceptually, when an intensional extent variable appears in an equal-
ity condition in the WHERE clause, what happens is akin to variable
binding in logic languages, e.g. Datalog [10], after all necessary se-
mantic checks have successfully completed. Our query refactoring

CREATE CLASSIFIER [linearRegression, humidity] TropForestLRF

FROM (

SELECT RSTREAM temperature, humidity

FROM TropicalForestData[FROM NOW-20 MIN TO NOW]

);

Figure 4.12: Creating a Linear Regression Classifier.

SELECT RSTREAM AF.temperature, LRF.humidity

FROM TropForestLRF LRF, AmazonForest[NOW] AF

WHERE AF.temperature = LRF.temperature;

Figure 4.13: Using the TropForestLRF intensional extent.

G. Valkanas 162

Mining and Managing User-Generated Content and Preferences

approach makes extensive use of these value bindings.
Note that TropForestLRF is constantly updated, as it is an intensional
extent, built over the TropicalForestsData stream. As data is acquired
from that extent, the classifier is updated as well. More generally,
intensional extents inherit the acquisitional properties of extensional
ones, upon which they are built.
Outlier detection. Our proposed approach can also handle more
complex constructs, such as the D3 outlier detection algorithm [197].
Detecting outliers is crucial as it may serve as a data cleaning step,
and outliers may be the result of an external event (e.g., faulty hard-
ware).
D3 uses sampling and the Epanechnikov kernel density estimator, to
approximate the distribution of sensed data. It reports data as outliers
if they have low probability to have been drawn from the same under-
lying distribution that created their (multi- dimensional) neighboring
data. D3 requires two parameters: a neighborhood range and a prob-
ability threshold. Figure 4.14 shows how to create a D3 intensional
extent over the temperature values of AmazonForest from the last
20 minutes, where range = 5 and probability = 15%. Figure 4.15
shows a query using that extent to check whether the most recent tu-
ple is an outlier. As we can observe from it, intensional extents can
also be part of a self-join query.

4.2.3.3 Query Refactoring

We now present how an existing query execution infrastructure, i.e.
SNEE, can be modified, so that it supports data analysis techniques.
When a query is submitted, we check with SNEE's metadata whether
it contains intensional extents or not. The occurrence of an inten-

CREATE OUTLIER_DETECTION [D3, 5, 0.15] d3od

FROM (

SELECT RSTREAM temperature

FROM AmazonForest[FROM NOW-20 MIN TO NOW]

);

Figure 4.14: Creating a D3 outlier detection extent.

163 G. Valkanas

SELECT RSTREAM AF.temperature

FROM AmazonForest[NOW] AF, d3od od

WHERE AF.temperature = od.temperature;

Figure 4.15: Using the d3od intensional extent.

sional extent triggers its substitution by a templated subplan, which
performs its algorithmic computations. We collectively refer to this
process as query refactoring [208]. In essense, we reformulate an
initially posed query into an equivalent one, that is also expressed in
the same declarative language (SNEEql).
This approach has the added advantage that data analysis techniques
are no longer black boxes but can leverage the engine's optimizer,
without altering query semantics. Query refactoring only affects the
parts of the query related to the intensional extent, leaving the rest
intact. To better illustrate the needed modifications, Fig. 4.16 shows
how query refactoring changes SNEE's optimization stack.
The output of query refactoring depends on the intensional extent(s)
used. This process is transparent to the user, who will simply write the
initial query. It follows that we need not perform any changes to the

RT

RT

2

4

code generation

when−scheduling

algorithm assignment

translation/rewriting

parsing/type−checking s
in

g
le

−
s
ite

 p
h

a
s
e

m
u

lti−
s
ite

 p
h

a
s
e

<query, QoS expectations>,
<logical schema,
physical schema(network, cost parameters)>

1

3

5

6

7

8

PAF

<N1, ..., Nm> nesC/TinyOS code

logical−algebraic form

physical−algebraic form

agendaDAF

abstract syntax tree

routing tree

fragmented−algebraic form

RT distributed−algebraic form

partitioning

where−scheduling

routing

RT

RT

code generation

when−scheduling

algorithm assignment

translation/rewriting

s
in

g
le

−
s

ite
 p

h
a

s
e

m
u

lti−
s

ite
 p

h
a

s
e

PAF

logical−algebraic form

physical−algebraic form

agendaDAF

routing tree

fragmented−algebraic form

RT distributed−algebraic form

partitioning

where−scheduling

routing

<query, QoS expectations>,
<logical schema,

physical schema(network, cost parameters)>

<N1, ..., Nm> nesC/TinyOS code

query refactoring

parsing/type−checking

3

4

5

6

7

8

9

1

2

abstract syntax tree

abstract syntax tree’

Figure 4.16: SNEE optimization stack: (left) original stack, (right) query refactoring approach
for data analysis techniques.

G. Valkanas 164

Mining and Managing User-Generated Content and Preferences

query language level to support data analysis in such a way. On the
downside, our approach is limited by the expressive power of SNEEql.
Provided that the algorithmic description of a data analysis technique
can be expressed in the query language, it can then be incorporated
in our approach easily. We now demonstrate how query refactoring
is applied to the two examples from Section 4.2.3.2.
Linear Regression. Assume an extent LRFSource with attributes X
and Y, as shown in Fig. 4.17. Attribute X is the independent vari-
able and Y is the dependent one. Values in bold are placeholders for
actual extents and attribute names. Training this classifier is equiv-
alent to computing coefficients (a, b) based on LRFSource, i.e., the
source over which the extent was created. These values need to be
appropriately updated as new readings are acquired, as discussed in
Section 4.2.3.2. These goals can be achieved through the templated
SNEEql subplan of Fig. 4.18.
Figure 4.19 shows a SNEEql query using the LRF extent from Fig-
ure 4.17. The last argument in the SELECT clause of Figure 4.19 is

CREATE CLASSIFIER [linearRegression, Y] LRF
FROM (

SELECT RSTREAM X, Y
FROM LRFSource

);

Figure 4.17: Creation of a templated Linear Regression classifier.

SELECT RSTREAM (r.n*r.sxy - r.sx*r.sy) / (r.n*r.sxx - r.sx*r.sx) as a,

(r.sy*r.sxx - r.sx*r.sxy) / (r.n*r.sxx - r.sx*r.sx) as b

FROM (

SELECT RSTREAM COUNT(t.X) as n,

SUM(t.X) as sx, SUM(t.Y) as sy,

SUM(t.X * t.Y) as sxy, SUM(t.X * t.X) as sxx

FROM (

SELECT RSTREAM X, Y
FROM LRFSource

) t

) r;

Figure 4.18: Templated subquery for computing (a, b) values

165 G. Valkanas

the dependent variable of the classifier. The position of the depen-
dent variable is not important; it has only been placed at the end to
ease readability. Other extents can also be included in queries with
intensional extents and projected attributes may also appear in the
SELECT clause. The OPis in the WHERE clause are standard boolean
operators, e.g., AND,OR, combining thewis, which are either boolean
expressions or express join conditions between attributes of extents.
When the user submits a query such as the one shown in Figure 4.19,
we check whether it contains an intensional extent, using the stored
metadata of the execution engine. For the partciular example that we
consider here, we find that LRF is an intensional extent, at which point
query refactoring comes into effect. Briefly explained, the steps that
we perform are the following:
• Locate in the WHERE clause which expression of the wis joins the
lri.X variable. In particular, we are looking for expressions of the
form lri.X=Z or Z=lri.X, where Z is the attribute name of another
extent. Let us assume that this is wl in Fig. 4.19.

• Replace all occurrences of lri.Y with lri.a ∗ Z + lri.b.
• Removewl from the WHERE clause, as it will not be used anymore.
• LRF becomes a placeholder for the subplan of Fig. 4.18, and is
substituted accordingly. We briefly refer to it as LRF_ab.

Figure 4.20 shows the templated form of the refactored query, once
we have applied these steps. In the case of the TropForestLRF clas-
sifier from Fig. 4.13, the mappings that we obtain from these steps
are shown in Table 4.6. Through careful substitution in the templated
code, we also get the subplan for computing values (a, b) (Fig. 4.21),
which substitutes LRF_ab. The overall refactored SNEEql query for
our TropForestLRF classifier is given in Fig. 4.22. Note that all of

SELECT RSTREAM s1, s2, ..., sn, lri.Y
FROM e1, e2, ..., em, LRF lri

WHERE w1 OP1 w2 OP2 ... OPl−1 wl

Figure 4.19: General form of a query using the LRF extent

G. Valkanas 166

Mining and Managing User-Generated Content and Preferences

SELECT RSTREAM s1, s2, ..., sn, lri.a * Z + lri.b
FROM e1, e2, ..., em, (LRF_ab) lri

WHERE w1 OP1 w2 OP2 ... OPl−2 wl−1

Figure 4.20: General form of a refactored query using Linear Regression

Table 4.6: Template variables mapping for the query in Fig. 4.13.
Template Variable Mapping

LRFSource SELECT RSTREAM temperature, humidity
FROM TropicalForestsData[FROM NOW-20 MIN TO NOW]

LRF TropForestLRF
X temperature
Y humidity
Z AF.temperature

these operators are directly optimizable through the existing infras-
tructure.
D3 Outlier Detection. We have already discussed that our query
refactoring approach is able to handle more complex constructs. Fig-
ure 4.23 shows the refactored query of the one in Fig. 4.15. The
STDEV operator computes the standard deviation of the temperature
tuples in the window specified in the FROM clause, which was pro-
vided when creating the extent. Note that this is just a convenient way
of writing the computation of standard deviation, which can be also
expressed through additional subqueries. Furthermore, this type of
notation allows us to use more efficient, approximate algorithms [27],
if we see fit. Recall that, during creation, the range was set to 5 and
the probability threshold to 15%. The range is used to compute the
closed form of the Epanechnikov integral, whereas the probability fil-
ters points which are outliers, in the WHERE clause. We have marked
the parameters with bold to distinguish them from the same values
used as part of other expressions. It is easy to see, nevertheless, that

SELECT RSTREAM AF.temperature, LRF.a * AF.temperature + LRF.b

FROM AmazonForest[NOW] AF, (ab_COMP) LRF;

Figure 4.21: Refactored Query of Fig. 4.13.

167 G. Valkanas

SELECT RSTREAM (r.n*r.sxy - r.sx*r.sy) / (r.n*r.sxx - r.sx*r.sx) as a,

(r.sy*r.sxx - r.sx*r.sxy) / (r.n*r.sxx - r.sx*r.sx) as b

FROM (

SELECT RSTREAM COUNT(t.temperature) as n,

SUM(t.temperature) as sx, SUM(t.humidity) as sy,

SUM(t.temperature*t.humidity) as sxy,

SUM(t.temperature*t.temperature) as sxx

FROM (

SELECT RSTREAM temperature, humidity

FROM TropicalForestsData[FROM NOW-20 MIN TO NOW]

) t

) r;

Figure 4.22: Subquery of (ab_COMP) in Fig. 4.21

all of the operators used are optimizable as they rely on operators
defined in [44].

Extensions. Query refactoring is a general technique, that can be ap-
plied to all settings with declarative query languages, e.g., relational,
streaming, which is another advantage of our methodology. Never-
theless, expressing data analysis techniques as SNEEql queries is
non-trivial in its own right. The fact that merging classical query pro-
cessing with data mining has been an active reasearch topic for many
years is indicative of its complexity. Additionally, given that intensional
and extensional extents can now be interleaved, several query refac-
torings are possible, leaving room for additional optimizations.
Additional extensions include how to efficiently materialize such data
mining models and reuse them. Clearly, this is not always possible.
For example, materialization is meaningful in a static environment like
a relation database, but in a streaming environment, where the clas-
sifier is constantly updated as new data points arrive, such an alterna-
tive may be indifferent. What is interesting in both settings, however,
is how to precompile and save the query operator tree of a data min-
ing task, to subsequently integrate it in a new query, thus performing
incremental optimizations. Although we do not consider such issues
in this thesis, they are interesting research directions for the future.

G. Valkanas 168

Mining and Managing User-Generated Content and Preferences

SELECT RSTREAM od.temperature

FROM (

SELECT x.temperature,

(1/COUNT(y.temperature)) * ((1/4)^1) *

SUM((3 * 2 * 5 / q3.b1) -

(((x.temperature - y.temperature + 5) / q3.b1)^3 -

((x.temperature - y.temperature - 5) / q3.b1)^3)) as probability

FROM (

SELECT SQRT(5)*q1.sigma*(q2.rsize^(-1/5)) as b1

FROM (

SELECT STDEV(temperature) as sigma

FROM AmazonForest[FROM NOW-20 MIN TO NOW SLIDE 20 MIN]

) q1,

(

SELECT COUNT(temperature) as rsize

FROM AmazonForest[FROM NOW-20 MIN TO NOW SLIDE 20 MIN]

) q2

) q3,

AmazonForest[now] x, AmazonForest[FROM NOW-20 MIN TO NOW SLIDE 20 MIN] y

WHERE abs((x.temperature - y.temperature) / q3.b1) < 1

GROUP BY x.temperature

) od

WHERE od.probability < 0.15;

Figure 4.23: Refactored query of D3 outlier detection algorithm.

4.2.3.4 Experimental Evaluation

Efficiency in sensor networks is almost synomymous with energy con-
sumption, which includes both CPU and radio energy consumption.
To gain better insights, we also measured the number of transmit-
ted messages and bytes. These two aspects are crucial in determin-
ing radio energy consumption. We evaluated all approaches using
Avrora [202], a sensor network simulator, that provides accurate per-
node statistics. All sources were written in nesC 2.0/TinyOS 2.x [87,
107] for MicaZ motes. The discussion will focus on linear regression,
due to its widespread adoption as a data analysis tool, and the fact
that we obtain similar results for outlier detection (Fig. 4.31).
We experimented with various topologies and Table 4.7 summarizes
some of their structural properties. The topologies are not directly
comparable as their structural properties differ. For instance, an 8-

169 G. Valkanas

Table 4.7: Structural properties of the topologies used in the experimental evaluation.
Size Avg. Length Max. Length Leaf Nodes Description
4 1.3 2 2 Tree
5 1 1 4 Star
8 2.14 3 3 Tree
9 1.75 3 4 Tree
11 1.7 2 7 Tree
12 2.18 4 6 Tree
20 1.79 4 9 Tree

node star-like network will behave differently from an 8-node chain.
Because of this, extrapolating the results to other topologies should be
performed with caution. Given a static topology during initialization,
we construct a minimum-hop routing tree rooted at the sink, using
one of several existing algorithms [16, 52, 227]. SNEE also uses the
topology to find the best query routing tree, and does so during the
routing stage of query optimization. As such, we have excluded the
cost of building the routing tree from the graphs displayed below.
Given that we apply our method in a streaming setting, we experi-
mented with various window, slide and acquisition intervals, and we
will be using the following caption notation in the experimental figures
for convenience: W:w, S:s, A:a, to signify them respectively. Vary-
ing the window and slide parameters gave similar results, so we omit
these figures. Experiments were run for 300 seconds of simulated ex-
ecution time. The periodic nature of the queries allows us to scale up
the results for longer periods.
Handcrafted Algorithms. We implemented two baselines, both of
which perform a depth-first traversal of the reverse routing tree. The
sink is responsible for initiating a new tree traversal, close to the end
of each acquisition interval, so that the result is timely reported.
In our first approach, Naïve, the sink probes nodes separately for data
one after the other, receiving and aggregating the tuples. The second
one, LC for "Local-Computation", traverses the tree and aggregates
values in a postordered fashion, where each node is contacted by its
parent only once within an epoch. On the contrary, SNEE optimizes
queries based on a time-strict agenda. This allows nodes to contact
each other at predefined times, using a push-based scheme. SNEE

G. Valkanas 170

Mining and Managing User-Generated Content and Preferences

(a) Naïve approach (b) LC approach

1

0

2 3

1 2

3

(c) SNEE-A approach

Figure 4.24: Example of Linear Regression computation for Naïve, LC and SNEE-A ap-
proaches.

calculates these times by utilizing the routing tree and its optimization
cost models. All approaches are graphically portrayed in Fig. 4.24 for
a simple 4-node example. Labels denote the sequence in which node
communication occurs, until we obtain the full result.
Radio Communication. Figure 4.25 shows the average, per-node,
number of sent packets (y-axis) for the various acquisition intervals.
On the x-axis, we plot the average network length, which is a better
indicator of how the network is affected, than the network size. We
observe that in practically all cases SNEE-A's performance is supe-
rior to the handcrafted alternatives, due to its push-based scheme.
Differences are negligible when the average length is 1, due to the
star-shaped topology, where each node sends directly to the sink.
However, as the average network length grows higher, the difference
among the techniques increases. The reason is that SNEE-A exhibits
a steady performance, which is expected as each node will send data
only once during a single epoch. On the other hand, the custom tech-
niques require additional (control) messages to probe nodes for data.
The graphs in Fig. 4.26 show the average number of bytes sent in to-
tal by each node. SNEE-A and LC have a steady behavior across all
acquisition intervals, unlike Naïve, as a result of local aggregations,
performed by the two former approaches. Even so, SNEE-A is still
superior to the other two, due to the control messages that the hand-
crafted implementations rely on.
We can also see that the type of information to send depends on a
combination of the sensing rate, the window size and the structural

171 G. Valkanas

 0

 20

 40

 60

 80

 100

1
.0

1
.3

1
.7

1
.7

5

1
.7

9

2
.1

4

2
.1

8

P
a
c
k
e
ts

Network avg length

SNEE-ANaive LC

(a) W:10, S:10, A:2

 0

 20

 40

 60

 80

 100

1
.0

1
.3

1
.7

1
.7

5

1
.7

9

2
.1

4

2
.1

8

P
a
c
k
e
ts

Network avg length

SNEE-ANaive LC

(b) W:10, S:10, A:5

 0

 20

 40

 60

 80

 100

1
.0

1
.3

1
.7

1
.7

5

1
.7

9

2
.1

4

2
.1

8

P
a
c
k
e
ts

Network avg length

SNEE-ANaive LC

(c) W:10, S:10, A:10

Figure 4.25: Average number of sent messages compared to the average network length for
LR

 1000

 1500

 2000

 2500

 3000

 3500

1
.0

1
.3

1
.7

1
.7

5
1
.7

9
2
.1

4
2
.1

8

B
y
te

s

Network avg length

SNEE-ANaive LC

(a) W:10, S:10, A:2

 800
 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800

1
.0

1
.3

1
.7

1
.7

5
1
.7

9
2
.1

4
2
.1

8

B
y
te

s

Network avg length

SNEE-ANaive LC

(b) W:10, S:10, A:5

 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

1
.0

1
.3

1
.7

1
.7

5
1
.7

9
2
.1

4
2
.1

8

B
y
te

s

Network avg length

SNEE-ANaive LC

(c) W:10, S:10, A:10

Figure 4.26: Average number of sent bytes compared to the average network length for LR

properties. For instance, for high sensing rates (Fig. 4.26(a)), it is
preferrable to send aggregate information. However, as the sens-
ing interval increases (Fig. 4.26(c)), fewer readings are taken during
an epoch and sending the raw data becomes more efficient. Such
optimizations are beneficial to a lot more queries when implemented
within a query execution engine.
Radio Energy. Fig. 4.27 shows the average, minimum and maximum
transmission energy consumption per node, for all techniques, clearly
favoring SNEE-A. Given the push-based model and partial aggrega-
tions of SNEE-A, all three values are identical. This is not true for the
custom implementations which use control messages, the number of
which is affected by the network's structural properties. Figure 4.27
also shows the load distribution among the nodes, with SNEE-A, dis-
tributing it almost evenly.
However, the factor that mostly affects radio energy consumption is
the energy consumed while the radio is on waiting for messages, de-

G. Valkanas 172

Mining and Managing User-Generated Content and Preferences

 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018

1
.0

1
.3

1
.7

1
.7

5
1
.7

9
2
.1

4
2
.1

8

E
n
e
rg

y
 (

J
o
u
le

)

Network avg length

SNEE-ANaive LC

(a) W:10, S:10, A:2

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014

1
.0

1
.3

1
.7

1
.7

5
1
.7

9
2
.1

4
2
.1

8

E
n
e
rg

y
 (

J
o
u
le

)

Network avg length

SNEE-ANaive LC

(b) W:10, S:10, A:5

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014

1
.0

1
.3

1
.7

1
.7

5
1
.7

9
2
.1

4
2
.1

8

E
n
e
rg

y
 (

J
o
u
le

)

Network avg length

SNEE-ANaive LC

(c) W:10, S:10, A:10

Figure 4.27: Transmission energy consumption compared to the average network length for
LR

 0
 2
 4
 6
 8

 10
 12
 14
 16

1
.0

1
.3

1
.7

1
.7

5

1
.7

9

2
.1

4

2
.1

8

E
n
e
rg

y
 (

J
o
u
le

)

Network avg length

SNEE-ANaive LC

(a) W:10, S:10, A:2

 0
 2
 4
 6
 8

 10
 12
 14
 16

1
.0

1
.3

1
.7

1
.7

5

1
.7

9

2
.1

4

2
.1

8

E
n
e
rg

y
 (

J
o
u
le

)

Network avg length

SNEE-ANaive LC

(b) W:10, S:10, A:5

 0
 2
 4
 6
 8

 10
 12
 14
 16

1
.0

1
.3

1
.7

1
.7

5

1
.7

9

2
.1

4

2
.1

8

E
n
e
rg

y
 (

J
o
u
le

)

Network avg length

SNEE-ANaive LC

(c) W:10, S:10, A:10

Figure 4.28: Reception energy consumption compared to the average network length for LR

picted in Fig. 4.28. The bespoke techniques have the radio switched
on constantly, because it is impractical to manually compute when
nodes will communicate. On the other hand, as a result of its agenda-
driven task execution, SNEE-A performs radio management, switch-
ing it on and off for each node independently. This level of control
over the radio allows SNEE-A to achieve better performance.
Therefore, although we aimed for communication optimization as well,
i.e., minimize transmission costs, that was not sufficient on its own.
This validates our objective to utilize existing infrastructures and query
engine optimizers.
CPU Usage. We finally turn our attention to the CPU consumption of
the nodes. Figure 4.29 shows how the minimum, average and maxi-
mumCPUenergy consumption is affected by the network's properties.
Clearly, CPU follows a trend similar with radio reception, once again
advantaging SNEE-A, for reasons we previously described.
These remarks are backed up by the graph in Fig. 4.30, showing the

173 G. Valkanas

 0.5

 1

 1.5

 2

 2.5

 3

 3.5
1
.0

1
.3

1
.7

1
.7

5

1
.7

9

2
.1

4

2
.1

8

E
n
e
rg

y
 (

J
o
u
le

)

Network avg length

SNEE-ANaive LC

(a) W:10, S:10, A:2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1
.0

1
.3

1
.7

1
.7

5

1
.7

9

2
.1

4

2
.1

8

E
n
e
rg

y
 (

J
o
u
le

)

Network avg length

SNEE-ANaive LC

(b) W:10, S:10, A:5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1
.0

1
.3

1
.7

1
.7

5

1
.7

9

2
.1

4

2
.1

8

E
n
e
rg

y
 (

J
o
u
le

)

Network avg length

SNEE-ANaive LC

(c) W:10, S:10, A:10

Figure 4.29: CPU energy consumption compared to the average network length for LR

 0

 20

 40

 60

 80

 100

SNEE-A Naive LC

E
n
e
rg

y
 (

J
o
u
le

)

RADIO
CPU

CPU-IDLE

Figure 4.30: Radio-CPU con-
tribution(%) to power con-
sumption.

