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The analysis for the physical mechanism of the long-wave instability in liquid
film flow is extended to take into account the presence of a surfactant of arbitrary
solubility. The Navier–Stokes equations are supplemented by mass balances for the
concentrations at the interface and in the bulk, by a Langmuir model for adsorption
kinetics at the interface, and are expanded in the limit of long-wave disturbances.
The longitudinal flow perturbation, known to result from the perturbation shear stress
which develops along the deformed interface, is shown to contribute a convective
flux that triggers an interfacial concentration gradient. This gradient is, at leading
order, in phase with the interfacial deformation, and as a result produces Marangoni
stresses that stabilize the flow. The strength of the interfacial concentration gradient
is shown to be maximum for an insoluble surfactant and to decrease with increasing
surfactant solubility. The decrease is explained in terms of the spatial phase of mass
transfer between interface and bulk, which mitigates the interfacial flux by the flow
perturbation and leads to the attenuation of Marangoni stresses. Higher-order terms
are derived, which provide corrections for disturbances of finite wavelength.
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1. Introduction
The formation of waves in gravity-driven liquid films flowing down inclined

surfaces has attracted the interest of many researchers in the past because of its
importance in a broad range of engineering applications. Extensive reviews of the
rich dynamics of this system and of the recent developments in the field are offered by
Chang (1994), Oron, Davis & Bankoff (1997), Craster & Matar (2009) and Kalliadasis
et al. (2012). It is well known that interfacial instabilities can be significantly affected
by the presence of surface-active materials or surfactants (see for example Hameed
et al. 2008; Conroy et al. 2011). Wave formation in falling films is no exception,
and early experimental studies (see e.g. Emmert & Pigford 1954; Stirba & Hurt
1955; Tailby & Portalski 1961) showed that the addition of even small amounts of
surfactants can have a stabilizing influence on the flow, dampening the waves that
would otherwise arise.

Predictions of the critical Reynolds number for the onset of waves on a clean liquid
film (without surfactant) were first provided by Benjamin (1957) and Yih (1963), but a
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full understanding of the physical mechanism responsible for this long-wave instability
was achieved much later (Kelly et al. 1989; Smith 1990), by extending an argument
originally proposed by Hinch (1984). It is notable that an unequivocal experimental
confirmation of the linear prediction was also delayed significantly (Liu, Paul &
Gollub 1993), and that an unexpected strong effect of the channel width was reported
very recently by Georgantaki et al. (2011) and Pollak, Haas & Aksel (2011).

The primary instability of liquid films doped with insoluble surfactants
(i.e. surfactants that do not dissolve to any significant effect in the bulk, but are
assumed to reside only on the interface) was first considered by Benjamin (1964) and
Whitaker (1964). They both predicted that insoluble surfactants delay the instability
because of the elasticity they contribute to the interface. More specifically, surface
tension depends on the concentration of surfactant, thus interfacial concentration
gradients produce stresses (Marangoni stresses) that are responsible for the elastic
behaviour. The role of surface elasticity was confirmed repeatedly in the literature
(Anshus & Acrivos 1967; Lin 1970; Blyth & Pozrikidis 2004; Pereira & Kalliadasis
2008a), and the mechanism responsible for the modified instability was investigated
by Wei (2005a,b) for the case of insoluble surfactants.

Soluble surfactants exhibit more complex behaviour, because interfacial dynamics
is intricately coupled with mass exchange with the bulk. Mass transfer rates, as well
as the kinetics of adsorption, have been shown to be critical in the special case of a
volatile soluble surfactant, which actually enhances instability (Ji & Setterwall 1994;
Shkadov, Velarde & Shkadova 2004). Enhancement of instability was also shown
by Yiantsios & Higgins (2010) to be possible under conditions of evaporating thin
films in the presence of non-volatile soluble surfactants. The general problem of
the linear stability of non-evaporating film flow doped with a non-volatile soluble
surfactant was considered recently (Karapetsas & Bontozoglou 2013), and the critical
Reynolds number was predicted as a function of surfactant solubility. However, a full
mechanistic understanding of the role of a soluble surfactant appears to be missing.

Thus, the scope of the present study is to describe in detail the role of a surfactant
of arbitrary solubility in the initiating and the growth mechanism of the long-wave
instability in liquid film flow. The study constitutes a direct extension of the work
of Smith (1990), and also confirms and complements the findings of Karapetsas &
Bontozoglou (2013).

2. Problem formulation and scaling
We study the dynamics of liquid films flowing along an infinite planar wall,

inclined at an angle α with the horizontal plane (see figure 1). The film is laden
with a soluble, non-volatile surfactant which may adsorb at the liquid–air interface
altering surface tension, or it can exist in the bulk in the form of monomers. The fluid
is Newtonian with constant density ρ and kinematic viscosity ν, and with surface
tension, σ , which depends on the interfacial concentration of surfactant, Γ , through
a constitutive equation σ = σ(Γ ). For the present purposes of a linear analysis, we
do not have to consider a specific constitutive law for surface tension. We define,
however, the surface elasticity E(Γ )

E(Γ )=−
dσ

d(ln Γ )
(2.1)

which contains the dependence of surface tension on interfacial surfactant
concentration; a specific expression for E(Γ ) can be derived once the constitutive
equation is specified.
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FIGURE 1. Schematic of a falling film in the presence of soluble surfactants.

