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Sparse Nonlinear MIMO Filtering
and Identification

G. Mileounis and N. Kalouptsidis

Abstract In this chapter system identification algorithms for sparse nonlinear multi
input multi output (MIMO) systems are developed. These algorithms are poten-
tially useful in a variety of application areas including digital transmission systems
incorporating power amplifier(s) along with multiple antennas, cognitive process-
ing, adaptive control of nonlinear multivariable systems, and multivariable biolog-
ical systems. Sparsity is a key constraint imposed on the model. The presence of
sparsity is often dictated by physical considerations as in wireless fading channel–
estimation. In other cases it appears as a pragmatic modelling approach that seeks
to cope with the curse of dimensionality, particularly acute in nonlinear systems like
Volterra type series.

Three identification approaches are discussed: conventional identification based
on both input and output samples, semi–blind identification placing emphasis on
minimal input resources and blind identification whereby only output samples are
available plus a–priori information on input characteristics. Based on this taxonomy
a variety of algorithms, existing and new, are studied and evaluated by simulations.

1 Introduction

System nonlinearities are present in many practical situations and remedies based
on linear approximations often degrade system performance. A popular model that
captures system nonlinearities is Volterra series [69, 71, 77]. This model is employed
in communications, digital magnetic recording, physiological systems, control of
multivariable systems, etc. Volterra series constitute a class of polynomial models
that can be regarded as a Taylor series with memory. An attractive feature of this
model is that the unknown parameters enter linearly at the output. On the other
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2 G. Mileounis and N. Kalouptsidis

hand, the number of terms increases exponentially with the order and memory of
the model.

Most of the work reported in the literature focuses on modelling and identifi-
cation of single input single output (SISO) Volterra systems. When the underlying
nonlinear system is a MIMO system, the resulting model is more complicated and
has received little attention. MIMO models are addressed in this chapter. Nonlinear
MIMO systems involve a large number of parameters to be estimated, which in-
creases exponentially with the order, the memory and the number of inputs. There-
fore, there is a strong need to reduce complexity by considering those terms that
strongly contribute to the outputs. This leads naturally to a sparse approximation of
the underlying nonlinear MIMO system. Identification of sparse nonlinear MIMO
systems is approached under three different settings: conventional, semi–blind and
blind. Blind methods identify the unknown system parameters merely based on the
output signals. On the other hand, conventional and semi–blind methods, require a
training or a pilot sequence.

The objective of this chapter is twofold. First, it extends existing algorithms for
adaptive filtering of SISO models to the MIMO case and demonstrates their appli-
cability to nonlinear MIMO systems. Secondly, it presents new algorithms for blind
and semi–blind identification of nonlinear MIMO systems excited by finite alpha-
bet inputs. The chapter is divided into four sections. The sparse nonlinear MIMO
models under consideration are presented in Section 2. Adaptive filters for sparse
MIMO systems are discussed in Section 3. Then, algorithms for blind and semi–
blind identification are addressed in Section 4. Finally, summary and future work
are discussed in Section 5.

2 System Model

MIMO polynomial systems form the basic class of models we shall be working
with. These finitely parametrizable recursive structures are defined next. First the
basic notation from SISO Volterra series is reviewed. Then MIMO extensions are
considered and some special cases of interest are introduced. Finally, various appli-
cations which employ MIMO Volterra models are briefly reviewed.

Volterra series constitute a popular model for the description of nonlinear be-
haviour [69, 71]. A SISO discrete–time Volterra model has the following form

y(n) =
∞

∑
p=1

∞

∑
τ1=−∞

· · ·
∞

∑
τp=−∞

hp(τ1, . . . ,τp)

[
p

∏
i=1

x(n− τi)

]
. (1)

Each output is formed by weighting the input shifted samples x(n− τi) and their
products. The weights hp(τ1, . . . ,τp) constitute the Volterra kernels of order p. Well
possessedness conditions ensuring that inputs give rise to well defined outputs are
given in [51, 13]. If only a finite number of nonlinearities enters Eq. (1), the resulting
expression defines a finite Volterra system. Suppose the kernels of a finite Volterra
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system are causal and absolutely summable. Then Eq. (1) defines a bounded input
bounded output (BIBO) stable system and can be approximated by the polynomial
system

y(n) =
P

∑
p=1

M

∑
τ1=0

· · ·
M

∑
τp=0

hp(τ1, . . . ,τp)

[
p

∏
i=1

x(n− τi)

]
. (2)

Eq. (2) is parametrized by the finite Volterra kernels and has finite memory M. A
more general result established by Boyd and Chua [14, 13] states that any shift
invariant causal BIBO stable system with fading memory can be approximated by
Eq. (2). The fading memory is a continuity property with respect to a weighted norm
which penalizes the remote past in the formation of the current output. The reader
may consult [13, 14, 51] for more details.

A key feature of Eq. (2) is that it is linear in the parameters. For estimation pur-
poses it is useful to write Eq. (2) in matrix form using Kronecker products [15].
Indeed, let x(n) = [x(n),x(n − 1), · · · ,x(n − M)]T (the superscript T denotes the
transpose operation) and the pth–order Kronecker power

xp(n) = x⊗·· ·⊗x︸ ︷︷ ︸
p times

, p = 2, . . . ,P.

The Kronecker power contains all pth–order products of the input. Likewise h =[
h1(·), · · · ,hp(·)

]T is obtained by treating the p–dimensional kernel as a Mp column
vector. We rewrite Eq. (2) as follows

y(n) =
[
xT (n)xT

2 (n) · · ·xT
p (n)

]


h1
h2
...

hp

= xT (n)h. (3)

Collecting n successive output samples from the above equation into the vector
y(n) = [y(1), . . . ,y(n)] results in the following system of linear equations:

y(n) = X(n)h

when
X(n) =

[
xT (1), . . . ,xT (n)

]T
.

From a practical viewpoint, Volterra models of order higher than three are rarely
considered. This is due to the fact that the number of parameters (∑P

p=1 Mp) in-
volved in the model of Eq. (2) grows exponentially as a function of the memory size
and the order of nonlinearity. To cope with this complexity several sub–families
of Eq. (2) have been considered, most notable Wiener, Hammerstein and Wiener–
Hammerstein models. In all cases the universal approximation capability is lost. A
Wiener system is the cascade of a linear filter followed by a static nonlinearity. If we
approximate the static nonlinearity with its Taylor expansion up to a certain order,
we obtain the following expression for the output of the Wiener system
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y(n) =
P

∑
p=1

[
M

∑
τ=0

hp(τ)x(n− τ)

]p

. (4)

The Hammerstein system (or memory polynomial) is composed of a memoryless
nonlinearity (a Taylor approximation of the static nonlinearity is employed) fol-
lowed by a linear filter, and has the following form

y(n) =
P

∑
p=1

M

∑
τ=0

hp(τ)xp(n− τ). (5)

A Wiener–Hammerstein or sandwich model is composed of a memoryless nonlin-
earity sandwiched between two linear filters with impulse responses h(·) and g(·)
and is defined as

y(n) =
P

∑
p=1

M

∑
τ1=0

· · ·
M

∑
τp=0

Mhp+Mgp

∑
k=0

gp(k)
p

∏
l=1

hp(τl − k)x(n− τl). (6)

The above models have been employed in a wide range of applications including:
satellite, telephone channels, mobile cellular communications, wireless LAN de-
vices, radio and TV stations, digital magnetic systems and others [8, 32, 71, 77, 80].

2.1 Nonlinear MIMO systems with universal approximation
capability

The discussion of the previous subsection is next extended to MIMO nonlinear
systems. Attention is limited to MIMO polynomial systems. These are finitely
parametrizable structures that naturally extend Eq. (2) and preserve a universal ap-
proximation capability over a broad class of multivariables systems. We start our
discussion by considering cases where either the MIMO system has a single input
or a single output. In the end, sparsity is imposed in order to reduce the number of
unknown parameters.

The input–output relationship of nonlinear single input multiple output (SIMO)
system is

yr(n) =
p

∑
p=1

M

∑
τ1=0

· · ·
M

∑
τp=0

h(r)p (τ1, . . . ,τp)
p

∏
i=1

x(n− τi) (7)

where yr(n) is the output associated with the rth output signal and h(r)p (τ1, . . . ,τp) is
the pth–order Volterra kernel of the rth output. The difference between Eq. (2) and
Eq. (7) is that a distinct kernel h(r)p (τ1, . . . ,τp) is associated with each output signal
yr(n). This is illustrated in Fig. 1. SIMO systems can be obtained by oversampling
the output signal of a SISO system at a sufficiently high rate and demultiplexing the
samples [44].
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Fig. 1 SIMO and MISO polynomial systems (SR denotes a shift register)

A multiple input single output (MISO) system comprises ni input signals and a
single output. The input–output of a MISO system has the form

y(n) =
P

∑
p=1

ni

∑
t=1

M

∑
τ1=0

· · ·
M

∑
τp=0

hp(τ1, . . . ,τp)
p

∏
i=1

xt(n− τi) (8)

where xt(n) is the tth input signal (1 ≤ t ≤ ni). A shift register (SR) is associated
with each input. The contents of all registers are then converted into the output by
means of a feed forward polynomial as shown in Fig. 1.

The general MIMO case is readily construed from the above special cases. A
MIMO finite support Volterra system with ni inputs and no outputs has the following
form:

yr(n) = fr(x1(n),x1(n−1), . . . ,x1(n−M), · · · ,xni(n),xni(n−1), . . . ,xni(n−M)),

r = 1, . . . ,no. (9)

Each output yr(n) is obtained by a polynomial combination of the ni inputs and
their shifts. The parameter M specifies the memory of the ni registers associated
with each input. The MIMO finite support Volterra architecture is depicted in Fig.
2. This model is capable of capturing nonlinear effects resulting from any product
combinations of the ni inputs and their shifts. Expanding fr(·) as a polynomial of
degree P gives rise to the nonlinear MIMO Volterra model with ni inputs and no
outputs defined as

yr(n) =
P

∑
p=1

ni

∑
t1=1

· · ·
ni

∑
tp=1

M

∑
τ1=0

· · ·
M

∑
τp=0

h(r,t1···tp)
p (τ1, . . . ,τp)

p

∏
i=1

xti(n− τi) (10)
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f2 (·)
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Fig. 2 A nonlinear MIMO Volterra

where h(r,t1···tp)
p (τ1, . . . ,τp) is the pth order Volterra kernel associated with the rth

output and the (t1 · · · tp) inputs. In this case, the Volterra kernels have multidimen-
sional indices (r, t1 · · · tp).

The above expressions are made complicated by the presence of multiple sum-
mations. Kronecker products alleviate this problem. Let

x̄(n) = [x1(n),x1(n−1), . . . ,x1(n−M), · · · ,xni(n),xni(n−1), . . . ,xni(n−M)]T

and hence the nonlinear input vector is given by

x(n) = [x̄(n), x̄2(n), · · · , x̄p(n)]T . (11)

Then Eq. (10) takes the form:
y(n) = Hx(n) (12)

where y(n) = [y1(n), . . . ,yno(n)]
T is the output vector, and the system matrix is H =

[h1:, . . . ,hno:]
T , with hno: containing all the Volterra kernels associated with the rth

output. In this case the parameter matrix contains

p

∑
i=1

(ni ×M)p

parameters. The MIMO polynomial family of Eq. (9) has a universal approximation
capability in the following sense: every nonlinear system with more than one inputs
and outputs that is causal, shift invariant, bounded input bounded output stable and
has fading memory can be approximated by a MIMO polynomial system of the form
given in Eq (10). This assertion is established if the same statement is proved for
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MISO systems. The latter follows with straightforward modifications of the proof
for the SISO case.