 5

 10

 15

 20

1
.0

1
.3

1
.7

1
.7

5

2
.1

4

E
n

e
rg

y
 (

J
o

u
le

)

Network avg length

SNEE-A HCD3

 5

 10

 15

 20

1
.0

1
.3

1
.7

1
.7

5

2
.1

4

E
n

e
rg

y
 (

J
o

u
le

)

Network avg length

SNEE-A HCD3

(a) W:10, S:10, A:2 (b) W:10, S:10, A:10

Figure 4.31: Average total energy consumption compared
to average network length for D3

percentage with which the CPU and Radio components contribute to
the total energy consumption, with an emphasis on the energy spent
while the mote is idle. Even with SNEE-A's power management, the
radio remains the dominant factor of consumption. However, the CPU
is idle for proportionately less time compared to Naïve and LC. This
implies that with SNEE-A, we make use of the resources of the node,
when they are indeed required.
Ease of Programmability. One could argue that the handcrafted al-
ternatives are inefficient because of their communication scheme. Al-
though this is partly true, as demonstrated, most of the energy con-
sumption is due to the radio being idle, which is a matter of when
nodes communicate, rather than how they do so. Secondly, build-
ing manually a push-based approach, like the one used in SNEE-A,
or even computing when nodes should communicate is impractical,
as it involves accurate computation of processing and communication
times for each node.

G. Valkanas 174

Mining and Managing User-Generated Content and Preferences

On the other hand, building a system or module that provides these
accurate timings basically duplicates what the query engine already
does. It is even less practical to rework this component when moving
between settings (e.g., relational, streaming, distributed etc.). This
brings us to another benefit of query refactoring: the time taken to
write -- and debug -- the handcrafted code. For instance, SNEE-A has
a clear advantage against the handcrafted alternatives, as i) the de-
veloper uses high-level (declarative) languages instead of low-level,
and ii) the system autogenerates and deploys code for all nodes in
the network, optimized for the requested goal. Finally, note that if
we change the optimization goal, the bespoke techniques must be re-
implemented, whereas for SNEE-A (and similar execution engines) it
is a single parameter.

4.3 Comparing sampling policies

Aswe pointed out in the introduction of this Chapter, a contributing fac-
tor of Twitter's success and adoption by researchers is its data policy
towards the academic community and application developers. In par-
ticular, Twitter provides access to its data through two distinct Appli-
cation Programming Interfaces (APIs), and Section 4.2 discussed the
architecture of an efficient crawler for the service. As also pointed out
in that section, each API poses certain restrictions, with the Streaming
API limiting access to 1% of all public tweets. Despite the 1% sam-
ple being the default behavior, one may obtain access to higher data
ratios for research purposes (up to 10%) or for a fee.
It is easy to see that access to higher ratios will increase the compu-
tational costs, given the 10-fold increase in data. This may, in turn,
increase the financial cost to be able to cope with the data volume of
these rates. A natural question then is what are the merits of higher
data ratios? In other words, for a given application, is the 1% sam-
ple sufficient or are the advantages of higher ratios such that make
the financial and computational costs negligible? For example, is the
1% sample reliable enough for the purposes of an application? Re-
cent work [155] demonstrated that the default sample returned by the
Twitter service is not a truely uniform one.

175 G. Valkanas

Similar in spirit, we, too, are interested in evaluating the extent to
which analytical processes are affected by the aforementioned limi-
tation, i.e., having access to a limited proportion of the entire infor-
mation. In particular, we apply a plethora of analyses on two subsets
of Twitter public data, obtained through the service's sampling API's.
The first one is the default 1% sample, whereas the second is the
Gardenhose sample that our research group has access to, returning
10% of all public data. We extensively evaluate their relative perfor-
mance in numerous scenarios. The difference between our current
work and the one in [155] is that we focus on specific aspects of the
data, namely spatial and temporal, which are inherent due to the na-
ture of the medium itself, as we explain in the following.
Given that it would be impossible to apply all data analytical tech-
niques in order to evaluate extensively the obtained samples, we se-
lect a representative subset, motivated by different application sce-
narios, and report on those findings. More specifically, we answer the
following research questions:

• Sentiment Analysis: Sentiment analysis has been used to evalu-
ate the performance, and predict the outcome of potical debates
and elections [64, 150], to perform brand monitoring and event
detection [205, 149], to name a few. Consequently, we want to
study how the Twitter API sampling affects the widely used spatio-
temporal analysis task of Sentiment Analysis.

• Geo-located information: How many geo-located tweets are pro-
vided by the Streaming API and the Gardenhose? How is the re-
lation between these two values varying through space and time?
In all of these tasks we study how the difference between the two
streams varies in different locations. Stefanidis et al. [194] re-
ported that approximately 16% of the Twitter feeds in their ex-
periments had detailed location information with it in the form of
coordinates, while another 45% of the tweets they collected had
some geo-location information at coarser granularity (e.g. the city
level).

• Popular tweets: We extract trending topics of various locations
using the Twitter API and the Gardenhose and study their differ-
ences.

G. Valkanas 176

Mining and Managing User-Generated Content and Preferences

• Social Graph Evolution: We focus on the retweet graph, and want
to see how the sampling process affects certain of its measures.

• Linguistic Analysis: We apply language detection, to compare
the linguistic statistical properties in the received sample against
ground truth data. More specifically, we answer the question whether
the written languages found in Twitter are a representative sample
from languages in the physical world.

4.3.1 Related Work

We will focus on the techniques that may be applied to Twitter data,
given the analytical purposes that we are considering in this Section.

4.3.1.1 Spatio-temporal analysis of Twitter feeds

As we have already discussed in previous paragraphs of this Chap-
ter, the Twitter service is characterized by a high degree of diversity
regarding its users, in terms of location, spoken languages, backr-
gound, interests, etc. The spatial aspect is of paramount importance
for a large number of applications, such as event detection and re-
sponse, targeted advertising and community detection to name a few.
Towards that end, users are able to geo-tag their tweets, i.e., attach
GPS information.
Unfortunately, despite providing high precision information, it has been
shown in numerous studies [194, 204] that the percentage of GPS-
tagged tweets is too low. Moreover, such information is typically me-
diated through other location-based services, e.g. Foursquare8, which
reduces the textual content provided by the users themselves. To ad-
dress this shortcoming, researchers have proposed techniques which
aim to extract spatial information from the text, either of the tweets or
the users' profiles [14, 17, 108, 204].

8https://foursquare.com/

177 G. Valkanas

4.3.1.2 Sampling Social Data Streams

The number of users who are actively using the service, and the amount
of information posted daily are enormous. To cope with these sizes,
sampling is usually employed to downsize the data, while maintaining
the properties of interest. For example, the work in [91] proposed tech-
niques to perform online sampling on the social graph of Facebook.
This approach is equivalent to a uniform sampling of the nodes, with-
out knowing the entire graph in advance. The authors in [90] apply
sampling on users, in order to identify topical experts.
The work most closely related to ours is [155]. Having access to the
Firehose, the authors compare the default sampling policy of Twitter
against the entire Twitter stream. One of the main outcomes of their
work was that the sample provided through Twitter's default stream-
ing API is not a random sample. Compared with that work, we want
to evaluate the performance of the 10% sample (Gardenhose) and
contrast it with the 1% default sample. We also take a more tempo-
ral standpoint of evaluation, and focus on more analytical processes,
such as sentiment analysis and linguistic analysis. We are also inter-
ested in evaluating properties of retweeted posts, that go beyond the
retweet graph itself. Nevertthe data, while maintaining the properties
of interest. For example, the work in [91] heless, the reported values
in [155] can be used as ground truth information, considering that they
had access to the full Twitter stream.

4.3.2 The Data

Our experimental setup relies on data received from the Twitter ser-
vice, and in particular the service's streaming API9, which follows the
publish-subscribe paradigm: users subscribe to the service, with a re-
quest to receive data. Twitter sends the data to the subscribed users,
according to a sampling policy. This results in the service being less
stressed by contiuous probes for new data.
The default sampling policy returns 1% of all publicly available tweets,
i.e., tweets from users who have allowed everyone to see their posts.
Our group has also been granted access to the Gardenhose, which

9https://dev.twitter.com/docs/api/1.1/get/statuses/sample

G. Valkanas 178

Mining and Managing User-Generated Content and Preferences

returns a 10% sample of the publicly available tweets. In both cases,
the sampling policy is controlled entirely by Twitter.
Our main set of experiments is conducted on two datasets, obtained
by crawling the 1% and 10% of the service over the same period of
time. We monitor the Twitter stream for slightly over a 4-day period in
November 2013, and store the tweets as they are provided. We sub-
sequently perform our analyses in an offline fashion, using a custom
workflow infrastructure [207].
Figure 4.32a shows the amount of information we collected within
each hour from the onset of our experiment, for both sampling policies.
An immediate observation is that the two samples differ by an order of
magnitude, which is expected given the sampling percentages offered
by the service. Secondly, we see that both samples exhibit the same
temporal pattern, with the same increases / decreases appearing in
both streams. Finally, it is interesting to note that in both cases, there
is a certain periodicity in the data, which coincides with the 24-hour
cycle of a day.

4.3.3 Geo-location Coverage

An important aspect of Twitter data is that several of them are geo-
tagged, meaning that the posting user has attached a GPS-quality
signal to the tweet when uploading the information. Such information
can be particularly important to understand where the user is and what
they are refering to.
Figure 4.32b shows the number of geotagged tweets that were re-
ceived from the two Twitter sampled streams, the default one (red)

 100K

 1M

 10M

 0 20 40 60 80 100

T
w

e
e

t
C

o
u

n
t

Hours

Default Gardenhose

(a) All tweets

 1K

 10K

 100K

 0 20 40 60 80 100

G
P

S
 T

w
e

e
t

C
o

u
n

t

Hours

Default Gardenhose

(b) GPS-tagged tweets

Figure 4.32: Comparing default and Gardenhose samples for volume over time

179 G. Valkanas

and Gardenhose (black). It is interesting that we observe the same
temporally periodic pattern as the one in Figure 4.32a. Moreover, the
geotagged tweets are between 1-2% of their respective raw sampled
data, and the two streams (of geotagged tweets) differ by an order of
magnitude, which is a result of the Gardenhose returning 10× more
tweets that the default sample. Finally, several of the fluctuations that
we observed in Figure 4.32a have been flatened out when we con-
sider the geotagged tweets alone.
Twitter also allows its users to ask for geotagged information. In this
case, the user connects to the streaming API, but indicates that they
are interested in geotagged tweets. To do this, the user provides four
geodetic coordinates: [(latmin, lonmin)(latmax, lonmax)], which consti-
tute a bounding box, and Twitter returns tweets that fall within this
region. In this particular case, the volume of the returned results is
the same for the two samples. The reason is that a different mecha-
nism is used by the service. Given that there is no difference between
the two sampling ratios in this case, we omit these figures.
However, we would like to check whether there are any other differ-
ences that may arise from the use of this mechanism. To this end, we
focused on a particular region in London, and applied different bound-
ing boxes, which slightly overlap. Table 4.8 shows the coordinates for
the bounding boxes that were used, along with the number of tweets
that were received, whereas Figure 4.33 visualizes these on a map.
Table 4.9 shows the similarity between the collected tweets. In par-
ticular, we have computed the Jaccard similarity of the received data
and report these values. It is interesting that the measured similarity
is generaly quite high, even when the overlap is low (e.g., Crawl 1
and 2). As the overlap increases between the bounding boxes that
we applied, so does the similarity between two different crawls.

Table 4.8: Description of the the GPS-driven crawls
ID Bounding Box #Tweets
Crawl1 [(-0.1754, 51.4830), (-0.0704, 51.5327)] 35275
Crawl2 [(-0.2654, 51.4830), (-0.1604, 51.5327)] 27811
Crawl3 [(-0.2254, 51.4830), (-0.1204, 51.5327)] 27811
Crawl4 [(-0.1854, 51.4830), (-0.0804, 51.5327)] 27811

G. Valkanas 180

Mining and Managing User-Generated Content and Preferences

Figure 4.33: Bounding boxes of Table 4.8, Crawl1: Green, Crawl2: Orange, Crawl3: Red,
Crawl4: Blue

Table 4.9: Jaccard Similarity between the GPS-driven crawls
Crawl1 Crawl2 Crawl3 Crawl4

Crawl1 1.0 X X X
Crawl2 0.527 1.0 X X
Crawl3 0.671 0.788 1.0 X
Crawl4 0.866 0.612 0.777 1.0

Figure 4.34 shows how the 4 distinct bounded-driven crawls performed
over time for a single day. With some minor fluctuations, we observe
that all of them follow the exact same pattern. Note that the first half-
hours, where there is a steep decline in volume, are in the early hours
of the day because the crawl was started around 10:30pm. Therefore,
the x-values between 3 and 15 depict the volume between midnight
and 8 o'clock in the morning.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45

C
o
u
n
t

Half-Hour Interval

Loc1 Loc2 Loc3 Loc4

Figure 4.34: Different crawls from London

181 G. Valkanas

4.3.4 Sentiment Analysis

Sentiment analysis is probably one of the most frequent tasks applied
on Twitter [110, 150, 138, 162]. The vast availability of opinions ex-
pressed in Twitter raised the interest of the research community as
well as the industry. Hence we consider this problem as one of most
critical tasks where the sufficiency of the Streaming API (1%) should
be evaluated.
In general, the problem of sentiment analysis is that given a text seg-
ment ti, it is requested to assign it into one of the polarity classes
(negative, neutral, positive) according to the sentiment that it
expresses. In fact, most of the times, the output is a sentiment rate in
[0, 1]. In the setting that we consider, the task is to assign such a label
to each tweet individually.
For our analysis, we employed a lexicon-based approach, whereby
positive opinion words contribute towards the positive classification
of the text whereas negative opinion words contribute towards nega-
tive classification. The obvious advance of a lexicon-based approach
is that no training data are required and that there are low computa-
tional requirements. Naturally, to apply such a technique, two sets
of words are required: a positive and a negative one. We utilize the
lists provided in [109]. Given the text of a tweet, we count how many
words appearing in it express positive (w+) or negative (w−) opinion.
We then assign the tweet to one of the classes as follows:

sentiment(tweet) =

{
positive : |w+| > |w−|
negative : |w+| < |w−|
neutral : otherwise

Figure 4.35 reports the ratio of positive and negative tweets, per hour,
over all tweets received during the same time period. Interestingly,
we observe that the ratio of tweets is the same in both occasions,
although the absolute values differ by an order of magnitude. The
ratio is higher for positive tweets, with certain cases having twice as
many positive tweets. There is also periodicity in the data, similar to
the one that we observed in previous sections.
Inherently, Sentiment Analysis has spatio-temporal characteristics. In
the last USA presidential elections, many organizations kept track of
the sentiment during the electoral period (trend) for each one of the

G. Valkanas 182

Mining and Managing User-Generated Content and Preferences

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100

R
a

ti
o

Hour

Sample 1% Sample10%

(a) Positive Sentiment

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100

R
a

ti
o

Hour

Sample 1% Sample10%

(b) Negative sentiment

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100

R
a

ti
o

Hours

Pos 1%
Neg 1%

Pos 10%
Neg 10%

(c) Sentiment in geotagged tweets

Figure 4.35: Comparing tweets with sentiment

states. For this reason, we also provide an experimental comparison
by applying sentiment analysis to the subset of geotagged tweets that
were received with the two sampling policies.
As we observe from Figure 4.35c, the ratios of positive and nega-
tive geotagged tweets exhibit similar patterns to the general stream,
shown before. Even in geotagged tweets, there are more positive
ones than negative, regardless of the streaming policy used. The ra-
tios, however, are in principle lower than in the general stream, mean-
ing that geotagged tweets offer less sentiment-oriented information.

4.3.5 Popular Topic Detection

One of Twitter's most characteristic features is the ability of its users
to retweet other posts. Such an action allows for fast dissemination
of information, leading to viral posts, which are a means to identify
trending topics and trendsetters [178]. Retweeting also implies that
the user is interested in the content of the original post, and that they
are endorsing it, which can be a genuine resource for community de-
tection [32].

4.3.5.1 Top-most retweeted posts

A first kind of analysis we are interested in, is to see whether the two
sampling policies differ in terms of the information that they return, with
respect to retweets. Towards that end, we conducted the following
experiment: We extract the top-k most retweeted posts, that appear

183 G. Valkanas

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

10 100 1000 10000

K
e

n
d

a
ll

C
o

rr
e

l.

List Items

S1-S10
S1-S10P1
S1-S10P2

S10P1-S10P2
S1-S1P1

(a) By iteration

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

10 100 1000 10000

C
o

m
m

o
n

 I
te

m
s
 (

%
)

List Items

S1-S10
S1-S10P1
S1-S10P2

S10P1-S10P2
S1-S1P1

(b) By interval size

 0

 0.1
 0.2

 0.3
 0.4

 0.5

 0.6
 0.7

 0.8
 0.9

 1

1 5 1
0

1
0
0

5
0
0

1
0
0
0

2
5
0
0

5
0
0
0

7
5
0
0

1
0
0
0
0

K
e
n
d
a
ll

C
o
rr

e
l.

Iteration

Sample 1% Sample 10%

(c) Times Received VS Times
Retweeted

Figure 4.36: Comparing the top-10000 most retweeted items

in our data. Among other information, Twitter provides the number
of times that a post has been retweeted, which serves as the ground
truth for ranking. For each of the top-k tweets, we also maintain the
number of times that they appear in our dataset.
At the end of this analysis, we obtain a top-k list for each sample,
ranked in descending order of their retweet count (ground truth). We
want to compare the degree of agreement between the two lists, one
obtained from each sample. Given that these are ranked lists, we
compare them using Kendall's τ − b, which is given by the following
equation:

τ =
(nc − nd)√
N1 ∗N2

Kendall's method performs a pairwise comparison of the first n items in
the lists, and finds how many pairs appear in the same order (nc), and
how many do not (nd). In the denominator N1 and N2 are the number
of items not-tied in the lists. Items which appear in one list but not the
other are appended at the end [79]. The result is in the range [−1, 1],
where -1 means that the two lists are completely reversed, and 1 is
that the two lists are identical. We repeat the comparison for various
(sub)list sizes.
We extracted the top-10000 most retweeted items, as they appeared
in the 1% and 10% samples. We then compare the two sublists (one
for each sample), starting with the top-10 and increasing each time
its size by an order of magnitude (top-100, top-1000, etc.). We also

G. Valkanas 184

Mining and Managing User-Generated Content and Preferences

compare how many of the most retweeted posts are shared in the two
lists. To check for any bias from Twitter's sampling policy, we also
randomly split each sample in half, and rerun our experiment.
Figures 4.36a-4.36b show the results of this experiment. A label with
S1 and S10 refers to the default or Gardenhose sample, respectively.
Labels with P1 or P2 refer to either half of that stream, e.g., S1P1
means the first half of the 1% sample. The omission of a P{1,2} part
refer to the entire stream.
Firstly, we observe that up to the top-100 items, the two lists are
identical: they contain exactly the same tweets, uniquely identified by
their id, (Figure 4.36b), and they have the exact same ranking (Fig-
ure 4.36a). In other words, if one is only interested in extremely pop-
ular tweets, which are but a small fraction of retweeted posts, the 1%
sample is adequate. However, if one wants to see the bigger picture,
and go beyond the first top-100, the 1% sample starts being problem-
atic.
More specifically, correlation drops to 0.9 when we consider the 10K
most retweeted posts. Note that 10K tweets are a very small subset,
compared with the entire dataset. As a measure of comparison, the
1% sample returns more than 100K tweets per hour. Despite the high
correlation at top-1K and top-10K, it is clear that the 1% sample results
in reduced quality, as more items are considered. It is important to
note that we obtained similar results when using Kendall τ − a, which
only considers common items. Therefore, the drop in correlation is not
only due to dissimilar sets. The ranking is affected because the 1%
sampling policy does not obtain medium-sized retweets as frequently
as the 10% sample.
Regarding the halved streams, we observe that the two Gardenhose
subsets (S10P1-S10P2) exhibit high correlation, even at the top-10K
items. Moreover, the 1% sample shows the same correlation with
these two subsets (S1-S10P1, S1-S10P2). This means that the top-
most retweeted posts are retrieved multiple times with the 10% sam-
ple. On the contrary, this is not the case for the 1% sample (S1-S1P1),
validating our claim regarding stale rankings. We expect the correla-
tion to be even lower as we increase the most retweeted items.
As we already described, for each of the tweets appearing in our top-
10K most retweeted posts, we maintained the number of times it ap-
pears in our dataset. We are then able to rank these items (in de-

185 G. Valkanas

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

5 15 60

A
v
g
.
P

e
rc

e
n
t

Interval (minutes)

Sample 1% Sample 10%

(a) By interval size

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30

A
v
g
.
P

e
rc

e
n
t

Iteration

Sample 1% Sample 10%

(b) By iteration, 15' interval

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

all 1K 2K 3K 4K 5K 6K 7K 8K 9K10K

A
v
g
.
P

e
rc

e
n
t

Top-k Retweets

Sample 1% Sample 10%

(c) By popularity, 1st interval, 15min

Figure 4.37: Burstiness of retweeting information

scending order), according to the number of times that we encoun-
tered them, and compare them against the lists ranked by the actual
retweet count, given by Twitter. Figure 4.36(c) shows the result of this
experiment.
Interestingly, the top-1 most retweeted post is not the one that we ob-
tain most times, irrespectively of the sample used. On the other hand,
we obtain high correlation starting from the top-5. In the long run, the
10% results in a 0.8 correlation between the two lists, whereas, the
1% sample is significantly lower at 0.7. This practically tells us that
the 10% returns items at a much higher rate than the 1%. In combi-
nation with the plots in Figures 4.36a-4.36b, we conclude that the 1%
easily results in stale information.

4.3.5.2 Retweet Burstiness

Viral posts become popular, i.e., they receive a lot of retweets, over
a short period of time. The rate at which users retweet information
plays an important role in capturing this as an ongoing trending topic.
Moreover, a post that rapidly gains attention could be the result of an
ongoing event. For this reason, we want to evaluate whether there is
a difference between the rates of receiving retweets.
To answer this question, we performed the following experiment: For
each of the top-10K most retweeted posts which we extracted from
our dataset, we computed howmany times we received it within a time
period after the tweet was first posted. For instance, with a 5 minute
interval, we want to know how many times we received a tweet 5',

G. Valkanas 186

Mining and Managing User-Generated Content and Preferences

10', 15', 20' etc., after it was originally posted. Figures 4.37(a)-4.37(c)
show these results.
Figure 4.37(a) shows the following: For each of the top-10K most
retweeted posts, we count the percentage of retweets that we received
during the first M ' minutes after it was posted. Each point in our plot
is the average over all of the top-10K most retweeted posts. As ex-
pected, when we increase the interval size, more tweets fall within the
first interval. It is interesting that more than half of the retweets are
received at most within the first hour of the original tweet, while one
third of the retweets are received during the first 15 minutes. There
is no significant difference between the two sampling policies in that
respect.
Figure 4.37(b) shows how the average of received retweets behaves
as a function of the i-th interval, after the original post, with a 15' in-
terval size. As we have seen, during the first 15 minutes, we receive
approximately one third of all retweets. This value drops to ∼12%
in the second quarter and to 5% within 3 quarters of an hour. After
this point, we receive very few tweets in every interval. Once more,
we do not observe any notable differences between the 1% and 10%
samples.
Until now, we averaged over all of the top-most retweeted items. As
we saw in our earlier experiment, the behavior was different, if we con-
sider lower ranked items. To check whether this holds for burstiness
as well, we did the following: We fix the interval size to 15 minutes and
zoom in on the first interval. We split the top most retweeted posts to
1K batches, and rerun our previous experiment (computing the av-
erage percentage). For instance, "3K" on the x-axis means that we
compute the average of the tweets ranked in positions 2001-3000.
A striking result is that the low-ranked retweeted posts receive (in per-
centage) more retweets during the first interval. The two samples also
differ in these lower ranked retweeted posts, with the most notable dif-
ferences appearing between the items ranked in positions [6001, 8000].
Moreover, posts ranked between [3001, 7000] are closer to the total av-
erage. A similar result has been observed with the 2nd interval after
the post.

187 G. Valkanas

4.3.6 Graph Evolution

One of the major assets of any social networking site, such as Face-
book, Twitter, Google+, etc, is its social component. Although, the
term "social component" is typically perceived as synonymous to the
explicit social graph, there is more information which can be used in
that direction.
More specifically, users engage in discussions, reply to each other
either to form an arguement or respond to questions, endorse views
by favoriting, "liking", and retweeting, or simply mention other entities
/ users in the content they upload. All such actions are explicit forms
of interaction between the users. In that sense, the social graph is a
subset of what constitutes the social component of the social medium.
We are interested in identifying key properties of the retweet graph,
extracted over time from the incoming stream of tweets. We would
like to know how well these properties correlate with the ground truth
data, as presented in [155] where the entire Twitter stream was used,
when we consider the 10% sample.