In order to model two-dimensional dynamics, we use a Cartesian coordinate
system (x, z), with x pointing in the streamwise and z in the cross-stream direction.
The velocity and pressure fields are u = (u, w) and p, respectively. The liquid–air
interface is located at z = h(x, t) and the liquid–solid interface at z = 0. The flow
is governed by the continuity and momentum conservation equations, subject to the
zero-velocity boundary condition at the solid wall and the kinematic and dynamic
boundary conditions at the free surface. The latter includes both a normal contribution
due to surface tension and a tangential one due to the variation of surface tension
along the free surface.

To account for the presence of soluble surfactants, we utilize a simplified version
of the kinetic model of Edmonstone, Craster & Matar (2006) and Karapetsas, Craster
& Matar (2011a,b). Surfactant partitioning between the bulk concentration, c, and the
interfacial one, Γ , is described by a Langmuir model, with Γ∞ the interfacial
concentration at maximum packing and k1, k2 the constants of the first-order
adsorption and desorption kinetics. Mass conservation of adsorbed and dissolved
surfactant is modelled by two advection–diffusion equations, one for the interface
and one for the bulk. The net flux of monomer between interface and bulk is given
by the kinetic model, and appears as a term in the equation of the interface and as
a boundary condition in the equation of the bulk. The above physical model is the
same as in Karapetsas & Bontozoglou (2013), to which we refer the reader for a
more detailed description.

The governing equations and boundary conditions are made dimensionless, using the
following scaling:

(x̃, z̃)= (x, z)/H, h̃= h/H, t̃= tU/H, ũ= u/U, (2.2a)
p= pair + ρgH sin α p̃, (Γ̃ , c̃)= (Γ ,Hc)/Γ∞, (2.2b)

J̃ba = Jba
H

UΓ∞
, σ̃ =

σ

σc
, M̃tot =

Mtot

LΓ∞
. (2.2c)

Here Jba denotes the net flux of surfactant at the interface and Mtot is the total
amount of surfactant that is present in our system. As a characteristic length we
use the height of the Nusselt flat film, H = (3νQ/(g sin α))1/3, where Q denotes
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the imposed flow rate. The velocities are scaled with the corresponding interfacial
velocity, U = gH2 sin α/(2ν), and σc = σ(Γ = 0) is the surface tension of the clean
liquid. Tildes denote dimensionless variables and are henceforth suppressed.

Introducing the above scaling, the continuity and momentum conservation equations
become,

ux +wz = 0. (2.3)
Re(ut + uux +wuz)+ 2px − uxx − uzz − 2= 0, (2.4)

Re(wt + uwx +wwz)+ 2pz −wxx −wzz + 2 cot α = 0, (2.5)

where Re = gH3 sin α/2ν2 is the Reynolds number. Unless stated otherwise, the
subscripts denote partial differentiation with respect to x, z and time t.

The components of the dynamic boundary condition tangential and normal to the
free surface are, respectively,

−4uxhx + (uz +wx)(1− h2
x)= 2Weσx

√
1+ h2

x, (2.6)

p+
ux(1− h2

x)+ (uz +wx)hx

1+ h2
x

=−Weσ
hxx

(1+ h2
x)

3/2
, (2.7)

where We= σc/ρgH2 sin α is the Weber number. In addition, we impose at the liquid–
solid interface (z = 0), the usual no-slip, no-penetration conditions, u = w = 0, and
along the moving interface (z= h(x, t)) the kinematic boundary condition ht+ uhx=w.

The dimensionless form of surfactant conservation in the bulk becomes

ct + ucx +wcz = Pe−1
b (cxx + czz), (2.8)

where Peb=Reν/Db is the Péclet number in the bulk, with Db the surfactant diffusivity
in the bulk. The above equation is subject to the following boundary conditions, along
the interface (z= h(x, t))

hxcx − cz

Peb

√
1+ h2

x

= Jba, (2.9)

and along the wall (z= 0)
cz = 0. (2.10)

Surfactant conservation at the interface is modelled by the following advection–
diffusion equation

Γt + uΓx + Γ∇s · u=
∇

2
s Γ

Pea
+ Jba, (2.11)

where Pea=Reν/Da is the interfacial Péclet number, with Da the surfactant diffusivity
at the interface, and ∇s is the surface gradient, defined as ∇s = (I − nnT) · ∇. It is
noted that the derivation of (2.11) involves some subtle points related to the movement
of the interface and the definition of the time derivative (Pereira & Kalliadasis
2008b). Another version of this equation has been repeatedly quoted incorrectly in
the literature but as was shown by Pereira & Kalliadasis (2008b), equation (2.11) is
actually more appropriate.

