

REPORT ON PROTOTYPE

IMPLEMENTATION OF PAUSANIAS

AKRIVI VLACHOU

The prototype was implementation with the help of:

Vasilis Soumakis (Master Student)

George Tsatsanifos (PhD Student)

Our demonstration is available at:

http://www.idi.ntnu.no/~vlachou/pausanias.html

akrivi
Stamp

akrivi
Stamp

1

1111 CCCCONTENTSONTENTSONTENTSONTENTS

2 Introduction ... 2

3 IR-Tree ... 2

4 Type of Queries ... 3

4.1 Boolean Spatial Range Query ... 3

4.2 Boolean Spatio-Textual Range Query ... 4

4.3 TopK Spatial Range Query .. 4

4.4 TopK Spatio-Textual Range Query .. 4

4.5 TopK Nearest Neighbor Query ... 5

5 Architecture ... 5

5.1 Presentation Layer ... 5

5.2 Service Layer .. 6

6 Website Manual .. 6

akrivi
Stamp

akrivi
Stamp

2

2222 IntroductionIntroductionIntroductionIntroduction

Classic web search engines, such as Google and Yahoo, provide efficient algorithms for

retrieval of ranked search results given a set of keywords. However, there are also applications

that provide the user the opportunity to search using geotagged criteria. These applications are

Google Maps, Bing Maps etc. Such applications depict points of interest on the map and

combine their location with the keywords provided by the associated document(s). These

queries are so called spatial queries.

Although in many cases spatial constraints seem to suffice, sometimes there is a need to

combine spatial and textual information to find points of interests. These queries are called

Spatio-Textual Queries. There is an active research interest in spatio-textual queries and more

specifically in the efficient retrieval of topK Spatio-Textual Queries.

This project employs 5 different queries ranging from simple Boolean Spatial Range

Queries to TopK Spatio-Textual Range Queries. In this way the user will be able to choose

among 5 queries to satisfy his/her constraints.

In the following, there will be an explanation of the data structure and the algorithms that

Pausanias employed.

3333 IRIRIRIR----TreeTreeTreeTree

In order to provide queries that employ both spatial and textual information, Pausanias

utilized a data structure called IR-Tree. IR-Tree stands for Inverted R Tree. It basically means

that there is an R tree,that will be analyzed soon in the following paragraphs, together with an

inverted index to store the textual information, in our case keywords.

An R tree is used for indexing multi-dimensional information and is especially important for

spatial queries. The key idea of this data structure is to store nearby objects and represent

them as MBRs (Minimum Bounding Rectangles). Like in B-Trees there is a balance so all leaf

nodes are on the same level. Unlike B-Trees which can only represent one-dimensional

information efficiently, R-Trees also have a root node which employs a big MBR.

Each MBR also has overlapping MBRs inside of it. At the leaf level, each rectangle describes

a single object. As with most trees, the searching algorithms (e.g., intersection, containment,

nearest neighbor search) are rather simple. The key idea is to use the bounding boxes to decide

whether or not to search inside a subtree. In this way, most of the nodes in the tree are never

read during a search. Like B-trees, this makes R-trees suitable for large data sets and databases,

where nodes can be paged to memory when needed, and the whole tree cannot be kept in

main memory.

akrivi
Stamp

akrivi
Stamp

3

The key difficulty of R-trees is to build an efficient tree that on one hand is balanced (so the

leaf nodes are at the same height) on the other hand the rectangles do not cover too much

empty space and do not overlap too much (so that during search, fewer subtrees need to be

processed). For example, the original idea for inserting elements to obtain an efficient tree is to

always insert into the subtree that requires least enlargement of its bounding box. Once that

page is full, the data is split into two sets that should cover the minimal area each. Most of the

research and improvements for R-trees aims at improving the way the tree is built and can be

grouped into two objectives: building an efficient tree from scratch (known as bulk-loading) and

performing changes on an existing tree (insertion and deletion).

The search algorithm is similar to that of a B+ Tree. The input is a search MBR and the

process starts from the root node while traversing down the tree. Each node contains some

rectangles and pointers to the child node. The searching continues down the tree and in each

visited node it has to be decided if the search box overlaps with the corresponding MBR of the

node. If yes, then the corresponding child node has to be searched also. The searching is

completed until all overlapping nodes have been traversed. When a leaf node is reached, its

bounding boxes are tested against the query search box and if its objects lie within the search

box then these objects are put into the result set.

The insertion of an object consists of traversing down the tree and choosing a node where

one of its rectangles needs the least enlargement. However, there are many algorithms and lots

of variations of R-Trees from the original R-Tree. It is unwise to describe them in this document.

