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Pharmaceuticals - Ranitidine

• Numerous pharmaceuticals, personal care 
products and endocrine disrupting compounds 
have entered the environment.

• Levels of ng to several μg/L
• according to water solubility, physicochemical 

characteristics, local consumption rates and 
biodegradability 

Ranitidine (Zantac)

• common pharmaceutical (treatment of ulcer, gastrointestinal 
hypersecretory conditions and gastroesophageal refluxes)

• histamine H2-receptor antagonist with a furan ring structure
• mainly excreted in urine as an untransformed compound and 

its main metabolites formed in the liver (30-70%) are 
ranitidine N-oxide, N-desmethyl ranitidine and ranitidine S-
oxide 

• The presence of ranitidine in surface waters and wastewaters 
in the US has been determined and identified in several 
studies in the past 

• contains multiple reactive sites that may be labile to ozone 
oxidation (e.g. conjugated diene, sulphide and electron-rich 
alkene group)
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Ozonation
• effective, robust and widely accepted oxidation technique
• degradation occurs mainly through direct reaction with aqueous 

ozone and ozone decay products (mainly hydroxyl radicals). 
• total mineralization is not entirely achieved for many pollutants, 

often leading to the production of more by-products with higher 
or increased toxicity levels.

• O3 selectively attacks organic compounds with high electron 
density functional groups
▫ double bonds C=C
▫ activated aromatic rings with
Electron donating groups like
-NH2
-NHR
-NR2
-OH
-O-

▫ deprotonated amines

Objectives of this study

• to assess the effects of various operational 
parameters (pH, ozone concentration, presence 
of hydroxyl radical scavengers, matrix effects 
and natural organic matter) on the kinetics of 
the ozonation process 

• to identify the intermediate oxidation by-
products of ranitidine
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Experimental
Ozonation experiments
• saturated ozone solution at 40C using ozone AZCOZON 

apparatus
• Aqueous solutions of ranitidine under various pH adjusted 

(ammonium acetate buffer)
• sealed bottles aqueous solution of ranitidine in the selected 

buffer was injected with various amounts of saturated ozone 
solution

• Samples withdrawn in predefined time frames

Effects studied
• Solution pH
• matrix
• Hydroxyl radical scavenger t-BuOH

Analysis
• Kinetics using HPLC – UV
• TPs using Bruker qTOFMS

Effect of ozone concentration
• 5 mg L-1 is enough to degrade more than 85% of the 

compound
• Fast reaction in first minutes
• Total removal with O3 > 4 mg L-1

• Pseudo first order rates vary 0.19-6.06 min-1 (R2 >0.956)
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Effect of pH
• Ranitidine removal is enhanced at higher pH
• Amine – ozone reactivity at non-protonated forms
• pH>7  ozone decomposed to hydroxyl radicals

O3
•-DO•- + O2

O•- + H2O à •OH + OH-

•OH + O3àHO2
• + O2

Pseudo first order reaction rates
0.250-5.533min-1

Co ranitidine 5 mg L-1, ozone initial concentration 1 mg L-1

Effect of matrix content
• Soft and Hard simulated drinking water indicated 

similar degradation rate
• Alkalinity and bicarbonates usually tend to stabilize 

aqueous ozone minimizing OH radical formation
• HCO3

- + •OH à CO3
•- + H2O (5)

• 2 CO3
•-à CO3

2-
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Effect of matrix content

DOM presence
• Direct ozone reaction OH radical 

creation
• Consuming ozon faster

O3
•- D O2 + O•-

O•- +H2O D •OH + OH-

Nevertheless
Increased kinetic rates were determined 
regardless of DOC concentration indicating 
a role of hydroxyl radicals in the 
degradation of ranitidine

OH• scavenger addition addition

• Presence of scavenger t-
BuOH reduces the 
reaction rate and overall 
removal

• Apparent role of OH 
radicals produced with 
DOM and Ozone

• Antagonism of oxidative 
species between DOM 
and ranitidine

• Pseudo-first order rate 
constants are similar to 
higher pH values 

ozone concentration 1.25 mg L-1, initial ranitidine concentration 
1 mg L-1
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Mineralization of Ranitidine 
q Reduced mineralization at low 

ozone concentrations
q Although at the same 

concentration Ran is completely 
removed

q Transformed to various 
refractory ozonation by products

q Higher ozone doses need for 
complete mineralization

q Mineralization higher at 
increased pH

Overall kinetics

C O3 (mg.L-1)