Finally, the dimensionless expression for the net adsorption flux in (2.9) and (2.11)
is

Jba = ka[ξac|z=h(1− Γ )− Γ ]. (2.12)
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where ka = k2H/U and ξa = k1/k2H. The physical significance of these parameters is
as follows: Term ka is the ratio of the time scale of convection to the time scale of
desorption. For example, ka� 1 means that the backward reaction is slow compared
with convection, and thus a temporary decrease of the bulk concentration near the
interface will not lead to significant desorption. Term ξa is the ratio of the kinetic
constants of the forward and backward reaction for the interface–bulk interaction, and
thus provides a direct measure of surfactant solubility in the bulk (Jensen & Grotberg
1993). More specifically, ξa � 1 signifies a highly soluble and ξa � 1 a sparingly
soluble surfactant.

3. Linearization and normal mode analysis
The above set of governing equations and boundary conditions has a trivial solution

corresponding to a flat film with uniform surfactant concentration. In the case of a
clean fluid, this is also known as the Nusselt flat film solution and its dimensionless
form is shown below

h̄= 1, ū= 2z− z2, w̄= 0, p̄= (1− z) cot α, (3.1)

where an overbar denotes the base state. In order for the above solution to remain
valid when a soluble surfactant is present, the concentrations should be uniform and
at equilibrium. Imposing these conditions leads to

c̄=
Γ̄

ξa(1− Γ̄ )
, (3.2)

and given that the total mass of the surfactant, Mtot, is conserved and evaluated by
the following expression

c̄+ Γ̄ =Mtot, (3.3)

it is possible to derive an analytical expression for c̄ and Γ̄ as function of the
parameters Mtot and ξa (Karapetsas & Bontozoglou 2013).

We perform a linear stability analysis by perturbing the flow around the above flat
film solution. To this end we write all variables as the sum of the base state and a
small perturbation

φ = φ̄ + φ′, (3.4)

and linearize the system assuming φ′ � φ̄. We also apply the relevant boundary
conditions around the mean elevation of the interface, z = 1, by expanding the
variables in Taylor series as follows

φ|z=h = φ̄|z=h + φ
′
|z=h =

(
φ̄|z=1 + h′

∂φ̄

∂z

∣∣∣∣
z=1

)
+ φ′|z=1 +O(h′2). (3.5)

The set of linearized equations and boundary conditions is analysed by considering
the normal modes: 

h′(x, t)
u′(x, z, t)
w′(x, z, t)
p′(x, z, t)
c′(x, z, t)
Γ ′(x, t)
J′ba(x, t)


=



ĥ
û(z)
ŵ(z)
p̂(z)
ĉ(z)
Γ̂

Ĵba


exp[ik(x−Ct)], (3.6)
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where k = 2πH/λ is the dimensionless wavenumber of the disturbance with
wavelength λ, and C is the complex eigenvalue, C = Cr + iCi, with Cr the
dimensionless phase velocity scaled with the Nusselt film surface velocity U and
kCi the growth rate. The final system of normal-mode disturbance equations is

Re[ik(ū−C)û+ ūzŵ] + 2ikp̂+ k2û− ûzz = 0, (3.7)
ikRe(ū−C)ŵ+ 2p̂z + k2ŵ− ŵzz = 0, (3.8)

ikû+ ŵz = 0, (3.9)
Pebik(ū−C)ĉ+ k2ĉ− ĉzz = 0, (3.10)

and the following boundary conditions are applied along the mean interfacial elevation
(z= 1)

ûz(1)+ ikŵ(1)+ ūzz(1)ĥ+ 2ikWe
Ē
Γ̄
Γ̂ = 0, (3.11)

p̂(1)− ĥ cot α + ikû(1)− k2We σ̄ ĥ= 0, (3.12)

ik[ū(1)−C]ĥ− ŵ(1)= 0, (3.13)

(ū(1)−C)ikΓ̂ + Γ̄ ikû(1)+
k2Γ̂

Pea
− Ĵba = 0, (3.14)

Ĵba =
−ĉz(1)

Peb
= ka[ξa[(1− Γ̄ )ĉ(1)− c̄Γ̂ ] − Γ̂ ], (3.15)

and along the wall (z= 0)

û(0)= ŵ(0)= 0, (3.16)
ĉz(0)= 0. (3.17)

In the above σ̄ denotes the surface tension that corresponds to the base state surface
concentration Γ̄ and

Ē=−Γ̄
(

dσ̄
dΓ̄

)
Γ̄

. (3.18)