2.1.1 Sparsity aware Volterra kernels

A major obstacle in using Volterra series in practical applications is the exponential
growth of the model parameters (as a function of the order, the memory length of
the systems and the number of inputs). Thus models of order p > 3 and memory
length M > 5, translate into increased computational complexity cost and data re-
quirements for identification purposes. For this reason, parsimonious, reduced order
alternatives become relevant.

Sparse representations provide a viable alternative. The parameter matrix H in
Eq. (12) is s–sparse if the number of non–zero elements is less than s, i.e.

∥vec[H]∥ℓ0 = {#(i, j) : Hi j ̸= 0} ≤ s.

2.2 Special classes of MIMO Nonlinear Systems

In this section, some special classes of MIMO Volterra systems are studied. We start
with a simplified version of the MIMO Volterra model. Then structured nonlinear
models like Wiener, Hammerstein and Wiener–Hammerstein are extended to the
MIMO case. These models are formed by the cascade connection of linear MIMO
filters and MIMO static nonlinearities.

2.2.1 Parallel cascade MIMO Volterra

In MIMO systems the signals from the ni inputs interact with each other and the
resulting mixture is received at each output. A special case of Eq. (10) results when
the MIMO system obtains from the parallel connection of SISO systems, where each
SISO system is often referred to as a path or parallel system. If the path between
each input and each output is modelled as a Volterra system, then the rth output is
expressed as follows

yr(n) =
P

∑
p=1

ni

∑
t=1

M

∑
τ1=0

· · ·
M

∑
τp=0

h(r,t)p (τ1, . . . ,τp)
p

∏
i=1

xt(n− τi) (13)

where h(r,t)p (τ1, . . . ,τp) is the pth–order Volterra kernel between the tth input and
the rth output for all t = 1, . . . ,ni and r = 1, . . . ,no. The above model does not al-
low product combinations along different inputs. Instead each input is nonlinearly
transformed and then all different inputs are linearly mixed. Such a model can be
considered as a parallel cascade of ni SIMO Volterra models.
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Tx

Tx

Tx

PA

PA

PA

+

+

+

xni
(n)

x2(n)

x1(n)

yno
(n)

y2(n)

y1(n)

Fig. 3 An example of a parallel cascade MIMO Volterra channel

Eq. (13) can be written in a form identical to that of Eq. (12). Define the tth input
regressor vector as

x(t)(n) = [x(t)(n),x(t)(n−1), . . . ,x(t)(n−M)]T .

Then the linearly mixed input vector takes the form:

x(n) = [x(1)1 (n),x(1)2 (n), . . . ,x(1)p (n), · · · ,x(ni)
1 (n),x(ni)

2 (n), . . . ,x(ni)
p (n)]T .

The total number of parameters of the above linearly mixed model is

ni

p

∑
i=1

Mp

and is considerably reduced when compared to the general case.
The linearly mixed model finds application in nonlinear communications. Com-

munication nonlinearities can be categorized into the following three types: trans-
mitter nonlinearity (due to nonlinearity in amplifiers), inherent physical channel
nonlinearity, and receiver nonlinearity (e.g., due to nonlinear filtering). The power
amplifier (PA) (which is located at the transmitter) constitutes the main source of
nonlinearity. In a system equipped with multiple transmit antennas, each transmit-
ter amplifies the signal. Amplifiers often operate near saturation to achieve power
efficiency. In those cases they introduce nolinearities which cause interference and
reduce spectral efficiency. At the receiver end, each antenna receives a linear su-
perposition of all transmitted signals, as illustrated in Fig. 3. It should be pointed
out that the nonlinear effects are applied to each input signal individually prior to
mixing the transmitted signals.
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Linear

MIMO System

H

(·)1

(·)p

x1(n)

xni
(n)

y1(n)

yno
(n)

Fig. 4 A MIMO Wiener System

2.2.2 Block–structured classes of nonlinear MIMO systems

The MIMO Wiener model is shown in Fig. 4. It consists of a linear MIMO system
in cascade with a polynomial nonlinearity for each output. The output is given by

yr(n) =
P

∑
p=1

ni

∑
t1=1

· · ·
ni

∑
tp=1

M

∑
τ1=0

· · ·
M

∑
τp=0

p

∏
i=1

h(r,ti)p (τi)xti(n− τi). (14)

This model is a special subclass of the MIMO Volterra series model. The relation-
ship between the pth–order Volterra kernel and pth–order Wiener kernel is

h(rt1···tp)
p (τ1, . . . ,τp) =

p

∏
i=1

h(r,ti)p (τi).

Thus a MIMO Wiener model is equivalent to a MIMO Volterra system with separa-
ble kernels. The MIMO Hammerstein model is one of the simplest and most popular
subclasses of MIMO Volterra models. As the diagram of Fig. 5 shows, the MIMO
Hammerstein is a cascade connection of a static polynomial nonlinearity for each
input connected in series by a linear MIMO system. It consists of the same building
blocks as the Wiener model, but connected in reverse order. It has the following
form:

yr(n) =
P

∑
p=1

ni

∑
t=1

M

∑
τ=0

h(r,t)p (τ)xp(n− τi). (15)

The pth–order Volterra kernel of a Hammerstein model is given by

h(rt1···tp)
p (τ1, . . . ,τp) = hp(τ1)δ (τ2 − τ1) · · ·δ (τp − τ1)δ (t2 − t1) · · ·δ (tp − t1) (16)

A Hammerstein system prohibits product interactions between different inputs and
hence corresponds to a diagonal MIMO Volterra model.

We finally consider the case where the MIMO Volterra kernels have factorable
form:

h(rt1···tp)
p (τ1, . . . ,τp) =

Mh+Mg

∑
k=0

gr
p(k)

p

∏
i=1

hti
p(τi − k)



10 G. Mileounis and N. Kalouptsidis
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(·)p
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y1(n)

yno
(n)

x1(n)

xni
(n)

(·)1

(·)p

Fig. 5 A MIMO Hammerstein system

Substituting the above form into Eq. (10), we obtain:

yr(n) =
P

∑
p=1

ni

∑
t1=1

· · ·
ni

∑
tp=1

M

∑
τ1=0

· · ·
M

∑
τp=0

Mh+Mg

∑
k=0

gr
p(k)

p

∏
i=1

hti
p(τi − k)xti(n− τi). (17)

The pth–order kernel corresponds to a cascade connection of a linear MIMO system
followed by a memoryless nonlinearity followed by another linear MIMO system
and is known as MIMO Wiener–Hammerstein or sandwich model. In its simplest
form a MIMO Wiener–Hammerstein system has a sandwiched structure with a sin-
gle input single output static nonlinearity placed between a MISO and a SIMO linear
systems. In the general case, illustrated in Fig. 6, the two linear filters can have ar-
bitrary input and output dimensions. Compatibility is secured by proper dimension-
ing of the MIMO static nonlinearity. The Wiener–Hammerstein has been widely
employed in satellite transmission, where both the earth station and the satellite re-
peater employ (nonlinear) power amplifiers. In such cases the signal bandwidth is
very carefully defined depending on the application so that the output signal contains
only spectral components near the carrier frequency ωc. This leads to the MIMO
baseband Wiener–Hammerstein system [8, Ch. 14], given by

yr(n) =
⌊ P−1

2 ⌋

∑
p=1

ni

∑
t1=1

· · ·
ni

∑
t2p+1=1

M

∑
τ1=0

· · ·
M

∑
τ2p+1=0

Mh+Mg

∑
k=0

gr
p(k)

p

∏
i=1

(18)

×
p+1

∏
i=1

hti
2p+1(τi − k)xti(n− τi)

2p+1

∏
j=p+2

h
t j
2p+1(τ j − k)x∗t j

(n− τ j)

where ⌊·⌋ denote the floor operation. The above representation only considers odd–
order powers with one more unconjugated input than conjugated input. This way the
output does not create spectral components outside the frequency band of interest.
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Fig. 6 A MIMO Wiener–Hammerstein system

2.3 Practical applications of MIMO Volterra systems

Nonlinear MIMO systems are found in a range of communication and control ap-
plications. These are shortly reviewed next.

2.3.1 Nonlinear communication systems

Communication systems equipped with multiple transmit and/or receive antennas
are MIMO systems that help provide spatial diversity. Exploitation of spatial diver-
sity results in higher capacity and performance improvements in interference reduc-
tion, fading mitigation and spectral efficiency. Most of existing MIMO schemes are
limited to linear systems. However, in many cases, system nonlinearities are present
and possible remedies based on linear MIMO approximations degrade performance
significantly.

In a communication system, there are often limited resources (power, frequency,
and time slots) which have to be efficiently shared by many users. Quite often in
practice we encounter a situation whereby the number of users exceeds the num-
ber of available frequency or time slots. In infrastructure–based networks, a base
station or an access point is responsible for allocating resources among the users,
thereby reducing the access delays/transmission latency and improving quality–of–
service (QoS). This is established through a variety of multiple access schemes.
Two key multiple access technologies suitable for higher data rates are: orthogonal
frequency–division multiple access (OFDMA) and code–division multiple access
(CDMA).

OFDMA dynamically allocates resources both in frequency (by dividing the
available bandwidth into a number of subbands, called subcarriers) and in time
(via OFDM symbols). The transmission system assigns different users to groups
of orthogonal subcarriers and thus allows them to be spaced very close together
with no overhead as in frequency division multiple access. Furthermore it prevents
interference between adjacent subcarriers. OFDMA has been implemented in sev-
eral wireless communication standards (IEEE 802.11a/g/n wireless local area net-
works (WLANs), IEEE 802.16e/m worldwide interoperability for microwave access
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(WiMAX), Hiperlan II), high–bit–rate digital subscriber lines (HDSL), asymmetric
digital subscriber lines (ADSL), very high-speed digital subscriber lines (VHDSL),
digital audio broadcasting (DAB), digital television and high-definition television
(HDTV).

OFDMA is capable of mitigating intersymbol interference (ISI), (due to mul-
tipath propagation) using low–complexity/simple equalization structures. This is
achieved by transforming the available bandwidth into multiple orthogonal narrow-
band subcarriers, where each subcarrier is sufficiently narrow to experience rela-
tively flat fading. Nevertheless, OFDM is sensitive to synchronization issues and
is characterized by high peak–to–average–power–ratio (PAPR), caused by the sum
of several symbols with large power fluctuations. Such variations are problematic
because practical communication systems are peak powered limited. In addition,
OFDM transceivers are intrinsically sensitive to power amplifier (PA) nonlinear dis-
tortion [38], which dissipates the highest amount of power. One way to avoid nonlin-
ear distortion is to operate the PA at the so–called “back–off” regime which results
in low power efficiency. The trade–off between power efficiency and linearity mo-
tivated the development of signal processing tools that cope with MIMO–OFDM
nonlinear distortion [40, 45, 38].

CDMA is based upon spread spectrum techniques. It plays an important role in
third generation mobile systems (3G) and has found application in IEEE 802.11b/g
(WLAN), Bluetooth, and cordless telephony. In CDMA multiple users share the
same bandwidth at the same time through the use of (nearly) orthogonal spread-
ing codes. The whole process effectively spreads the bandwidth over a wide fre-
quency range (using pseudo–random code spreading or frequency hopping) several
magnitudes higher than the original data rate. Two critical factors that limit the per-
formance of CDMA systems are interchip and intersymbol interference (ICI/ISI),
due to multipath propagation, mainly because they tend to destroy orthogonality
between user codes and thus prevent interference elimination. Suppression of the
detrimental effects of interference (ICI and ISI) get further complicated when non-
linear distortion is introduced due to power amplifiers. The combined effects of
ICI, ISI and nonlinearities are comprehensively examined in [40, 67]. However, as
recently illustrated in [22], the CDMA system model is sparse due to user inac-
tivity/uncertainty, timing offsets and multipath propagation. CDMA system perfor-
mance can be expected to improve further if nonlinearities along with sparse ICI/ISI
are revisited.