4.3.6.1 Temporal Retweet Graph

Retweets are a very particular characteristic of the Twitter service. As
already mentioned, it allows users to repost tweets, thereby endorsing
and acknowledging the original poster at the same time. If user A
retweeted a post, originally posted by user B, then we add an edge
from user A to user B. This is a directed graph, much like Twitter's
explicit social graph. Note that we do not focus on a particular tweet
in this case, as this would form a star-shaped graph. Therefore, the
graph can be the result of multiple individual tweets, posted at different
timestamps.
Compared with [155], we want to see how the retweet graph changes
over time. Rather than taking daily snapshots of the graph and aver-
age them, we would like our graph to incorporate a more continuous
notion of time. To achieve this, the edges of our graph are weighted
and we decay them over time. The edges are removed when their
weight drops below a certain threshold. More specifically, we con-
struct our retweet graph in the following manner:

G. Valkanas 188

Mining and Managing User-Generated Content and Preferences

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 200 400 600 800 1000 1200

V
a
lu

e

Iteration

Iter 1%

Glb 1%

Iter 10%

Glb 10%

(a) Size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

V
a
lu

e

Iteration

Glb 1% Glb 10%

(b) Maximal Connected Component
Size

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 200 400 600 800 1000 1200

V
a
lu

e

Iteration

Iter 1%
Glb 1%

Iter 10%
Glb 10%

(c) Clustering Coefficient (overall)

Figure 4.38: Statistical properties of the extracted retweet graph, over time

• Step 1: We use an interval size, similar to the one used for the
Retweet analysis. We extract the retweet graph using the tweets
that were posted during the first interval. This is our starting graph
G0.

• Step 2: Proceed to the next (i-th) interval. Extract the graph of
that interval, which we denote by Gi

• Step 3: The initial edge weight from a node X to a node Y is
equal to the number of times that user X retweeted any post from
node Y . We normalize the weights, so that, for each node, the
total outgoing edge weight is 1.

• Step 4: Decay the graph Gi−1, that we have aggregated until this
point, using an exponential function. This means that the weight
of each edge becomes w = w ∗exp−x. If that edge drops below a
certain threshold t, remove the edge. This implies that the edge
is too old, and has not been updated recently.

• Step 5: Add the decayed graph Gi−1 to the one extracted at the
current iteration, Gi. The graph contains the union of the two node
sets. We add an edge between two nodes, iff there is such an
edge in Gi or Gi−1. If such an edge exists in both graphs, the edge
weight is the sum of the two individual weights in either graph.
Proceed with Step 2, until all intervals have been processed.

Figure 4.38 shows the results of this experiment. In particular, it de-
picts the number of nodes that the entire graph contains. We have

189 G. Valkanas

plotted both the statistics for the aggregated graph until the i-th it-
eration, as well as the statistics for graph Gi of each iteration. We
note that the graph exhibits a periodicity akin to the one shown in the
data volume and sentiment analysis. As we can see, the global graph
contains the most nodes of all cases. However, its size does not nec-
essarily increase, as old nodes are discarded, because they did not
appear in a more recent interval.
Figure 4.38(b) shows the size of the Largest Connected Component
(LCC), as a function of the interval. We observe that the size of
the LCC does not share the same periodicity we saw in other cases.
Rather, in various occasions, the graph size will increase significantly
and then return to normal values. We also computed the clustering
coefficient of the 4 graphs we extracted: 2 for the global case and
2 for each iteration (1 per sample). It is interesting that, over time
(Figure 4.38(c)), the clustering coefficient of the Gardenhose retweet
graph is very close to the one reported by [155]. This, in fact, means
that the retweet graph we extract from the Gardenhose, yields similar
results to the ground truth data.

4.3.7 Linguistic Analysis

As a final experiment, we would like to see whether there is a correla-
tion between the spoken languages in Twitter, and the ground truth ob-
tained from studies in the physical world. Moreover, we want to check
whether there are any differences regarding the two sampling policies.
To perform this experiment, we used language detection software 10

and obtained ground truth information from Wikipedia11,12. We map
each tweet to a language and count the number of tweets with that
language. We then derive a ranked list for the languages, based on
the absolute counts, and we compare the derived list for each sample
with the ground truth using Kendall τ .
Table 4.10 depicts the results of this comparison. Correlation is lower
when we consider native speakers, as opposed to lists ranked by the
number of people in the world who speak that language. Regardless,

10https://code.google.com/p/language-detection/
11http://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers
12http://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers

G. Valkanas 190

Mining and Managing User-Generated Content and Preferences

Table 4.10: Comparison of languages extracted from samples
Ethnologue Spoken Popularity

Sample 1% 0.158 0.342
Sample 10% 0.155 0.342

even if we account for the fact that the language detection software
is not perfect (i.e., is not 100% accurate), the correlation between the
extracted list from Twitter data and the ground truth is extremely low.
This holds for both sample sizes. Therefore, there is an inherent bias
in the data, which is not due to the sampling policy, but mostly because
of the user base of the service itself. This means that researchers
on the field of linguistic analysis, who rely on Twitter data, should be
weary of this inherent bias.

4.3.8 Efficiency

Table 4.11 shows the efficiency of each experiment for the two sample
sizes. In particular, we measure the wall clock time from the point that
we started processing the input, up to the point that the full output was
written (either to the standard output, or to a file). Our experiments
were run on a single Quad-core machine @3.4GHz, with 16Gb RAM,
running Ubuntu Linux.
Despite the fact that the actual data differ by an order of magnitude,
the running times do not differ by the same amount. There are, of
course, various reasons for that, including caching, other processes
(e.g., daemons) running simultaneously, process context switching,
etc. It is clear, however, that processing takes substantially more time,
on a single machine.

Table 4.11: Efficiency of experiments (seconds)
Sample 1% Sample 10%

Sentiment Analysis 147.276 2058.264
RT Graph Evolution 175.061 2531.362

191 G. Valkanas

4.4 Detecting Events with User-Generated Content

One of the major characteristics of social media in general, and mi-
croblogging services in particular, such as Twitter, Tumblr and Plurk,
is the rapid updating of their user-generated content, which also oc-
curs in huge numbers. For instance, Twitter now counts more than
200 million active users, with an approximate 400 million "tweets" on
a daily basis 13.
This constant updating of information has earned them the name "Live
web" or "Now web". Due to the nature of the posted content, its topi-
cal diversity and how it spreads through user interactions, these plat-
forms may serve as real-time news reporting and / or crisis manage-
ment tools, as exemplified with the recent political termoil in the Middle
East, with Japanese earthquakes [180], or the 2007 Southern Cali-
fornia wildfires [198]. The role of these platforms as real-time news
reporting systems became evident very early [124].
As a result, several approaches have been proposed to automatically
identify newsworthy real-life information in social media, especially
from Twitter given its open data policy that we have talked about in
previous paragraphs. Unfortunately, automating event identification
is not that easy. By event, we mean important phenomena with a
spatial and temporal dimension in the physical world. Some of the
challenges of this task are:
• The large adoption means that we must process in real time vo-
luminous amounts of data,

• The content (text) is typically short, very noisy, with a lot of slang
and personal style, and diverse in numerous ways, regarding lo-
cation, languages and themes

• the precise location of a user is generally scarce, which means
that additional techniques are required in order to address the
original problem

Taking into account these impediments, it is no surprise that most
existing works that deal with event detection in Twitter simplify the
problem by focusing on a specific event type [37, 180, 190]. They

13https://business.twitter.com/audiences-twitter, access Aug 2013

G. Valkanas 192

Mining and Managing User-Generated Content and Preferences

then monitor the stream for specific terms, or #hashtags (i.e., user
generated topic labels). However, this can only work when the event
can be described by a handful of terms, e.g., "[..] now shaking [..]"
for earthquakes. Clearly, it is impossible to detect genuine events by
such means, as the descriptive terms are unknown a priori.
Another alternative is to use online clustering [15, 36, 149] or term
burstiness [119, 128], so that trends emerge as a set of frequently
co-occurring terms. However, these techniques suffer from scalability
issues, as they are known to be quite inefficient even for a small frac-
tion of the Twitter stream [15, 128]. They are also sensitive to popular
terms or large groups of users with similar interests. Spammers are
also known to use such terms in their tweets, in order to "blend in"
and obtain a higher visibility for their posts [96], only making matters
worse. Combined with highly personal [167], and poor writing style
the terms describing the event may take a while to surface with these
approaches. Furthermore, a trend is not necessarily indicative of an
event. Rather the contrary, since they are always present, as users
constantly discuss their interests and popular terms emerge. They
can also be the result of recurring phenomena, such as a prominent
hashtag, e.g. "Follow Friday" (#FF), or misleading at times: "Dear
santa" and "Merry Christmas" were trending at some point in May and
June 2012, respectively, despite the fact that they are really out of
season. In fact, as we experimentally show, clustering approaches
are also ineffective, when trying to return events in a timelier manner,
in such a noisy setting.
Therefore, in this thesis, we too undertake the task of detecting events
in a stream of microblogs. The main challenge is to devise tech-
niques that work regardless of the category such events belong to,
e.g., sports, politics, natural phenomena, etc. To achieve this, we
employ techniques grounded on influential theories of emotions, such
as Cognitive and Affective [151]. According to these theories, users
are urged to express themselves due to an event from the real world.
Figure 4.39 shows indicative tweets, based on real life events of varied
gravity. In both cases the users externalized their thoughts as a result
of a real life event, but, as the user in Figure 4.39a) puts it, tweeting
about that event was his very first reaction.

14http://twitter.com/137650823/status/202677925663866880
15http://twitter.com/Number10Gov/status/337244366181634050

193 G. Valkanas

(a) Everyday incident14 (b) Woolwich incident15

Figure 4.39: Tweets reflecting real-life events.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

15/3 4/4 24/4 14/5

P
e
rc

e
n
ta

g
e
 o

f
th

e
 t
w

e
e
s

Tweets with emotion per day

Anger
Joy

Sadness
Surprise

Figure 4.40: A timeseries on the daily emotions identified in the Twitter stream, between
March 15 and May 24 2012

Bymonitoring the Twitter streamwe can access these reactions. More-
over, we argue that such tweets will not be a flat description of the
event, but will also convey the user's emotional state, partially disclos-
ing how it affected them. An event can then be modeled as a time-
and place- related phenomenon, which triggered a significant change
in the emotional state of a (potentially large) group of people and our
goal is to automatically capture such sudden changes.
Figure 4.40 validates our claim: We plot the relative occurrence of
the 4 most prominent emotions, from a sample of the Twitter stream,
between May and March 2012. We ommit neutral tweets, which we
assert to be non-informative. Surges in anger in early April are re-
lated with the Syrian uprising, whereas the high values of joy towards
the end are due to the Champions League final, the Eurovision song

G. Valkanas 194

Mining and Managing User-Generated Content and Preferences

contest etc.
To address the sheer volume of data, we employ online event detec-
tion techniques applied on user input, thereby reinforcing the social
sensors naming convention. More specifically, we use aggregate in-
formation, making our approach scalable and efficient. The general
idea is to group users together and assign them to a virtual sensor,
which will monitor their emotional state over time and space, in an on-
line fashion. Information aggregation also ensures that the identified
events are of interest to a large group of people. Our technique can
be run in parallel, achieving high throughput and scalability, managing
to efficiently process large volumes of data.
Overall, our contributions can be briefly described as follows:
• We set up a rigorous framework to aggregate emotions as ameans
of identifying real-life events.

• We evaluate the importance of emotions, coupled with temporal
and spatial information in event detection, and demonstrate their
vital role in this data mining task.

• We propose a technique to associate a user with spatial informa-
tion, a task that must be taken into account in order to address
event detection. The proposed technique is efficient and can be
applied online, so that event detection may be performed in real-
time.

• We present a detailed end-to-end architecture of our approach,
which we compare against the state-of-the-art in event detection,
using a large crawl of Twitter data, received in a streaming fash-
ion.

• As part of the infrastructure, we provide a contextual user interface
to display the identified events in real time. The interface shows
all information that we use to identify events, to provide a better
understanding of the event and its characteristics.

We also note that, contrary to alternatives, our approach inherently
serves a dual purpose: detect new events and monitor a group's
emotional reaction to it. This could prove extremely useful in deci-
sion making or social sciences. Both the way that we identify events
and its contextual visualization help in this direction.

195 G. Valkanas

The rest of this Section is organized as follows: Section 4.4.1 presents
existing work on event detection techniques. Section 4.4.2 discusses
our event detection model and algorithmic approach, followed by Sec-
tion 4.4.3 which discusses our approach for extracting spatial informa-
tion from user-generated content and evaluates the proposed tech-
nique. Section 4.4.4 gives an engineering perspective of our system,
followed by Section 4.4.6 which experimentally evaluates our event
detection approach.

4.4.1 Related Work

Despite our work's ties with psychology and sentiment analysis, it is
impractical to provide a detailed overview of these fields. Therefore,
we focus on key aspects that relate to our problem and discuss re-
search regarding event detection from microblogs, which is our main
objective.
Psychology. Emotions are a major discipline in psychology, and sev-
eral theories have been proposed to understand them [130] from vari-
ous aspects, including evolutionary, social and cultural, as well as pro-
cedural. The basic intuition of our work can be seen to have grounds
on procedural as well as cognitive and affective theories [151]. The
latter, in particular, argue that emotions are the result of an external
stimulus (i.e., an event), which will influence a person's attitude or be-
havior. Under such an affective state of mind, users are more likely to
externalize their thoughts.
Sentiment analysis. Sentiment analysis and opinion mining [163]
have been broadly studied in various domains and settings. Textual
content is classified to a positive or negative class, and works have
been proposed for Twitter in particular [33, 93]. Extensions deal with
strength of polarity or by considering more target classes [41, 126,
129, 152]. Our current research differs from this body of work in that
sentiment analysis is for us a tool to achieve our goal, i.e., event de-
tection of real world phenomena. Therefore any such proposed tech-
nique can fit our algorithmic framework.
Event detection in Social Media. Event identification from Twitter
appears to receive an increasing interest lately. Early works focus on
events of specific types, e.g. earthquakes [180] or news [181]. They

G. Valkanas 196

Mining and Managing User-Generated Content and Preferences

whitelist specific keywords and phrases, e.g. "[..]now shaking[..]", or
sources of information, respectively. Evidently, these approaches are
inapplicable for type-independent event detection, in a medium as dy-
namic and diverse as Twitter.
A closely related concept is trending topics or trends, i.e., terms which
gain in popularity over a period of time. Trends are practically bursty
phenomena [119] of term or hashtag cooccurrences. However, trends
are not necessarily indicative of events; rather the contrary, since they
are always present. For instance, a big fan base discussing their pop-
ular music idol, easily results in a trending topic, regardless of an event
actually happening. They are also related with recurring phenomena,
such as TV shows, ormemes, e.g., the "Follow Friday" (#FF) hashtag.
Given that our definition of an event ties it to a specific location in the
physical world, techniques for spatiotemporal burstiness [128] might
be considered. However, these share the same inefficiencies with the
classical bursty approaches, and are also computationally expensive.
A type-independent approachwas proposed in [36], where the authors
applied online clustering through appropriate similarity measures. How-
ever, their methodology was meant for Flickr, an online photo-sharing
service, with characteristics very different from Twitter: i) Shooting a
photo requires the physical presence of user u at location l at time
t. This information is not always available. ii) Users select the tags
of their photos carefully, in order to maximize their visibility. iii) Mi-
croblogs are voluminous and updated at a very fast pace.
The most closely related work to ours is [221], which is the current
state-of-the-art for event detection in Twitter. The authors employ
wavelet-based techniques to capture important differences in the "en-
ergy" of individual terms in sliding windows. Tokens are then used to
represent nodes in a graph, where edge weights encode strength of
cooccurrence between terms. Subsequently, they apply a modularity-
based graph partitioning algorithm to obtain groups of terms that share
similar burstiness patterns. Evidently, this method has huge memory
requirements, as it must maintain a sliding window with the occur-
rences of every token, even if it was encountered only once, because
it may become bursty in the future. To address the quadratic complex-
ity of the clustering step, the authors filter out tokens with the median
absolute deviation. However, when applied online, this measure fil-
ters out important tokens as well. Moreover, at the conceptual level,

197 G. Valkanas

the authors' claim that "emotional expressions are not useful in defin-
ing events". We argue the exact opposite, motivated by emotional
theories. We return to this approach in our experimental section.
The works in [35, 176] aim to better understand the temporal infor-
mation in tweets (e.g., "[..]tomorrow I[..]"), and build full calendars of
events. Finally, we note the works in [99, 161] that deal with the qual-
ity of extracted events from Twitter. These techniques address an
orthogonal problem, and they could be applied to our output.
Most of the systems discussed above also contained a visual com-
ponent, to present to the user the extracted information, depending
on the output type. For example, [180] provided a web-based earth-
quake alerting service, simulating an online seismograph for Japan.
The information presented to the user was the time and place where
the earthquake occurred, as identified by the proposed system, as
well as the feed of tweets talking about earthquakes.
In an extended version of [221] 16, the authors presented a User In-
terface to their approach, but for this particular purpose they limited
themselves to a very specific event type: the SGE 2011 elections. A
distinctive difference with this work, is that we do not constrain our-
selves to events of a particular type, when it comes to visualization.
Most importantly, we are interested in providing as much information
regarding the event as possible, to help users make informed deci-
sions. We alsomap users to location, using custom location extraction
techniques which is assumed to be known a priori in [221].
A visual perspective for event detection was also undertaken in the
TEDAS [135] and TwitterStand [181] systems. In both cases, themain
issue is visualization of information (i.e., events), rather than extract-
ing them, as events are taken from whitelisted sources, which are
practically news reporting agencies / channels. Neither of these ap-
proaches consider the users' reactions to identified events, which we
do, and the system in [135] lacks a spatial information component.

4.4.2 Modeling & Detecting Events

In this section we formalize our definition of an event, and proceed
with our problem statement. Similarly to [34], we define an event as

16www.hpl.hp.com/techreports/2011/HPL-2011-98.pdf

G. Valkanas 198

Mining and Managing User-Generated Content and Preferences

follows:
An event e is a real-world phenomenon, that occurred at some spe-
cific time t and is usually tied to a location l.
However, we are only able to monitor the aftermath of the event, i.e.,
its effects on actual people who provide their input. According to in-
fluential theories of emotions [151], the event will have a significant
impact on the emotional state of the users that experienced it. Be-
cause of this, they will be urged to externalize their emotional state,
i.e., the way they feel, and will be inclined to post a message about it.
Therefore, we can model the emotional state of a user as the number
of tweets they post conveying one of several emotions or moods [129]:
excited, sad, angry, confused, etc. Since an event from the real world
is by definition tied to a location, we expect the first responders to be
geographically linked as well.
Taking all that into account, our problem can be stated as:
Problem 3 [Event Detection] Given a time ordered stream of tweets
as input, we want to identify thosemessages which i) alter significantly
and abruptly the emotional state of a (potentially) large group of users,
and ii) can be traced back to event e.
This definition fits nicely with an outlier detection formalisation, where
we observe a sudden and significant change in the emotions of users,
with respect to the recent history. Monitoring individual users is very
inefficient resource-wise, and will not provide significant clues regard-
ing the event anyhow. It also raises ethical questions at best, as being
very intrusive on a user's privacy.
To overcome these limitations, we use aggregate information, ex-
tracted from larger user groups, Gi. Users are clustered together
according to their geographical location, extracted from available in-
formation. We then monitor the emotional state of each geographi-
cally distributed group independently of the others and report an event
when the group's cumulative emotional state changes suddenly. Note
that this approach covers inherently the part of the definition that wants
the event to affect large groups of users.
Instead of putting all users to a single group, which has no local co-
herency, we decompose G into smaller groups Gi and organize them

199 G. Valkanas

Figure 4.41: An example assignment of groups to virtual sensors.

hierarchically. We denote Gj
i as group i at level j, assuming that leaf

nodes are at j = 0. The hierarchy can be administrative (e.g., country,
state, etc.), or constructed algorithmically, e.g., via hierarhical cluster-
ing. For a fixed level j in the hierarchy, it holds that ∪Gj

i = G and
∩Gj

i = ∅, and Gj
i = ∪Gj−1

k . Evidently, this decomposition is a trade-
off, providing high-level granularity versus a higher need in resources.
We then assign each group G0

i to a virtual sensor si, which senses
(i.e., reads) all of the tweets from that group. Sensors at higher levels
gather information from their children. Figure 4.41 shows an example
of user grouping, with their assigned virtual sensor nearby. 17. Upon
arrival, each tweet is classified to one of the emotions that we monitor.
Using an aggregation interval a (e.g., a=1min), the sensor produces a
single value for each emotion, which is the respective count of tweets
conveying that emotion during that period. The aggregation interval
acts as a discretization unit, to cope with the streaming nature of the
medium. The sensor operates over the w most recent points with a
sliding window. This results in a much simpler model than the more
intricate, 2-stage, multi-level wavelet coefficients of [221]. The combi-
nation of a andw specify the history length, based on which the sensor
will identify events.
Assume, for instance, a sensor si, with a = 5 minutes and w = 12. The
sensor maintains a history of the past 5 × 12 = 60 minutes. Every 5
minutes, si will process a single value for each emotion, extracted
from the tweets received during that interval from the group of users

17World Map image from http://www.wpclipart.com/

G. Valkanas 200

Mining and Managing User-Generated Content and Preferences

that it monitors. The oldest point will be discarded and the new one
will take its place.

4.4.2.1 Approximating the Emotional State Distribution

Given that a user's emotional state is a result of several factors, it
would be unfounded to assume that it will follow a predefined distri-
bution, much less a static one. In fact, we need to approximate it and
maintain it efficiently in an online fashion. To achieve this, we can
estimate the Probability Density Function (PDF) of the distribution, by
observing the reactions of each group Gi. Non-parametric models are
a great fit for this purpose and kernel estimators have been shown to
achieve good performance for this task [98], while being efficient.
Kernel estimation is based on the idea that each point distributes its
weight in its surrounding area, and the kernel function describes how
this is done. The function f (x) which describes the distribution to
approximate is given by the following equation

f (x) =
1

|T |
∑
r∈R

k(r − x)

Here, T is the actual set of values that we want to approximate,R is a
sample of the data, that each sensor si maintains, and k(x) is the ker-
nel function that describes how each data point distributes its weight.
Given that the choice of the kernel function has little significance over
the estimation output [185], we use the Epanechnikov kernel, which
has a closed form integral, and can thus be computed very efficiently.
The Epanechnikov kernel is given by the following equation

k(x) =

(3
4
)d 1

B1B2..Bd

∏
1≤i≤d(1− (xi

Bi
)2)

if ∀i, 1 ≤ i ≤ d, | xi
Bi
| < 1

0, otherwise

where Bi is the kernel's bandwidth, computed with Scott's rule [185],
Bi =

√
5σi|R|−

1
d+4 . The kernel is suitable for multi-dimensional data

and σi is the standard deviation for the i-th dimension (i.e., emotion),

201 G. Valkanas

Figure 4.42: Approximating the data distribution in a sliding window.

which can be efficiently and accurately maintained in an online fash-
ion. For simplicity, we ignore the interplay of emotions, and set d =
1. Finally, we note that values are normalized in the [0, 1]d space.
However, we do not find this really restrictive: As a straightforward
approach, we can normalize with the maximum value allowed by the
system's architecture (e.g., 232− 1 for int). Alternatively, we could rely
on system specification requirements regarding the load it must sus-
tain, which will also be an upper bound (within constant factor) on the
values it can process.
Since we operate under a sliding window model, we need to efficiently
approximate the distribution of the data which currently fall within the
window. Figure 4.42 graphically portrays this requirement, demon-
strating for two consecutive time instances the contents of a sliding
window (points in blue) and their respective PDF. As time advances
(from top to bottom), new points arrive and expired ones are evicted.
Therefore, we must update our kernel estimation at each timepoint;
using data aggregation during time intervals, instead of monitoring a
stream, makes this computation tractable.
In order to approximate the data distribution, we need to i) maintain
online a random sample over the data that fall within the window w,
and ii) keep track of the standard deviation σ of the values within w.
Both of these values are very easy to maintain in a streaming environ-
ment. We use "chain sampling" [26] to produce the random sample,
which will randomly select a point s from the sample to evict, regard-

G. Valkanas 202

Mining and Managing User-Generated Content and Preferences

less of s being expired or not, and replace it with the new point p. Al-
though we could maintain the entire stream, given enough resources,
this is not necessarily a good idea, as shown in Section 4.4.6. More-
over, sampling serves as an indirect way for filtering spurious bursts.