4444 Type of QueriesType of QueriesType of QueriesType of Queries

4.14.14.14.1 BooleanBooleanBooleanBoolean Spatial Range QuerySpatial Range QuerySpatial Range QuerySpatial Range Query

In this subunit I will describe the first of the five queries that Pausanias supports. Boolean

Spatial Range Query is a type of query that returns all possible points of interests that are

within the provided range.

The input of this query are Range in meters, a dataset to search for (Hotels, Restaurants,

Bars all located in the USA) and a user location in the form of latitude, longitude. If the input is

valid, then all that remains is to search the R-Tree starting with the root node.

Initially, the user’s marker is tested against the root MBR to discover if the minimum

distance is less than or equal to the given range. If it is, the search algorithm traverses down the

tree in each of the root’s node children. In each newly visited node, again we have a test

between the user’s marker and the node’s MBR. If there is a match then the corresponding

node is added to a List data structure. This data structure contains the next nodes that will have

to be traversed. The process of finding a point of interest continues and every time the iteration

reaches a leaf node there is an actual distance metric between the user’s marker and the

objects of the leaf node. Each object that lies within the given range is added to the result set.

akrivi
Stamp

akrivi
Stamp

4

4.24.24.24.2 Boolean SpatiBoolean SpatiBoolean SpatiBoolean Spatioooo----Textual Range QueryTextual Range QueryTextual Range QueryTextual Range Query

Boolean Spatio-Textual Range Queries employ the same logic as Boolean spatial queries

do. The only exception is that now we have a combination of spatial and textual information.

Therefore, both B-Trees and R-Trees have to be utilized as well to provide correct search results.

This combination consists of the IR-Tree.

The searching algorithm is the same as with the one that Boolean Spatial Range Query

employs, but now in its newly visited node there is a procedure to test the node’s set of

keywords with the existing query keywords. The caveat here is that there has to be a total

match between the number of query keywords and the number of each node’s keywords.

Otherwise, this node and the subsequent subnodes that belong to this node are pruned. This

way, this algorithm achieves high pruning rates that consequently results in reduced query

execution time.

4.34.34.34.3 TopK Spatial Range QueryTopK Spatial Range QueryTopK Spatial Range QueryTopK Spatial Range Query

This query consists of a given dataset, a range in meters, a user location expressed in the

form of longitude and latitude and a topK variable that denotes the number of best results to

be searched and retrieved.

The logic behind this query is quite simple. To begin with, we only need an R-Tree as we

have only spatial constraints. So, the search algorithm is somewhat same as with the ones used

from Boolean Range Queries but with the only exception that now there is a data structure that

holds the topK results. This data structure persists its contents in decreasing order and using a

scoring function: � = alpha ∗ minDistance + �1 − alpha�/Jaccard, where alpha is a parameter

set with a value of 0.5 to show equal value between textual and spatial information.

MinDistance is the minimum distance between the user’s location and the corresponding MBR

or actual point and Jaccard is the Jaccard between the query keywords and the node’s

keywords.

This data structure is being traversed and each time the object with the lower score is

extracted. If this object is a point of interest then it is handed to the result set. Otherwise, the

contents of this object are extracted and each one is tested if it satisfies the spatial

requirements. Then if each object satisfies the spatial constraints, it is calculated with the

scoring function and if its score is lower that the minScore of the lower in score item in the

data structure, then this object becomes the new lower item in the data structure. Otherwise, it

is discarded and its subtree is also pruned.

4.44.44.44.4 TopK SpatioTopK SpatioTopK SpatioTopK Spatio----Textual Range QueryTextual Range QueryTextual Range QueryTextual Range Query

This type of query utilizes an IR-Tree but the searching algorithm is the same as the one

used from the query in 2.4.

akrivi
Stamp

akrivi
Stamp

5

4.54.54.54.5 TopK Nearest Neighbor QueryTopK Nearest Neighbor QueryTopK Nearest Neighbor QueryTopK Nearest Neighbor Query

This type of query is the classic nearest neighbor query but enhanced with topK

capabilities. It uses an IR-Tree to complete the query.

The logic behind this query is that there is the same data structure with the same scoring

function combined with the procedure that the classic nearest neighbor query uses.

5555 AAAArchitecturerchitecturerchitecturerchitecture

5.15.15.15.1 Presentation LayerPresentation LayerPresentation LayerPresentation Layer

The front-end or else web user interface consists of the main page of the website where

relevant information about Pausanias are displayed. Furthermore there are five other website

pages, each one dedicated for the purpose of each query.