2.3.2 MIMO nonlinear physiological systems

In several physiological applications it is mandatory to gain as much insight infor-
mation is possible about the functioning of the system. It is well documented in the
biomedical literature that nonlinear systems can significantly enhance the quality
of modelling [57, 80]. Very often linear approximations discard significant infor-
mation about the nonlinearities. For this reason, several physiological systems like
sensory systems (cockroach tactile spine, auditory system, retina), reflex loops (in
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the control of limb and eye position), organ systems (heart rate variability, renal
auto–regulation) and tissue mechanics (lung tissue, skeletal muscle) have been ap-
proached via nonlinear system analysis using Volterra series [57, 80]. Many of the
above physiological systems receive excitation from more than one input, and hence
leads naturally to MIMO Volterra models.

2.3.3 Control applications

Quite often control applications exhibit multivariable interactions and nonlinear be-
haviour, which make the modelling task and design more challenging. Examples
of such control systems include: multivariable polymerization reactor [32], fluid
catalytic cracking units (FCCU) [83, 84], and rapid thermal chemical vapor decom-
position systems (RTCVD) [72].

Multivariable polymerization reactor aims to control the reactor temperature at
the unstable steady state by manipulating the cooling water and monomer flow
rates. MIMO Volterra models have been employed to capture/track the nonlinear
plant output [32]. The FCCU unit constitutes the workhorse of modern refinery and
its purpose is to convert gas oil into a range of hydrocarbon products. The major
challenges related to FCCU are its internal feedback loops (interactions) and its
highly nonlinear behaviour [84]. RTCVD is a process used to deposit thin films on
a semiconductor wafer via thermally activated chemical mechanisms. Process and
equipment models for RTCVD consist mainly of balance equations for conserva-
tion of energy, momentum and mass, along with equations that describe the relevant
chemical mechanisms. An important characteristic of RTCVD systems is their wide
region of operation, which requires excitation of the system with as many modes as
possible and hence a nonlinear MIMO system becomes relevant. A major challenge
in all the above control applications is the large number of parameters required by
the nonlinear MIMO models.

3 Algorithms for sparse multivariable filtering

Adaptive filters with a large number of coefficients are often encountered in multi-
media signal processing, MIMO communications, biomedical applications, robotics,
acoustic echo cancellation, and industrial control systems. Often, these applications
are subject to nonlinear effects which can be captured using the models of Section
2. The steady–state and tracking performance of conventional adaptive algorithms
can be improved by exploiting the sparsity of the unknown system. This is achieved
via two different strategies [82]. The first is based on proportionate adaptive filters,
which update each parameter of the filter independently of the others by adjusting
the step size in proportion to the magnitude of the estimated filter parameter. In this
manner, the adaptation gain is “proportionately” redistributed among all parameters,
emphasizing the large coefficients in order to speed up convergence and increase the
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overall convergence rate. The second strategy is motivated by the compressed sens-
ing framework [16, 76, 36]. Compressed sensing approaches follow two main paths:
(a) the ℓ1 minimization (also referred to as basis pursuit) and (b) greedy algorithms
(matching pursuit). Basis pursuit penalizes the cost function by the ℓ1–norm of the
unknown parameter vector (or a weighted ℓ1–norm), as the ℓ1–norm (unlike the
ℓ2–norm) favours sparse solutions. These methods combine conventional adaptive
filtering algorithms such as LMS, RLS, etc with a sparsity promoting operation. Ad-
ditional operations include the soft–thresholding (originally proposed for denoising
by D. L. Donoho in [30]) and the metric projection onto the ℓ1–ball [25, 33]. Greedy
algorithms, on the other hand, iteratively compute the support set of the signal and
construct an approximation of the parameters until convergence is reached. Propor-
tionate adaptive filtering was developed by D. L. Duttweiler in 2000 [34]. There-
after, a variety of improved versions has been proposed [64]. A connection between
proportionate adaptive filtering and compressed sensing is discussed in [64].

3.1 Sparse multivariable Wiener filter

The block diagram of Fig. 7 shows a discrete–time MIMO filter with ni inputs and
no outputs [7, 47]. The output y(n), the impulse response matrix H and the input
x(n) are related by:

y(n) = Hx(n)+v(n) (19)

where x(n) is defined in Eq. (11) and v(n) = [v1(n),v2(n), · · · ,vno ]
T is a Gaussian

white noise vector. The following equation shows the rth output signal

yr(n) =
ni

∑
τ=1

hT
rτ xτ(n)+ vr(n) (20)

= hT
r:x(n)+ vr(n), r = 1, . . . ,no. (21)

and

H =

 hT
11 · · · hT

1ni
...

. . .
...

hT
no1 · · · hT

noni

=

 hT
1:
...

hT
no:

 . (22)

An adaptive process is employed to cause the rth output to agree as closely as
possible with the desired response signal dr(n). This is accomplished by comparing
the outputs with the corresponding desired responses and by adjusting the parame-
ters to minimize the resulting estimation error. More specifically, given an estimate
Ĥ(n) of H the estimation error is:

er(n) = yr(n)−dr(n) = yr(n)− ĥ
T
r:(n)x(n), r = 1, . . . ,no (23)

and in vector form:
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Fig. 7 MIMO filtering

e(n) = y(n)− Ĥ(n)x(n). (24)

The performance of a filter is assessed by a functional of the estimation error. LS
filters, minimize the total squared error:

JLS(n) =
n

∑
i=1

eH1
(i)e(i) =

n

∑
i=1

∥e(i)∥2
ℓ2

(25)

=
no

∑
r=1

Jhr:(n). (26)

The optimum MIMO filter is given by the system of linear equations

Ho(n)Rxx(n) = Pyx(n) (27)

where Rxx(n) is the input sample covariance matrix (which has block Toeplitz struc-
ture) with

Rxix j(n) =
n

∑
t=1

xi(t)xH
j (t),

and

Pyx(n) =
n

∑
i=1

y(i)xH(i) =
[

pyx1(n) pyx2(n) · · · pyxni
(n)
]
. (28)

Under broad conditions the solutions of Eq. (27) tends to be the optimum mean
squared filter (occasionally referred to as Wiener filter) that minimizes the mean
squared error E{∥e(i)∥2

ℓ2
} and satisfies the system of linear equations given by Eq.

(27) (Pyx(n) = E{y(i)xH(i)} and Rxx(n) = E{x(i)xH(i)}). Equation (27) can be
decomposed in no independent MISO equations each corresponding to an output
signal [9, 47], as follows:

hr:,o(n)Rxx(n) = pyrx(n), r = 1, . . . ,no. (29)

Consequently, minimizing JLS(n) or minimizing each Jhr:(n) independently gives
exactly the same results.
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Two popular algorithms for adaptive filtering are the Least Mean Squares (LMS)
algorithm and the Recursive Least Squares (RLS) algorithm. The LMS follows a
stochastic gradient method and has a computationally simpler implementation. On
the other hand, the more complex RLS has better convergence rate.

The LMS seeks to minimize the instantaneous error

JLMS(n) = eH(n)e(n). (30)

The LMS estimate for the impulse response matrix H is based on the following
update equation:

H(n) = H(n−1)+µe(n)xH(n) (31)

where the step size µ determines the convergence rate of the algorithm. To achieve
convergence in the mean to the optimal Wiener solution, µ should be chosen so that:

0 < µ <
2

M ∑ni
τ σ2

xτ

. (32)

The RLS algorithm attempts to minimize the exponentially weighted cost func-
tion:

JRLS(n) =
n

∑
t=1

λ n−teH(t)e(t) (33)

where λ denotes the forgetting factor. The RLS estimates are updated as follows:

H(n) = H(n−1)+ e(n)kT (n) (34)

where

k(n) =
R−1

xx (n)x∗(n)
λ +xT (n)R−1

xx (n)x∗(n)

is known as the Kalman gain [46, 70]. The matrix inversion lemma [46, 70], leads
to:

R−1
xx (n) = λ−1R−1

xx (n−1)−k(n)xT (n)R−1
xx (n−1). (35)

3.2 L1 constrained adaptive filters

These algorithms are based on the minimization of cost functions penalized by the
ℓ1–norm (or a weighted ℓ1–norm or an approximate ℓ0–norm) and are inspired by
the fact that the ℓ1–norm promotes sparse solutions and is the best convex relaxation
to the ℓ0 quasi–norm.
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Table 1 ZA–LMS Algorithm

Algorithm description
H(0)=0
For n:=1,2,. . . do
1: e(n) = d(n)−H(n−1)x(n)
2: H(n) = H(n−1)+µe(n)xH(n)− γsgn(H(n−1))
End For

3.2.1 LMS–type filters

The sparse cost function combines the instantaneous error with a sparseness induc-
ing penalty term

JZA−LMS(n) =
1
2
(
eH(n)e(n)

)
+ τpen(H(n)) (36)

τ is a positive scalar regularization parameter which provides a trade–off between
penalization and signal reconstruction error. The most well–known sparsity induc-
ing penalty term is the ℓ1–norm (pen(H(n)) = ∥vec [H(n)]∥ℓ1 ). Although a large
portion of the literature focuses on the ℓ1–norm there are other functions which pro-
mote sparsity [48, 42]. In fact, any penalization term, with pen(H(n)) being sym-
metric, monotonically non–decreasing, and with decreasing derivative will serve the
same purpose [36].

Sparse LMS–type variants obey the following updating scheme new
parameter
estimate

=

 old
parameter
estimate

+
{

stepsize
} { new

in f ormation

}
+

 zero
attraction

term


where the new information term is the error vector between the outputs of the fil-
ter and the desired signal vector. The Zero–Attraction (ZA) term is a norm related
regularization function which exerts an attraction to zero on small parameters. Con-
vergence of the recursion may be slow because the two parts are hard to balance.
This issue is addressed in some detail later in the subsection.

The first of this type of algorithms (originally developed in [18, 19] for SISO
systems) minimizes Eq. (36). The filter parameter matrix is updated by

H(n) = H(n−1)−µ∇JZA−LMS(n)

= H(n−1)+µe(n)xH(n)− γ∇spen(H(n−1)) (37)

where ∇spen(H(n−1)) is the sub–gradient of the convex function pen(H(n−1)),
γ = µτ is the regularization parameter. In the adaptive filtering context γ is also
referred to as regularization step size. Usually the regularization step size is fine
tuned offline (via exhaustive simulations) or in an ad–hoc manner. A systematic
approach to choosing γ is developed in [19].
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Under the standard compressive sensing setting, the penalty is given by the
ℓ1–norm and the resulting algorithm is shown in Table 1. Note that sgn(·) is a
component–wise sign function defined as

sgn(Hi j) =

{
Hi j/|Hi j| if Hi j ̸= 0,
0 if Hi j = 0.