4. Long-wave expansion
4.1. Initiating mechanism

The physical system considered has been shown (Karapetsas & Bontozoglou 2013) to
be susceptible to a long-wave instability. The mechanism for this instability can be
identified in the ordered problems that arise from a regular expansion of the normal-
mode amplitudes in the limit k→ 0. More specifically, we posit

û= u0 + ku1 + k2u2 +O(k3), (4.1)
ŵ= kw1 + k2w2 +O(k3), (4.2)

p̂= p0 + kp1 + k2p2 +O(k3), (4.3)
C=C0 + kC1 + k2C2 +O(k3), (4.4)
ĉ= c0 + kc1 + k2c2 +O(k3), (4.5)
Γ̂ = Γ0 + kΓ1 + k2Γ2 +O(k3), (4.6)

Ĵba = Jba,0 + kJba,1 + k2Jba,2 +O(k3), (4.7)

ĥ= h0 + kh1 + k2h2 +O(k3). (4.8)
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We are interested in the ‘interfacial mode’ that is triggered by a deflection of the
free surface, and which is known to be the unstable one (Blyth & Pozrikidis 2004;
Pereira & Kalliadasis 2008a); the aforementioned papers have shown for an insoluble
surfactant that a ‘concentration mode’ also exists, which is stable and actually not
related to the surfactant property (see Appendix). Thus, we normalize the system of
equations by assuming that h0 = 1 and h1 = h2 = 0, implying that all perturbation
amplitudes to be subsequently calculated are proportional to the amplitude, h0, of the
free surface deformation. The lack of an O(k0) term in the expansion of ŵ in the
long-wave limit is a direct consequence of continuity, (3.9).

At order O(k0), we combine the normal mode momentum equations, the force
balance at the interface and the wall boundary condition,

u0zz = 0, u0(0)= 0, u0z(1)=−ūzz(1)= 2, p0z = 0, p0(1)= cot α, (4.9)

and obtain the well-known leading-order perturbation to the base flow,

u0(z)= 2z, p0(z)= cot α. (4.10)

As explained by Kelly et al. (1989) and Smith (1990), when the interface deforms,
a non-zero shear stress, ūzz(1)h′, results from the base flow because of the local
curvature of its velocity profile at the interface. Therefore, a perturbation shear
stress develops that exactly cancels the above, and this drives the longitudinal flow
perturbation u0(z).

In order to solve for the concentrations, we combine at order O(k0) mass
conservation in the bulk and at the interface, and no-penetration at the wall, and
obtain

c0zz = 0, c0z(0)= 0,
c0z(1)
Peb
=−Jba,0. (4.11)

Therefore,

c0(z)=
Γ0

ξa(1− Γ̄ )2
= constant. (4.12)

Equations (4.11) and (4.12) state that, at zero order, convection is negligible and the
interface is in equilibrium with the bulk. This is reasonable, given that in the limit
k→ 0 variations along the wavelength become very slow, and the resistance to mass
transfer in the cross-stream direction diminishes.

It is also notable that the concentrations are not fully determined at order O(k0).
This happens because the initial deformation of the interface does not trigger by itself
any change in the concentration of surfactant (the dilation of the interface is second
order in the deformation amplitude, i.e. linearly negligible). As will be shown next,
it is actually the leading-order flow perturbation, u0(1), that disturbs the interfacial
concentration, and this occurs through a convective contribution that appears at order
O(k1).

Next, we consider the normal mode, mass conservation equations at order O(k1) and
obtain

Peb i(ū−C0)c0 = c1zz, c1z(0)= 0,
c1z(1)
Peb
=−Jba,1, (4.13)

and

(ū(1)−C0)iΓ0 + iΓ̄ u0(1)=−
c1z(1)
Peb

. (4.14)
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The leading-order wave velocity, C0, is derived from the kinematic boundary
condition (3.13),

i(ū(1)−C0)=w1(1)⇒C0 = ū(1)+ iw1(1). (4.15)

From continuity (3.9), we obtain

w1z + iu0 = 0⇒w1(z)=−iz2, (4.16)

and therefore we deduce that
C0 = 2. (4.17)

Integrating (4.13), we obtain the O(k1) amplitude of the bulk concentration
perturbation

c1(z)= ic0

[
Peb

(
3
4
− z2
+

z3

3
−

z4

12

)
+

4
3(1− Γ̄ )kaξa

− i
Γ1

Γ0

]
. (4.18)

Equation (4.14) may now be solved, using (4.12), (4.17) and (4.18), to obtain the
zero-order perturbation in the interfacial concentration of surfactant,