4.4.2.2 Event Detection

Having our online kernel density estimator in place, we can now use it
to identify changes in the data distribution. The rationale is to identify
events on the basis that the most recent aggregate emotional state of
users was not "as expected", according to what we have seen so far.
Therefore, if a sudden change was observed, this could be caused by
an external phenomenon.
Due to our "chain-sampling" approach, we always maintain a sample
which reflects the latest distribution from the data, and consequently,
the most recent emotional state among the users. Similar problems
have been examined in sensor networks [197], but we have the ad-
vantage that i) we can maintain the full window, if we want to, as we
are not as heavily constrained on our resources, and ii) an event of
significance will have a more lasting effect on the users, so we expect
at least one point to be inserted in the sample.
To characterize the new point as a significant deviation, we first com-
pute its probability mass over the sample R, according to our kernel
k(x). More specifically, for each new point p we evaluate the quantity

P (p, r) =
1

|R|

∫
[p−r,p+r]

∑
ti∈R

k(x− ti)dx

The value r is the neighborhood range, within which to search for
points from R. From the definition of the Epanechnikov kernel, the
values need to be in the (pi− r−Bi, pi + r+Bi) range, to contribute
to the integral. If that probability P (p, r) is below a certain threshold,
we say that this tuple is an outlier. In our setting this means that a
significant change was detected in the emotional state of the observed
population. Since this could be the result of an occurring event, we
should trigger additional mechanisms to describe it. Therefore, event
detection is decoupled from event description.

203 G. Valkanas

4.4.3 Extracting Spatial Information

As we have already discussed, we group users based on their spa-
tial proximity. Spatial information has become ubiquitous over the
years in applications. In fact, we can see a clear shift from the "spa-
tial is special" argument made in the '90s and early 2000 [19] to a
general adoption of a "spatial is everywhere" statement. One of the
reasons of this transition is that locational information can be used to
map information from the online back to the physical world, as we do
in our case. Moreover, we can use this type of information to con-
textualize data and provide localized recommendations [199] through
Location-Based Services (e.g., Gowalla, Foursquares, etc.), and mul-
tiple techniques have been proposed that rely exclusively on this as-
pect [76, 108, 180, 81, 216]. Finally, such is its importance that con-
cealing the location of a user is actively researched in privacy preserv-
ing data mining [13, 92, 226, 95].
However, spatial information regarding the users is generally scarce
on social media, despite its central role in today's applications. The
reason is that most of the existing techniques expect geodetic coor-
dinates to provide their service effectively, and rely on GPS-enabled
devices, e.g., smartphones, that provide highly accurate coordinates.
Unfortunately, users that share their location through a GPS-device
are currently far less than those who do not. Therefore, a significant
amount of information is lost, unless we can link them to a physical
place as well. Figure 4.43 demonstrates the number of Twitter users
received through the Gardenhose (10% sample) over a 2-month pe-
riod, who share their location through a GPS mechanism as opposed
to those who did not. Almost half of the users who provide GPS loca-
tion (green bar) have done so through a status update, whereas the
other half (grey bar) give GPS location in their profile. Regardless,
these users make up only 1% of the Twitter users, whereas approx-
imately 60% provide textual information. Even if we explicitly asked
for GPS-enabled tweets, the figure practically states that most infor-
mation on Twitter would remain idle, which is clearly underutilization
of information.
On the bright side, most social network users share their location pub-
lically on their profile in text form, including, for instance, the city,
state, and country (or equivalents) they live in. Therefore, they pro-

G. Valkanas 204

Mining and Managing User-Generated Content and Preferences

 0

 10

 20

 30

 40

 50

 60

 70

None GPS Text

%
 o

f
U

s
e
rs

Figure 4.43: Distribution of users based on how they discolse their location

vide a coarse view of their whereabouts in general, usually at city level
granularity, or they attach such information to each of their status up-
dates. Being able to pinpoint users at the city level is still important
and sufficient for a variety of applications, including our case (news-
worthy event detection). Other applications are spatiotemporal bursti-
ness [128], sentiment analysis or even demographics, which has been
historically handled at a higher-than-GPS level.
The problem of extracting the location of a user in terms of (latitude,
longitude) given a textual query is known in the literature as geocod-
ing. Building a geocoding service is not easy, mostly because of the
need for a complete reference database, as well as the heavy de-
velopment and fine-tuning it entails [187, 54]. Moreover, despite the
abundance of online geocoders, relying on these services as external
resources is impractical and sometimes impossible as a result of their
terms of use. Given the hard limits that the services pose on their daily
query quota, it would take several months to geocode, e.g., all Twitter
users, which are approximately 140 million 18 at the moment.
Motivated by the aforementioned problems, and a need for high vol-
ume of localized data, in this thesis we tackle the problem of geocod-
ing locations, provided by the users as textual information. Unlike
existing sophisticated and complex algorithms, which are common in
online map services [1, 2, 3] we rely on software and data which are
publically available online, making our approach practical and easy to
implement. We present a simple, lightweight, yet efficient algorithm
to geocode user locations and place them on the map, at the best
possible granularity. Finally, our approach is effective and is able to

18https://business.twitter.com/basics/what-is-twitter/

205 G. Valkanas

augment the pool of location-mapped users significantly, as we ex-
perimentally demonstrate on a large corpus of Twitter users.

4.4.3.1 Related Work

Our main objective is to return geodetic coordinates ("latitude, longi-
tude"), which are the nearest to a location, represented in text form.
This process is commonly known as geocoding and its common use
refers to mapping street addresses to coordinates. Note that effec-
tive geocoding in that sense requires complete reference datasets of
street names, which are unavailable to the public for all countries.
Moreover, existing methods assume that the query location will be
well-formed, or will adhere to some structure to guide the search, e.g.
comma separation of administrative hierarchies: Street No, Street,
City, State. Early works on geocoding investigated address tokeniza-
tion techniques, employing rule-based or Hidden Markov Model [60,
156], because non-standard address formats were used. Note that
according to a recent survey [94], the problem still persists in most
countries.
These methods, however, used public health records, hence, suffi-
cient information on the location of the patient (city, county, state)
was present, and were constrained within a single country. On the
contrary, our approach is challenged by high diversity, as social net-
working sites are used by people around the globe. Moreover, users
hardly ever provide a street level location and write in their personal
style. Location nicknames (e.g. "Fog City" for San Francisco), abbre-
viations ("LA" for Los Angeles, or "KCMO" for "Kansas City, Missouri")
and (intentional) mispellings (e.g., "Laweezyana") are also customary.
Finally, note that city-level granularity is sufficient for our purposes, yet
we still need to overcome the other shortcomings.
The most relevant work to ours is [187], used in commercial online
map service [3]. There are several technical differences in our ap-
proach and theirs, with the most basic being that we do not have ac-
cess to a complete reference dataset, but rely on online resources as
our primary data, making our approach easy to implement. Moreover,
we employ lightweight, yet efficient algorithms, unlike the sophisti-
cated algorithms presented in [187], which rely on mature commercial
technology [54] and parameter fine-tuning. We stress that, although

G. Valkanas 206

Mining and Managing User-Generated Content and Preferences

our goals overlap, our incentive is not to compete with these tech-
nologies, but provide simple, yet effective, algorithmic mechanisms to
geocode information. This objective is driven by our need to perform
online event detection using Twitter data, that we receive as a stream.
Exploting online resources for geocoding has been researched in the
past [28], but with a different goal in mind: to discriminate and ac-
curately identify the location of a street address. The idea stems
from the lack of fine-grained information in common online datasets
(e.g. TIGER), and the authors counter this problem by using tax and
real-estate sites, which provide additional information on the census
blocks. Since address level location is scarce in online social net-
works, this methodology is inapplicable in our case.
Other approaches propose to use online resources to automatically
construct and maintain gazetteers, which are essentially the datasets
of reference locations used in geocoding and other applications (e.g.,
named entity recognition) [236, 203]. Their advantage is that docu-
ment level linking -- which is common in Wikipedia -- corresponds to
spatial proximity or relation (e.g., administrative hierarchy). Neverthe-
less, the goal of building gazetteers is orthogonal to ours. The bet-
ter the accuracy of gazetteers, the better our approach will perform.
Given the public availability of datasets with good quality and easy-to-
crawl resources, we do not currently consider these methods.
Similar in spirit are the works in [65, 188] in that they also try to de-
rive a location from user tags. However, their approach differs in that
users carefully select tags to describe a photogoraph because that will
increase their photos visibility, unlike the social network setting. More-
over, photographs are usually about landmarks, which can be accu-
rately identified and placed on a map. Finally, the Flickr service itself
allows users to geocode their photos by selecting a place on a map,
which can provide an accurate reference dataset of location-related
tags.

4.4.3.2 Problem definition

The problem of geocoding basically means to transform a location of
type A, to another --usually equivalent-- location of type B, through
a meaningful mechanism. In our setting, the goal is to map textual
locations, provided as user generated input, to a (latitude, longitude)

207 G. Valkanas

pair or an equivalent identifier (that can be mapped back to these co-
ordinates). The problem can then be defined as follows (tailored for
our setting):

Problem 4 Given a user locationL, provided as a set of tokens (terms),
find a set of geodetic coordinates (i.e., latitude, longitude), that can ac-
curately describe L.

Given this definition, our research focuses on the following desiderata:

1 Using available text descriptions from online resources
2 Investigate the accuracy and efficiency of simple techniques

4.4.3.3 Problem setting

Note that the geocoding definition is general enough and several trans-
formation mechanisms could be employed. Moreover, the level of re-
quired accuracy is subjective, and usually is application-dependent.
For event detection, achieving city level accuracy is sufficient. In that
respect, returning a set of geodetic coordinates that describe the city
(e.g., the center of the city) is considered enough. We are also highly
interested in efficiency, due to the voluminous amount of data that is
generated in social networks.
Unfortunately, existing online resources are notorious for being in-
complete or inaccurate [173], even for the US. To address this prob-
lem, we utilize the wealth of information available on the Web and
fill in missing gaps. As we are not interested in street level accu-
racy, the GeoNames dataset 19 is sufficient for our purposes. De-
spite its richness, the dataset lacks a hierarchy of administrative units
(e.g. county, state, etc) for most countries. To overcome this, we can
crawl online resources, such as the Flickr places dataset, or evenmine
Wikipedia, which will provide better information. For instance, we can
use wikipedia to construct reference lists for abbreviations, synonyms
or nicknames of locations (e.g. "Fog City" or "Frisco" for "San Fran-
cisco", 2-lettered US and Canada states abbreviations, etc.)

19http://www.geonames.org/

G. Valkanas 208

Mining and Managing User-Generated Content and Preferences

4.4.3.4 Online geocoding

A straightforward solution onemight consider would be to query online
geocoders, such as GeoNames server, OpenStreetMaps server, or
even online mappings services. However, online mapping services
pose a hard limit on the number of the allowed daily query quota. Even
if such quotas were not present, crawling "politeness" should still be
honored, which would eventually pose an upper bound on the number
of submitted queries.
Although such an approach would work well for a few locations (say,
a few thousand), it is infeasible for online social networks. Twitter
currently claims 140 million users, whereas Facebook has nearly 1
billion active users per month 20. Even if we take into account that
60% of the users provide their location in text form and assume a
high query quota is allowed (Yahoo! allows 50K queries/day), it would
take several months to geocode all of them. Finally, online geocoders
are accessed through HTTP requests, which is known to be a slow
communication protocol, and do not allow batch processing requests.

4.4.3.5 Data Cleaning

Another issue is that users tend to write funny quotes in their profile
such as behind you, why do you ask, etc., so as not to disclose their
location. Therefore, it is mandatory to clean such data to come up
with location information that will be of use.
For instance, users multiplex different encodings, charsets and fonts
to make up their location. Though these locations are readable and
well-understood by humans, they can not be mathced to an actual
location, unless they are transformed to another encoding. Users
also tend to surround their text with emoticons or various shapes (e.g.
hearts, stars, bars, etc.) to make them fancy. We have manually
compiled such lists and intend to make them publically available.
We also have lists to remove japanese, korean and arabic text. A
major issue with japanese and korean is that text tokenizers and an-
alyzers --including the one used by Lucene-- are not well suited for
these languages, which do not use whitespace delimiters. Assuming

20http://newsroom.fb.com/content/default.aspx?NewsAreaId=22

209 G. Valkanas

that an appropriate tokenizer is present, our algorithm is still applica-
ble. Due to this fact, such locations resulted in a high rate of false
positives. Given that we are unable to understand these languages,
we removed all such locations, using custom built lists from online
dictionaries, alphabets and the actual text from the locations.
Finally, given that (custom) data cleaning is a time consuming pro-
cess, we could make use of machine learning approaches for this pur-
pose. Sentences that do not refer to actual locations may emerge as
topics and we could employ topic extraction algorithms (e.g. Mallet 21).
Alternatively, we could use co-occurrence relations or even maximal
sets to identify these. We plan to thoroughly investigate these ap-
proaches as part of future work.

4.4.3.6 Algorithmic description

Algorithm 4.3 gives a detailed description of our lightweight geocoder.
The algorithm takes as input the reference database (our gazetteer) G
and the associated hierarchy of locationsH. In our approach a 4 level
hierarchy was used: i) suburbs and towns, ii) counties, iii) states
and iv) countries. Coarser or more fine-grained hierarchies could be
employed, but we see that these levels work well in practice and align
well with human intuition. The algorithm also takes the location L that
we wish to geocode.
The entire process consists of 3 phases: cleaning, tokenization and
searching. The cleaning process lower cases the characters to sim-
plify subsequent steps. Due to the nature of the social networks datasets,
cleaning also means that we need to correct fonts and encodings, and
convert them to the one used in G. Once this has been performed, we
remove decoratory symbols (e.g., hearts, stars etc) that users insert
in their location. Unfortunately, a drawback of using commodity soft-
ware is that ordinary tokenization will not recognize these characters
as text delimiters. The problem that then occurs is that tokens will
not match valid locations in G. As a final step, we remove characters
which we can not process, e.g., japanese in our case, although this
step should be optional in a complete system.

21http://mallet.cs.umass.edu/

G. Valkanas 210

Mining and Managing User-Generated Content and Preferences

Algorithm 4.3 LightGeocoder
Input: Reference database (gazetteer) G, Locations Hierarchy H, Location to geocode L
Output: Set of possible geodetic coordinates C

1: //Location preprocessing
2: cleanLocation← lowerCase(L)
3: cleanLocation← CorrectFonts(cleanLocation)
4: cleanLocation← RemoveDecoration(cleanLocation)
5: cleanLocation← RemoveCharacters(cleanLocation)
6:
7: //Search term extraction
8: tokens← tokenize(cleanLocation)
9: searchTokens← ∅
10: newToken← tokens[0]
11: for (i← 1; i! = tokens.size(); i++) do
12: search← newToken+ " "+ tokens[i]
13: if (G.getResult(search).size() != 0) then
14: newToken← search
15: else
16: searchTokens← searchTokens ∪ newToken
17: newToken← tokens[i]

18:
19: //Location Matching
20: matches← ∅
21: for (i← 0; i! = searchTokens.size(); i++) do
22: search← searchTokens[i]
23: interpr ← G.getResult(search)
24: if (matches.isEmpty() != 0) then
25: matches← interpr
26: continue
27: newMatches← matches
28: for (j ← 0; j! = interpr.size(); j++) do
29: ancestor ← H.search(interpr[j],matches)
30: if (ancestor! = null) then
31: newMatches← newMatches \ ancestor
32: newMatches← newMatches ∪ interpr[j]

33: matches← newMatches

34:
35: C ← ∅
36: for (i← 0; i! = matches.size(); j++) do
37: C ← C ∪ G.coordiantes(matches[i])

38: return C

211 G. Valkanas

Once the cleaning process is done, we tokenize the input location. We
apply simple tokenization on whitespaces. We then check whether we
can combine tokens with one another, into larger token sequences. In-
tuitively, the idea is to combine tokens which make up valid locations,
e.g. "los angeles" instead of separately having "los" and "angeles".
During this step, we do not care about the actual locations that can
be retrieved, only whether additonal locations can be retrieved. This
step creates a set of search tokens to use in the final step.
Finally, we perform the actual location mapping step. For each loca-
tion from the search tokens, we get a list of id's, which we call interpre-
tations. An interpretation is simply a possible location against which
a token can be matched, without using other contextual information.
For each new interpretation (lines 28-32), we check in the hierarchy
H whether there is a child-parent relation with another interpretation
that we obtained for previous search tokens. If we identify such a
child-parent relation, we remove the parent id and insert the child's.
This way, we increase the level of granularity for the location we have
been given. Note that we maintain locations for which we can even-
tually establish a connection in the hierarchy. Once this process is
complete, we query our database G for the actual coordinates of the
locations that we have extracted, which we then return.
As a final note, the (worst case) algorithmic complexity of our tech-
nique is O(

∏
inter(token)), where inter(token) is the number of in-

terpretations that each token may have. However, tokens are usually
few (at most 7), and each one is matched to few locations. As we
demonstrate in our experimental evaluation, the actual running time
of the entire process is minimal, keeping the approach efficient for our
purposes.

4.4.4 The TwInsight System

In this section we discuss the components that make up our system,
as well as the data and its workflow. There are several components,
in order to provide the desired functionality, each of which works in-
dependently of the others. Consequently, we can substitute any one
of them with better alternatives.
Twitter Data. Our only source of information is the Twitter stream,

G. Valkanas 212

Mining and Managing User-Generated Content and Preferences

receiving tweets through the service's streaming API 22. Having ac-
cess to the Gardenhose we receive a 10% sample of all public tweets
that are posted to the service. Unlike previous techniques, we do not
rely on external sources [161, 131] or whitelists [181]. To retrieve the
information, we use our crawler, described in Section 4.2.1.
Emotion Classification. Emotions are a key ingredient in our ap-
proach, and constitute the basic input to our algorithm (following the
tweet). We use a set of 6 emotions proposed by American psycholo-
gist Paul Ekman [77]: anger, fear, disgust, happiness, sadness, sur-
prise. We also use a neutral (None) state, to describe the absence of
an emotion. We do not consider neutral tweets, as we think that they
are uninformative.
In order to extract emotions from tweets, we have trained a classi-
fier using both structural and semantic features. We consider gen-
eral punctuation, such as exclamation marks, question marks, quo-
tation marks, etc. We also consider letter capitalization / duplication
(e.g. "yesssss!!!" instead of "yes"), number of retweets, whether it
is a retweet (RT) itself, number of mentioned entities, hashtags and
urls. The basic rationale behind using structural features of the tweet
is that we expect truly spontaneous reactions to contain these charac-
teristics. Moreover, these features are very easy to extract, because
they are either directly provided by Twitter (e.g., retweets), or can be
extracted through shallow parsing.
We also compiled lists of emoticons from online resources, such as
Wikipedia, and by manual inspection of the tweets, which are good
indicators of sentiment [93, 33]. Finally, we use lists of words and
phrases which are known to be related to emotions. For this pur-
pose, we use the Affective WordNet [142] vocabulary, and the moods
dataset [129] which contains several sentiment-tagged words.
It is important to note that classifying tweets to emotions is harder
than classic sentiment analysis. The reason is not only the additonal
target classes, but rather the inherent ambiguity of certain words and
the way we use them. For instance, according to Affective WordNet,
"amazing" is related to surprise. However, in the sentence "That book
was amazing!", the intent is to express joy. Sentiment analysis would
correctly identify the sentence as "positive", but an emotions classifier

22https://dev.twitter.com/

213 G. Valkanas

may easily mislabel it. Similarly, disgust can easily be misinterpreted
as anger, as in "I hate eggplants!!!!", but in either case the sentiment
will be "negative".
Location Extraction. To extract a user's location, we use the ap-
proach presented in Section 4.4.3. More elaborate techniques could
also be considered [108, 14], but these require a significant amount of
data for each Twitter user, to build an accurate language profile. We
remind the reader that we use the GeoNames database 23 and Flickr
data 24 to create an administrative hierarchy of places. The admin-
istrative hierarchy is necessary to discriminate between places with
the same name, such as "Athens" in Georgia, US from "Athens" in
Greece. Flickr provides data up to a town or suburb level, which we
believe is more than sufficient for our purposes.
Along with every tweet, the Twitter service also sends information
about the poster, such as the "Location" field of her profile. Tweets
are mapped to locations as follows: First check whether it contains
a GPS signal, which occurs when the tweet is automatically posted
from a location based service (e.g. Foursquares). Otherwise, use the
"Location" field and map the user with our custom gazetteer. There-
fore, for that particular tweet, the user is assigned to the sensor that
monitors the respective area. We do not consider tweets from users
who can not be mapped to a location.
Event Detection. We assume a set of virtual sensors, each of which
is in charge of monitoring a specific location. Each sensor runs the
event detection mechanism presented in Section 4.4.2, applied on the
counts of each emotion separately, measured in every aggregation
interval. Event detection runs in an online fashion, to address the "as
events occur" requirement of our problem. When an outlier is detected
in the emotional state of the users, a signal is raised, notifying the
event extraction mechanism to be put into effect. The general idea
is to run a lightweight, yet effective, mechanism for event detection,
which will trigger the more heavyweight event extraction module when
it should be executed, instead of constantly running the latter.
Event extraction. The event extraction mechanism is responsible for
finding the most informative terms which describe the event that oc-

23http://geonames.org/
24http://www.flickr.com/places/info/

G. Valkanas 214

Mining and Managing User-Generated Content and Preferences

curred. The input of this component is a set of tweets (e.g., their ids)
expressing the same emotion and were observed during the aggrega-
tion interval that triggered the event. The output is a set of keywords
which can effectively describe the event. Various techniques can be
employed at this stage, e.g., term frequency, TF-IDF, or similarity-
based [50, 158, 36]. We employ term frequency in our experiments.
It is possible for certain events (e.g., elections) to invoke different
or contradicting emotions. Such cases can be handled as follows:
tweets for the same event will (most likely) share a fair amount of
common terms and, therefore, can be grouped together. Note that
clustering based approaches will also fail, unless the tweets share
some terms. The user can then be notified of the event and the emo-
tions in an aggregate way (e.g., 60% happy, 30% angry, 10% sad).
In fact, informing the end-user of the different emotions that an event
may elicit adds a semantic dimension, which can be very helpful for
social scientists and decision makers alike. This is a unique trait of
our technique, not shared by other approaches.

4.4.5 Event Extraction Workflow

From the description of an event e and our event detection mecha-
nism, it should be clear by now that we need the following information:
a location l, the time of occurrence t, a set of keywords to describe
it, and the emotions that were elicited as a result of the event. The
standalone subsystems used to extract this information have already
been described. Therefore, in the next paragraphs, we describe how
we put the pieces of the puzzle together to serve our ultimate goal of
event detection.
Figure 4.44 shows a schematic view of the components and their inter-
action25. The Twitter stream is our system's input, feeding two com-
ponents, namely the emotions classifier and the location extraction
subsystem. Through the location extraction process, each incoming
tweet is mapped to a location, which will also be the location of the
event (assuming one occurs). As discussed in Section 4.4.2, we use a
set of virtual sensors, each of which is solely responsible for a specific

25Storage image by Barry Mieny, under CC BY-NC-SA license.