(38)

It is well known that the LMS, in a stationary environment, achieves unbiased con-
vergence in the mean to the Wiener solution (using the independence assumption)
[46]. However, unlike the conventional LMS, ZA–LMS leads to a biased behaviour
[48], that is

E [H(n)] = Ho −
γ
µ
E [H(n)]R−1

xx (n), as n → ∞ (39)

Recall that a key difference between the ℓ0 norm and the ℓ1 norm penalty, is that
the ℓ1 norm depends on the magnitudes of the non–zero components, whereas the
ℓ0–norm penalty does not. As a result, the larger a component is, the heavier it is
penalized by the ℓ1 penalty. To overcome this often unfair penalization two different
penalty terms are introduced in the conventional LMS cost function. Both form
better approximations to the ℓ0 norm. The first is based on an approximation of the
step function [79]

pen(H(n)) = ∑
i

(
1− exp−a

′ |veci[H(n)]|
)

(40)

where a > 0 is a parameter that must be chosen. The authors in [49] reduce the com-
putational complexity of the resulting zero attraction term by considering the first
order Taylor series expansion of exponential functions. The resulting filter update
iteration (named ℓ0–LMS) becomes

H(n) = H(n−1)+µe(n)xH(n)− γa(1−a|H(n−1)|)+ sgn(H(n−1)) (41)

where (x)+ = max{x,0}. Motivated by the re–weighted ℓ1 cost function in [17],
the authors in [18] follow this approach in order to reinforce the ZA–LMS by re–
weighting the sparse penalty term. The proposed penalty term is given by

pen(H(n)) = ∑
i

log
(

1+ ε
′−1|veci [H(n)] |

)
. (42)

According to the stochastic gradient approach, the resulting filter update iteration is

H(n) = H(n−1)+µe(n)xH(n)− γ
sgn(H(n−1))
1+ ε|H(n−1)|

(43)

and the algorithm is named RZA–LMS. Small coordinates of the estimated ma-
trix are more heavily weighted (by 1/(1+ ε|H(n− 1)|)) towards zero, and small
weights encourage larger coordinates. As a result, the bias of the mean value of the
converged matrix for RZA–LMS is reduced.
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So far we have examined how to solve the penalized LMS cost function of Eq.
(36) by embedding additional terms to the update formula. A different viewpoint
arises by considering proximity splitting methods [21]. The proximity operator of a
(possibly non–differentiable) convex function Ω (H(n)) is defined as

proxτ,Ω (H(n)) := argmin
H(n)

1
2τ

∥Y(n)−H(n)∥2
ℓ2
+Ω (H(n)) .

Proximity operators are the main ingredient of proximal methods [21] which arise
in many well–known algorithms (e.g., iterative thresholding, projected Landweber,
projected gradient, alternating projections, alternating-direction method of multipli-
ers, alternating split Bregman). In these algorithms, proximal methods can be un-
derstood as generalizations of quasi–Newton methods to non–differentiable convex
problems. An important example is the Iterative Thresholding procedure [24] which
solves problems of the form:

min
H

J (H)+Ω (H) , (44)

J (H) is differentiable with Lipschitz gradient. By iterating the fixed point equation

H(n) := proxµ,Ω︸ ︷︷ ︸
backward step

[H(n−1)−µ∇J (H(n−1))]︸ ︷︷ ︸
forward step

(45)

for values of the step–size parameter µ in a suitable bounded interval. This scheme
is known as a forward–backward splitting algorithm. In some cases, the proximity
operator proxµ,Ω can be evaluated in closed form.

If we consider the minimization of the cost function JZA−LMS (defined in Eq.
(36)) with pen(H(n)) = ∥vec [H(n)]∥ℓ1 we obtain

min
H

1
2
|e(n)|2 + τ∥vec [H(n)]∥ℓ1 .

We observe that the above problem is a special case of Eq. (44) with{
J : H 7→ 1

2 |e(n)|,
Ω : H 7→ τ∥vec [H(n)]∥ℓ1 .

Then it follows from [21, 61] that the proximity operator proxµ,Ω leads to a non-
linear component–wise shrinkage operation known as soft–thresholding [30]. The
component-wise soft–thresholding operation is defined by

Sτ [Hi j] =


Hi j − τ if Hi j ≥ τ ,
0 if |Hi j| ≤ 0,
Hi j + τ if Hi j ≤ τ

(46)
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or in compact notation Sτ [Hi j] = sgn(Hi j)(|Hi j|− τ)+ [30]. This operation shrinks
coefficients above the threshold in magnitude by an amount equal to τ . An instanta-
neous proximity operation leads to the soft–thresholded LMS filter

H(n) = Sτ
[
H(n−1)+µe(n)xH(n)

]
. (47)

Detailed analysis of the dynamics of Eq. (47) in its batch format, has shown that the
algorithm converges initially relatively fast, then it overshoots the ℓ1 penalty, and it
takes very long to re–correct back. To avoid such a behaviour in the adaptive case,
we force the successive iterates to remain within a particular ℓ1 ball BR [25]. To
achieve this the thresholding operation is replaced by a projection PBR , where, for
any closed convex set C and any H, the projection PC (H) is defined as the unique
point in C for which the ℓ2 distance to H is minimal. We thus obtain the projected
LMS on ℓ1 ball

H(n) = PBR

[
H(n−1)+µe(n)xH(n)

]
. (48)

The projection operator PBR [Hi j(n)] is obtained by a suitable thresholding of Hi j(n),
given

PBR [Hi j] =


PBR [Hi j] = Sµ [Hi j] if ∥vec [H(n)]∥ℓ1 > R, and choose µ

such that ∥Sµ [vec [H(n)]]∥ℓ1 = R
PBR [Hi j] = S0 [Hi j] if ∥vec [H(n)]∥ℓ1 ≤ R.

(49)

Using proximal splitting methods other types of adaptive filters, such as NLMS/APA
and Adaptive Projection algorithms, can be modified to promote sparsity [54, 61].

3.2.2 RLS–type filters

Sparse RLS–type filters modify the RLS cost function (33) by the addition of a
sparsifying term:

JZA−RLS(n) =
1
2

JRLS(n)+ τpen(H(n)) . (50)

The regularization parameter τ controls sparsity and weighted squared error. The
sparse RLS filter can be seen as an adaptive version of Gauss–Newton or Newton–
Raphson search with sparse updates [55]. Alternatively, the RLS algorithm is a spe-
cial case of a Kalman filter [46, 70]. The main recursion takes the following form: new

parameter
estimate

=

 old
parameter
estimate

+

{
Kalman

gain

} {
innovation

vector

}
+

 zero
attraction

term


The correction term is proportional to the innovation error vector between the pre-
dicted observations and the actual observations. The coefficients of this correction
are provided by the Kalman gain. For the regularized Recursive Least Square prob-
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lem of Eq. (50) the solution of the Wiener equation takes the form [35]:

H(n) = Pyx(n)C(n)− γ(1−λ )∇spen(H(n−1))C(n) (51)

where C(n) = R−1
xx (n), λ ∈ (0,1) is the forgetting factor and ∇spen(H(n−1)) is

a subgradient since JZA−RLS(n) is non–differentiable at any point where Hi j(n) =
0 [10, p. 227]. The exponentially weighted autocorrelation and cross–correlation
matrices are recursively updated as:

Rxx(n) =
n

∑
t=1

λ n−tx(t)xH(t) = λRxx(n−1)+x(n)xH(n) (52)

Pyx(n) =
n

∑
t=1

λ n−ty(t)xH(t) = λPyx(n−1)+y(n)xH(n). (53)

The regularized RLS filter relies on the following recursion [35]:

H(n) = H(n−1)+ e(n)kT (n)− γ(1−λ )∇s pen(H(n−1))C(n) (54)

where the regularization parameter γ is usually fine tuned offline or using the se-
lection rule proposed in [35] (for white inputs). In this case the corresponding sub-
gradient is ∇s∥Hi j(n−1)∥ℓ1 = sgn(Hi j(n−1)). Instead we may utilize the penalty
functions, suggested in the LMS context, given by Eqs. (40) and (42).

RLS algorithms are developed based on the batch LASSO estimator in [4, 3].
This method modifies the LASSO cost function to include a forgetting factor:

argmin
H(n)

1
σ2

n

∑
i=1

λ n−i∥y(i)−H(i)x(i)∥2
ℓ2
+ γpen(H(n)) . (55)

The first order subgradient based optimality conditions for the exponentially weighted
LASSO cost imply:{

∇i jJRLS(n)+ τ sgn(Hi j(n)) , if Hi j(n) ̸= 0
|∇i jJRLS(n)| ≤ τ if Hi j(n) = 0.

These conditions and the value of ∇i jJRLS(n) are used to define a pseudo–gradient
for each component of H [2]. The pseudo–gradient of JR−LASSO(n) is the element of
the sub–differential of JR−LASSO(n) at H(n) with minimum norm and is given by:

∇i jJR−LASSO(n)=


∇i jJRLS(n)+ τ sgn(Hi j(n)) , if Hi j(n) ̸= 0
∇i jJRLS(n)+ τ if Hi j(n) = 0,∇i jJRLS(n)<−τ
∇i jJRLS(n)− τ if Hi j(n) = 0,∇i jJRLS(n)> τ
0 if Hi j(n) = 0,−τ ≤ ∇i jJRLS(n)≤ τ.

In the first case the function is differentiable, so the pseudo–gradient is simply the
gradient with respect to i j (the only element of the sub–gradient). In the remain-
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Table 2 R-LASSO Algorithm

Algorithm description
Rxx(0)=0,Pyx(0)=0,H(0)=0
For n:=1,2,. . . do
1: Rxx(n) = λRyx(n−1)+x(n)xH(n)
2: Pyx(n) = λPyx(n−1)+y(n)xH(n)

3: ∇JR−LASSO(n) =

{
H(n−1)Rxx(n)−Pyx(n)+ τsgn(H(n−1)) if Hi j ̸= 0,
Sτ [H(n−1)Rxx(n)−Pyx(n)] if Hi j = 0.

4: H(n) = H(n−1)+µn∇JR−LASSO(n)
End For

ing three cases we obtain the minimum–norm solution by the soft–thresholding op-
eration to ∇i jJRLS(n). The global solution to the smooth part of the LASSO cost
function is the Wiener equation, where the autocorrelation and the cross–correlation
matrices are recursively updated from Eqs. (52) and (53).

Using the subgradient, an instantaneous subgradient descent strategy is employed
for online updating as follows

H(n) = H(n−1)+µ∇JR−LASSO(n). (56)

The Recursive LASSO (R–LASSO) filter outlined here is summarized in Table 2.
As with the batch LASSO estimator, the R–LASSO does not necessarily converge
to the true parameter H since it fails to recover the correct support and at the same
time estimate the non–zero entries of H consistently [4].