Co Ran

(mg L-1)

pH t-BuOH

(mM)
matrix k obs

(min-1)

R2

0.5 5 5.8 - Ultrapure water 0.52 0.797

1 5 5.8 - Ultrapure water 0.92 0.846

2 5 5.8 - Ultrapure water 1.70 0.969

4 5 5.8 - Ultrapure water 4.13 0.980

6 5 5.8 - Ultrapure water 5.15 0.981

8 5 5.8 - Ultrapure water 6.06 0.973

1 5 3 - Acetate buffer 0.25 0.993

1 5 4 - Acetate buffer 0.83 0.800

1 5 7 - Acetate buffer 0.99 0.974

1 5 9 - Acetate buffer 1.53 0.955

1 5 10 - Acetate buffer 5.53 0.944

1 1.5 5.8 - Ultrapure water 2.01 0.901

1 2 5.8 - Ultrapure water 1.44 0.912

1 5 5.8 - Ultrapure water 0.92 0.846
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C O3 (mg.L-1)

Co Ran

(mg.L-1)

pH t-BuOH

(mM)
matrix k obs

(min-1)

R2

0.5 1 7.6 - Drinking Water 

(medium hardness)

1.27 0.734

0.5 1 7.6 - Drinking Water 

(increased hardness)

1.72 0.669

1.25 1 5.8 - DOC 2mg.L-1 5.05 0.951

1.25 1 5.8 - DOC 5mg.L-1 4.35 0.993

1.25 1 5.8 - DOC 10 mg.L-1 4.29 0.961

1.25 1 5.8 20μΜ DOC 2mg.L-1 3.69 0.964

1.25 1 5.8 20μΜ DOC 5mg.L-1 3.19 0.903

1.25 1 5.8 20μΜ DOC 10 mg.L-1 2.50 0.767

By product determination workflow

(MS/MS)

minimum – maximum elemental 
formula, m/z tolerances 

possible chemical formulas

Match with structure (best score 
based on error and isotope 
patterns)

insert possible by products in table 
using the theoretical and 
experimental m/z and the 
calculated error

Structure elucidation 
MS/MS

For each tR, 
m/z accurate

Check 
presence in 
blank

(plus m/z 
predicted, 
bibliographic
al references)

EIC of 
possible by 
products

MS peak recognition

Internal 
Calibration
Background 
subtract
Mass 
exclusions 
(known m/z)

Full MS Chromatogram 
preparation
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Main intermediate byproduct 
formation

Non target screening gave 23 possible TPs
Blank subtraction and mass accuracy reduced this number to the following suspected TPs
EIC Chromatogram of possible TPs not present in blank

331.1434

+MS, 6.16-6.25min #719-729, Background Subtracted, Background Subtracted

0

1

2

3

4

5x10
Intens.
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TP-300 formation of sulfoxide
product

138.0905

192.0427
222.0816

+bbCID MS, 25.0eV, 6.17-6.24min #720-728, Background Subtracted, Background Subtracted
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NH
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N

SH
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N+
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tR Compoun
d

Precursor 
and 
productio
n

Fragment 
losses

Proposed structure Elemental 
formula

Exp mass
[M+H]+

Theor 
mass
[M+H]+

Error 
ppm

Error 
mDa

Error 
mSigm
a

6.6 P-330 [M+H]+ C13H22N4O4S 331.1437 331.1435 0.1 0.2 19.1

[M+H-
C7 H13O4S]+•

193.0529 C6H10N4 138.0905 138.0900 0.5 23.8

[M+H-
C8H12NO]

139.1000 C5H10N3O3S 192.0437 192.0427 5.5 50.7

NH

H
N

S

O

N

O

N+

-O

O

C13H22N4O4S

NH

H
N

SH
O

N+
-O

O
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tR Compound Precursor 
and 
production