The web client consists of HTML5 pages along with CSS3 and JavaScript/JQuery. Pausanias

utilizes the Bootstrap 3 framework to provide responsive capabilities and the JQuery library to

ease the programmatic complexity related to using plain JavaScript to make AJAX requests.

Bootstrap 3 is a web application framework that provides responsive elements such as buttons,

forms etc. and a 12 column grid to arrange elements. The programmer has the advantage that

he/she can use multiple ‘’rows’’ of up to 12 columns in each ‘’row’’ to arrange the html

elements. In many cases just making the interface using grid is enough to both display nicely in

large and small screens. In our case, it needed a little more to be sure that the user interface

will scale as much nicely as it can get on every device.

In order to build the Pausanias Website, I decided that Pausanias would benefit from less

complex architecture. Therefore the web client is a ‘’thin’’ client, which means that all the

processing is done on the application tier. The client just sends requests to the server and

receives responses from the server. These responses have to be parsed and extracted in order

to display them to the user.

All the communication between the client and the server is done using REST web services.

REST (Representational State Transfer) is a software architecture style consisting of guidelines

and best practices for creating scalable web services. The data format that REST uses is mainly

JSON but this is not mandatory as it can use both XML and plain objects. However, this

implementation uses JSON as a data transfer method because it is really easy to parse JSON

objects with JavaScript.

Lastly, the website utilizes Google Maps in order to display the points of interest to the

user and also to provide the user the capability to mark his/her location or the location he/she

wishes to search for.

akrivi
Stamp

akrivi
Stamp

6

5.25.25.25.2 Service LayerService LayerService LayerService Layer

The website Pausanias is based upon an embedded Http Server called Jetty. Jetty is a

modern application container that can support both standalone mode of web applications and

embedded mode. Pausanias is based upon an embedded server to provide the capability of

easy transferring among different hosting solutions.

Pausanias is distributed within a runnable JAR file and a folder containing critical content

in order to run the website. This JAR file can be started with double clicking on it, or with the

command line. If Pausanias is started with the command line there is an extra capability to stop

it, in contrast with double clicking the JAR file where stopping the web server requires killing

the process.

Upon starting, Pausanias receives requests in port 8081 and displays logging information

in the command line.

The back-end of Pausanias consists of Servlets who act as REST web services. These

servlets are five in total, each one for a particular kind of query. The input required varies

according to whether there is need for topK results and also whether or not we need the use of

IR-Tree.

The communication between the Servlets and the data layer is done using a specialized

framework specific to these types of queries. This framework supports communication as well

as creation of R-Trees, B-Trees and of course IR-Trees. Although the framework is quite old,

fortunately it is open source so with a little tweaking I made it to work a little more efficiently.

6666 Website ManualWebsite ManualWebsite ManualWebsite Manual

In this chapter I will present the website pages with screenshots as well as description of

the process of finding POIs for the different queries that Pausanias supports.

In the following screenshot there is the starting page of Pausanias.

akrivi
Stamp

akrivi
Stamp

7

Starting Page where the description of the website Pausanias is presented as well as a short bio

of each researcher of the project. Finally there is a list of publications.

akrivi
Stamp

akrivi
Stamp

8

 In order to search for Hotels that are at most 1000 meters from a position we have

specified, we need to first select the webpage called Boolean Spatial Range Query.

 Then we will specify what we are looking for, the range in meters from our position and

finally our position on the map. In this example we are looking for “Hotels that are at most 1000

meters from our position”, which is in NOHO, New York. In each Hotel we can click on it and

display information such as its name and its address.

akrivi
Stamp

akrivi
Stamp

9

 If we want to search for restaurants also in this area then all we have to do is to select a

different dataset, in this case Restaurants, and click the “Search” button. When we want to

clear out all the results we press the 2 arrows

 Now in order to search for “top-10 Hotels that are within 1000 meters from our position

and have parking”, we click the “Queries” option in the top of the page and go to the page

“TopK Spatio-Textual Range Query”. In this page we select the dataset we want to search for,

we denote the range in meters from our position, the keywords that we want to include in our

search and finally our position.

akrivi
Stamp

akrivi
Stamp

10

 All in all these are the effective web pages. By the word “effective” I mean that are in

total 5 webpages devoted for each query. I described only two, namely “Boolean Spatial Range

Query” and “TopK Spatio-Textual Range Query”. The process of finding Points of Interest is the

same in the remaining three webpages.

akrivi
Stamp

akrivi
Stamp