In order to improve the performance of the R–LASSO filter, one could use a dif-
ferent penalty term which is signal dependent and weights differently the entries in
the ℓ1 norm, that is pen(H(n)) = ∑i wτ(|veci

[
Ĥ

RLS
(n)
]
|)∥veci [H(n)]∥ℓ1 . By gen-

eralizing the Smoothly Clipped Absolute Deviation (SCAD) regularizer introduced
for the batch weighted LASSO estimator to its adaptive case, the following weight
function is obtained

wτ(|veci [H(n)] |)=
[ατ −|veci [H(n)] |]+

τ(α −1)
u(|veci [H(n)] |−τ)+u(τ−|veci [H(n)] |)

u(·) stands for the step function and α is usually set to 3.7. The reweighted LASSO
estimator (RW–LASSO) places higher weight to small entries, and lower weight to
entries with large amplitudes. In fact, the estimates of size less than τ are penal-
ized as in R–LASSO, while estimates between τ and ατ are penalized in a linearly
decreasing manner. Estimates larger than ατ are not penalized at all. The imple-
mentation of RW–LASSO is established using an instantaneous pseudo–gradient
descent strategy, similar to R–LASSO. The downside of this estimator is its high
complexity because it requires running in parallel an RLS algorithm to supply the
needed weights.
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Table 3 spaRLS Algorithm

Algorithm description
Rxx(0)=0,Pyx(0)=0,H(0)=0
For n:=1,2,. . . do
1: Rxx(n) = λRxx(n−1)+ a2

σ2 x(n)xH(n)

2: Pyx(n) = λPyx(n−1)+ a2

σ2 y(n)xH(n)
3: Repeat
4: Ĝ

(λ )
(n) = Ĥ

(λ )
(n)(I−Rxx(n))+Pyx(n)

5: Ĥ
(λ )

(n) = Sγa2

[
Ĝ

(λ )
(n)
]

6: Until λ = k
End For

A different viewpoint to sparse RLS algorithms is provided in [5] (and its MIMO
extension in [53]). This approach makes use of the Expectation Maximization (EM)
method [27] to derive an adaptive filter that solve a penalized Maximum Likeli-
hood problem. The penalized Recursive Least Squares problem may be posed as
a penalized Maximum Likelihood problem [41]. This penalized ML problem can
be efficiently solved by an EM algorithm following the noise decomposition idea
(proposed in [41]) in order to divide the optimization problem into a denoising and
a filtering problem. Consider the following decomposition for V(n)

V(n) = αV1(n)X(n)+V2(n). (57)

The noise matrices are ensembles of Gaussian–distributed random matrices

V1(n) = (0,Ini ⊗ Ino)

V2(n) =
(

0,
(
σ2Λ−1 −α2X(n)XH(n)

)T ⊗ Ino

)

where Λ := diag
[
λ n−1 · · ·λ 0

]
and α is a constant which must fulfil α ≤σ2/λmax[X(n)XH(n)]

with λmax[·] being the maximum eigenvalue. Since λmax[X(n)XH(n)]≈ ni for large
n and for independent input, α2 = σ2/5ni satisfies this condition with high proba-
bility. Therefore the model is rewritten as follows:{

Y(n) = G(n)X(n)+V2(n)
G(n) = H(n)+αV1

. (58)

The EM algorithm is used to solve the following penalized ML problem

H(n) = argmax
H(n)

logP(Y(n),V(n), |H(n))− γpen(H(n))) (59)

which is easier to solve, by employing V(n) as the auxiliary variable. The λ th iter-
ation of the EM algorithm is defined as [5]:
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2α2 ∥G(λ )(n)−H∥2

ℓ2
− γ∥vec [H]∥ℓ1

M–Step H(λ+1)(n) = argmax
H(n)

Q(H,H(n)) = Sγα2

(
G(λ )(n)

) (60)

where

G(λ )(n) = H(λ )(n)
(

I− α2

σ2 X(n)ΛXH(n)
)
+

α2

σ2 Y(n)ΛXH(n)

The above algorithm is an iterated shrinkage method. The soft thresholding function
tends to decrease the support of H(n), since it shrinks the support to those elements
whose absolute value is greater than γα2. The algorithm described above can be
further simplified by considering only the corresponding positions of the non–zero
entries within the thresholding step [5]. The autocorrelation and cross–corellation
matrices, which appear in the E–step of the algorithm, can be obtained recursively
and the resulting algorithm (known as spaRLS) is summarized in Table 3.

Another algorithm related to the EM approach is presented in [52]. Unlike the
noise decomposition idea which is followed in [5], their approach uses normal priors
on the unknown parameter matrix. In the EM approach the individual parameters are
treated as missing variables, and the E–step computes the conditional expectation of
the missing variables given past observations. Subsequently, the M–Step maximizes
this expectation minus a sparsity inducing penalty (like the ℓ1 norm). To apply the
EM approach the complete and incomplete data must be specified. The matrix H(n)
at time n is taken to represent the complete data vector, whereas Y(n−1) accounts
for the incomplete data [39, pp. 31–33]. The resulting EM approach is summarized
by the following equation:

G(n) = argmax
G

{
Ep(H(n)|Y(n−1);G(n−1))

[
log p(H(n);G)

]
− γ∥vec [G]∥ℓ1

}
. (61)

The EM algorithm aims to maximize the log–likelihood of the complete data,
log p(H(n);G). However, because H(n) is an unknown parameter, it maximizes in-
stead its expectation given the incomplete data Y(n− 1) and a current estimate of
the parameters G(n− 1). The E–step, computes the conditional expectation of the
log–likelihood, given observations Y(n−1) and parameter estimate G(n−1) from
the previous iteration

E-step : Q
(
G,G(n−1)

)
= Ep(H(n)|Y(n−1);G(n−1)) [log p(H(n);G)] (62)

= constant+GHS−1(n)E[H(n)|Y(n−1);G(n−1)]− 1
2

GHS−1(n)G

where S(n) is a diagonal covariance matrix, and the constant incorporates all terms
that do not involve G and hence do not affect maximization. The M–step, described
below, calculates the maximum of the penalized Q–function

M-step : G(n) = argmax
G

{
Q
(
G,G(n−1)

)
− γ∥vec [G]∥ℓ1

}
(63)

= SγSii(n) (E [H(n)|Y(n−1);G(n−1)])
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Table 4 EM–RLS Algorithm

Algorithm description
H(0) = 0, C0 = δ−1I with δ =const.
For n:=1,2,. . . do

1: k(n) =
C(n−1)x∗(n)

λ +xT (n)C(n−1)xH(n)
2: G(n) = H(n−1)+(y(n)−H(n−1)x(n))kT (n)
3: C(n) = λ−1C(n−1)−λ−1k(n)xT (n)C(n−1)
4: H(n) = Sγλ−1C(n−1) [G(n)]
End For

which in turn leads to the soft thresholding function. In order to carry out the
conditional expectation of Eq. (62) (essentially the E–step), one needs to assume
a prior on H(n) given the past observations Y(n− 1) and G(n− 1). Consider the
Gaussian prior of the form

Prior = p(H(n)|Y(n−1);G(n−1))≃ N (G(n−1),S(n)) .

It is well known that this conditional expectation may be obtained recursively using
the Kalman filter, if a Gaussian prior is assumed on H(n) given the past observa-
tion. The Kalman filter then determines the posterior probability density function for
H(n) recursively over time. In a Bayesian context if H(n) is assumed to be Gaus-
sian, the RLS filter can be regarded as a Kalman filter [55]. Therefore, the main
recursion takes the form [55, 70]

H(n) = H(n−1)+ e(n)kT (n)

C(n) = λ−1C(n−1)−λ−1k(n)xT (n)C(n−1)

where k(n) is the Kalman gain and e(n) denotes the prediction error given by
e(n) = y(n)−H(n−1)x(n). Hence H(n) depends linearly on G. The Riccati equa-
tion that updates C(n) = Rxx

−1(n) indicates that C(n) does not depend on G. More-
over, E[e(n)Y(n−1)] = 0 because the prediction error e(n) is uncorrelated to mea-
surements. The ith diagonal component of the prior covariance Si(n) can be com-
puted as follows

Si(n) = λ−1Ci(n−1).

The method outlined above is named EM–RLS filter and is summarized in Table 4.

3.3 Greedy adaptive filters

Greedy algorithms provide an alternative approach to ℓ1 penalization methods. For
the recovery of a sparse parameter matrix in the presence of noise, greedy algo-
rithms iteratively improve the current estimate by modifying one or more elements
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until a halting condition is met. The basic principle behind greedy algorithms is
to iteratively find the support set of the sparse matrix and reconstruct it using the
restricted support Least Squares (LS) estimate. The computational complexity de-
pends on the number of iterations required to find the correct support set. One of the
earliest algorithms proposed for sparse signal recovery is the Orthogonal Matching
Pursuit (OMP) [26, 65, 75]. At each iteration, OMP finds the entry of the proxy
matrix P(n) = (Y(n)−HX(n))XH(n) with the largest magnitude, and adds it to the
support set. Then, it solves the following least squares problem:

Ĥ = argmin
H

∥Y(n)−HX(n)∥2
ℓ2

and updates the residual. By repeating these steps a total of s times, the support of
H is recovered.

Several improvements have been proposed for greedy reconstruction. The Stage-
wise OMP (StOMP), proposed in [31], selects all proxy components whose values
are above a certain threshold. Due to the multiple selection step, StOMP achieves
better runtime than OMP. On the other hand, parameter tuning in StOMP might be
difficult and there are rigorous asymptotic results available. A more sophisticated
algorithm was developed by Needell and Vershynin, and is known as Regularized
OMP (ROMP) [63]. ROMP chooses the s largest components of the proxy, and ap-
plies a regularization step to ensure that not too many incorrect components are
selected. The recovery bounds obtained in [63] are optimal up to a logarithmic fac-
tor. Tighter recovery bounds which avoid the presence of the logarithmic factor are
obtained by Needell and Tropp via the Compressed Sampling Matching Pursuit al-
gorithm (CoSaMP) [62]. CoSaMP provides tighter recovery bounds than ROMP
that are optimal up to a constant factor. An algorithm similar to the CoSaMP, was
presented by Dai and Milenkovic and is known as Subspace Pursuit (SP) [23].

As with most greedy algorithms, CoSaMP takes advantage of the measurement
matrix X(n) which is assumed to be approximately orthonormal (X(n)XH(n) is
close to the identity matrix). Hence, the largest components of the signal proxy
P(n) = HX(n)XH(n) most likely correspond to the non–zero rows of H. Next, the
algorithm adds the largest components of the signal proxy to the running support
set and performs least squares to get an estimate for the signal. Finally, it prunes the
least square estimation and updates the error residual. The main ingredients of the
CoSaMP algorithm are outlined below:

Identification of the largest 2s components of the proxy signal
Support Merger: forms the union of the set of newly identified components with
the set of indices corresponding to the s largest components of the least squares
estimate obtained in the previous iteration
Estimation via least squares on the merged set of components
Pruning: restricts the LS estimate to its s largest components
Sample update: updates the error residual.

The above steps are repeated until a halting criterion is met. The main difference be-
tween CoSaMP and SP is in the identification step where the SP algorithm chooses
the s largest components.
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It was established in [58] that greedy algorithms can be converted into an adaptive
mode, while maintaining their superior performance gains. We demonstrate below
that this conversion is applicable in the multichannel set up. We focus our analysis
on CoSaMP/SP due to their superior performance, but similar ideas are applicable to
other greedy algorithms as well. Multichannel greedy algorithms can be approached
via two strategies. The first approach assumes that the subsystems share the same
sparsity pattern. Hence the greedy algorithm simultaneously recovers the support
set (also known as joint sparsity or group sparsity) [12, 75] by choosing an element
which reaches the maximum value of the multichannel energy. Under the second
strategy adopted here, the subsystems exhibit different sparsity patterns [56]. Next
greedy versions of the main adaptive multichannel algorithms are presented based
on the CoSaMP/SP platform.