Γ0 = 2Γ̄
(

3ξa(1− Γ̄ )2

3ξa(1− Γ̄ )2 + 4

)
, (4.19)

and, through (4.12), also the zero-order perturbation to the bulk concentration.
Analysis of (4.14) provides an understanding of the initiating mechanism of

concentration perturbation. We focus first on the two terms on the left-hand side,
which balance exactly in the case of an insoluble surfactant. The second term
represents convective transport of the mean interfacial concentration because of the
variation along the wave of the leading-order flow perturbation, u0(1). This term
disrupts the uniform interfacial concentration; more specifically, it produces a flux
that is maximum at the back node and minimum at the front node (‘back’ and ‘front’
are in reference to the crest of surface displacement), and as a result, it moves
surfactant away from the trough and towards the crest. Thus, a perturbation Γ0 with
maximum at the crest and minimum at the trough arises, whose convective transport
by the mean flow is expressed by the first term on the left-hand side of (4.14).
The perturbation in Γ is such that the two convective fluxes, combined with mass
exchange with the bulk (the right-hand side term), balance. We should note at this
point that in the case of insoluble surfactants, the concentration was shown by Wei
(2005b) to be in phase with the surface displacement and we see that, at leading
order, this is true for soluble surfactants as well.

Equivalently, we may consider a reference frame that renders the wave stationary,
and in this case the interfacial velocity is given by

u|z=h −C0 = [ū(1)−C0] + u′(1), (4.20)

and since u′(1)= û(1)h′ = u0(1)h′ +O(k2) and u0(1)= 2 we obtain

u|z=h −C0 =−1+ 2h′ +O(k2). (4.21)

Therefore, the interfacial streamwise velocity has a magnitude which is maximum at
the trough and minimum at the crest of the interfacial displacement (see figure 2).
Given that the system is at steady state in this reference frame (and thus the flux of
surfactant is the same at every streamwise location), we conclude that the interfacial
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FIGURE 2. A disturbance to the free surface. The dotted arrows depict the direction and
magnitude of the interfacial velocity at various positions, assuming a moving frame of
reference that renders the wave stationary. The long-dashed line is the undisturbed free
surface position and the line arrows depict the mean velocity profile in this reference
frame.

0 1.5708 3.1416 4.7124 6.2832

FIGURE 3. Spatial wave forms of the film height, h′, interfacial flux, J′ba, interfacial
concentration, Γ ′, and concentration in the bulk, c′.

concentration varies inversely to the interfacial velocity, i.e. it is maximum at the crest
and minimum at the trough.

It is noted that the three fluxes in (4.14) have the same phase, which lags 90◦
behind the displacement (as will be shown below, c1(z) is pure imaginary). Therefore,
the perturbation in surfactant concentration is at leading order in phase with the
interface displacement, a result that is directly evident from (4.19); as will be shown
later, the phases start to deviate at order O(k1). Equation (4.19), also indicates
that the leading-order effect of surfactant solubility is to decrease the magnitude of
concentration perturbation at the interface (it is recalled that ξa� 1 corresponds to a
sparingly soluble, and ξa� 1 to a highly soluble surfactant).

The effect of surfactant solubility becomes more evident by evaluating directly the
rate of mass transfer between the bulk and the interface, i.e. the right-hand side of
(4.14). Using (4.18), we obtain

Jba,1 =−
c1z(1)
Peb
=

i8Γ̄
3ξa(1− Γ̄ )2 + 4

. (4.22)

We observe that the transfer rate of surfactant is 90◦ out of phase with the
displacement (see figure 3), i.e. at the front node (with respect to the crest) transfer of
surfactant is from the interface towards the bulk, and at the back node it is from the
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bulk towards the interface. This is precisely the opposite effect from the convective
transport by the leading-order flow perturbation, as described above. Thus, exchange
with the bulk opposes transport by the flow perturbation, and therefore diminishes the
perturbation in interfacial concentration of surfactant. In the limit of a highly soluble
surfactant (ξa→ 0) Jba,1 = i2Γ̄ and Γ0 = 0, i.e. the two fluxes become exactly equal
and opposite, and as a result interfacial gradients (and Marangoni stresses) disappear
altogether.

4.2. Effect of surfactant on the growth mechanism

We proceed to calculate the O(k1) longitudinal velocity perturbation, u1(z), which is
evaluated from the x-momentum equation (3.7)

u1zz = 2ip0 + Re[i(ū−C0)u0 + ūzw1], (4.23)

subject to the boundary conditions of zero velocity at the wall, u1(0) = 0, and
tangential force balance at the interface,

u1z(1)=−2i
WeĒ
Γ̄

Γ0. (4.24)

Equations (4.23) and (4.24) contain the essence of the growth mechanism. Following
Smith (1990), we recall that (4.23) represents a balance between viscous stress
gradient, u1zz, and the pressure and inertial stresses that contribute to the flow u1.
Term p0 = cot α is positive, thus pressure is in phase with interface deformation,
i.e. maximum below the crest and minimum below the trough. This distribution is
stabilizing, draining liquid away from the crests and towards the troughs. In contrast,
the two inertial stresses, representing advection of flow perturbations by the base state
velocity relative to the moving disturbance, are negative and therefore destabilizing.
In particular, the dominant negative contribution, −ReC0u0, corresponds to temporal
acceleration by the wave motion, whereas the remaining terms represent convective
acceleration and sum up to a slightly stabilizing contribution. Thus, the unsteadiness
associated with the moving disturbance is the cause of the instability.