215 G. Valkanas

Figure 4.44: Schematic interaction of our system's components

location. Therefore, the tweet will be forwarded to the virtual sensor
responsible for the location it was mapped to.
Meanwhile, the tweet has been classified to one of the 7 emotions
that we use. If the classifier indicated that the tweet conveys a non-
neutral emotion, the virtual sensor will further process it. Otherwise,
no additional actions are performed. In any case, we store all tweets
in our database. It is worth noting that this approach allows for an
elegant integration with spam detection mechanisms: spam tweets
can be cast to the neutral class, thereby preventing them from any
subsequent processing.
All in all, when a sensor receives a tweet for further processing, we
already know its location and which of the 6 non-neutral emotions it
has been cast to. For each emotion independently, the sensor counts
how many tweets it has received during the last aggregation inter-
val, and produces a single value (the respective count) at the end of
each aggregation interval. Each such value serves as input to a sep-
arate instance of the event detection mechanism we have previously
described, running on the same sensor. The event detection mod-
ule updates its values and identifies whether a surge, i.e., an event,
in any emotional state has occurred. In such a case, we report the
end time of the aggregation interval as the event's time of occurrence
t. Additionally, the tweet ids that caused the peak for that particu-
lar emotion are passed on to the event extraction mechanism, which

G. Valkanas 216

Mining and Managing User-Generated Content and Preferences

will go over them and summarize the event appropriately. This final
step will provide the descriptive keywords of the event, which can then
be presented to the user with all the necessary information: location,
timestamp, emotion and description. Notice how the event extraction
step is put into motion only if an event was detected. A sample output
can be found in [206].

4.4.6 Experiments

4.4.6.1 Experimental Setup

In this section we present experimental evidence of our proposed
techniques, used to extract events from Twitter data. In particular, we
evaluate our geocoding mechanism, described in Section 4.4.3, as
well as our event detection mechanism, described in Section 4.4.2.
We have crawled Twitter through the Gardenhose between the start
of April and end of May 2012, and have obtained a dataset of a little
less than 300 million tweets. Considering that the sampling policy is
entirely at Twitter's discretion, we have no control over the type of
data we receive in terms of content, location, or language, nor the
rates in which they arrive. The tweets have been posted by 29 million
unique users (identified by their id). Taking into account the analysis of
Section 4.3, using the Gardenhose sample is better for our purposes,
as we want to track general events in real-time, whereas the default
sample is appropriate (in the temporal dimension) only for the most
popular discussed topics.
Given our final objective -- event detection --, we filter the received
tweets by language language (english, french, german, greek, span-
ish) and locations (USA and european timezones), so that we can un-
derstand what is being talked about, and evaluate our system in terms
of effectiveness. After this filtering step, we obtain approximately 11
million unique users. Note that several of them are in fact non-english
speakers, however, the default language option is english. This is
not a major issue as we can filter out such users further down the
processing chain, based on the content of their tweets, using either
lexicon-based or machine learning approaches, e.g. [179].

217 G. Valkanas

4.4.6.2 Geocoding Results

Out of the 11 million users, we have extracted approximately 2.5 mil-
lion locations, which means that in a uniform distribution there is an
average of 4 users per location. Over the 2-month period that we
crawled Twitter, about 150K unique users changed their profile loca-
tion, which we use for geocoding. Therefore, in the worst case, we
are still left with 2.35 million unique locations to geocode. This leads
to the following conclusions:

• Users will update their profile location if they are inclined to do so.
• For the most part, for short periods of time (e.g., spanning a few
months), the general location of a user remains unchanged. By
"general" we mean a broad area where they have mostly been
during that period.

• Since users do not change their profile location that often, geocod-
ing it and storing it for future retrieval is meaningful and can be
easily performed. Note that in case of users who have enabled
a geo-tagging service, their location is available. Nevertheless,
these services use a well-formed naming convention, making the
geocoding problem much easier.

After applying the cleaning process that we have described in Sec-
tion 4.4.3.1, we derive a dataset of 1.8 million locations. Within this
dataset, the GPS-enabled locations are less than 100K. Table 4.12
summarizes the basic properties of the dataset used for geocoding.

Table 4.12: Location dataset characteristics
Variable Value
#Initial users 29 million
#Users after filtering 11 million
#Uncleaned (unique) locations 2.5 million
#Cleaned (unique) locations 1.8 million
Average token count / location 3.147
Full gazetteer size 3,490,337 entries
Small gazetteer size 1,042,742 entries

G. Valkanas 218

Mining and Managing User-Generated Content and Preferences

Our geocoding approach requires the use of a reference database
(i.e., gazetteer). For this purpose, we created two gazetteers, both of
which include all of the data that we crawled from the Flickr Places
website. Their difference lies in the entries used from the GeoN-
ames dataset, for the countries we want. The first one contains all
of the GeoName entries, and we denote this one as Full. The sec-
ond one uses only entries that have been marked as "administrative"
(e.g., a county) or "populated area" (e.g., village). We denote the lat-
ter dataset as Small. Each GeoName entry has been assigned to the
closest location of similar administrative type from the Flickr dataset,
as we have described in the previous sections, to be able to effi-
ciently exploit the hierarchy. Finally, we have indexed each reference
database using Lucene 26, to allow for IR-style retrieval of locations.
Geocoding Efficiency. We start by evaluating our system in terms
of efficiency. The geocoding process is written in Java 1.6 and ran
on a single node, with Quad Core @3GHz. We measure the time
taken to run the LightGeocoder algorithm for each user and report the
cumulative time required for all 1.8 million unique, cleaned locations.
Therefore, the reported values show how much time is required for
the geocoding process in a real system implementation.
Figure 4.45 shows the efficiency of our geocoding scheme, with each
of the two gazetteers. Clearly, when the Full gazeetteer is used the
runtime increases, because each token has more possible interpreta-
tions and the index contains more entries to search against. On the
other hand, the Small gazeetteer is more lightweight and requires less
time to come up with the set of possible locations. Although there is a
3:1 ratio in the gazetteer sizes, the processing times differ by a factor
of 10; this is can be explained as the hierarchy consists of 4 levels
(including countries).
Not surprisingly, both approaches are linear to the number of locations
mapped. Therefore, we can cut down the total elapsed time by using
multi-threaded solutions or by distributing the workload among more
computers. Regardless, the average (per location) geocoding runtime
is 3.4 ms when using the Small database, whereas it is 14.4ms with
the Full database, which still allows us to do the geocoding in real
time. Finally, the cleaning process takes a negligible amount of time

26http://lucene.apache.org/core/

219 G. Valkanas

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000

O
v
e
ra

ll
 t
im

e
 (

 h
o
u
rs

)

Locations (x 1000)

Full Small

Figure 4.45: Efficiency of geocoding using the Full and the Small gazetteers

(in the order of 10−5 sec), and does not influence the overall efficiency,
as it is linear in the text's length and performed through lookups.
Effectiveness Evaluation. A basic goal of our research was also to
investigate the effectiveness using simple techniques and publically
available data. To measure our technique's effectiveness, we per-
formed a series of experiments. First off, and in order to simplify the
evaluation process, we assume that if our geocoder returns more than
5 possible matches, then we can not map the corresponding loca-
tion at the granularity we desire. However, we discriminate between
"overmapping" a location and not mapping it at all. Effectively, we can
see the number of locations that have been mapped, the ones that
have been "overmapped" and the remaining ones that have not been
mapped. Figure 4.46 shows the number of locations (in log scale)
that fall inside each of these categories when either of the gazetteers
is considered.
The interesting outcome of this experiment is that, contrary to what
one might expect, the Small gazetter maps more locations than the
Full gazetteer, especially when it leaves more locations unmatched!
Apparently, the large number of indexed entities present in the Full
gazetteer introduce more disambiguation and make it harder for the
algorithm to select a small set of possible matches. This leads us to
the conclusion that it is not only important to clean the incoming loca-
tions, but we should also pay special care to the reference dataset.
Mapping (or not) more or fewer locations may be statistically useful,
but does not realy hint us on how well our system performs. For this

G. Valkanas 220

Mining and Managing User-Generated Content and Preferences

 100K

 1M

Mapped
Unmapped

Overmapped

#
L
o
c
a
ti
o
n
s

Geocoding result

Full Small

Figure 4.46: Number of mapped, unmapped and overmapped locations by gazetteer usage

reason, we have conducted an oracle experiment, querying a service
which is particularly suited to the geocoding task. Specifically, we
queried the Yahoo! maps geocoding service with 10K locations, ran-
domly sampled from the 1,8M locations that we experimented with.
The service returns its response in XML format, with a ranked list of
potential matches. If the location could not be matched, an empty
ranked list is returned.
We used the default parameters which return at most the top-10 pos-
sible locations, along with a GPS location and a small textual descrip-
tion. Each result is also accompanied by a quality element of integer
type, which is essentially the granularity (or precision) of the result-
ing location. Higher values indicate greater precision. For instance,
quality values greater than 80 correspond to points, whereas values
between 31 and 40 are town level areas.
We initialy present a confusion matrix, which measures 4 values:

• True positives: the number of textual description identified as a
location by both approaches

• True negatives: the number of textual information that have been
correctly identified as not being locations

• False positives: the number of textual information which (our ap-
proach) identifed as being possible locations, whereas Yahoo!
maps did not consider them as such.

221 G. Valkanas

• False negatives: the number of locations which we failed to iden-
tify as being a valid location, whereas Yahoo! maps returned a
ranked result set.

Table 4.13 contains the values for these four measures for both of
the reference databases. The matrix is read as a combinatiom of its
row and column, for the corresponding gazetteer. For instance, the
upper right corner reveals the true (vertical) positive (row) for the Sim-
ple gazetteer. Two important things to mention are: i) overmapped
locations are handled as unmapped, on the basis that we can not dis-
criminate between them easily with our current approach, and ii) the
true positives metric only measures whether both techniques identi-
fied a description as being a location or not. It does not consider,
whether the same location has been indeed selected, which we dis-
cuss followingly.

Table 4.13: Confusion matrix for the "oracle" experiment
Full Small

True False True False
Positive 1699 114 2363 75
Negative 656 7551 695 6887

For the columns labeled with True (False), higher (lower) values are
preferred. Once again, we draw the conclusion that "simpler is bet-
ter". The small gazetteer performs better than the full gazetteer in all
four occasions. In fact, if we carefully observe the matrix, it appears
that when we move from the small to the full gazetteer, there is a
transfer of true positives to false negatives (a result of "overmapping"
locations), and a similar transfer of true negatives to false positives.
Clearly, this artifact has been introduced by the GeoNames dataset,
since everything else has remained unchanged.
We now drill down on the true positives which we identified with each
approach. We want to see if the locations extracted by our geocoder
fall within the top most locations returned by the Yahoo! maps. To
this end, we measure the percentage of documents retrieved by our
approach that can be matched to one of the top-n results by Yahoo!.
For instance, if the top-1 result is present in our returned list, we as-
sume that we have a match at position 1. Because we currently avoid

G. Valkanas 222

Mining and Managing User-Generated Content and Preferences

ranking, this essentially means that we have the prospect of returning
one of our results as a top-1 value (and stop at that point).
We select up to the top-5 results, returned by Yahoo! maps, which
have already been provided as a ranked list. For each result, provided
that its quality is up to a city level (quality> 30), we extract the closest
city location from our crawled Flickr dataset, which is the basis for
the hierarchy. Followingly, we check if at least one of our geocoder's
proposed locations is within Yahoo! map's top results.

 24

 26

 28

 30

 32

 34

 36

 38

 40

 0 1 2 3 4 5 6

R
e
c
a
ll
 (

%
)

Position (n)

Full Small

Figure 4.47: Effectiveness of our approach using the two gazetteers

Figure 4.47 demonstrates the cumulative measure we discussed in
the previous paragraph. We observe that the simple gazetteer did not
only achieve a high true positive ratio (see Table 4.13), but it has been
able to correctly identify the correct location at a percentage of 36%
with simple techniques. It is also better than the full gazetteer by at
least 10%. In actual numbers, the simple gazetteer matched correctly
around 845 locations, as opposed to a mere 434 that the full one did.
As a final note, it is important to mention that, despite the misclassifi-
cations (false positives, false negatives), even with the full gazetteer
it appears that we can increase our geo-tagged users data pool by
roughly 5% of present locations. This translates to several users,
especially if we consider the average 4:1 user-location ratio. Clearly,
our gold-standard data is quite small, and generalizations should be
cautioned, but it still provides good evidence that profile location is
useful and can be extracted with lightweight approaches, such as the
one presented in this thesis.

223 G. Valkanas

4.4.6.3 Event Detection Results

Since spatial information is essential for our event detection mecha-
nism, we only consider those users who have been mapped to a lo-
cation, using the technique we have already described. In particular,
we only consider tweets written in english, spanish, german, greek by
users from Canada, France, Greece, Germany, Ireland, Spain, UK,
US. This gives us approximately 33.5M tweets, from a little less than
400K unique users. We order the tweets by their timestamp and re-
play the stream, feeding them to the event detection mechanism. We
apply no other data cleaning, since we would like to perform our eval-
uation as it should occur in a real-life setup.
Techniques. We have implemented our system, TwInsight, and the
state-of-the-art, EDCoW [221], in Java 1.6, both of which rely on Twit-
ter alone as input. We run our experiments on a Quad Core machine,
@3.5 GHz, with 16GB RAM and report the average of three runs.
Emotions Classification. To train our classifier, we asked from 30
individuals, of varied expertise on Twitter, to annotate a set of tweets
with one of Ekman's emotions, or a "None" option, according to their
belief that the tweet conveyed (or not) an emotion. They were also
allowed to skip tweets they felt unsure about. The tweets were ran-
domly selected from the initial dataset of 300M, to avoid biasing the
evaluation, and no consesus phase took place.
This process created a gold standard of nearly 6700 tweets 27. From
these, we removed about 100 tweets that were outside the set of ac-
cepted languages, despite the Twitter users having indicated other-
wise in their profiles. Taking our objective into account, we performed
the following cleaning: For every tweet with an emotion and more than
100 retweets, we created an identical entry in the dataset with a ran-
dom retweet count of up to 100. We then replaced the annotator's
choice with "None" in the initial tweet and kept both versions. Most
of these tweets were funny quotes and memes -- a commonplace in
Twitter --, and had the same id, thus they could be efficiently identi-
fied through simpler mechanisms (counting the id of a tweet), even if
they refer to an ongoing event. Finally, we feel that a user reporting
an event, will tweet about it in their own words, than search for an

27The dataset will be available upon request

G. Valkanas 224

Mining and Managing User-Generated Content and Preferences

Table 4.14: #Times a trigger was raised, compared to the neighborhood range. a = 1min, w
= 30, p = 0.1

50% Sample 100% Sample
Range Neutral Joy Neutral Joy
0.001 4977 1637 5315 1942
0.01 4266 1168 4138 1280
0.1 4198 1252 4088 1274

existing one and retweet it.
We experimented with various classifiers in Weka [101], including
SVMs and decision trees. Selecting the most frequent class ("None")
would give a ∼34% accuracy. In the end, a C4.5 decision tree re-
turned the highest accuracy (64.39%), in 10-fold cross validation,
with other classifiers yielding similar results. Clearly, these values
can be improved, but one should also consider the subjective nature
of the experiment. Most importantly, though, this did not prevent us
from identifying meaningful events. Finally, techniques such as [117]
are applicable, given the high discrepancy in sizes between our gold
standar and the experimental dataset.
Effect of parameters. In this section we evaluate the effect of pa-
rameters of our kernel-based mechanism in the event identification
process. In particular, we want to see how they affect the times a
trigger is raised, putting the event extraction phase into motion. Al-
though a high number of triggering might fulfill more users' needs, it
also means that TwInsight is stressed more, especially if these are
false positives.
Table 4.14 shows the number of times that the event extraction phase
was triggered, for various neighborhood ranges and sample sizes. We
use 1 minute aggregation and maintain a window of 30 points, result-
ing in a history length of 30minutes. We compare against an approach
that relies on simple counting of received tuples ("Neutral"), instead of
distinguishing between emotions.
Increasing the neighborhood range results in less triggers, because
each point distributes its weight to a broader area. Therefore, new
points receive more weight from previous ones, and are less likely to
raise an event. Although the raw counts may seem quite high, they
account for less than 2.5% of all minutes in the 2 month period.

225 G. Valkanas

In addition to the semantic implications of distinguishing among tweets
using emotions, this technique also appears to be a more lightweight
approach when looking for events, as there is a 3× cut-down of trig-
gering times. Also note that far fewer tuples are considered, because
tweets classified as "None" are dropped. In other words, subsequent
modules will be triggered fewer times and operate on fewer tweets,
resulting in a reduced load overall.
Spatio-Temporal Locality of Emotions. In this section we discuss
the effect of spatio-temporal locality of emotions, and its importance
in event detection. Figure 4.48 shows the number of times our ap-
proach raised an event as a function of the history it maintains, when
aggregating emotions over the past 1 minute andmonitoring the entire
stream at once (we use only one sensor).
Interestingly, a bigger sample size results in more triggers. This is due
to maintaining outdated information compared to the fast pace of the
medium. As we increase the history length, triggering drops slowly
(Figure 4.48(b)), because new points can be matched against more
sampled data, and are less likely to be flagged as outliers. Recall that
we monitor the entire stream here, implying that there is a continuous
flow among all the regions we monitor.
On the other hand, Figure 4.48(a) leads to a very interesting obser-
vation. Using a 50% sample, there is a dramatic drop in the num-
ber of triggers, when we increase the window size from 10 to 15;
from that point, until a window size of 30, triggering events increases
slightly, and begins decreasing from that point on. This means that for

 200

 400

 600

 800

 1000

 1200

 1400

10 15 20 30 60 120

T
ri
g
g
e
r

C
o
u

n
t

Window Size (points)

Anger
Joy

Sadness
Surprise

(a) Sample size = 50%

 200

 400
 600

 800
 1000

 1200

 1400
 1600

 1800
 2000

 2200

10 15 20 30 60 120

T
ri
g
g
e
r

C
o
u

n
t

Window Size (points)

Anger
Joy

Sadness
Surprise

(b) Sample size = 100%

Figure 4.48: #Times a trigger was raised, compared to the window size. a = 1min, r = 0.01,
p=0.1

G. Valkanas 226

Mining and Managing User-Generated Content and Preferences

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

6 10 12 15 20 24 72

T
ri
g

g
e

r
C

o
u

n
t

Window Size (points)

Anger
Joy

Sadness
Surprise

(a) Sample Size = 50%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

6 10 12 15 20 24 72

T
ri
g

g
e

r
C

o
u

n
t

Window Size (points)

Anger
Joy

Sadness
Surprise

(b) Sample Size = 100%

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

6 10 12 15 20 24 72

T
ri
g

g
e

r
C

o
u

n
t

Window Size (points)

Canada Avg. Other

(c) joy in Canada

Figure 4.49: #Times a trigger was raised, compared to the window size. a = 5min, r = 0.01,
p=0.1

1 minute aggregations, there are rapid changes in the observed emo-
tions; therefore a window of 10 points may be too narrow, to maintain
a representative "history". On the other hand, a window between 15 --
30 minutes seems like a better choice. This result correlates very well
with the real time nature of the medium, where people tend to speak
and respond very quickly to their tweets. It also means that events
that are present in our data create some momentum over a mid-size
period (∼30minutes), and then dissipate.
Given that 1-minute aggregations may be too aggressive, we also ex-
perimented with 5-minute aggregations. As shown in Figure 4.49, 5-
minutes aggregations are smoother with 50% sampling. Moreover,
triggering is increased towards the end, where the window size is at
least 24 points, i.e. 2hours. However, most triggers did not corre-
spond to particularly meaningful events using simple term frequency
for event description. This implies that there are not such sudden
changes in 5-minute aggregations, whenmonitoring the entire stream.
This has also been validated with longer aggregation periods.
What is more interesting, however, is the spike we observe in Fig-
ure 4.49(b), for a window size of 15 points (75 minutes), which does
not exhibit a similar behavior with the one of Figure 4.48(a). The expla-
nation is given in Figure 4.49(c), where we plot the emotion of joy for
Canada compared to the average of the rest of the countries. The dis-
crepancy between the two lines forw=12 andw=15 is the cause of the
spike shown in Figure 4.49(b). In practice, this means that emotions
are also exhibit spatial coherency. Therefore, it is better to perform
localized monitoring, rather than bluntly looking into the entire stream

227 G. Valkanas

at once.
Efficiency Performance. In the following paragraphs, we compare
TwInsight in terms of efficiency and effectiveness against EDCoW
[221], the current state-of-the-art for event detection in Twitter.
Table 4.15 summarizes for both systems the average time taken by
each component to apply its functionality on a newly received tuple.
Location extraction is a common component. Therefore, any differ-
ences lie in the classification and event detection steps.
We achieve a total 6× speed-up compared to EDCoW, with the event
detection step being orders of magnitude faster. In other words, our
approach requires considerably less time to identify events, and is ex-
pected to scale better as the number of tweets increases. The reason
is that TwInsight operates in an online fashion, and new tuples are
processed only once upon arrival. On the contrary, EDCoW requires
between 20 and 200ms, depending on the value of ∆, which spec-
ifies the number of Stage-2 signals. This difference in efficiency is
the result of several reasons: i) EDCoW revisits tuples to produce the
Stage-2 signal values, ii) computes the wavelet coefficients in all lev-
els, which is a function of∆, iii) computes signals' autocorrelations --
an unavoidable cost, iv) applies the median absolute deviation filter
twice and iii) performs the clustering step each time anew.
We would also like to note that we have run TwInsight on a simple
laptop with 2GB RAM. On the contrary, EDCoW can not operate with
so little memory, as it must maintain (at least) the stage-1 signals for
every word it has encountered.
Effectiveness Performance. To evaluate the effectiveness of the
techniques, we compare their ability to identify significant events from
our dataset. Obviously, neither technique can identify events which

Table 4.15: Average Component Processing Time (ms)
Module TwInsight EDCoW
Location Extraction 3.36
Classification 0.35 -
Event Detection 0.001 20 -- 200
Total 3.72 23.36 -- 203.36

G. Valkanas 228

Mining and Managing User-Generated Content and Preferences

are not mentioned at all. For this reason, we present significant events
that each technique extracted, cross validating them with online re-
sources.
EDCoW Results. We initially run EDCoW with the parameters sug-
gested by the authors, i.e., 10 minute intervals for stage-1 signals, ∆
= 6, γ = 40, over the duration of one day. As described in [221], an
eventmust contain at least two terms, but not too many. Note that, for
these parameters, the average description length of an event in their
dataset was 2.23 terms, with at most 3 tokens.
In our dataset, EDCoW finds 709 events with at least 2 keywords.
However, the average event description is 39.7 terms (σ = 26.6). There-
fore, we set γ = 200, to increase the number of filtered tokens. Al-
though this is 5 times higher than what the authors originally used,
the average description remains high: 21 terms (σ = 23.2). In other
words, most of the identified events would have been filtered out due
to low significance.
Regardless, we searched for terms that we knew to have occurred
during our crawl. The terms "eurovision" (the contest), "bayern" and
"drogba" (for the Champions League final), did not return any results.
The term "chelsea", -- the other competing team --, appears in 4 events,
when using γ = 40; the term does not appear when γ = 200. Most im-
portantly, though, the term appears on May 24 2012, 5 days after the
match. One of those 4 cases is shown below. Clearly, most of the
terms are unrelated:
bobcat, liar, desir, doc, chainz, push, selena, quedo, pasado, un-
derstood, gustan, howard, older, rare, technolog, chelsea, stadium,
phoenix, fit, concern, psalm, thug, duda, pacer, irish, hah, hacerlo,
provid, debat, swag, mum, pregunto, lama, vou, lux, strike, swallow,
cuerpo, grow, goal, theori, singer, yung, lookin, 500, slapen, lea, sus-
pens, 2016, ignor, marri
Given our goal to identify events in a timely fashion, we also experi-
mented with 1 minute aggregations,∆ = 5, Γ = 40, over the duration of
half an hour, similarly to our parameters. This gives 588 events, with
an average description length of 6 tokens, but is filled with cusses. The
only exception of a real-life event is the case of "don,celtic" identified
on May 27, 00:27 GMT. The event most likely refers to the Boston
Celtics game, which took place on May 26, 8:00 ET (i.e., May 27,
00:00 GMT).