3.3.1 Greedy LMS filter

The multichannel adaptive greedy LMS algorithm modifies the proxy identification,
estimation and error residual update. The error residual is evaluated by

v(n) = y(n)−H(n)x(n). (64)

The above formula involves the current sample only, in contrast to the CoSaMP/SP
scheme which requires all previous samples. A new proxy signal that is more suit-
able for the adaptive mode, is defined as:

P(n) =
n−1

∑
i=1

λ n−1−iv(i)xH(i)

and is updated by

P(n) = λP(n−1)+v(n−1)xH(n)

This way the algorithm is capable of capturing variations on the support of H. The
estimate H(n) is updated by the LMS recursion [46, 70]. At each iteration the current
regressor x(n) and the previous estimate H(n−1) are restricted to the instantaneous
support originated from the support merging step. However, because the row support
corresponding to each output is different, some extra care is required. Recall that
any MIMO filter with no outputs is simplified to no MISO adaptive filters (all of
which have different row support). Let Λ denote the estimated set of indices and
Λ (r) (r = 1,2, . . . ,no) the set of indices associated with the rth row of H(n). The
update equation for the rth output is given by

hr:|Λ (r)(n) = hr:|Λ (r)(n−1)+µer(n)xH
|Λ (r)(n), ∀r = 1, . . . ,no (65)

where x|Λ (r)(n) denotes the sub–vector corresponding to the index set Λ (r). If all
rows of H share the same row support then the update step can be performed jointly
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Table 5 SpAdOMP Algorithm

Algorithm description

H(0) = 0,W(0) = 0,P(0) = 0 {Initiliazation}
v(0) = y(0) {Initial residual}
0 < λ ≤ 1 {Forgetting factor}
0 < µ < 2λ−1

max {Step size}
For n := 1,2, . . . do
1: P(n) = λP(n−1)+v(n−1)xH(n−1) {Form signal proxy}
2: Ω = supp(P2s(n)) {Identify large components}
3: Λ = Ω ∪ supp(H(n−1)) {Merge supports}
4: er(n) = yr(n)−wr:|Λ (r) (n−1)x|Λ (r) (n) {Prediction error}
5: wr:|Λ (r) (n) = wr:|Λ (r) (n−1)+µer(n)xH

|Λ (r) (n) {LMS iteration}

6: Λs = max(|H|Λ (n)|,s) {Obtain the pruned support}
7: H|Λs (n) = W|Λs (n), H|Λ c

s
(n) = 0 {Prune the LMS estimates}

8: v(n) = y(n)−H(n)x(n) {Update error residual}
end For

for all outputs and the selection of the largest proxy signal components is simplified
[75].

The multichannel Sparse Adaptive Orthogonal Matching Pursuit (SpAdOMP)
algorithm, is presented in Table 5. The operator max(|a|,s) returns s indices of the
largest elements of a and Λ c represents the complement of Λ . An important point
to note about step 5 of Table 5 is that the choice of a proper step–size µ that en-
sures convergence is difficult. The Normalized LMS (NLMS) addresses this issue
by scaling with the input power

hr:|Λ (r)(n) = hr:|Λ (r)(n−1)+
µ

ε +∥x|Λ (r)(n)∥2 er(n)xH
|Λ (r)(n), ∀r = 1, . . . ,no

where 0 < µ < 2 and ε is a small positive constant (inserted to avoid division by
small numbers). NLMS may be viewed as an LMS with time–varying step–size.
This partially explains the superior tracking performance as compared to LMS in
non–stationary environments.

3.3.2 Greedy RLS filter

In this subsection we develop greedy adaptive schemes whose estimation part is
based on rank one updates for the autocorrelation and cross–correlation matrices.
A straightforward forward attempt towards this direction, would be to re–use the
framework adapted by the SpAdOMP algorithm [58] (Table 5) and replace the es-
timation step with the RLS algorithm. However in doing so, we will have to up-
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date the entries of the inverse covariance matrix as well as the Kalman gain entries
which are required to perform an RLS update for the currently estimated support
set. A more efficient technique avoids the last action of the CoSaMP/SP framework
(Sample Update) and is described next.

Consider the normal equations

HX(n)XH(n) = Y(n)XH(n). (66)

An iterative method known as Landweber–Fridman or Van Cittert iteration [29, 78]
is incorporated in order to express Eq. (66) into an equivalent fixed point equation
of the form

H = H+(Y(n)−HX(n))XH(n).

The Landweber iteration starts from an initial guess H0 and solves y(n) = Hx(n)
iteratively by

H(t) = H(t−1)+
(

Y(n)−H(t−1)X(n)
)

XH(n) t = 1,2, . . .

The above iteration requires the norm of X(n) to be less than or equal to one, oth-
erwise it diverges or converges too slowly. To avoid divergence and accelerate the
speed of convergence a step size term µ is introduced

H(t) = H(t−1)+µ
(

Y(n)−H(t−1)X(n)
)

XH(n) t = 1,2, . . . (67)

where µ ∈ (0,2/∥X(n)XH(n)∥). The above iterations is similar to Steepest Descent
except that the step size term is fixed. To derive an adaptive Landweber filter we
rewrite Eq. (67) as

H(t) = H(t−1) (I−µX(n)XH(n)
)
+µY(n)XH(n) t = 1,2, . . . (68)

The above iteration requires the autocorrelation matrix Rxx(n)=X(n)XH(n) and the
cross–correlation matrix Pyx(n) = Y(n)X(n)H . In practice, the data arrive sequen-
tially and might vary with time. For this reason we approximate Rxx(n) and Pyx(n)
via exponentially weighted sample averages [46, 70]. Therefore the Landweber it-
eration takes the form

H(n) = H(n−1)(I−µRxx(n))+µPyx(n) n = 1,2, . . . (69)

The resulting expression is identical to the one derived in [5] (Step 4 in Table 3) via
the EM formulation and the decomposition of the noise vector.

Finally let us take a second look at the proxy signal and the sample update, which
are described in section 3.3. The authors in [58] proposed an adaptive mechanism
to estimate the signal proxy and the sample update. Examination of

P(n) = (Y(n)−HX(n))XH(n) (70)
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Table 6 SpAdOMP (RLS) Algorithm

Algorithm description

H(0) = 0,W(0) = 0,P(0) = 0,Rxx(0) = 0,Pyx(0) = 0 {Initiliazation}
For n := 1,2, . . . do
1: Rxx(n) = λRxx(n−1)+x(n)xH(n) {Update autocorrelation}
2: Pyx(n) = λPyx(n−1)+y(n)xH(n) {Update cross–correlation}
3: P(n) = Pyx(n)−H(n)Rxx(n) {Form signal proxy}
4: Ω = supp(P2s(n)) {Identify large components}
5: Λ = Ω ∪ supp(H(n−1)) {Merge supports}
6: W(n) = W(n−1)(I−µRxx(n))+µPyx(n) {Recursive Landweber iteration}
7: Λs = max(|W|Λ (n)|,s) {Obtain the pruned support}
8: H|Λs (n) = W|Λs (n), H|Λ c

s
(n) = 0 {Prune the Landweber estimates}

end For

shows that the sample update constitutes an ingredient of the signal proxy. Addi-
tionally, the above equation can be re–expressed as follows

P(n) = Y(n)XH(n)−HX(n)XH(n)≃ Pyx(n)−HRxx(n) (71)

and hence there is no need for the sample update, since all the required information
is obtained from the correlation and cross–correlation matrices. The algorithm is
summarized in Table 6. The key difference between spaRLS and this version of
SpAdOMP algorithm is that the latter has two mechanisms for support estimation
(the proxy signal followed by pruning which is a special form of hard thresholding)
and hence can achieve better support estimation.

3.4 Computer Simulations of Sparse Adaptive MIMO Filters

In this subsection we demonstrate and compare the performance of the algorithms
outlined in this section. Computer simulations are conducted under different scenar-
ios in order to evaluate performance over a wide range of conditions. The Normal-
ized Mean Square Error (NMSE, in dB scale)

NMSEi j := MC−1
MC

∑
t=1

∑N
n=1 |Ĥ

(t)
i j (n)−Hi j(n)|2

∑N
n=1 |Hi j(n)|2

is used as performance measure, where Ĥ(t)
i j (n) denotes the estimate of the i j subsys-

tem for the tth Monte Carlo (MC) run. The overall NMSE is obtained by averaging
over all subsystems
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Fig. 8 Learning curves of adaptive MIMO filters

NMSE :=
1

no ×ni ×M

no

∑
i=1

ni×M

∑
j=1

NMSEi j. (72)

All NMSE results were obtained for 50 different system realizations (every non–
zero parameter at each realization is assigned to random locations and their values
are generated randomly from a complex normal distribution). The experiments are
conducted in a moderate noise environment with Signal to Noise Ratio (SNR :=
10log∥H∥2

ℓ2
/∥v∥2

ℓ2
) of 15 dB.

To compare the performance of different adaptive filters we use their correspond-
ing learning curves which are plots of the NMSE versus the number of iterations.
Learning curves help us visualize the convergence and tracking behaviour of adap-
tive filters. Note that although the LMS and RLS type filters are examined under the
same scenarios, we have chosen to plot them separately due to different convergence
speeds and computational complexity requirements.

Adaptive identification of linear MIMO systems

First we consider a linear (3,3)–MIMO system with a memory length M = 5 and 5
non–zero elements. The system is excited by a complex Gaussian input signal with
zero mean and variance 1/5. For a fair comparison between all competing LMS–
type filters the step size is common and equal to

µn =
1

∥x(n)∥2
ℓ2

.

The regularization step size γ for the ZA–LMS (or ℓ1–LMS) and the RZA–LMS (or
log–LMS) are adjusted adaptively following the systematic approach introduced in
[19]. For the ℓ0–LMS filter the regularization parameters required offline fine tuning
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Fig. 9 Learning curves of adaptive nonlinear MIMO filters

and the best performance is obtained when α = 5 and γ = 0.01. The SpAdOMP fil-
ter required a–priori knowledge of the sparsity level in order to perform the adaptive
greedy selection procedure. Fig. 8 (a) shows that SpAdOMP obtains the faster con-
vergence and better steady state accuracy, followed by the ℓ0–LMS and log–LMS
whose performance is nearly identical.

The RLS–type filters share a common forgetting factor λ = 0.98. The R–LASSO,
spaRLS and SpAdOMP follow an instantaneous steepest descent pattern (that in-
volves the autocorrelation and cross–correlation matrices) and employ a step size to
accelerate convergence. The step size is set to

µn =
0.3

∥x(n)∥2
ℓ2

(73)

for all schemes. The EM–RLS, R–LASSO and SpaRLS required offline processing
to find the optimum regularization parameter for each filter (γEM−RLS = 6× 10−4,
τR−LASSO = 0.3 and α2γspaRLS = 0.03). The adaptive greedy filter (SpAdOMP) is
fine tuned using a–priori knowledge of the sparsity level (s = 5). Fig. 8 (b) presents
the learning curves of RLS–type of filters. We observe that the adaptive greedy fil-
ter gives the best performance. It is followed by spaRLS, R–LASSO and EM–RLS.
The convergence rate of spaRLS, R–LASSO and EM–RLS can be significantly im-
proved if a more sparsity aware regularization function is employed (like those dis-
cussed in section 3.2.1).

Adaptive identification of nolinear MIMO systems

Next, we evaluate the filtering performance of sparse nonlinearly mixed MIMO sys-
tems. The MIMO system consists of 3 inputs, 3 outputs, has memory length M = 2
and poses a quadratic nonlinearity where all different product combinations of the
inputs are allowable. The combination of sparsity with nonlinearity significantly in-
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creases the parameter space of the unknown system matrix and may give rise to
degeneracy in the parameters. Note that degeneracy causes all important parameters
to be close to zero and as a result some outputs may also be zero. To avoid this
situation we consider 9 non–zero parameters, 6 of which belong to the linear part of
the system (spread among different inputs) and 3 correspond to the nonlinear part.
The input sequence is drawn from a complex Gaussian distribution of zero mean
and variance 1/9.

Initially we compare the learning curves of LMS–type filters. The step size is
common to all filters and given by Eq. (73). Unlike the linear case, it was exper-
imentally found that the systematic approach (developed in [19]) for choosing the
best regularization parameter for ZA–LMS and RZA–LMS (or ℓ1–LMS and log–
LMS as we will refer to respectively) does not perform that well in the case of non-
linearly mixed MIMO. Therefore, ℓ1–LMS, log–LMS and ℓ0–LMS are required to
optimize their parameters via exhaustive simulations and the corresponding values
are summarized in the following table.