The role of surfactant is given by the boundary condition (4.24), which represents
the contribution to the flow u1 due to Marangoni stresses. More specifically,
integration of (4.23) subject to (4.24) gives

u1(z)= i
[

Re
(

z4

6
−

2z3

3
+

4z
3

)
− cot α(2z− z2)− 4WeĒ

(
3ξa(1− Γ̄ )2

3ξa(1− Γ̄ )2 + 4

)
z
]
,

(4.25)

which indicates that the O(k1) longitudinal velocity perturbation is 90◦ out of phase
with the displacement, attaining extrema at the nodes of the travelling wave. The
last term on the right-hand side of (4.25) represents the additional flow perturbation
caused by the Marangoni stresses at the interface. Its coefficient is negative, and
thus it is maximum at the front node and minimum at the back node with respect
to the crest, i.e. it drives liquid away from the crest. This is the expected effect
of the Marangoni stresses that are induced by the leading-order perturbation in Γ

(equation (4.19)) given that Γ0 is in-phase with surface displacement, i.e. maximum
at the crests and minimum at the troughs. The action of each of the terms of (4.25)
is depicted schematically in figure 4.
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FIGURE 4. A disturbance to the free surface. The line arrow depicts the action
of Marangoni stresses (stabilizing), the dashed arrow depicts the action of pressure
(stabilizing) and the dotted arrow depicts the action of inertia terms (destabilizing) in
(4.25). The long-dashed line is the undisturbed free-surface position.

The contribution to the complex eigenvalue at order O(k1) is determined from the
kinematic boundary condition (3.13) at order O(k2)

C1 = iw2(1). (4.26)

The cross-stream velocity w2 is calculated by integration of the continuity equation,
w2z + iu1 = 0, subject to w2(0)= 0. Substituting u1 from (4.25), we obtain

w2(z)= cot α
(

z3

3
− z2

)
+ Re

(
2z2

3
−

z4

6
+

z5

30

)
− 2WeĒ

(
3ξa(1− Γ̄ )2

3ξa(1− Γ̄ )2 + 4

)
z2.

(4.27)

Combining (4.26) and (4.27), we obtain

C1 = i
[
−

2
3

cot α +
8
15

Re− 2WeĒ
(

3ξa(1− Γ̄ )2

3ξa(1− Γ̄ )2 + 4

)]
. (4.28)

Therefore, the growth rate of the disturbance is, to this order, equal to

kCi =
8

15
k2

[
Re−

5
4

cot α −
15
4

WeĒ
(

3ξa(1− Γ̄ )2

3ξa(1− Γ̄ )2 + 4

)]
, (4.29)

and the critical condition for instability, determined by setting Ci = 0, is found to be

Rec,0 =
5
4

cot α +
15
4

WeĒ
(

3ξa(1− Γ̄ )2

3ξa(1− Γ̄ )2 + 4

)
, (4.30)

a result originally derived by Karapetsas & Bontozoglou (2013). In the limit of an
insoluble surfactant (ξa� 1) (4.30) is in agreement with the expression given by Wei
(2005a) and Pereira & Kalliadasis (2008a).

It is interesting to note that, for typical constitutive models σ = σ(Γ ), the last
term on the right-hand side of (4.30) is in general a non-monotonic function of Γ̄ .
Thus, moderately soluble surfactants exhibit maximum stabilization at intermediate
concentrations. Using as an indicative example the Sheludko model (Sheludko 1967)
and a vertical wall (cot α= 0), we find that the dependence of critical Re on surface
concentration of surfactant varies parametrically with surfactant solubility as shown
in figure 5. At small values of ξa, the maximum in Recr occurs around Γ̄ ≈ 0.27,
whereas with increasing ξa (decreasing solubility), the maximum gradually drifts
towards Γ̄ = 1.
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FIGURE 5. Dependence of the critical Reynolds number on the interfacial concentration,
Γ̄ for different values of ξa. The dependence of surface tension on the interfacial
concentration was modelled using the equation of state suggested by Sheludko (1967);
σ̄ = [1+ Γ̄ (Σ1/3

− 1)]−3; in this case Ē is given by Ē= 3Γ̄ (Σ1/3
− 1)[1+ Γ̄ (Σ1/3

− 1)]−4.
The rest of the parameters are: α = 90◦, Ka = 3000, Σ = 2; Σ = σc/σm, where σc and
σm denote the surface tensions of a surfactant-free fluid and that of maximal surfactant
concentration, respectively.