229 G. Valkanas

All in all, EDCoW failed to identify meaningful events that we knew
about during the 2-month period of our experiment. We identify two
key reasons for this:

• With the exception of our filtering step, so that we only consider
specific languages and locations, we received tweets as a stream,
and did not bias the data collection process. On the contrary,
the data collection process of [221] could have easily biased the
received tweets towards common terms, because of the Snow-
ball harvesting technique, i.e., following social ties of a seed set
to extract additional tweets. Past research has shown that con-
nected users in online communities do not only share topical in-
terests, but also use similar wordings [184, 177]. Moreover, the
pre-processing of the dataset performed in [221] ensured an ade-
quate volume of the tokens that would indicate events, while dis-
carding unrelated words.

• The clustering step is prone to the data cleaning process and
groups tokens together aggressively. This can be validated by
the need for EDCoW's event significance step, to prune clusters
with too many terms. However, as our experimental evaluation
showed, in spite of this step, the clusters may still contain too
many terms, if the original data is not carefully selected. This
finding has also been verified by subsequent research [97].

TwInsight. On the contrary, TwInsight identified several events dur-
ing this period, and Table 4.16 presents a brief summary of the most
prominent, along with the associated emotion, where and when it was
discovered, given our objective to identify events as they occur.
Event 1 concerns the speech that Erskine Bowles, a renowned figure
in the US, gave to the graduates of an american university on that
day. Given that posted excerpts contained terms such as "debt", and
"crazy", they were flagged with the emotion of "Fear".
Event 2 is about an australian company that failed to raise a required
amount of $150m, to finish the construction of the Ararat prison. The
company went under voluntary administration 28.

28http://www.theaustralian.com.au/business/property/st-hilliers-arafat-arm-fails-to-secure-150m-goes-into-
administration/story-fn9656lz-1226357382452

G. Valkanas 230

Mining and Managing User-Generated Content and Preferences

Table 4.16: Sample Summary of 15 Prominent Events Identified By TwInsight
ID Emotion Where When (GMT) Description

1 Fear US 13/05, 13:53 bowles crazy crisis debt national
single spent year ẽrskine #2012AUGrad

2 Surprise Canada 15/05, 23:42 $150m administration ararat couldn
due extra funding hilliers

3 Sadness Canada 16/05, 2:20 spade heat okc ship sigh
spurs win @luggageboii @monalove810 calling

4 Anger Germany 16/05, 07:52 aus frankfurt
live radio @eThn0 http://t.co/ij9MNILL occupy

5 Joy UK 19/05, 18:37 bayern win based champions chelsea
excited fair fan final germans

6 Joy UK 19/05, 19:27 15th 3rd 5th chris game
games goal kreider nyr wel

7 Joy Germany 19/05, 20:23 thomas bayern championsleague
cfc mueller muller müller

8 Joy UK 19/05, 20:29 didier drogba fucking beauty
enjoying fair gal gaz goal great

9 Sadness Canada 20/05, 22:42 died bich breaking mio robin
singer @rodneyedwards gib gibb opa

10 Anger Canada 20/05, 23:04 nose didnt live nato plz
police protestors riot tryna tweet

11 Anger Canada 20/05, 15:19 @ctvcalgary aime ambition chacun earthquake
femme frais http://t.co/0hJEez9Q italy kills

12 Anger US 20/05, 11:23 @Mou2amara alive assad onus
prove regime shawkat showusshaukat syria

13 Anger Ireland 26/05, 19:11 fahey ireland jesus keith paul
squad suck tlist caled

14 Anger Greece 26/05, 19:52 eurovision rain
too much #Eurovision2012 kuulaaaaaaa

15 Joy US 27/05, 00:58 celtics comin days game left
#IRELAND #SOEXCITED @NICKIMINAJ looking

Event 3 can be traced back to various NBA games occurring on May
15, but are observed on May 16 due to the time difference. Both
"Spurs" and "Heat" played on May 15 ("Spurs" when the event was
detected), and "OKC" had a game the following day. Note that these
games appear together because we report events at the country level,
rather than the city level.
Event 4 refers to the "Blockupy Frnakfurt" movement in Germany on
May 16/05.

231 G. Valkanas

Event 5 is about a major event in our dataset, the Champions League
(CL) 2012 finals, between Bayern and Chelsea, that took place on
May 19. The game began at 20:45 CEST (18:45 GMT), and there are
supportive tweets for the teams just as the match was about to begin.
Event 6 is related to Chris Kreider, a NY Rangers (NYR) Hockey
player, who scored a goal in 5' 16'' of the 3rd period. A regular hockey
game has three 20' periods, with 2 intermissions of 17' each. The
game began at 18:00 GMT (13:00 ET 29), placing the goal no sooner
than 19:19 GMT, not accounting for any delays, and certainly no later
than 19:27, when we identify it.
Event 7 is related to the goal by Bayern's football player, Thomas
Müller, in the CL final. The goal was scored in the 83rd minute of the
match, i.e. on 22:23 CEST (20:23 GMT). This places our finding the
event the moment that it actually occurred and was posted. We iden-
tify similar tweets in Canada and Spain, at the exact same timestamp.
Clearly, the event is related with Joy.
Event 8 is about the equilizer, scored by Didier Drogba in the CL finals.
The goal was scored in minute 88' of the game, i.e. on 22:28 CEST
(20:28 GMT), and we identify several joyous tweets on 20:29, right
after the goal.
Event 9 is about the death of Bee Gee's singer Robin Gibb. He was
pronounced dead at 23:30 BST (22:30 GMT) on May 20th 30, and a
surge in sad tweets is seen at 22:42, only 10' after his death.
Event 10 concerns the riots in Chicago, where protestors were oppos-
ing Nato's Summit 31. Due to words "protestors", "opposing", "riot", the
conveyed feeling is anger.
Event 11 is about the earthquake in Italy, on May 20, that resulted in
the death of six people, among them a woman.
Event 12 refers to Assef Shawkat, deputyMinister of Defense of Syria.
On May 20, 2012, there was a claim he had been murdered 32, and
tweets requesting proof were posted. We have also found tweets on
26th and 27th of May regarding the Houla Massacre of the Syrian
civic war which occurred on May 25. We ommit such tweets, as they

29http://www.nhl.com/ice/recap.htm?id=2011030313
30http://www.bbc.co.uk/news/entertainment-arts-18140862
31http://www.huffingtonpost.com/2012/05/20/nato-summit-chicago-protesters_n_1530789.html
32http://newsfromsyria.com/2012/05/20/asef-shawkat-assassinated/

G. Valkanas 232

Mining and Managing User-Generated Content and Preferences

contain URLs to pictures of immense brutality.
Event 13 is about Keith Fahey, an Irish football player, who was in-
jured and pulled out of the national team.
Event 14 is one of many regarding the Eurovision contest, which took
place on May 26. Most of them are related with Joy, however, the
one we show here is related with anger. The original tweets are in
greek and we show the transliteration. The day of the contest was a
rainy and the phrase "too much" indicates the posters' dislike of both
the contest and the fact that it was raining. Moreover, Kuula was the
name of the Estonian song, but also happens to be a Greek name,
popularized by an 80's greek comedy, to convey anguish. Moreover,
the tweets we have identified follow the sequence in which the songs
were performed. For instance, the tweets of this event appear after
tweets containing "eurovision" and "Italy", which is expected, as Es-
tonia performed right after Italy. Finally, the contest started at 21:00
CET 33 (19:00 GMT), and the Estonian song was performed 52 min-
utes within the contest 34. Therefore, we identify the event as timely
as possible.
Event 15 is about the NBA game between Boston Celtics and the
76ers. The game started at 20:00 ET, 26 May 2012, which is 1:00 am
GMT, May 27th. Discussions on Twitter prior to the game, especially
as it was about to start, led to the event being detected. There were
also some feelings of excitement concerning Nicki Minaj's upcoming
performance in Ireland.
To sum up, TwInsight identified several events of varying types, emo-
tions, and intensity, even though we use simpler techniques for event
description. Note that we also identified different events happening
on the same day, because we can operate effectively in smaller time
intervals. Moreover, depending on its type, an event's transition from
a latent state to one where it has gained enough visibility may vary,
nevertheless, we are still able to capture such changes. Therefore,
we have been able to identify considerably more meaningful events,
with more efficient techniques, compared with EDCoW. Finally, it is
worth noting that, even though we presented the locations where the
events were observed, we are able to identify most of them even when

33http://www.eurovision.tv/page/baku-2012/about/shows
34http://www.youtube.com/watch?v=fjue0I4Hyko#t=51m40s

233 G. Valkanas

we monitor the entire stream.

4.4.7 Visualizing Results

Taking into account what type of information constitutes an event (i.e.,
time, location, keywords), and how we have proposed to address the
event identification problem (i.e., affective theories of emotions), there
are three major components that our User Interface should have:
1. Location Extraction / Geocoding of users
2. Emotion extraction from tweets
3. Event description / textual summarization

The columns of Table 4.16 clearly indicate the type of information we
want to visualize. We discuss how we do that in a contextualized way,
in the following paragraphs.

4.4.7.1 Visualizing Emotions

Regarding emotions, we consider the model of 6 basic emotions pro-
posed by american psychologist Paul Ekman [77]. We also use a
"Neutral" (or "None") emotion, to indicate the absence of one, leading
to a total of 7 target classes. Color psychology and respective emo-
tional theories have associated certain emotions with specific colors.
We build upon these theories, and use these mappings when visualiz-
ing this type of information. These mappings are shown in Table 4.17.

Table 4.17: Mapping of emotions to colors, and examples of corresponding tweets.
Emotion Color Example
Neutral White I am Dept. of Informatics & Telecommunications (Athens, Greece)
Anger Red I hate it when I do something and everybody finds out! :@
Disgust Purple RT Retweet this if you too are offended by #HoulaMassacre #Syria
Fear Yellow I'm afraid this won't work out well
Joy Green Goaaaaaaaaaaaaaaal!!!!! Let's go @chelseafc!!! #cfc
Sadness Blue I miss my baby :(
Surprise Orange @gvalk are you serious!?

G. Valkanas 234

Mining and Managing User-Generated Content and Preferences

Information regarding the extracted emotions from tweets is visualized
in two ways: First, we use a world map and place that information
there, as described in the following section. Second, we visualize how
the aggregate emotional state changes over time for each monitored
location, thereby providing a spatio-temporal hedonometer.
We use two techniques to visualize the hedonometer: The first one
is to use cardiograms, whereas the second one is to use histograms.
In the first case, all emotions of a specific location are shown in the
same area. Fig. 4.50 shows an example of this visualization, in three
distinct timestamps, for the United States.This enables the end-user to
understand the interplay -- or lack thereof -- of emotions experienced
in that area.
For instance, neutral emotions (black line) make up most of the num-
ber of tweets that are received, with emotions of joy being second in
line. An important observation is the difference between the trends
of tweets conveying an emotion and the neutral ones. As a specific
example, consider Fig. 4.50(b), where we can clearly see a distinctive
surge in neutral tweets, right after the middle. However, this surge
is not shared by tweets conveying an emotion, implying that we can
avoid spurious bursts by using emotional theories.
The figures also validate our intuition that we should rely on emotions
to detect events, rather than use simpler aggregations: If the lines
were identical (even if simply translated on the y-axis), there would
be no merit in using emotional signals; monitoring the entire stream at
once (i.e., tweet counting) should be sufficient. This is not the case,
as the lines are different from one another.
The second approach, shown in Fig. 4.53 at the bottom of the screen
uses histograms, and displays each emotion separately. Once again,
the emotions are updated along the temporal dimension. This visual-

(a) t1 (b) t2 (c) t3

Figure 4.50: Cardiograms of emotions, for three distinct timestamps in the United States

235 G. Valkanas

ization allows for better understanding of how each emotion is varied
in a specific area over time. It also gives a clearer view of the magni-
tude of each emotion at a specific point in time.

4.4.7.2 Visualizing Spatial Information

Using our custom geocoding system, described in Section 4.4.3.1,
we are able to map users to specific geodetic coordinates, i.e. (lat,
lon). Geodetic coordinates can be visualized on a 2D World Map,
through appropriate projections. We employ Mercatorian projections,
which convert geodetic coordinates to cartesian, and are the most
widely used. The projected world map is visualized using KML (Key-
hole Markup Language) files, thereby conforming to OGC-compatible
Open Standards.
The map makes up for the central part of our Graphical User Interface
(GUI), as shown in Figure 4.53 35. The user is allowed to zoom in
and out of areas, by selecting from a set of target countries, for which
we currently perform emotion detection. Once a tweet has passed
through emotional extraction and geocoding, it is displayed on themap
in the following way: Given the location where the tweet was mapped
to, we descend the hierarchy, in a random way, until we reach the
lowest levels, i.e. a town or suburb in our case. If the tweet was
mapped to a town / suburb in the first place, there is nothing more to
do. Given the emotion of that tweet, we then color that region with the
respective color of that emotion.
Currently, "coloring a town" means that we set the pixel corresponding
to its location on the map to the color of the emotion. Although we only
set a few pixels to that color, we expect that, in the aggregate, surges
of emotions will become evident. Coloring pixels instead of broader
areas has the advantage that we can update the UI easily and most
importantly in real time. Newer emotions take precedence over older
ones, and a town is always colored based on the most recent infor-
mation. Finally, as time goes by, old town colorings are removed from
the map, to accomodate for newer information, or simply returning it
to the original color.

35The colors have been reversed, for printing efficiency

G. Valkanas 236

Mining and Managing User-Generated Content and Preferences

4.4.7.3 Visualizing Event Description

Once an event is identified, we need to present it to the user, so that
they are notified about it, and we should provide as much information
as possible. Consequently, a separate area of the UI is devoted to this
purpose. As new events arrive, older ones are evicted from the list, for
which we have already notified the end-user. The general information
we currently show is:

• Date: The date and time (shown in UTC/GMT) when the event
was identified. This is practically based on timestamps of incom-
ing tweets.

• At: A description of the location, where the event was detected.
These descriptions are based on what the user is currently moni-
toring. For instance, if they are monitoring at a country level, the
"At" field would be "United Kingdom", even if the event was iden-
tified in Manchester.

• By: A list of microbloggers who talked about the event. These are
practically links to the original tweets, based on which the event
was identified.

• Event: A list of terms describing the identified event. The descrip-
tion is used as a fast way for the end-user to know what is going
on.

Fig. 4.51(a),(b) demonstrate a subset of the events shown to the user
with respect to the Champions Leagufe final, an easily identifiable
event in our dataset. The figures are used to illustrate the fact that
new events are added in the list.
Fig. 4.51(a) shows a distinctive (sub)event of the Champions League
finals, which is the goal scored by Bayern's football player Thomas
Müller. The summary of the event clearly indicates that the event has
been identified in Germany, which is only natural given that Bayern
Munich is based in Germany, not to mention that the Allianz Arena
stadium, where the final took place, is also in Germany.
Similarly, Fig. 4.51(b) shows the (sub)event of the goal scored by Di-
dier Drogba, Chelsea's football player. Notice that the previous event
(Bayern's goal) is pushed down the list, to make room for the newly

237 G. Valkanas

(a) Goal by Müller

(b) Goal by Drogba

Figure 4.51: Summary of two events shown to the end-user, regarding the Champions
League Final

identified event(s) describing Chelsea's goal. The same event 36 is
identified in three locations, because each one of them is being mon-
itored separately by the user: Spain, United Kingdom and Ireland.
Were wemonitoring these locations collectively, the event would have
been identified only once, but the "At" field would be different. Also
notice that the user is promptly notified about both events 37, with re-
spect to when the goals were scored.
Finally, an additional piece of information that we present to the user
is the emotion associated with the event. This is again displayed as
a color, to the far left of the event description. For instance, most of
the events that we identified are associated with the color "Green",
signifying "Joy". This is expected, as most of the tweets are cheerful
about the goals scored, by the team they are supporting. The only

36We know its the same event due to the descriptions.
37http://en.wikipedia.org/wiki/2012_UEFA_Champions_League_Final

G. Valkanas 238

Mining and Managing User-Generated Content and Preferences

Figure 4.52: List of identified events (and their summary), related to the eurovision contest

exception is the goal scored by Drogba, that is associated with "Red",
i.e., "Anger" -- clearly not what one might expect. Most surprisingly,
the event is identified in the United Kingdom, Chelsea's homeplace.
However, if we look closely, we will see that the term "Bayern" is in
the description of the event and not "Chelsea" (or "goal", or "Drogba") ,
with some less than flattering words. It is useful to note, nevertheless,
that these terms have come up during other runs of our approach, due
to our sampling-based approach in event detection.
Fig. 4.52 shows a second list of events, with their respective sum-
marization. The events all correspond to the Eurovision 2012 song
contest final, which stirred up considerable discussions. Starting from
the bottom and moving upwards the events list, we can easily verify 38

that the identified events describe the sequence in which the partici-
pating teams competed in the contest.
For instance, Engelbert opened the contest, which started at 19:00
GMT 39. The singer was representing the United Kingdom, singing a
ballad, thereby creating some moody feelings, as exemplified by the
color "blue" (sadness) next to the event description. About 12 minutes
later, we see an event containing the term "lituania", which was com-

38http://www.eurovision.tv/page/baku-2012/about/shows/final
39http://www.eurovision.tv/page/baku-2012/about/shows

239 G. Valkanas

Figure 4.53: The overall GUI that the user sees.

peting 4th in line. Hungary and Albania do not show up in this run,
although Hungary received a very low ranking overall, and we did not
see that many discussions concerning its participation. Lithuania was
next, and with a maximum of 3 minutes per song, the user sees the
event -- as it is identified according to the discussions -- right when
it occurred. as shown in Fig. 4.52, we also identified discussions re-
garding Russia (which is written with a single "s" in Spanish), Cyprus
and Italy.

4.4.7.4 Putting It All Together

In addition to the separate components that make up our system, the
user is able to control the event detection process through a set of
available options. These options are available at all times, and can
be altered while the system is running. Overall, our UI provides the
following options that affect our system's functionality:

• Number of emotions against which tweets are classified.

G. Valkanas 240

Mining and Managing User-Generated Content and Preferences

• Monitored locations, including parents and children nodes in the
hierarchy.

• Size of aggregation interval, i.e., number of minutes between two
consecutive runs of our event detection mechanism.

Fig. 4.53 shows the complete version of our UI, as this is shown to the
end-user. Observe the histogram type of monitoring the emotions at
the lower section of the screen, that we have already discussed. Also
note that emotions are shown on the world map, coloring specific pix-
els appropriately. The coloring result is more prominent in France,
Ireland, Spain, the UK and the US. Regarding the United States, note
that very few tweets are mapped in the state of Alaska. The reason is
that, despite the arbitrary assignment to town locations, we descend
the hierarchy from the initial geocoded location. Therefore, if a tweet
was mapped to New York City, it will be mapped to a suburb of Man-
hattan or Brooklyn, but never to a city in Alaska. As the population in
Alaska is far lower than other states, this is an indirect validation of
our geocoding service.
The options available to the user can be seen in the left hand side of
the UI. In the upper part of the options area, we display the areas that
the user is allowed to select from. These are shown in a tree structure
that reflects the hierarchy we currently rely on to identify events and
display information. Note that event monitoring is currently performed
at the country level and that it is also possible to select parent nodes
separately from children node (e.g., United Kingdom is selected, but
none of its children are). Therefore, only the countries appear in the
bottom area of the UI, which shows the aggregate emotional state per
region.
In the lower part of that area, we can clearly see options that affect
the emotions that we monitor. Currently, the user is able to select
between monitoring all 7 emotions, or just 1. The latter case is iden-
tical to monitoring the rate at which tweets arrive, regardless of any
emotion that they may convey. We also allow various aggregation
intervals: 1 minute, 5 minutes, 10 minutes, etc. By reducing the ag-
gregation interval, users will be notified about events more timely, but
more events will be generated. By contrast, increasing the aggrega-
tion interval will generate fewer events, but the user will be notified
about them less promptly. They can also switch to monitoring a sin-

241 G. Valkanas

gle "emotion", which is practically equivalent to monitoring the rate at
which tuples are received. In the same part of the UI, we also clearly
see the option to switch between histogram and cardiogram view of
emotions.
An option not shown in this UI is that the user may select between
real-time identification of events, by monitoring the Twitter stream, or
replaying stored streams. The latter functionality can be used to im-
prove all aspects of our sub-system, including our UI, as well as give
access and insights to historical data. This is simply done by passing
additional arguments when the system starts.

4.5 Summary

Social media are a highly prolific area for research, especially due to
their wide adoption by the users. A distinctive characteristic of social
media platforms, compared to prior online services, is their social com-
ponent, where users may connect with each other, forming directed
or undirected social graphs. This component lays the ground for new
research questions in various disciplines, including social sciences,
economics and, of course, computer science.
In this chapter, we considered various research topics that arise in
such a novel area of research, ranging from efficient ways to harvest
information, to techniques that automatically identify meaningful in-
formation (i.e., events), that could prove useful for a number of ap-
plications, such as computational journalism, crisis management or
resource allocation to name a few.
In particular, we presented the architecture and implementation de-
tails of a crawler for the Twitter service, a popular social media plat-
form in the contemporary webosphere. The service offers two distinct
Application Programming Interfaces to provide access to its data: a
Streaming interface, whereby user generated content is received as
a data stream, and a Probe-based one, where users query the ser-
vice for specific information. Information may be collected according
to several characteristics, such as the social component, spatial infor-
mation, topical information (keywords), and so on. Our crawler effi-
ciently harvests information based on these characteristics.

G. Valkanas 242

Mining and Managing User-Generated Content and Preferences

We also presented how data analysis can be incorporated in declar-
ative languages, so that it may be optimized and executed efficiently
in domain-specific query execution engines. The main advantage of
this approach is that the underlying optimizer knows the particularities
of the domain, and ensures the efficient execution of the query. We
proposed a technique whereby data analysis techniques are formal-
ized as intensional extents, can be expressed at the language level
as well, and are subsequently refactored to be optimized by the exe-
cution engine. Although our methodology is independent of a domain
of application, we demonstrated its performance in a sensor network
domain, which is a resource-constrained setting and the temporal di-
mension plays a vital role.
Finally, we used social media data to identify newsworthy events in
real-time, given that past research had shown that the discussed top-
ics reflect what is happening in the physical world. We started with
an initial analysis of the statistical properties of the received content
provided in a streaming fashion, because multiple sample percent-
ages may be used. The purpose of this analysis was to understand
the differences between the sampling policies and the merits of using
one over the other. Based on this analysis, we used the appropri-
ate stream, and went on to present our event detection mechanism
for newsworthy information, using social media data. Our event de-
tection mechanism relies on and incorporates cognitive and affective
theories of emotions, allowing our solution to be viewed as an ana-
lytical tool for the social sciences as well: not only an approach to
identify events, but also a way of understanding how different events
impact different people. In order to be able to identify events, we pre-
sented a geocoding service, which was used to assign spatial infor-
mation to the users and later groupd them into large, geographical
groups, which are monitored independently. Our approach for detect-
ing events also revealed certain properties regarding the discussions
of events, namely that events generate a medium-term momentum
(i.e., a lot of people start talking about it for some time), but then dissi-
pate. Our event detection mechanism operates in an online fashion,
making it suitable for a fast paced medium like Twitter, and social me-
dia in general.

243 G. Valkanas

G. Valkanas 244

Mining and Managing User-Generated Content and Preferences

Chapter 5

Conclusions and future directions

5.1 Summary of the thesis

The landscape of theWorld WideWeb is changing, following the tech-
nological advancements that occur at the hardware and the software
level. Online services and applications are more pervasive nowadays,
especially as smartphones and other devices (e.g., wearables) allow
users to monitor and share their daily activities, and connectivity to
the internet is practically constant with wireless technologies. Users
also interact with each other directly and in real time, through social
networking platforms, openly expressing their opinions over politics,
sports, news, and general interests.
All these interactions generate a tremendous amount of information.
Managing and mining such information is a key step to providing the
user with engaging services that fulfill their needs. The information
may be used by an existing service either to improve its quality or to
add new functionality, or it may serve as the data to empower new
services.
In this thesis, we considered three specific cases of managing and
mining such information, while addressing both objectives. In short,
the contributions of this thesis can be summarized as follows:
1. A technique to reduce the output size of skyline queries, that cap-

tures diversification of trade-off points at its core, and an alterna-
tive scheme for ranking them.

