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ABSTRACT

Since most graphs evolve over time, it is useful to be able
to query their history. We consider historical reachability
queries that ask for the existence of a path in some time in-
terval in the past, either in the whole duration of the interval
(conjunctive queries), or in at least one time instant in the
interval (disjunctive queries). We study both alternatives of
storing the full transitive closure of the evolving graph and
of performing an online traversal. Then, we propose an ap-
propriate reachability index, termed TimeReach index, that
exploits the fact that most real-world graphs contain large
strongly connected components. Finally, we present an ex-
perimental evaluation of all approaches, for different graph
sizes, historical query types and time granularities.

Categories and Subject Descriptors

H.2 [Database Management]: Systems query processing

General Terms

Algorithms, Measurement, Performance

Keywords

Evolving Graphs, Historical Queries, Reachability

1. INTRODUCTION
In recent years, increasing amounts of graph structured

data are being made available from a variety of sources, such
as social, citation, computer and hyperlink networks. Al-
most all such real-world networks evolve over time, as nodes
and edges are added or deleted. Analysis of their evolution
finds a large spectrum of applications, ranging from social
network marketing, to virus propagation and digital foren-
sics.

In this paper, we assume that we are given an evolving set
of graph snapshots corresponding to the state of the graph at
different time instants. We address the problem of efficiently
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answering queries that involve such snapshots. In particular,
we focus on a basic query type, namely reachability queries,
that ask whether a node u was reachable from another node
v during specific time intervals in the past. We call such
queries historical reachability queries.
Although, there has been considerable interest in process-

ing graph data, through a variety of graph queries including
reachability, distance and pattern-based ones, querying the
graph history is much less studied. The only other two ap-
proaches to building indexes for processing historical graph
queries that we are aware of consider historical shortest-
path queries [9, 2]. Specifically, the authors of [9] propose a
method based on ordering nodes or edges pertinent to short-
est path computation, while the dynamic index construction
proposed in [2] does not support node or edge deletions.
All other work on historical queries focuses mainly on ef-

ficiently storing and retrieving the graph snapshots required
for processing each query [14, 13, 21, 17]. In particular, in
[14], a combination of graph deltas and selected material-
ized snapshots are explored, while in [13], the focus is on
storing, sharing and processing deltas. In [21], temporally
close snapshots are clustered, one representative per cluster
is selected and used for an initial evaluation of the query.
Finally, in [17], the placement and replication of snapshots
in a distributed setting is studied. Instead, in this paper,
we address the problem of building indexes for answering
historical reachability queries.
Reachability queries on static graphs have been exten-

sively studied. Research in this area follows two general di-
rections through efficiently storing the transitive closure and
speeding-up online traversal. With regards to transitive clo-
sure, various approaches have been proposed including the
chain method [10, 5], methods exploring spanning trees, bit-
vector compression [26] and interval [1, 28, 12], and hop [7,
22, 6] labeling. In the case of online traversal, often interval
labeling [4, 25, 30] is used to prune the search space. There
has also been some work on incrementally maintaining the
reachability indexes in case of evolving graphs [1, 3, 23, 31],
however, reachability still considers a single snapshot, i.e.,
the current version of the graph.
In this paper, we explore a compact representation of

graph snapshots, called version graph, where each node and
edge is annotated with the set of time intervals during which
the corresponding node and edge existed in the evolving
graph. We call such sets lifespans and seek for their mini-
mum representation through using non-overlapping and non-
continuous intervals. We also introduce a set of basic oper-
ations for efficiently manipulating lifespans of paths.

 

 

121 10.5441/002/edbt.2015.12



For processing historical reachability queries, we start by
revisiting the basic transitive closure and online traversal ap-
proaches. For the transitive closure, we compute a minimum
representation of reachability information for each pair of
nodes. For the online traversal, we propose a novel interval-
based traversal of the version graph along with a number
of pruning steps. Furthermore, to avoid the cost and space
overheads associated with precomputing the transitive clo-
sure and improving the processing cost of the online traver-
sal, we propose a new approach, termed TimeReach.