ℓ1–LMS (γ) log–LMS (γ,ε) ℓ0–LMS (γ,α) EM–RLS (γ) R–LASSO (γ) spaRLS (α2γ)
5×10−3 1×10−2,10 1×10−3,5 2×10−3 9×10−2 2×10−3

The conclusions drawn from inspection of Fig. 9 (a), are almost identical to those
in the linear case. However, this time the convergence speed of the greedy filter is
slightly worse than the one obtained by ℓ0–LMS and log–LMS filter.

Next, we study the performance of RLS–type of filters in nonlinearly mixed
MIMO systems. As in the linear case, some filters require offline processing to fine
tune their regularization parameters and the optimum values are summarized in the
above table. Fig. 9 (b) shows that almost all RLS–type of filters achieve relatively
similar steady–state accuracy, and spaRLS has the fastest convergence speed.

One common conclusion for LMS and RLS type of filters, operating in nonlin-
ear MIMO systems, is that the extraordinary good performance of adaptive greedy
filters is slightly degraded. This is because greedy filters require strongly incoher-
ent dictionaries (this has been studied for the linear case in [58]). The problem of
designing input sequences with incoherent dictionary for nonlinear MIMO systems
requires further work.

Tracking performance of sparse adaptive filters

The time–varying nonlinear MIMO system is initialized using the same parameters
as used to generate Fig. 9. At the 400th iteration the system experiences a sudden
change, where all active parameters of the nonlinear part randomly change loca-
tions. We note from Fig. 10 that spaRLS, ℓ0–LMS and log–LMS have the fastest
support tracking behaviour and that adaptive greedy filters achieve better steady
state accuracy.
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Fig. 10 Comparison of tracking performances on nonlinear MIMO systems

4 Blind and semi–blind identification of sparse MIMO systems
excited by finite–alphabet inputs

This section is concerned with the sparse MIMO parameter estimation problem en-
countered in blind system identification whereby the unknown sparse MIMO system
is estimated using output information as well as some a priori knowledge of the sys-
tem. This problem arises in digital communications, seismic data, image deblurring
and speech coding.

The sparse blind MIMO identification problem has been approached by two dif-
ferent methodologies, namely: 1) dictionary learning [36, Ch. 12] and 2) maximum
penalized likelihood estimator (via the Expectation Maximization algorithm) [60].
The first approach solves an optimization problem by iteratively applying two con-
vex steps: the parameter update step on a fixed measurement matrix and the mea-
surement matrix update step on a fixed parameter. The second approach, employs
Expectation–Maximization for finding maximum penalized likelihood estimates.
Both algorithms do not converge to global minima, whereas for the case of dic-
tionary learning even a local minimum can not be guaranteed.

In this section we discuss joint state estimation and sparse parameter estima-
tion techniques under the finite–alphabet property. Two different techniques are de-
scribed. The first algorithm maximizes the likelihood of the received sequence over
all possible input sequences and system parameters. It does so by converting the
joint maximization into a two stage maximization problem. For a given parame-
ter value at the end of the ℓ–th iteration, the most likely state (equivalently input
sequence) is estimated by carrying out the inner maximization. This maximization
can be performed by the Viterbi algorithm since the polynomial MIMO system is
represented by a Hidden Markov Model (HMM). Once the inner maximization is
completed and the most likely state sequence is determined, the outer maximiza-
tion takes over. Given the state sequence at step ℓ, maximization of the penalized
likelihood with respect to system parameters is effected by sparsity aware schemes.
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The two main stages (state estimation, parameter estimation) iterate until a stopping
criterion is satisfied.

The second blind estimation method considered in this section is based on Ex-
pectation Maximization (EM). Instead of working with likelihood, EM employs the
augmented likelihood formed by the so called complete data which consist of the
state sequence and the output sequence. It turns out that maximization of the aug-
mented likelihood is easier to perform. Then the EM procedure alternates between
the E–step during which the log–likelihood function of the complete data is esti-
mated, and the M–step which maximizes the augmented likelihood to generate an
updated parameter matrix. Parameter sparsity is naturally embedded in the M–step
by the insertion of a penalty term (typically the ℓ1 norm of the parameters).

4.1 An Alternating Maximum Likelihood procedure to state
estimation and sparse system estimation

Let us consider the basic set up defined in Section 2. The input–output relationship
is given by

y(n)= f (x1(n),x1(n−1), . . . ,x1(n−M), · · · ,xni(n),xni(n−1), . . . ,xni(n−M))+v(n).
(74)

The noise vector v(n) is a multivariate Gaussian i.i.d. with mean and covariance
matrix N (0,Q). Following the analysis of Section 2.1 let

x̄(n) = [x1(n),x1(n−1), . . . ,x1(n−M), · · · ,xni(n),xni(n−1), . . . ,xni(n−M)]T .

Hence the nonlinear input vector is given by

x(n) = [x̄(n), x̄2(n), · · · , x̄p(n)]T .

We shall refer to x(n) as the augmented state or simply the state. Eq. (74) is com-
pactly written as

y(n) = Hx(n)+v(n).

In a blind (or semi–blind) environment, information on the input sequence that gen-
erated a given output is not available. Suppose Y(n) = [y(1),y(2), · · · ,y(n)] denotes
the known ni × n observation sequence. The task of joint state estimation and sys-
tem parameter estimation is based solely on a small number of measurements n. The
probability density function (PDF) of the observation matrix Y(n) conditioned on
(X(n),H) is given by

p(Y(n)|H,X(n)) =
1

(2πσ 2)no×n exp

(
− 1

2σ2

n

∑
t=1

∥y(t)−Hx(t)∥2
ℓ2

)
(75)
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Fig. 11 Alternating MIMO detector–estimator

The joint Maximum Likelihood (ML) estimator of X(n) and H is obtained by jointly
maximizing p(Y(n)|H,X(n)) over X(n) and H, as follows:

(X̂(n),Ĥ) = arg max
X(n),H

log p(Y(n)|H,X(n)).

The above optimization problem is intractable. We thus convert it into a two stage
maximization problem that is iteratively performed over X(n) and H (see Fig. 11)
as

(X̂(n),Ĥ) = argmax
H

max
X(n)

log p(Y(n)|H,X(n)). (76)

The iterative procedure alternates information between a state estimation scheme
and a system parameter estimation scheme. In several applications, including com-
munications, the input signals take values in a finite–alphabet. Then the state vector
evolves as a Markov chain and the input–output relationship becomes a Hidden
Markov Process (HMP) [37]. Therefore the inner maximization at step (ℓ) can be
accomplished by dynamic programming and the Viterbi Algorithm (VA). Given X(ℓ)

the iterative process updates the system parameters. The outer level maximization is
equivalent to a quadratic minimization problem. Hence, the optimum solution leads
to a set of normal equations:

H(ℓ)X(ℓ)(n) X(ℓ) H
(n) = Y(n) X(ℓ) H

(n).

The algorithm is repeated until a fixed point is reached or until a stopping criterion
is met. Local convergence of the algorithm can be established [37]. The above pro-
cedure is known in the literature under several different names: Baum–Viterbi [37],
ML Alternating Least Squares [1, 68] and bootstrap equalization [73].

Remark: Although the above procedure can operate in a pure blind fashion, it
converges very slowly and suffers from an inherent permutation and scaling ambi-
guity problem [74]. This ambiguity is resolved if very few training input samples
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Table 7 Baum–Viterbi Algorithm

Algorithm description

ℓ= 0 : H(0) = argmax
H

log p(Y(T )|H,X(T ))− τ∥vec[H]∥ℓ1 {Initiliazation}

Repeat
ℓ= ℓ+1

1: X(ℓ)(n) = arg max
X(n)∈S

log p(Y(n)|H(ℓ−1)) {Viterbi Algorithm}

2: H(ℓ) = argmax
H

log p(Y(n)|X(ℓ)(n))− τ∥vec[H]∥ℓ1 {System Parameter Re–estimation}

Until (X(ℓ)(n),H(ℓ)(n))≈ (X(ℓ−1)(n),H(ℓ−1)(n))

are used to provide an initial parameter matrix H(0) estimate. The initial estimate
does not need to be accurate enough since it is improved through successive itera-
tions. The minimum number of training data, namely, T = niM , is equal to the rank
of the MIMO system. The training symbol matrix X(0) can be designed to yield the
optimal estimation performance.

In the MIMO models discussed in Section 2 the parameter space increases ex-
ponentially and often the number of parameters exceeds the number of available
measurements and the resulting system becomes underdetermined. Additionally, the
unknown system may exhibit slow time–variations, so that during the time period
of n data the entries of H may be considered constant. Therefore, even if X(n) is
known, estimating Ĥ remains an underdetermined problem. The key observation
here is to consider the parameters of H that actually contribute to the output (see
Section 2.1.1). This motivates the addition of a regularization term into the cost
function for joint state estimation and sparse parameter estimation. Following the
Compressed Sensing paradigm, the ℓ1 penalty term is added and the cost function
takes the form:

(X̂(n),Ĥ) = arg
{

max
H

[
max

X(n)∈S
log p(Y(n)|H,X(n))− τ∥vec[H]∥ℓ1

]}
. (77)

The maximization of the likelihood with respect to H resembles the basis pursuit
or LASSO criterion and hence any compressed sensing algorithm can be used to
perform this maximization [76, 36].

A two stage maximization algorithm of this type is summarized in Table 7. The
first step involves an approximation to X̂(n) which is obtained using a Maximum A
Posteriori (MAP) criterion:

argmax
X(n)

p(X(n)|Y(n);H(ℓ−1)). (78)

The above is solved using the Viterbi algorithm. The Viterbi algorithm searches
among all possible paths through the state trellis in order to efficiently find the most
probable path. A pseudo–code is provided in Table 8.
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Table 8 Viterbi Algorithm

Algorithm description

δ1(i) = log p(y(1)|x(i)(1);H(ℓ−1)(1)), i = 1, . . . ,AniM {Initiliazation}
For t := 2, . . . ,n do

For j := 1,2, . . . ,AniM do
1: δt( j) = log p(y(t)|x( j)(t);H(ℓ−1)(t))+max

i
[δt−1(i)] {Recursion}

2: ψt( j) = argmax
i

[δt−1(i)]

End
End
3: in = argmax

i
δn(i), x̂(n) = x(in)(n) {Termination}

4: it = ψt+1(it+1), x̂(t) = x(it ), t = n−1, . . . ,1 {Backtracking}

Maximization of the penalized likelihood over H is equivalent to maximizing the
auxiliary function [37, 50]:

n

∑
t=1

AniM

∑
i

δ (x̂(ℓ)(n)−xi) log p(y(t)|H)− τ∥vec[H]∥ℓ1 (79)

where δ (·) is the delta function that is equal to one when x(ℓ)(n) = xi and zero
otherwise. Since the noise is Gaussian, expression (79) is equivalent to penalized
least squares estimation. The linearity in the parameters leads to the following closed
form expression

H(ℓ) = Sτ

[(
X(ℓ)(n) X(ℓ) H

(n)
)−1

Y(n) X(ℓ) H
(n)
]
. (80)

ML Detection via sphere decoding. The state estimator based on the Viterbi al-
gorithm requires searching over AM×ni possible trellis state. This is affordable when
A and M×ni are small but it is not realistic when M is large. An alternative decoder
structure, employs a sphere decoder [11, 20]. The underlying principle of sphere de-
coding is to search the closest lattice point (or vector) to the output signal within a
sphere of radius r centered at the output signal. Sphere decoding techniques increase
the radius when there exists no vector within a sphere, and decrease the radius when
there exist multiple vectors within the sphere. The main idea is to limit the search
among the possible states to those located within a sphere having radius r. We write
with some abuse of notation the following:

X̂(n) = argmin
X(n)

∥Y(n)−HX(n)∥2
ℓ2
≤ r2 (81)

= argmin
X(n)

∥H(X(n)− X̄)∥2
ℓ2
≤ r2 (82)
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where (the MMSE estimate) X̄ = (HHH)−1HHY(n) is the center of the sphere of
radius r. The ML solution is contained in this sphere and can be found via low–
complexity tree based search algorithm [43]. This way an exhaustive search proce-
dure is avoided and the complexity is independent of alphabet size.