2. A formal framework to quantify the competitiveness of items, and
efficient algorithms to return the top-k competitors.

245 G. Valkanas

3. A complete framework to efficiently gather, process and mine in-
formation from a popular social networking platform, Twitter.

4. A comparative analysis of the sampling policies of the Twitter so-
cial networking platform.

5. A technique to detect events from social media data in real-time,
using custom geocoding and relying on cognitive and affective
theories of emotions, which also provides a dual perspective, in-
forming us of the way that users react to events.

In all of these cases, we experimentally evaluated and validated our
proposed techniques, comparing them with existing equivalents or
meaningful baselines.
Regarding our first objective, we provided a formal framework to diver-
sify skyline points in an intuitive way and return k skyline points with
maximum diversity. Our proposed approach builds upon established
measures of importance for skyline points and only requires that the
dominance property be defined. Consequently, it is applicable in any
setting where skyline queries may be applied. We model the problem
as a Max-Min instance of a k-Dispersion Problem [], where k con-
trols the output size of a skyline query. To efficiently compute the
k skyline points with maximum diversity, we presented a two-phase
framework, named SkyDiver, that first transforms the original space
into a more compact, yet approximate one, and secondly selects the
k points, operating in the transformed space. For the transformation,
we use MinHash signatures [46] which fits nicely with our definition of
diversification. In particular, we compute the diversity of two skyline
points as the Jaccard distance of their domination sets, i.e., the sets of
points that they dominate. For a more compact representation of the
original space, we may also employ Locality Sensitive Hashing [113].
Experimental evaluations demonstrated that the SkyDiver framework
is much faster than a naive implementation of the solution, while being
very effective at the same time. Comparison against other techniques
that control the output of skyline queries [200, 136] showed that i) di-
versification, as an objective, is different from coverage, and that ii)
distance-based representation of the skyline correlates more with the
coverage objective.

G. Valkanas 246

Mining and Managing User-Generated Content and Preferences

For our second objective, we presented a formal framework that quan-
tifies competitiveness between items defined in the same feature space.
Our proposed framework is generic enough to accommodate all fea-
ture types. Our formalism of competitiveness maps naturally the no-
tion that "items that address the same target group are more com-
petitive than items with different target groups". A target group can be
identified as a group of people interested in a specific feature subset of
the original feature space, and by considering all possible feature sub-
sets, we take into account all possible target groups of an item. Then,
for each target group, we quantify the degree to which two items may
fulfill the same needs. Our formalism also allows for different groups
to contribute with different weights. Given our formalism, we also pre-
sented efficient techniques to identify the top-k competitors of an item
of interest. We then experimentally evaluated our techniques, both
in terms of efficiency and effectiveness. Our experiments revealed
that the presented technique is highly efficient, especially compared
against a straightforward implementation. Unlike a nearest neighbor
baseline, our formalism is also very effective in identifying competitive
items, as demonstrated by the user study we conducted.

For our third objective, we implemented a crawler for the Twitter ser-
vice, which is a prevalent social networking platform, that has received
much attention by the industry and academia alike. Our proposed
architecture ressembles that of a crawler designed for the surface
web [49], with certain changes to account for the differences of the
Twitter service, namely i) a streaming component to receive data, ii)
a different mechanism to enqueue queries, given the custom rate lim-
its of the service. We also presented an approach that harvests infor-
mation from web sites that provide a query interface. Such techniques
have been popularized for the Hidden Web [40], and we augment ex-
isting models [159] to account for the ranking of the returned results.
Our experiments demonstrated that by accounting for this aspect, we
are able to retrieve more content (i.e., cover the content better) with
the same number of queries, when compared with the default scheme.
The final part of this contribution refers to building an intermediate
layer for query execution engines, so that so that data mining algo-
rithms may be expressed in structured languages (e.g., SQL, CQL,
etc), and executed efficiently by the underlying execution engine. We

247 G. Valkanas

demonstrated how to achieve this with an existing execution engine
destined for sensor networks [83]. The selection of a sensor network
query execution engine is because queries in this setting also consider
the temporal aspect, which is also an integral part of social media data.
Our approach is to model data mining algorithms as extensional ex-
tents, allowing us to include them in declarative queries like any other
extent (e.g., relation, view, etc.) [208]. For the same reason, query
execution engines are able to optimize these constructs, as long as
they can be expressed with the declarative language.
Regarding our fourth objective, we were interested in comparing the
sampling policies that Twitter uses to provide data in a streaming fash-
ion. In particular, Twitter provides either a 1% or a 10% sample of all
public posts, and we conducted a set of experiments to identify key
differences in the two policies, with respect to the data acquired. Our
analysis covered a broad spectrum, including spatial and temporal in-
formation, sentiment extraction, popular topic detection, the retweet
graph and linguistic information. Our analysis revealed that the 1%
sample is good enough when someone is only interested in very pop-
ular topics, whereas higher sampling ratios are needed in order to
uncover less popular topics. It also showed that by monitoring the
retweet graph over extended periods of time, we may achieve similar
results, in terms of graph characteristics, as when having access to the
entire stream (100%). The received information may also change by
slightly adjusting the bounding box of the monitored location. Finally,
our linguistic analysis showed that the languages in Twitter, ranked by
volume of written text, are very different -- in order and in percentages
-- from ground truth data collected through world-wide surveys.
For our final goal, we presented an approach that is able to identify
events in real time using social media data. Unlike previous tech-
niques, our approach is not tied to events of a specific type, thereby
making it generic. At the core of our model lies an outlier detection
mechanism which monitors the aggregate emotional state of users,
grouped by their spatial proximity. To extract the location of users, we
built a custom geocoding mechanism that relies on open-source soft-
ware and data available on the web. For the emotional state of users,
we employ a classifier with 7 target classes, augmenting the 6 emo-
tions proposed by psychologist P. Ekman [77] with a "None" class.
Twitter posts are then classified to one of the 7 classes, allowing us

G. Valkanas 248

Mining and Managing User-Generated Content and Preferences

to collectively monitor the emotional state of the group. Comparing
against the state of the art, which uses online clustering [221], our ap-
proach is more efficient and is able to identify a lot more events. On
the contrary, [221] is unable to identify meaningful events, because
the technique requires careful data collection to work properly, which
is impossible for practical scenarios. Our proposed technique also
serves a dual purpose, as it can be used to observe how users react
to certain event types, which is not possible with previous techniques
designed for event detection.

5.2 Future Directions

There are various research directions to follow within the scope of
mining and managing user-generated content and their preferences,
and push forward the research that has been presented in this thesis.
We discuss some of these possibilities in the next few paragraphs.

5.2.1 Skyline diversification and novel query types

Interesting variations of the skyline diversification problem include set-
tings where the dominance property is not clearly defined, as is the
case with the skyline over groups of points [148]. The dominance
property, which is the most integral part of skyline computation, does
not extend to groups in a straightforward manner. Based on past liter-
ature, we could define diversification using the γ-dominance between
groups of points. We note that our definition of skyline diversification
is easier to extend to such a setting, compared with diversification
techniques that rely on Lp norms. Another direction regarding the
efficiency perspective of the problem would be to parallelize compu-
tations, to scale our proposed technique for massive datasets.
Efficiency was also one aspect to improve when ranking skyline points
with our IR ranking scheme. A reason for that is that we only consid-
ered the upper bound of a skyline point's score. Therefore, by consid-
ering the lower bound aswell, wemay be able to improve the efficiency
of the presented technique. An alternative approach is to use approx-
imate techniques, with quality guarantees, that result in the same final

249 G. Valkanas

ranking as the one obtained through exact computations. There are
two options to achieve this: i) by sampling the original space, so that
we perform the computations using fewer points, and ii) by using the
first top-l layers of minima, as earlier layers contribute with a higher
weight. Moreover, earlier layers contain a significantly larger number
of points, therefore one would expect that the final ranking would not
be affected too much by the layers of minima towards the end.

5.2.2 Competitor identification and review mining

The notion of competitiveness builds on the premise that items target
the same group of people and fulfill their needs. To identify the degree
to which these needs are fulfilled, we used review mining techniques,
and assigned a score to each discussed feature (e.g., quality of prod-
uct, usability, etc). One aspect that our current methodology did not
take into account was that users expressed their opinions of the prod-
uct based on some specific usage type. In other words, the review
was biased by the user's expectations of the item. As an example, a
normal computer processor may be adequate for office work or brows-
ing the internet, but will not be sufficient for experiments or gaming.
If a user bought such a processor for a gaming machine, they would
definitely be unhappy, and this would be reflected in their review. By
carefully mining the reviews to identify the cases where an item is best
suited, wemay not only improve competitor identification, but also rec-
ommendations for other products. Such a goal may also change the
searching paradigm for products to specifying the intended use.

5.2.3 Mining user-generated content and social media analysis

Despite the attention that the field has attracted, social media remains
an unexplored area to a large extent. Regarding event detection, bet-
ter techniques to extract the location of users are required. The rea-
son is that spatial information may be part of the post, which we do
not currently consider. Another issue is that certain events may not
necessarily be tied to a location. A way to address this is to map cer-
tain entities or keywords of a post with a specific location, combining
information from external resources, such as Wikipedia or FreeBase.

G. Valkanas 250

Mining and Managing User-Generated Content and Preferences

Another limitation of our existing approach is that the same event may
be discovered in multiple locations, eliciting different emotions. For
this reason, we need an aggregation phase that groups together the
separate descriptions into a single one. This aggregation phase may
take place after the event description of each separately identified
event, grouping together events that share common terms. The op-
posite may also occur, where two different events may have occurred
at the same time, in the same place. In such a case, we need to split
the output event into two (or more). This may be achieved by finding
whether the descriptive keywords co-occur in any of the posts. If they
do not, we may consider them as separate events.
The above requirements have two additional byproducts. First, more
elaborate techniques should be preferred in this case, to extract more
descriptive keywords of the event. Second, we should be able to fil-
ter out false positives, i.e., cases that our technique identified as an
event, but do not really correspond to one. Ideally, this should be
done in real time, and without the use of external resources for cross-
checking. One way to achieve this would be a preliminary analysis
that would provide a prior probability of a term appearing in an event.
However, one should keep in mind the special characteristics of the
Twitter platform (personal writing style and slang, short text) when ap-
plying such prior probabilities.
As far as event detection is concerned, alternative user groupings
could be considered. For example, instead of grouping users by their
location, we could apply a clustering algorithm to group users together
according to their topical proximity. By topical proximity we mean the
users' similarity of what they post. Of course, a user may be part of
several communities, in which case a fuzzy clustering algorithm may
be more appropriate, so that each user may belong to -- and therefore
update -- more than one groups.
Moreover, there are several other research directions to consider re-
garding social media. The social network is a major asset of these
platforms and uncovering the underlying mechanism with which links
are formed is extremely interesting. Knowing this mechanism allows
us to better study and understand user behavior as well as graph
structure, its properties and evolution. The problem becomes partic-
ularly challenging given that the collection of the graph is a very slow
process, and techniques that could infer the graph would be preferred.

251 G. Valkanas

Finally, event and timeline summarization is another direction to con-
sider. In this case, given a set of time-ordered posts, we are inter-
ested in a (much smaller) subset that captures the major (sub)events
or adequately describes the original set. For example, in a football
match, cards, goals and fouls are the subevents of interest. In a po-
litical campaign, the turning points that affected the outcome should
be the output of such a technique. We note that the selected subset
changes at different temporal granularities, even for the same event.
With the diversity, volume and quality of the user-generated content
in social media, the need for techniques that effectively summarize
information and capture the major milestones, can only be expected
to increase.

G. Valkanas 252

Mining and Managing User-Generated Content and Preferences

Chapter 6

References

[1] http://maps.yahoo.com/.
[2] http://maps.google.com/.
[3] http://www.bing.com/maps/.
[4] https://dev.twitter.com/docs/api/1.1.
[5] https://dev.twitter.com/docs/error-codes-responses.
[6] https://dev.twitter.com/docs/twitter-libraries.
[7] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherni-

ack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvk-
ina, N. Tatbul, Y. Xing, and S. Zdonik. The design of the borealis
stream processing engine. In CIDR, pages 277--289, January
2005.

[8] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a
new model and architecture for data stream management. The
VLDB Journal, 12:120--139, August 2003.

[9] F. Abel, I. Celik, G.-J. Houben, and P. Siehndel. Leveraging the
semantics of tweets for adaptive faceted search on twitter. In
ISCW, pages 1--17, 2011.

[10] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

253 G. Valkanas

[11] C. Aggarwal, editor. Data Streams -- Models and Algorithms.
Springer, 2007.

[12] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversi-
fying search results. InWSDM, pages 5--14, 2009.

[13] R. Agrawal and R. Srikant. Privacy-preserving data mining. In
SIGMOD, pages 439--450, 2000.

[14] A. Ahmed, L. Hong, and A. J. Smola. Hierarchical geographical
modeling of user locations from social media posts. In WWW,
2013.

[15] F. Alvanaki, S. Michel, K. Ramamritham, and G. Weikum. See
what's enblogue: real-time emergent topic identification in social
media. In EDBT, pages 336--347, 2012.

[16] P. Andreou, D. Zeinalipour-Yazti, P. K. Chrysanthis, and
G. Samaras. Workload-aware query routing trees in wireless
sensor networks. In MDM, pages 189--196, 2008.

[17] G. L. Andrienko, N. V. Andrienko, H. Bosch, T. Ertl, G. Fuchs,
P. Jankowski, and D. Thom. Thematic patterns in georefer-
enced tweets through space-time visual analytics. Computing
in Science and Engineering, 15(3):72--82, 2013.

[18] A. Angel and N. Koudas. Efficient diversity-aware search. In
SIGMOD, pages 781--792, 2011.

[19] L. Anselin. What is special about spatial data? alternative per-
spectives on spatial data analysis. In Symposium on Spatial
Statistics, Past, Present and Future, pages 63--77, 1989.

[20] B. Arai, G. Das, D. Gunopulos, V. Hristidis, and N. Koudas. An
access cost-aware approach for object retrieval over multiple
sources. PVLDB, 3(1):1125--1136, 2010.

[21] E. Aramaki, S. Maskawa, and M. Morita. Twitter catches the flu:
Detecting influenza epidemics using twitter. In EMNLP, pages
1568--1576, 2011.

G. Valkanas 254

Mining and Managing User-Generated Content and Preferences

[22] E. Aramaki, S. Maskawa, and M. Morita. Information extrac-
tion from social media for public health. In SIGKDD The Data
Frameworks Track, 2014.

[23] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa,
J. Rosenstein, and J. Widom. Stream: the stanford stream data
manager (demonstration description). In SIGMOD, 2003.

[24] A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: semantic foundations and query execution. The
VLDB Journal, 15(2):121--142, 2006.

[25] G. O. Arocena and A. O. Mendelzon. Weboql: Restructur-
ing documents, databases, and webs. In ICDE, pages 24--33,
1998.

[26] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving
window over streaming data. In SODA, pages 633--634, 2002.

[27] B. Babcock, M. Datar, R. Motwani, and L. O'Callaghan. Main-
taining variance and k-medians over data stream windows. In
PODS, pages 234--243, 2003.

[28] R. Bakshi, C. A. Knoblock, and S. Thakkar. Exploiting online
sources to accurately geocode addresses. In ACM-GIS Work-
shop, pages 194--203, 2004.

[29] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Every-
one's an influencer: quantifying influence on twitter. In WSDM,
pages 65--74, 2011.

[30] W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient distributed
skylining for web information systems. In EDBT, pages 256--
273, 2004.

[31] S. Bao, R. Li, Y. Yu, and Y. Cao. Competitor mining with
the web. IEEE Transactions on Knowledge Data Engineering,
pages 1297--1310, 2008.

[32] N. Barbieri, F. Bonchi, and G. Manco. Influence-based network-
oblivious community detection. In ICDM, 2013.

255 G. Valkanas

[33] L. Barbosa and J. Feng. Robust sentiment detection on twitter
from biased and noisy data. In COLING '10: Posters, pages
36--44, 2010.

[34] H. Becker, F. Chen, D. Iter, M. Naaman, and L. Gravano.
Automatic identification and presentation of twitter content for
planned events. In ICWSM, 2011.

[35] H. Becker, D. Iter, M. Naaman, and L. Gravano. Identifying con-
tent for planned events across social media sites. In WSDM,
pages 533--542, 2012.

[36] H. Becker, M. Naaman, and L. Gravano. Learning similarity
metrics for event identification in social media. InWSDM, pages
291--300, 2010.

[37] E. Benson, A. Haghighi, and R. Barzilay. Event discovery in
social media feeds. In ACL-HLT, 2011.

[38] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson.
On the average number of maxima in a set of vectors and ap-
plications. Journal of the ACM, 25(4):536--543, 1978.

[39] M. Bergen andM. A. Peteraf. Competitor identification and com-
petitor analysis: a broad-based managerial approach. Manage-
rial and Decision Economics, 2002.

[40] M. Bergman. The deep web: Surfacing hidden value. Techni-
cal report, 2001. http://www.brightplanet.com/images/uploads/
DeepWebWhitePaper_20091015.pdf.

[41] J. Bollen, H. Mao, and A. Pepe. Modeling public mood and
emotion: Twitter sentiment and socio-economic phenomena. In
ICWSM, 2011.

[42] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline oper-
ator. In ICDE, pages 421--430, 2001.

[43] B. Boyce. Beyond topicality: A two stage view of relevance and
the retrieval process. Information Processing & Management,
18(3):105--109, 1982.

G. Valkanas 256

Mining and Managing User-Generated Content and Preferences

[44] C. Y. Brenninkmeijer, I. Galpin, A. A. Fernandes, and N. W. Pa-
ton. A semantics for a query language over sensors, streams
and relations. In BNCOD, pages 87--99, 2008.

[45] S. Brin and L. Page. The anatomy of a large-scale hypertex-
tual web search engine. Computer Networks, 30(1-7):107--117,
1998.

[46] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher.
Min-wise independent permutations. Journal of Computer and
System Sciences, 60(3):630--659, 2000.

[47] H. Brönnimann andM. T. Goodrich. Almost optimal set covers in
finite vc-dimension: (preliminary version). In SCG, pages 293--
302, 1994.

[48] A. L. Buchsbaum and M. T. Goodrich. Three-dimensional layers
of maxima. Algorithmica, 39:275--286, July 2004.

[49] C. Castillo. Effective web crawling. SIGIR Forum, 39(1):55--56,
June 2005.

[50] D. Chakrabarti and K. Punera. Event summarization using
tweets. In ICWSM, 2011.

[51] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. On high dimensional skylines. In EDBT, pages 478--
495, 2006.

[52] G. Chatzimilioudis, A. Cuzzocrea, and D. Gunopulos. Optimiz-
ing query routing trees in wireless sensor networks. In ICTAI
(2), pages 315--322, 2010.

[53] S. Chaudhuri. Data mining and database systems: Where is the
intersection? Data Engineering Bulletin, 21, 1998.

[54] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust
and efficient fuzzy match for online data cleaning. In SIGMOD,
pages 313--324, 2003.

[55] S. Chaudhuri and K. Shim. Optimization of queries with user-
defined predicates. ACM Transactions on Database Systems,
1999.

257 G. Valkanas

[56] M.-J. Chen. Competitor analysis and interfirm rivalry: Toward a
theoretical integration. Academy of Management Review, 1996.

[57] M.-J. Chen and I. C. MacMillan. Nonresponse and delayed re-
sponse to competitive moves: The roles of competitor depen-
dence and action irreversibility. The Academy of Management
Journal, 35(3):539--570, August 1992.

[58] J. Cho and H. Garcia-Molina. Effective page refresh policies
for web crawlers. ACM Transactions on Database Systems,
28(4):390--426, dec 2003.

[59] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In ICDE, pages 717--719, 2002.

[60] T. Churches, P. Christen, K. Lim, and J. Zhu. Preparation of
name and address data for record linkage using hidden markov
models. BMC Medical Informatics and Decision Making, 2(1),
2002.

[61] B. H. Clark and D. B. Montgomery. Managerial identification of
competitors. Journal of Marketing, 1999.

[62] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova,
A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty and diversity
in information retrieval evaluation. In SIGIR, pages 659--666,
2008.

[63] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Mot-
wani, J. D. Ullman, and C. Yang. Finding interesting associa-
tions without support pruning. IEEE Transactions on Knowledge
and Data Engineering, 13(1):64--78, 2001.

[64] M. Conover, J. Ratkiewicz, M. Francisco, B. Gonçalves,
A. Flammini, and F. Menczer. Political polarization on twitter.
In ICWSM, 2011.

[65] D. J. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg.
Mapping the world's photos. InWWW, pages 761--770, 2009.

[66] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. Parallel
distributed processing of constrained skyline queries by filtering.
In ICDE, 2008.

G. Valkanas 258

Mining and Managing User-Generated Content and Preferences

[67] A. Culotta. Towards detecting influenza epidemics by analyzing
twitter messages. In SOMA, pages 115--122, 2010.

[68] A. Das Sarma, A. Lall, D. Nanongkai, R. J. Lipton, and J. Xu.
Representative skylines using threshold-based preference dis-
tributions. In ICDE, pages 387--398, 2011.

[69] A. Das Sarma, A. Lall, D. Nanongkai, and J. Xu. Randomized
multi-pass streaming skyline algorithms. PVLDB, 2(1):85--96,
2009.

[70] A. Dasgupta, G. Das, and H. Mannila. A random walk approach
to sampling hidden databases. In SIGMOD, pages 629--640,
2007.

[71] M. Datar and S. Muthukrishnan. Estimating rarity and similarity
over data stream windows. In ESA, pages 323--334, 2002.

[72] R. Deshpandé and H. Gatingon. Competitive analysis. Market-
ing Letters, 1994.

[73] X. Ding, B. Liu, and P. S. Yu. A holistic lexicon-based approach
to opinion mining. InWSDM, 2008.

[74] M. Drosou and E. Pitoura. Dynamic diversification of continuous
data. In EDBT, pages 216--227, 2012.

[75] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggre-
gation methods for the web. InWWW, pages 613--622, 2001.

[76] J. Eisenstein, B. O'Connor, N. A. Smith, and E. P. Xing. A la-
tent variable model for geographic lexical variation. In EMNLP,
pages 1277--1287, 2010.

[77] P. Ekman, W. Friesen, and P. Ellsworth. Emotion in the hu-
man face: guide-lines for research and an integration of find-
ings. Pergamon Press, 1972.

[78] E. Erkut, Y. Ülküsal, and O. Yenicerioğlu. A comparison of
p-dispersion heuristics. Computers & Operations Research,
21(10):1103--1113, 1994.

259 G. Valkanas

[79] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.
Comparing partial rankings. SIAM Journal on Discrete Mathe-
matics, 20(3):628--648, 2006.

[80] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists.
In SODA, pages 28--36, 2003.

[81] L. Ferrari, A. Rosi, M. Mamei, and F. Zambonelli. Extracting
urban patterns from location-based social networks. In LBSN
Workshop, pages 9--16, 2011.

[82] W. T. Few. Managerial competitor identification: Integrating the
categorization, economic and organizational identity perspec-
tives. Doctoral Dissertaion, 2007.

[83] I. Galpin, C. Y. A. Brenninkmeijer, A. J. G. Gray, F. Jabeen,
A. A. A. Fernandes, and N. W. Paton. Snee: a query pro-
cessor for wireless sensor networks. Distributed and Parallel
Databases, 29(1--2):31--85, 2011.

[84] Y. Gao, J. Hu, G. Chen, and C. Chen. Finding themost desirable
skyline objects. In DASFAA, pages 116--122, 2010.

[85] H. Garcia-Molina. Challenges in crawling the web. In BNCOD,
page 3, 2003.

[86] H. Gatignon, E. Anderson, and K. Helsen. Competitive reac-
tions to market entry: Explaining interfirm differences. Journal
of Marketing Research, 1989.