4.3. Higher-order terms
4.3.1. Interfacial concentration for non-zero wavenumbers

The above procedure may be continued to higher orders, at the expense of rapidly
increasing algebraic complexity. For example, integrating the O(k2) terms of (3.10)
and combining with the boundary conditions (3.14) at order O(k2) and (3.15) at order
O(k1), we obtain the first-order amplitude of the interfacial concentration, Γ1,

Γ1 = −i
Γ 2

0

Γ̄

[
8

9kaξ 2
a (1− Γ̄ )3

+
1

(1− Γ̄ )2ξa

(
1

2Peb
+

37
105

Peb

)
+

1
2Pea

−

(
1

90(1− Γ̄ )2ξa
−

7
120

)
Re+

ĒWe
3(1− Γ̄ )2ξa + 4

−
cot α

12

]
= −i

Γ 2
0

Γ̄
f (κ, µ), (4.31)

where the terms in the squared brackets have been grouped in the function f (κ, µ),
with κ = 3kaξa(1− Γ̄ ) and µ= 3ξa(1− Γ̄ )2. The parametric variation of the function
f (κ, µ) is presented in figure 6 for typical values of the dimensionless parameters and
for the case of a vertical wall. Equation (4.31) indicates that the effect of adsorption
modelling at order O(k1) and beyond is conveniently described by the parameters
κ and µ, which are related respectively to the speed of adsorption kinetics and to
the solubility of the surfactant. (In particular, we recall from (2.12) that kaξa = k1/U,
therefore, kaξa � 1 means that the interface is always at equilibrium with the bulk,
and kaξa� 1 means that the exchange between interface and bulk is negligible, i.e. the
interfacial concentration is ‘frozen’.) With appropriate selection of the ranges of these
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FIGURE 6. Dependence of the function f (κ, µ) on the value of µ for various values of
κ . Typical values have been used for the rest of the dimensionless parameters: Re= 100,
We= 100, Peb = 100, Pea = 1000, Ē= 0.3 and α = 90◦.

parameters, one may examine various particular cases. For example, for an insoluble
surfactant (κ ∼O(1), µ�O(1)), we obtain the expression

Γ1 =−iΓ̄
(

7
30

Re+
2

Pea
−

1
3

cot α
)
. (4.32)

We note from (4.31) and (4.32) that Γ1 is purely imaginary and, according to
(4.18), so is c1(z) and in particular c1(1). Thus, the phases of the adsorbed and free
concentrations at the interface, start at order O(k1) to deviate from the phase of
the interface deformation. More specifically, the phases of the interfacial and bulk
concentration, up to this order, are given by the expressions:

tan φΓ =
Im[Γ̂ ]

Re[Γ̂ ]
=
−ikΓ1

Γ0
+O(k2), (4.33)

tan φc =
Im[ĉ]
Re[ĉ]

=
−ikc1(1)

c0
+O(k2). (4.34)

The direction in which the maximum in Γ ′ moves depends on the sign of Γ1. For an
insoluble surfactant, equation (4.32) shows that Γ1 is negative for all cases of practical
interest, therefore the maximum moves ahead of the deformation crest. The same
holds also for the general result (4.31), which also contains negative terms. Indeed,
the parametric variation of f (κ, µ) depicted in figure 6 shows that for all values of κ ,
f (κ, µ)> 0 and the maximum in surface concentration precedes the deformation crest.

Using (4.18), we can readily show that the phase of the concentration in the bulk
is related to that of the interfacial concentration by

tan φc = tan φΓ +
4k

3(1− Γ̄ )kaξa
+O(k2)= tan φΓ +

4k
κ
+O(k2). (4.35)
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Therefore, c is in phase with Γ when the adsorption kinetics are fast enough (κ� 1),
but lags behind it for moderate and slow kinetics. An example of the latter case
is provided by the time traces of deformation, flux and concentrations depicted in
figure 3.

4.3.2. Wave velocity and growth rate for non-zero wavenumbers
Next, we calculate an improved prediction for the phase velocity, Cr, valid up to

order O(k2). By using the kinematic boundary condition (3.13) at order O(k2), we
obtain an expression for C2, which is real and thus contributes only to Cr. The final
result is

Cr = 2− k2

[
2+

32
63

Re
(

Re−
5
4

cot α
)
+WeĒ

Γ0

Γ̄

(
Γ0

Γ̄
f (κ, µ)−

19
20

Re
)]
+O(k4).

(4.36)

In the limit of a clean liquid (Ē= 0), equation (4.36) agrees with the result by Benney
(1966). In the limiting case of an insoluble surfactant, equation (4.36) may be further
simplified, and after some algebra we obtain

Cr = 2− k2

[
2+

32
63

Re
(

Re−
5
4

cot α −
15
4

WeĒ
)
+WeĒ

(
5

21
Re+

2
Pea
−

cot α
3

)]
.

(4.37)

It is concluded from (4.37) that for vertical films disturbances of finite wavelength
travel slower than the long-wave ones. In particular, it is noted that, from the two
terms in parentheses inside the brackets, the first one contains Re− Rec,0 and is thus
positive beyond the primary threshold, and for α= 90◦ the second contains only two
positive terms (5Re/21 and 2/Pea).