Fragment 
losses

Elemental 
formula

Exp mass
[M+H]+

Theor mass
[M+H]+

Error 
ppm

Error 
mDa

Error 
mSigm
a

1.6 P-131 [M+H]+ C4H10N3O2 132.0763 132.0768 -3.79 0.2 9.1
1.8 P-299 [M+H]+ C13H22N3O3S 300.1380 300.1376 -1.2 -0.4 18.4

[M+H-
C5H10N2O3S]+

162.0472 C8H12NO 138.0908 138.0913 -0.5 4.1

1.8 P-381 [M+H]+ C13H24N3O6S2

[M+H- H2O3S]+ 81.9727 C13H22N3O3S 300.1376 300.1376 -0.2 11.6
[M+H-
C5H12N2O5S2]+

244.0197 C8H12NO 138.0908 138.0913 -0.5 4.1

2.3 P-315 [M+H]+ C13H22N3O4S 316.1322 316.1326 1.2 0.4 11.5
[M+H-
C9H12NO3]+•

182.0823 C4H10N2OS 134.0498 134.0508 -1.0 5.2

6.6 P-330 [M+H]+ C13H22N4O4S 331.1437 331.1435 0.1 0.2 19.1
[M+H-
C7H13O4S]+•

193.0529 C6H10N4 138.0905 138.0900 0.5 23.8

[M+H-
C8H12NO]

C5H10N3O3S 192.0437 192.0427 5.5 50.7

6.6 P-283 [M+H]-NHO C13H21N3O2S 284.1427 284.1427 0.00 0.6 21.2

6.6 P-365 [M+H]+ C13H24N3O5S2 366.1158 366.1152 0.2 0.7 20.6
[M+H-
CH2NS]+•

59.9910 C12H22N2O5S 306.1239 306.1244 -0.5 9.0

[M+H- SO3H2]+ 81.9728 C13H22N3O2S 284.1422 284.1427 -0.6 8.6
[M+H-
C2H9NO3S]+

127.0306 C11H15NO3S 239.0843 239.0849 -0.6 8.2

[M+H-
C8H15NO4S]+

221.0724 C5H9N2OS 145.0425 145.0430 -0.5 24.6

tR Compound Precursor 
and 
production

Fragment 
losses

Elemental 
formula

Exp mass
[M+H]+

Theor mass
[M+H]+

Error 
ppm

Error 
mDa

Error 
mSigm
a

7.1 P-394
P-330

[M+H]+ C13H23N4O6S2 395.1051 395.1054 -0.6 -0.2 25.4

[M+H – SO3]+ 79.9570 C13H23N4O3S 315.1481 315.1485 -0.4 10.3
[M+H-
C2H7NO3S]+

125.0149 C11H16N3O3S 270.0902 270.0907 -0.5 7.9

[M+H-
C4H4N3O2S]+•

158.0027 C9H19NO4S 237.1024 237.1029 0.5 9.8

[M+H-
C6H6O3S]+

158.0027 C7H17N4O3S 237.1024 237.1016 0.8 11

[M+H-
C4H11N3O5S]+

185.0363 C9H12N3OS 210.0689 210.0696 -0.7 6.9

[M+H -
C8H13NO4S]+

219.0572 C5H10N3O2S 176.0479 176.0488 -5.5 14.2

7.4 P-299
P-255

[M+H]+ C13H22N3O3S 300.1375 300.1376 0.4 0.1 19.5

[M+H –
C6H12N2O2S]+

176.0621 C7H10NO 124.0754 124.0757 -0.2 10.6

[M+H –
C7H15O3]•+

147.1016 C6H7N2S 153.0359 153.0355 -0.4 12.4

[M+H –
C3H14N3S]

124.0899 C10H8O3 176.0476 176.0468 0.8 n.a.

7.9 Ranitidine [M+H]+ C13H22N4O3S 315.1501 315.1495 2.2 0.6 4.5
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Profile of TP production

• Relative abundance >1%

NH

H
N

S

N

O
N+

-O

O

C13H22N4O3S
Exact Mass: 314.14126

NH

H
N

S
O

N
O

N+
-O

O

NH

H
N

S
O

N+
-O

O

NH

N
S

N

O

O

NH

H
N

N+
-O

O

NH

H
N

S
O

NH

O

O

C13H22N4O4S
Exact Mass: 330.13618

C13H21N3O2S
Exact Mass: 283.13545

C13H21N3O3S
Exact Mass: 299.13036

NH

H
N

S
O

NH

O
N+

-O

O

C12H20N4O4S
Exact Mass: 316.12053

C5H11N3O3S
Exact Mass: 193.05211C4H9N3O2

Exact Mass: 131.06948

Some products with:
+SO2
+OSO2H
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Conclusions
• Ranitidine readily reacts with ozone producing various 

intermediate by products
• Reaction is enhances under increased pH and initial 

ozone concentration
• Pseudo first order Kobs reaches 6.06 min-1

• DOM role as producer of OH radicals and ozone 
depleting agent

• 4 possible different TPs from the beginning of oxidation 
reaction

• Mass balance not closed
• Other ozone concentrations and differences in pH are 

needed
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