INTRODUCTION

Wastewater contains a high number of organic micropollutants and transformation products of environmental concern. Recent approaches, combining methodologies based on target and suspect screening (for suspected substances based on prior information but with no reference standard) are important for the comprehensive characterization of environmental samples. Nevertheless, samples still contain many chromatographic peaks which do not correspond to substances included in target and suspect screening lists. These substances may be potentially relevant (e.g. due to their concentration or potential effects) and thus the identification of selected non-targets is important. However, full identification of unknown compounds is often difficult and there is no guarantee of a successful outcome. The aim of this work is to show some specific examples on the identification of unknown compounds in real wastewater (collected from the WWTP of Athens), Identiﬁcations were conducted using a developed integrated workflow based on LC–QToF–MS to detect formerly unknown organic contaminants in wastewater.

NON-TARGET SCREENING WORKFLOW

Full scan (MS) and Product ion spectra (MS/MS)

Accurate mass measurements (LC–QTOF–MS)

Blank subtraction

Peak peaking and prioritization

Determination of the elemental compositions of the unknowns

- Mass accuracy
- Isotopic fit
- Seven Golden Rules (SGR) [1] (to assess the plausibility of the generated molecules).

Determination and evaluation of candidates

TARGET EXAMPLES ON THE IDENTIFICATION OF UNKNOWN COMPOUNDS

Example I: AGN-PC-03193Q

- Experimental accurate mass: 273.0651
- \(t_R = 2.4 \) min
- High intensity in ESI(-)

- Number of possible formulas (2 mDa, 5 ppm, 50 mSigma) \(\rightarrow 11 \)
- After Seven Golden Rules \(\rightarrow 3 \)

- Hits ChemSpider / Pubmed
- Compounds with MetFusion matches

AGN-PC-03193Q

- MetFusion Score: 0.258
- Explained Fragments: 4 2 1
- RT Pred. Model: ✓ ✓ X
- Number of patents: 104 2 1

BGK-03193Q

Example II: 3-Hydroxyropyridine

- Experimental accurate mass: 96.0446
- \(t_R = 2.27 \) min
- High intensity in ESI(+)

- Hits ChemSpider: 38
- Compounds with MetFusion score > 0.5 \(\rightarrow 2 \)

- Identity confirmed with a commercial standard → Level 1

Example III: 1-Hydroxy-2-naphthoic acid

- Experimental accurate mass: 195.1233
- Number of possible formulas (2 mDa, 5 ppm, 50 mSigma) \(\rightarrow 1 \)

- Hits ChemSpider: 8
- Compounds with MetFusion score > 0.5 \(\rightarrow 2 \)

- Identity confirmed with a commercial standard → Level 1

More AGN surfactants?

Acknowledgements: This project was implemented under the Operational Program «Education and Lifelong Learning» and funded by the European Union (European Social Fund) and National Resources – ARISTEIA 624 (TREMEPOL project). References: [1] Kind T and Fiehn O (2007) BMC Bioinformatics 8, 105.

The first example consists of the identiﬁcation of the surfactant 2-{2-[2-(2-hydroxyethoxy)ethoxy]ethoxy}ethyl hydrogen sulfate (AGN-PC-03193Q). After applying the mass accuracy and isotopic ﬁt criteria 11 possible molecular formulas were found; after applying the SGR 3 plausible molecular formulas remained. Only the candidates with formula \(\text{C}_4\text{H}_8\text{O}_3\text{S} \) could explain MS/MS fragments. The evaluation with MetFusion showed that AGN-PC-03193Q was the only structure that explained all the fragments in the MS/MS spectrum. Moreover, this structure was the candidate with the highest commercial importance. Clear MS/MS spectra was also obtained in ESI(+) and again AGN-PC-03193Q was the only compound that could explained all the fragments. With all these evidences a level of conﬁdence 2b was assigned. At this point, a logical question was if more surfactants from the homologous series \(\text{SO}_3\text{H}, \text{C}_n\text{H}_{2n+1}\text{O}(\text{OC}_2\text{H}_4\text{O})_m\text{OH} \) were present. The presence of these compounds was screened and 14 were detected, most of them at high intensity. \(t_R \) were consistent with the model and increased constantly with the number of carbons. MS/MS spectra were also consistent in all cases. AGN surfactants were the compounds detected at the highest intensity in ESI(+) showing its high use in the evaluated area. Another example can be found in 3-hydroxyopyridine. There were 38 compounds in ChemSpider database corresponding to the determined molecular formula. Only two of them (3-hydroxyopyridine and 4-hydroxyopyridine) had a good MetFusion score when evaluating the MS/MS spectra. Both compounds can explain the two fragments obtained in the MS/MS spectra, have plausible \(t_R \) according to the model and have high commercial importance. ESI(+) MS/MS spectra were available in MassBank for 3-hydroxyopyridine and matched perfectly with the ones obtained experimentally. Standards of 3-hydroxyopyridine and 4-hydroxyopyridine were purchased and through the comparison of the \(t_R \) the identity of the substance 3-hydroxyopyridine was conﬁrmed.