We follow a similar procedure at order O(k3) and evaluate C3, which is purely
imaginary and contributes only to the growth rate. Since the growth rate to this order
is given by kCi ≈ C1k2

+ C3k4, we determine the critical condition for instability for
non-zero wavenumbers (k 6=0) by setting Ci=0. As the resulting expression is implicit
in Re, we derive an analytic solution by positing the expansion

Rec = Rec,0 + k2Rec,2. (4.38)

The result in the general case of a surfactant of arbitrary solubility is very
cumbersome and will not be presented here. Instead, we quote only the limiting
case of a vertical wall (α = 90◦) and an insoluble surfactant:

Rec,0 =
15
4 WeĒ, (4.39)

and

Rec,2 =
5σ̄
4

We+
(

4825
1344

−
1

Pe2
a

)
Rec,0 +

5
6Pea

Re2
c,0 +

3637
30888

Re3
c,0. (4.40)

For a clean fluid (Ē=0), this expression reduces to Rec= (5/4)Wek2 in agreement with
what we know from literature (Benney 1966). With the addition of surfactant, Rec,0
increases from zero and, for typical examples, may eventually reach values of order
102. Thus, the last three terms on the right-hand side of (4.40) (and, in particular, the
third) dominate the first one, and dictate the behaviour at non-zero wavenumbers. As a
consequence, we expect short wave disturbances to stabilize drastically in comparison
to the clean fluid.
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5. Conclusions

We extended the analysis for the physical mechanism proposed by Kelly et al.
(1989) and Smith (1990) for the initiation and growth of a long-wave instability in
liquid film flow, in order to account for the presence of a surfactant of arbitrary
solubility in the bulk. The zero-order, longitudinal flow perturbation (which is known
to result from the perturbation shear stress which develops along the deformed
interface) was shown to produce a convective flux that disrupts the uniform interfacial
concentration of surfactant. As a consequence of mass conservation, this convective
flux builds up an interfacial concentration gradient that, at leading order, is in phase
with the deformation of the interface. The stabilizing effect of the resulting Marangoni
stresses appears in the first-order flow perturbation, as an additional term assisting
gravity in draining fluid from the deformation crest.

The effect of surfactant solubility is apparent in the analytic expression derived for
the critical conditions, and indicates that the interfacial concentration gradient, which
is responsible for the Marangoni stresses, decreases with increasing solubility. This
behaviour is explained by considering mass exchange between the interface and the
bulk, which at first order is 90◦ out of phase with the deformation, and contributes a
flux that opposes the effect of the zero-order flow perturbation. More specifically, it
drains surfactant from the node preceding the deformation crest and brings surfactant
to the node following it.

It is observed that, for a specific surfactant (constant value of the solubility
parameter, ξa), the extent of flow stabilization is a non-monotonic function of
surfactant concentration at the interface, i.e. the critical Reynolds, Rec,0 number attains
maxima at intermediate values of Γ . This is explained in terms of the aforementioned
mass exchange with the bulk solution, which intensifies as the amount of surfactant
increases.

Higher-order terms are calculated (at the expense of rapidly escalating algebraic
complexity) and provide information on the effect of disturbances of finite wavelength.
Apart from surfactant solubility, which remains of central importance, the speed of
adsorption/desorption at the interface starts to play a role. This is clearly an effect
of finite wavelength, given that for disturbances of infinite length there is always
enough time for the bulk to reach equilibrium with the temporally varying interfacial
concentration. As the disturbance becomes shorter, the bulk concentration may lag in
phase with respect to the interface. The magnitude of this lag depends exclusively
on the dimensionless parameter ξaka, which is the ratio of the characteristic times of
convection and adsorption.

Finally, the first correction due to finite wavelength is calculated for the phase
velocity of the disturbance and for the critical Reynolds number of the primary
instability. The expressions are very cumbersome, and are presented and discussed
mainly for the case of an insoluble surfactant. Compared with the results at this order
for a clean liquid, the phase velocity is found to decrease with wavenumber, and the
critical Reynolds is found to increase strongly.
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Appendix.
Blyth & Pozrikidis (2004) and Pereira & Kalliadasis (2008a) have shown for an

insoluble surfactant that besides the ‘interfacial mode’ a ‘concentration mode’ also
exists, which is stable and actually not related to the surfactant property (henceforth,
the term ‘concentration mode’ appears more appropriate than the originally coined
‘Marangoni mode’). In the case of a soluble surfactant, we find out that this mode
remains stable and its phase velocity is given by

C0 =
2+ 3(1− Γ̄ )2ξa

3+ 3(1− Γ̄ )2ξa
. (A1)

For an insoluble surfactant (ξa � 1) we get C0 = 1 in agreement with Blyth &
Pozrikidis (2004) and Pereira & Kalliadasis (2008a).
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