[87] D. Gay, P. Levis, J. R. von Behren, M. Welsh, E. A. Brewer,
and D. E. Culler. The nesc language: A holistic approach to
networked embedded systems. In PLDI, pages 1--11, 2003.

[88] J. B. Ghosh. Computational aspects of the maximum diversity
problem. Operations Research Letters, 19(4):175--181, 1996.

[89] S. Ghosh, G. Korlam, and N. Ganguly. Spammers' networks
within online social networks: a case-study on twitter. InWWW,
pages 41--42, 2011.

G. Valkanas 260

Mining and Managing User-Generated Content and Preferences

[90] S. Ghosh, M. B. Zafar, P. Bhattacharya, N. Sharma, N. Ganguly,
and K. Gummadi. On sampling the wisdom of crowds: Random
vs expert sampling of the twitter stream. In CIKM, 2013.

[91] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Walking
in facebook: A case study of unbiased sampling of osns. In
INFOCOM, pages 2498--2506, 2010.

[92] A. Gkoulalas-Divanis, P. Kalnis, and V. S. Verykios. Providing
k-anonymity in location based services. SIGKDD Explorations,
12(1):3--10, Nov. 2010.

[93] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classifica-
tion using distant supervision. Processing, pages 1--6, 2009.

[94] D. Goldberg, J. Wilson, and C. Knoblock. From text to geo-
graphic coordinates: the current state of geocoding. URISA
Journal, 19(1):33--47, 2007.

[95] P. Golle and K. Partridge. On the anonymity of home/work lo-
cation pairs. In Pervasive, pages 390--397, 2009.

[96] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: the
underground on 140 characters or less. In CCS, 2010.

[97] A. Guille and C. Favre. Mention-anomaly-based event detection
and tracking in twitter. In ASONAM, 2014.

[98] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi.
Approximating multi-dimensional aggregate range queries over
real attributes. In SIGMOD, pages 463--474, 2000.

[99] M. Gupta, P. Zhao, and J. Han. Evaluating event credibility on
twitter. In SDM, pages 153--164, 2012.

[100] A. Guttman. R-trees: a dynamic index structure for spatial
searching. SIGMOD Record, 14(2), June 1984.

[101] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: an update.
SIGKDD Explorations, 11(1):10--18, nov 2009.

261 G. Valkanas

[102] J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. Dmql: A
data mining query language for relational databases. In SIG-
MOD workshop on Research issues on Data Mining and knowl-
edge discovery, pages 27--33, 1996.

[103] J. R. Haritsa. The kndn problem: A quest for unity in diversity.
IEEE Data Engineering Bulletin, 32(4):15--22, 2009.

[104] C. Hawn. Take two aspirin and tweet me in the morning: How
twitter, facebook, and other social media are reshaping health
care. Health Affairs, 28(2):361--368, 2009.

[105] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the
deep web. Commun. ACM, 50(5):94--101, 2007.

[106] A. Heydon and M. Najork. Mercator: A scalable, extensible web
crawler. World Wide Web, 2(4):219--229, Apr. 1999.

[107] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In
ASPLOS, pages 93--104, 2000.

[108] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsiout-
siouliklis. Discovering geographical topics in the twitter stream.
InWWW, 2012.

[109] M. Hu and B. Liu. Mining and summarizing customer reviews.
In SIGKDD, pages 168--177, 2004.

[110] Y. Hu, F. Wang, and S. Kambhampati. Listening to the crowd:
Automated analysis of events via aggregated twitter sentiment.
In IJCAI, 2013.

[111] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline queries
against mobile lightweight devices in manets. In ICDE, 2006.

[112] T. Imieliński and A. Virmani. Msql: A query language for
database mining. Data Mining and Knowledge Discovery,
3(4):373--408, 1999.

[113] P. Indyk and R. Motwani. Approximate nearest neighbors: to-
wards removing the curse of dimensionality. In STOC, pages
604--613, 1998.

G. Valkanas 262

Mining and Managing User-Generated Content and Preferences

[114] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. Towards
a query optimizer for text-centric tasks. ACM Transactions on
Database Systems, 32(4):21, 2007.

[115] P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count,
and classify: categorizing hidden web databases. In SIGMOD,
pages 67--78, 2001.

[116] K. Y. Kamath and J. Caverlee. Content-based crowd retrieval
on the real-time web. In CIKM, pages 195--204, 2012.

[117] N. Katariya, A. Iyer, and S. Sarawagi. Active evaluation of clas-
sifiers on large datasets. In ICDM, pages 329--338, 2012.

[118] D. Klan, M. Karnstedt, K. Hose, L. Ribe-Baumann, and K.-U.
Sattler. Stream engines meet wireless sensor networks: cost-
based planning and processing of complex queries in anduin.
Distributed and Parallel Databases, 29(1--2):151--183, 2011.

[119] J. Kleinberg. Bursty and hierarchical structure in streams. In
SIGKDD, pages 91--101, 2002.

[120] D. Kossmann. The state of the art in distributed query process-
ing. ACM Computing Surveys, 32(4):422--469, 2000.

[121] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: an online algorithm for skyline queries. PVDLB, pages 275-
-286, 2002.

[122] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A. Desh-
pande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. R. Madden,
V. Raman, F. Reiss, and M. A. Shah. Telegraphcq: An architec-
tural status report. IEEE Data Engineering Bulletin, 26(1):11--
18, March 2003.

[123] C.-C. Kuo, F. Glover, and K. S. Dhir. Analyzing andmodeling the
maximumdiversity problem by zero-one programming. Decision
Sciences, 24(6):1171--1185, 1993.

[124] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social
network or a news media? InWWW, pages 591--600, 2010.

263 G. Valkanas

[125] C. Kwok, O. Etzioni, and D. S. Weld. Scaling question answer-
ing to the web. ACM Transactions on Information Systems,
19(3):242--262, 2001.

[126] T. Lansdall-Welfare, V. Lampos, and N. Cristianini. Effects of
the recession on public mood in the uk. In WWW Companion,
2012.

[127] T. Lappas, G. Valkanas, and D. Gunopulos. Efficient and
domain-invariant competitor mining. In SIGKDD, pages 408--
416, 2012.

[128] T. Lappas, M. R. Vieira, D. Gunopulos, and V. J. Tsotras. On
the spatiotemporal burstiness of terms. PVLDB, 5(9):836--847,
2012.

[129] G. Leshed and J. J. Kaye. Understanding how bloggers feel:
recognizing affect in blog posts. In CHI, 2006.

[130] M. Lewis, J. Haviland-Jones, and L. Barrett. Handbook of Emo-
tions, Third Edition. Guilford Publications, 2010.

[131] C. Li, A. Sun, and A. Datta. Twevent: segment-based event
detection from tweets. In CIKM, 2012.

[132] H. Li, Q. Tan, and W.-C. Lee. Efficient progressive processing
of skyline queries in peer-to-peer systems. In Infoscale, 2006.

[133] R. Li, S. Bao, J. Wang, Y. Liu, and Y. Yu. Web scale competitor
discovery using mutual information. In ADMA, 2006.

[134] R. Li, S. Bao, J. Wang, Y. Yu, and Y. Cao. Cominer: An effective
algorithm for mining competitors from the web. In ICDM, pages
948--952, 2006.

[135] R. Li, K. H. Lei, R. Khadiwala, and K.-C. Chang. Tedas: A
twitter-based event detection and analysis system. In ICDE.
IEEE, 2012.

[136] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The
k most representative skyline operator. In ICDE, pages 86--95,
2007.

G. Valkanas 264

Mining and Managing User-Generated Content and Preferences

[137] J. Liu, Z. Wu, L. Jiang, Q. Zheng, and X. Liu. Crawling deep
web content through query forms. InWEBIST, pages 634--642,
2009.

[138] K.-L. Liu, W.-J. Li, and M. Guo. Emoticon smoothed language
models for twitter sentiment analysis. In AAAI, 2012.

[139] Y. Liu, C. Kliman-Silver, and A. Mislove. The tweets they are
a-changin': Evolution of twitter users and behavior. In ICWSM,
2014.

[140] Z. Liu, P. Sun, and Y. Chen. Structured search result differenti-
ation. PVLDB, 2(1):313--324, 2009.

[141] E. Lo, K. Y. Yip, K.-I. Lin, and D. W. Cheung. Progressive skylin-
ing over web-accessible databases. Data & Knowledge Engi-
neering, 57(2):122--147, 2006.

[142] B. M. Luisa Bentivogli, Pamela Forner and E. Pianta. Revising
wordnet domains hierarchy: Semantics, coverage, and balanc-
ing. InCOLING,Workshop onMultilingual Linguistic Resources,
pages 101--108, 2004.

[143] C. Luo, H. Thakkar, H.Wang, and C. Zaniolo. A native extension
of sql for mining data streams. In SIGMOD, pages 873--875,
2005.

[144] Z. Ma, G. Pant, and O. R. L. Sheng. Mining competitor relation-
ships from online news: A network-based approach. Electronic
Commerce Research and Applications, 2011.

[145] W. Maass. Efficient agnostic pac-learning with simple hypothe-
sis. In COLT, pages 67--75, 1994.

[146] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tinydb: An acquisitional query processing system for sensor
networks. ACM Transactions on Database Systems, 30(1):122-
-173, 2005.

[147] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen,
and A. Halevy. Googleś deep web crawl. The VLDB Journal,
1(2):1241--1252, 2008.

265 G. Valkanas

[148] M. Magnani and I. Assent. From stars to galaxies: skyline
queries on aggregate data. In EDBT, pages 477--488, 2013.

[149] M.Mathioudakis and N. Koudas. Twittermonitor: trend detection
over the twitter stream. In SIGMOD, 2010.

[150] Y. Mejova, P. Srinivasan, and B. Boynton. Gop primary sea-
son on twitter: "popular" political sentiment in social media. In
WSDM, pages 517--526, 2013.

[151] M. Mikolajczak, V. Tran, C. Brotheridge, and J. J. Gross. Us-
ing an emotion regulation framework to predict the outcomes of
emotional labour, chapter 11. Emerald, 2009.

[152] G. Mishne and M. de Rijke. Capturing global mood levels using
blog posts. In AAAI-CAAW Symposium, pages 145--152, 2006.

[153] A. Mislove, S. Lehmann, Y.-Y. Ahn, J.-P. Onnela, and J. N.
Rosenquist. Understanding the demographics of twitter users.
In ICWSM, pages 554--557, 2011.

[154] G. Mitchell, S. B. Zdonik, and U. Dayal. Object-oriented query
optimization: What's the problem? Technical report, Provi-
dence, RI, USA, 1991.

[155] F. Morstatter, J. ürgen Pfeffer, H. Liu, and K. M. Carley. Is the
sample good enough? comparing data from twitter's streaming
api with twitter's firehose. In ICWSM, 2013.

[156] J. Murphy and D. R. Armitage. Merging the mod-
elled and working address database: A question of
dynamics and data quality. http://limerickcity.ie/IT/GIS-
GeographicalInformationSystems/AssociatedDocuments/
NewsletterFile,3692,en.pdf, Accessed on Sept. 2, 2012.

[157] A. Netz, S. Chaudhuri, J. Bernhardt, and U. M. Fayyad. Integra-
tion of data mining with database technology. In VLDB, pages
719--722, 2000.

[158] J. Nichols, J. Mahmud, and C. Drews. Summarizing sporting
events using twitter. In IUI, pages 189--198, 2012.

G. Valkanas 266

Mining and Managing User-Generated Content and Preferences

[159] A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual hidden
web content through keyword queries. In JCDL, pages 100--
109, 2005.

[160] C. Ordonez. Integrating k-means clustering with a relational
dbms using sql. IEEE Transactions on Knowledge and Data
Engineering, 18:188--201, February 2006.

[161] M. Osborne, S. Petrovic, R. McCreadie, C. Macdonald, and
I. Ounis. Bieber no more: First story detection using twitter and
wikipedia. In SIGIR 2012 Workshop on Time-aware Information
Access (#TAIA2012), 2012.

[162] G. Paltoglou and M. Thelwall. Twitter, myspace, digg: Unsu-
pervised sentiment analysis in social media. ACM Transactions
on Intelligent Systems and Technology, 3(4):66:1--66:19, Sept.
2012.

[163] B. Pang and L. Lee. Opinion mining and sentiment analysis.
Foundations and Trends in Information Retrieval, 2(1-2):1--135,
Jan. 2008.

[164] G. Pant and O. R. L. Sheng. Avoiding the blind spots: Competi-
tor identification using web text and linkage structure. In ICIS,
2009.

[165] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive sky-
line computation in database systems. ACM Transactions on
Database Systems, 30(1):41--82, 2005.

[166] A. N. Papadopoulos, A. Lyritsis, and Y. Manolopoulos. Sky-
graph: an algorithm for important subgraph discovery in rela-
tional graphs. Data Mining and Knowledge Discovery, 17(1):57-
-76, 2008.

[167] J. W. Pennebaker and L. A. King. Linguistic styles: language
use as an individual difference. Journal of personality and social
psychology, 77(6):1296, 1999.

[168] D. Pisinger. Upper bounds and exact algorithms for p-dispersion
problems. Computers & Operations Research, 33(5):1380--
1398, 2006.

267 G. Valkanas

[169] J. F. Porac and H. Thomas. Taxonomic mental models in com-
petitor definition. The Academy of Management Review, 2008.

[170] M. E. Porter. Competitive Strategy: Techniques for Analyzing
Industries and Competitors. Free Press, 1980.

[171] D. Quercia, M. Kosinski, D. Stillwell, and J. Crowcroft. Our twit-
ter profiles, our selves: Predicting personality with twitter. In
SocialCom, October 2011.

[172] A. Rajaraman and J. Ullman. Mining of Massive Datasets. Cam-
bridge University Press, 2011.

[173] J. H. Ratcliffe. On the accuracy of tiger-type geocoded address
data in relation to cadastral and census areal units. International
Journal of Geographical Information Science, 15(5):473--485,
2001.

[174] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tavyi. Heuristic and
special case algorithms for dispersion problema. Operations
Research, 42(2):299--310, 1994.

[175] M. Richardson. Beyond pagerank: Machine learning for static
ranking. InWWW, pages 707--715. ACM Press, 2006.

[176] A. Ritter, Mausam, O. Etzioni, and S. Clark. Open domain event
extraction from twitter. In SIGKDD, pages 1104--1112, 2012.

[177] D. M. Romero, C. Tan, and J. Ugander. On the interplay be-
tween social and topical structure. In ICWSM, 2013.

[178] D. Saez-Trumper, G. Comarela, V. Almeida, R. Baeza-Yates,
and F. Benevenuto. Finding trendsetters in information net-
works. In SIGKDD, pages 1014--1022, 2012.

[179] S. Sagiroglu, U. Yavanoglu, and E. N. Guven. Web based ma-
chine learning for language identification and translation. In
ICMLA, pages 280--285, 2007.

[180] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twit-
ter users: real-time event detection by social sensors. InWWW,
pages 851--860, 2010.

G. Valkanas 268

Mining and Managing User-Generated Content and Preferences

[181] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman,
and J. Sperling. Twitterstand: news in tweets. In SIGGIS, pages
42--51, 2009.

[182] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating asso-
ciation rule mining with relational database systems: Alterna-
tives and implications. Data Mining and Knowledge Discovery,
4(2):89--125, 2000.

[183] K.-U. Sattler and O. Dunemann. Sql database primitives for de-
cision tree classifiers. In CIKM, pages 379--386, 2001.

[184] R. Schifanella, A. Barrat, C. Cattuto, B. Markines, and
F. Menczer. Folks in folksonomies: social link prediction from
shared metadata. InWSDM, 2010.

[185] D. Scott. Multivariate Density Estimation: Theory, Practice,
and Visualization. Wiley series in probability and mathematical
statistics: Applied probability and statistics. Wiley, 1992.

[186] P. Senellart, A. Mittal, D. Muschick, R. Gilleron, and M. Tom-
masi. Automatic wrapper induction from hidden-web sources
with domain knowledge. InWIDM, pages 9--16, 2008.

[187] V. Sengar, T. Joshi, J. Joy, S. Prakash, and K. Toyama. Robust
location search from text queries. In GIS, pages 1--8, 2007.

[188] P. Serdyukov, V. Murdock, and R. van Zwol. Placing flickr pho-
tos on a map. In SIGIR, pages 484--491, 2009.

[189] B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of Wisconsin--
Madison, 2009.

[190] D. A. Shamma, L. Kennedy, and E. F. Churchill. Tweet the
debates: understanding community annotation of uncollected
sources. In SIGMM Workshop on Social Media, pages 3--10,
2009.

[191] C. Sheng and Y. Tao. On finding skylines in external memory.
In PODS, pages 107--116, 2011.

269 G. Valkanas

[192] K. Spärck-Jones, S. E. Robertson, and M. Sanderson. Ambigu-
ous requests: implications for retrieval tests, systems and theo-
ries. SIGIR Forum, 41(2):8--17, 2007.

[193] E. Spertus and L. A. Stein. Squeal: A structured query language
for the web. InWWW, pages 95--103, 2000.

[194] A. Stefanidis, A. Crooks, and J. Radzikowski. Harvesting ambi-
ent geospatial information from social media feeds. GeoJournal,
78(2):319--338, 2013.

[195] J. Stoyanovich, W. Mee, and K. A. Ross. Semantic ranking and
result visualization for life sciences publications. In ICDE, pages
860--871, 2010.

[196] D. Stutzbach, R. Rejaie, N. G. Duffield, S. Sen, andW.Willinger.
On unbiased sampling for unstructured peer-to-peer networks.
In Internet Measurement Conference, pages 27--40, 2006.

[197] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki,
and D. Gunopulos. Online outlier detection in sensor data using
non-parametric models. In VLDB, pages 187--198, 2006.

[198] J. Sutton, L. Palen, and I. Shlovski. Back-channels on the front
lines: Emerging use of social media in the 2007 southern cali-
fornia wildfires. In ISCRAM, 2008.

[199] P. Symeonidis, A. Papadimitriou, Y. Manolopoulos, P. Senkul,
and I. H. Toroslu. Geo-social recommendations based on incre-
mental tensor reduction and local path traversal. In GIS-LBSN,
pages 89--96, 2011.

[200] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representa-
tive skyline. In ICDE, pages 892--903, 2009.

[201] H. Thakkar, N. Laptev, H. Mousavi, B. Mozafari, V. Russo, and
C. Zaniolo. Smm: A data streammanagement system for knowl-
edge discovery. In ICDE, pages 757--768, April 2011.

[202] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable sensor
network simulation with precise timing. In IPSN, 2005.

G. Valkanas 270

Mining and Managing User-Generated Content and Preferences

[203] A. Toral and R. Munoz. A proposal to automatically build
and maintain gazetteers for named entity recognition by using
wikipedia. EACL, 2006.

[204] G. Valkanas and D. Gunopulos. Location extraction from social
networks with commodity software and online data. In ICDM
Workshops (SSTDM), 2012.

[205] G. Valkanas and D. Gunopulos. How the live web feels about
events. In CIKM, 2013.

[206] G. Valkanas and D. Gunopulos. A ui prototype for emotion-
based event detection in the live web. In CHI-KDD, pages 89--
100, 2013.

[207] G. Valkanas, D. Gunopulos, I. Boutsis, and V. Kalogeraki. An
architecture for detecting events in real-time using massive het-
erogeneous data sources. In BigMine, pages 103--109, 2013.

[208] G. Valkanas, D. Gunopulos, I. Galpin, A. J. G. Gray, and A. A. A.
Fernandes. Extending query languages for in-network query
processing. In MobiDE, pages 34--41, 2011.

[209] G. Valkanas, A. N. Papadopoulos, and D. Gunopulos. Skydiver:
A framework for efficient skyline diversification. In EDBT, pages
406--417, 2013.

[210] V. Vapnik. Statistical learning theory. Wiley, 1998.
[211] K. Vieira, L. Barbosa, J. Freire, and A. S. da Silva. Siphon++:

a hidden-webcrawler for keyword-based interfaces. In CIKM,
pages 1361--1362, 2008.

[212] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou,
D. Srivastava, C. T. Jr., and V. J. Tsotras. Divdb: A system for
diversifying query results. PVLDB, 4(12):1395--1398, 2011.

[213] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg. Reverse
top-k queries. In ICDE, pages 365--376, 2010.

[214] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis. Identify-
ing the most influential data objects with reverse top-k queries.
PVLDB, pages 364--372, 2010.

271 G. Valkanas

[215] A. Vlachou and M. Vazirgiannis. Ranking the sky: Discovering
the importance of skyline points through subspace dominance
relationships. Data & Knowledge Engineering, 69(9):943--964,
2010.

[216] S. Wakamiya, R. Lee, and K. Sumiya. Crowd-based urban char-
acterization: extracting crowd behavioral patterns in urban ar-
eas from twitter. In LBSN Workshop, pages 77--84, 2011.

[217] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng.
Creating competitive products. PVLDB, pages 898--909, 2009.

[218] Q. Wan, R. C.-W. Wong, and Y. Peng. Finding top-k profitable
products. In ICDE, pages 1055--1066, 2011.

[219] H. Wang and C. Zaniolo. Atlas: A native extension of sql for
data mining. In SDM, pages 130--141, 2003.

[220] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu. Efficient skyline
query processing on peer-to-peer networks. In ICDE, pages
1126--1135, 2007.

[221] J. Weng and B.-S. Lee. Event detection in twitter. In ICWSM,
2011.

[222] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. E.
Abbadi. Parallelizing skyline queries for scalable distribution. In
EDBT, pages 112--130, 2006.

[223] T.Wu, Y. Sun, C. Li, and J. Han. Region-based online promotion
analysis. In EDBT, pages 63--74, 2010.

[224] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in multi-
dimensional space. PVLDB, pages 109--120, 2009.

[225] K. Xu, S. S. Liao, J. Li, and Y. Song. Mining comparative opin-
ions from customer reviews for competitive intelligence. Deci-
sion Support Systems, 2011.

[226] T. Xu and Y. Cai. Location anonymity in continuous location-
based services. In GIS, pages 1--8, 2007.

G. Valkanas 272

Mining and Managing User-Generated Content and Preferences

[227] Y. Yang, H.-H. Wu, and H.-H. Chen. SHORT: shortest hop rout-
ing tree for wireless sensor networks. International Journal of
Sensor Networks, 2:368--374, July 2007.

[228] A. C.-C. Yao. Probabilistic computations: Toward a unifiedmea-
sure of complexity. In FOCS, pages 222--227, 1977.

[229] Y. Yao and J. Gehrke. The cougar approach to in-network query
processing in sensor networks. SIGMOD Record, 31(3):9--18,
2002.

[230] M. L. Yiu and N. Mamoulis. Efficient processing of top-k domi-
nating queries on multi-dimensional data. In VLDB, pages 483-
-494, 2007.

[231] M. L. Yiu and N. Mamoulis. Multi-dimensional top-k dominating
queries. In VLDB, pages 695--718, 2009.

[232] YouTube Service. http://www.youtube.com/.
[233] D. Zelenko and O. Semin. Automatic competitor identification

from public information sources. International Journal of Com-
putational Intelligence and Applications, 2002.

[234] S. Zhang, N. Mamoulis, D. W. Cheung, and B. Kao. Efficient
skyline evaluation over partially ordered domains. PVLDB, 3(1-
2):1255--1266, 2010.

[235] Z. Zhang, B. He, and K. C.-C. Chang. Understanding web query
interfaces: best-effort parsing with hidden syntax. In SIGMOD,
pages 107--118, 2004.

[236] Z. Zhang and J. Iria. A novel approach to automatic gazetteer
generation using wikipedia. In People's Web, pages 1--9, 2009.

[237] Z. Zhang, L. V. S. Lakshmanan, and A. K. H. Tung. On domina-
tion game analysis for microeconomic data mining. ACM Trans-
actions on Knowledge Discovery from Data, 2009.

[238] H. Zhenhua, X. Yang, and L. Ziyu. l-skydiv query: Effectively
improve the usefulness of skylines. SCIENCE CHINA Informa-
tion Sciences, 53(9):1785--1799, 2010.

273 G. Valkanas