4.2 An Expectation Maximization and smoothing approach to
MIMO parameter recovery

The alternating ML detector and parameter estimation procedure outlined in Section
4.1 can also be performed by employing the Expectation Maximization (EM) frame-
work [27]. Instead of maximizing the likelihood p(Y(n)|H)=∑X(n) p(Y(n),X(n)|H)
EM works with the complete likelihood p(Y(n),X(n)|H). Of course, the complete
likelihood can not be evaluated, since the data X(n) are unknown. Instead the ex-
pected value is used. The conditional log likelihood

log p(Y(n)|H) = log p(Y(n),X(n)|H)− log p(X(n)|Y(n),H)

is employed to evaluate the estimated complete log–likelihood

Q
(

H,H(ℓ−1)
)
= Ep(X(n)|Y(n),H(ℓ−1))

[
log p(Y(n),X(n)|H)

]
(83)

= ∑
X(n)

p(X(n)|Y(n),H(ℓ−1)) log p(Y(n),X(n)|H).

The EM algorithm iterates between the E–step and the M–step until convergence
(see Table 9). The expectation step (E–Step), where the conditional density of the
unknown data, given the actual observations is estimated based on the current values
of the unknown parameters is used to evaluate the expected value of the complete
log–likelihood function. The maximization step (M–Step) finds the maximum of
the estimated complete log–likelihood function with respect to the unknown system
parameters.

Quite often in practice the number of available observations, n, is significantly
smaller than niM, and the resulting system of equations is severely underdetermined.
Furthermore, the effective rank of H is often significantly less than n. Such prob-
lems are often reduced by use of a Bayesian prior to favour some solutions over
others. The prior is incorporated as a penalty term in the maximization step which is
maximized to estimate the unknown system parameter matrix. Therefore the M–step
seeks to solve the following problem:

H(ℓ) = argmax
H

Q
(

H,H(ℓ−1)
)
+ log p(H) .

A widely used prior which promotes sparsity and avoids underdetermined problems
is the Laplacian prior

p(H) ∝ exp
(
−τ∥vec[H]∥ℓ1

)
.
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Table 9 EM Algorithm

Algorithm description

ℓ= 0 : H(0) {Initiliazation}
Repeat

ℓ= ℓ+1

1: Q
(

H,H(ℓ−1)
)
= Ep(X(n)|Y(n),H(ℓ−1))

[
log p(Y(n),X(n)|H)

]
{E–Step}

2: H(ℓ) = argmax
H

Q
(

H,H(ℓ−1)
)

{M–Step}

Until ∥vec[H(ℓ)]−vec[H(ℓ−1)]∥2
ℓ2
< ε {Termination Condition}

The introduction of such prior, allows the algorithm to choose only the non–zero
components of H.

The log–likelihood function increases monotonically at successive iterates H(ℓ)

of the parameter vector [27], i.e.

p(Y(n)|H(ℓ))≥ p(Y(n)|H(ℓ−1)).

Consequently the sequence {p(Y(n)|H(ℓ)), ℓ > 0} converges as ℓ→ ∞. For prac-
tical purposes, we truncate the number of iterations to a finite number L. Although
the convergence of the likelihood values does not by itself ensure the convergence of
the iterates H(ℓ), under relatively mild smoothness conditions for the log–likelihood
function p(Y(n)|H) the sequence converges to a local maximum of p(Y(n)|H(ℓ))
[81]. However, its monotonic convergence behaviour is dependent on initialization
[81]. To avoid it from being trapped to a stationary point which is not a local (global)
maximum we may have to use several different initializations and also incorporate
prior information about the distribution of H(0). For Gaussian noise the correspond-
ing log–likelihood function is log–concave. The log–concavity of the likelihood en-
sures convergence of the EM iteration to a stationary point, regardless of initializa-
tion.

Since X(n) is independent of H in Eq. (83), we can keep only the terms that
depend on H. Thus

Q
(

H,H(ℓ−1)
)
= Ep(X(n)|Y(n),H(ℓ−1))

[
log p(Y(n)|H)

]
with

p(Y(n)|H) =
1

(2πσ 2)no×n exp

(
− 1

2σ2

n

∑
t=1

∥y(t)−Hx(t)∥2
ℓ2

)
.

Let us next take a closer look at the E–step. The resulting function, still denoted by
Q takes the form
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Q
(

H,H(ℓ−1)
)
=− 1

2σ2

n

∑
t=1

E
{
∥y(t)−Hx(t)∥2

ℓ2
|y(t),H(ℓ−1)

}
.

The E–step depends on first and second order statistics of the hidden variable X(n),
which are not available since it is unknown. Therefore the complete log likelihood
is given by

Q
(

H,H(ℓ−1)
)
=− 1

2σ2

n

∑
t=1

AniM

∑
i
∥y(t)−Hx(t)∥2

ℓ2
γ(ℓ)ti

where
γ(ℓ)ti = p

(
x(t) = si|Y(n);H(ℓ−1)

)
and thus a primary goal of the E–step is to compute the a posteriori probabilities
(APPs), γ(ℓ)ti . These in turn are computed by the forward–backward recursions pre-
sented next.

Maximization of the regularized Q–function with respect to H at the M–step, has
a closed form expression and is given by the soft–thresholding function

H(ℓ) = Sτ

(AniM

∑
i=1

Xi(n)XH
i (n)γ

(ℓ)
ni

)−1(
Y(n)

[
AniM

∑
i=1

XH
i (n)γ

(ℓ)
ni

]) (84)

The above is a convex problem and can be solved using linear programming meth-
ods, interior-point methods, and iterative thresholding [36, 76]. Note that the M–step
can also be executed by Greedy algorithms.

Computation of smoothing probabilities. To implement the EM iteration, the
APP’s γ(ℓ)ti = p

(
x(t) = si|Y(n);H(ℓ−1)

)
are needed. They correspond to the E–step

of the EM algorithm, and they can be computed by soft decoders if the underlying
structure of the MIMO system enables us to follow a Hidden Markov Model (HMM)
formulation, where the APP’s are expressed as functions of the transition probabil-
ities. In such case the a posteriori distribution of the hidden variables is obtained
using a two–stage message passing algorithm. In the context of HMM models, it
is known as forward–backward algorithm [66], or Baum–Welch, or the BCJR algo-
rithm [6].

A complete description by a HMM model requires a trellis diagram with state
set S = {s1,s2, . . . ,sAM×ni } , where A is the alphabet size. The algorithm is split
up into two stages. The first stage calculates the filtering probabilities p(x(t) =
· · · |Y(t);H(ℓ−1)), while the second stage calculates the future probabilities p(x(t) =
· · · |Y(t + 1 : n);H(ℓ−1)) (where Y(t + 1 : n) = [y(t + 1), . . . ,y(n)]. Assume that the
two stages are already computed for all t ∈ {1, . . . ,n}. Then using the Markov chain
rule we obtain the smoothing probabilities p(x(t) = si|Y(n);H(ℓ−1)) for each si ∈ S
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Fig. 12 Symbol error rate (SER) for sparse MIMO systems

p(x(n) = si|Y(n);H(ℓ−1)) = (85)

p(x(t) = si|Y(t −1);H(ℓ−1))︸ ︷︷ ︸
αt (x(t))

p(x(t) = si)︸ ︷︷ ︸
bt (x(t),x(t+1))

p(x(t) = si|Y(t +1 : n);H(ℓ−1))︸ ︷︷ ︸
βt+1(x(t))

Next forward/backward recursions are derived that allow the probabilities of Eq.
(85) efficiently. The filtering or forward probability αt(x(t)) is obtained by summing
all the lookahead probabilities as

αt(x(t)) = ∑
∀x(t−1)∈S

αt−1(x(t −1))bt−1(x(t −1),x(t)). (Forward Recursion)

The derivation of the backward filtering is similar to the filtering probability

βt(x(t)) = ∑
∀x(t+1)∈S

βt+1(x(t +1))bt(x(t),x(t +1)) (Backward Recursion)

b is determined from the received signal and a–priori information

bt(x(t),x(t+1)) = exp
{
− 1

2σ2 ∥y(t)−Hx(t)∥2
ℓ2

}
Pr(x(t+1) = s|x(t) = s

′
). (86)

4.3 Computer simulations of blind identification algorithms

In this subsection we compare the performance of the methods outlined here under
two different operating modes: semi–blind and blind. Performance is measured in
terms of Normalized Mean Square Error (NMSE, defined in Section 3.4) and Vec-
tor Symbol Error Rate (SER, that is the probability of at least one of the transmitted
symbols is in error) for a frame of 100 vector symbols from BPSK constellations
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Fig. 13 NMSE performance comparison under different noise conditions

averaged over 100 different system realizations. The non–zero coefficients are i.i.d.
(independent, identically distributed) complex Gaussian random variables with zero
mean and variance 1. The positions of the non–zero parameters are randomly se-
lected in each realization, ensuring each output in non–zero. We consider a 2× 2
linear MIMO system of memory length 4 and sparsity level 4.

We start by considering a semi–blind operation in which a short training sequence
(consisting of five symbols) is available at the receiver side; the short training se-
quence is sent over the unknown system by the transmitter prior to the actual data
transmission session. This training sequence, is used to initialize the algorithms. We
note from inspection of Figs. 12, 13 that the performance of Baum–Viterbi’s (sparse
and non–sparse) is identical to Baum–Welch’s (sparse and non–sparse) for an SNR
range of 2− 10 dB; whereas in less noisy conditions Baum–Welch performs bet-
ter. The conventional algorithms (Baum–Viterbi and Baum–Welch) la behind their
sparse counterpart by approximately 5dB. We then inspect the vector SER for a
maximum sequence detector Fig. 12 (a) and a maximum a posteriori detector Fig.
12 (b) where the sparse algorithms achieve better SER performance since they pro-
vide more accurate system estimates.

Next, we consider a blind operational mode where a key issue is how to acquire
a reliable initial estimate for the parameter matrix. To avoid using different initial
conditions we employ the single–spike strategy [28] in which all the parameters are
set to zero except the dominant parameter which is set to ±1, depending on its sign.
By using this initialization, both algorithms converge in approximately 5 iterations.
The algorithms are tested under a fixed noise condition (SNR 10dB). As it can be
seen from Fig. 14, Baum–Viterbi fails to converge whereas Baum–Welch is more
robust to initial conditions. For both algorithms (Baum–Viterbi and Baum–Welch)
the sparse versions are better than the conventional counterparts and achieve faster
convergence, see Fig. 14 (b).
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Fig. 14 Comparison of the two methods for fixed SNR of 10dB

5 Summary and future directions

In this chapter adaptive filtering and identification for multi input multi output non-
linear polynomial systems was considered. The exponential growth of complexity
was addressed by sparsity aware schemes. Sparse LMS, RLS and greedy adaptive
algorithms were described and their performance was demonstrated by simulations
under a wide range of operating conditions. The above methods were combined
with state estimation techniques such as the Viterbi family, in a semi–blind context.
Alternative algorithms based on expectation maximization and smoothing methods
were also discussed.

A number of other methods have been developed for linear systems. These in-
clude subspace methods, second order statistics and higher order statistics [59].
Adaptation of these methods to the nonlinear case and assessment of their perfor-
mance is worth to pursue.
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