TimeReach exploits the fact that most graphs consist of
strongly connected components (SCCs) [20, 15]. Thus, in-
stead of maintaining reachability information for pairs of
nodes, we maintain posting lists with information about node
membership in SCCs. We minimize the size of posting lists
through an appropriate assignment of identifiers to SCCs.
We show that the problem of the optimal assignment of
identifiers to SCCs is equivalent to the maximum bipartite
matching problem among SCCs in consequent graph snap-
shots. Along with postings, we maintain a condensed version
graph which corresponds to the version graph of the SCCs
evolution. To improve the performance of answering his-
torical queries, we also introduce an interval-2hop approach
based on pruned landmark labeling [2, 29] on the condensed
version graph.

We have extensively evaluated our approach with three
real social network datasets. Our experimental results show
that TimeReach is space efficient, in particular for graphs
consisting of large SCCs as is the case of social networks.
Its incremental construction is fast; indexing a new snapshot
graph takes just a few seconds. Finally, processing historical
queries using TimeReach is orders of magnitude faster than
the online traversal of the version graph.

The rest of this paper is structured as follows. In Section
2, we present related work, while in Section 3, we formally
define historical reachability queries. In Section 4, we in-
troduce the version graph and operations on lifespans and
present the two baseline approaches, namely, the transitive
closure and online traversal. In Section 5, we introduce the
TimeReach Index approach, while in Section 6, we present
experimental results. Section 7 concludes the paper.

2. RELATED WORK

Although, graph data management has been the focus of
much current research, work in processing historical queries
is rather limited. The main focus of research on evolving
graphs has been on efficiently storing and retrieving graph
snapshots. In this paper, our focus in on indexing for pro-
cessing queries. To this end, we assume a compact repre-
sentation of the sequence of graph snapshots in the form
of a version graph. Alternatively, one can store just some
subset of the graph snapshots in the sequence along with
appropriate deltas, such that, any other snapshot can be
reconstructed by applying the deltas on the selected snap-
shots [14, 13]. Various optimizations for reducing the storage
and snapshot re-construction overheads have been proposed,
such as a hierarchical index of deltas and a memory pool for
the overlapping storage of snapshots [13]. Clustering tem-
porally close snapshots and computing a representative for
each cluster was also proposed [21], Deltas from representa-
tives are stored for each cluster to achieve high compression.
In the G* graph database, snapshots are efficiently stored by
taking advantage of commonalities among them [16]. Dif-

ferent versions of each node are stored only once regardless
of the number of snapshots it belongs to, and indexed by a
compact in-memory index. For load balance and availability
snapshot data are replicated among a number of workers.
Historical query processing in these approaches requires as

a first and costly step reconstructing the relevant snapshots.
Then, queries are processed through an online traversal on
each of them. Query performance is addressed by trying to
minimize the number of snapshots that need to be recon-
structed by minimizing the number of deltas applied [14,
13], avoiding the reconstruction of all snapshots [21], or by
parallel query execution and proper snapshot placement and
distribution [17]. In this work, we address a different prob-
lem, that of indexing for historical reachability queries.
Historical shortest path distance queries were addressed

in [9]. The authors propose a method based on ordering
nodes or edges pertinent to shortest path computation. Fi-
nally, the recent work of [2] also proposes a dynamic in-
dexing scheme for historical distance queries. However, the
authors consider only insertions. This assumption simpli-
fies the problem, since two nodes that are reachable remain
reachable. The authors propose a dynamic 2hop index con-
struction that is not applicable in the case of node or edge
deletions.
Reachability queries on static graphs have been thoroughly

investigated along two general directions: transitive closure
compression and improving online search.

Transitive Closure Compression. Related research aims at
compressing the transitive closure by storing for each node
only a subset of the nodes it can reach. The first idea is to
decompose the graph in k node-disjoint chains and for each
node store only the first node it can reach in each chain [10,
5]. Another line of research extracts a spanning tree of the
graph, and uses it to compress the transitive closure. Each
node of the tree is labeled with an interval of integers such
that if node u is an ancestor of v, the interval of u contains
that of v. Reachability through tree edges can be easily
determined by a label containment check. To incorporate
reachability through non-tree edges each node inherits the
intervals of its successors in the graph [1], or a partial tran-
sitive closure of non-tree edges is constructed [28]. Building
upon the idea of interval labeling, a tree whose vertices are
pair-wise disjoint paths extracted from the original graph is
used in [12]. Another approach in compressing the transitive
closure is 2-hop labeling [7, 22, 6]. Each node stores two sets
of intermediate nodes: a set Lout of nodes it can reach and
a set Lin of nodes that can reach it. Node u can reach node
v only if Lout(u) ∩ Lin(v) 6= ∅.

Speeding-up Online Traversal. These methods use interval
labeling to aid online traversal by pruning the search space.
In [4] and [25], a tree cover of the graph is constructed and
then, for the queries that can not be answered by the tree
labeling, an online search on the non-tree edges is performed
using the labeling to guide the search. In [30], multiple inter-
vals are used for the labeling. If the label containment check
does not produce a negative answer, the graph is traversed
online using the intervals for pruning the search.
Some of the works discuss the incremental maintenance

of the index in the case of evolving graphs [1, 3, 23, 31].
However, the updated index contains reachability informa-
tion only about the current version of the graph and cannot
be used for answering historical queries.
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The presented approaches are orthogonal to our approach
in that they can be adapted so that they can be used to
speed-up or avoid the online traversal of the condensed graph.
We have demonstrated this by adapting, one of them, namely
2hop labeling.

3. PROBLEM DEFINITION
Most real world graphs evolve over time as new nodes or

edges are added, or existing nodes or edges are deleted. We
assume that time is discrete and use successive integers to
denote successive time instants. There are two intuitive in-
terpretations of time instants. One interpretation is that of
actual time, for example time instant t may correspond to
say October 20, 2014, 5:00am PDT. Another view is oper-
ational. In this case, time is advanced each time a graph
operation, update or delete, occurs. Both interpretations of
time instants are consistent with our representation.

Let G = (V,E) be a directed graph where V is the set
of nodes and E the set of edges. We use Gt = (Vt, Et) to
denote the graph snapshot at time instant t, that is, the set
of nodes and edges that exist at time instant t.

Definition 1 (evolving graph). An evolving graph
G[ti,tj ] in time interval [ti, tj ] is a sequence {Gti , Gti+1, . . . ,
Gtj} of graph snapshots.

An example is shown in Figure 1(a) which depicts an evo-
lving graph G[t0,t3] consisting of four graph snapshots {Gt0 ,
Gt1 , Gt2 , Gt3}. For brevity, we denote time instant ti + 1
as ti+1 and use ti and i interchangeably, when the meaning
is clear from context.

We use the term time granularity to refer to how often a
new time instant and the corresponding graph snapshot are
created. In the case of actual time, granularity may range
for example from milliseconds to years, whereas, in the case
of operational time, granularity may be at the level of one
or more operations. A fine-grained time granularity necessi-
tates maintaining a large amount of historical information,
but supports precise historical queries.
Given a static directed graph G = (V,E) and two nodes

u, v ∈ V , a reachability query asks whether there exists a
path from u to v in G. For evolving graphs, we introduce
the following two types of historical reachability queries.

Definition 2 (historical reachability query). Let
G[ti,tj ] = {Gti , Gti+1, . . . Gtj}, be an evolving graph, IQ =
[tk, tl] ⊆ [ti, tj ] a time interval and v, u a pair of nodes:

(i) a conjunctive historical reachability query u
IQ∧

❀ v re-
turns true, if there exists a path from u to v in all graph
snapshots Gtm , tk ≤ tm ≤ tl of G[ti,tj ].

(ii) a disjunctive historical reachability query u
IQ∨

❀ v re-
turns true, if there exists a path from u to v in at least
one graph snapshot Gtm , tk ≤ tm ≤ tl, of G[ti,tj ].

Our goal is to derive methods for answering reachability
queries efficiently. A straightforward solution would be to
build a different index for each of the graph snapshots and
then pose a reachability query at each one of them. However,
this solution imposes large space overheads. In addition, it
requires extra processing for combining the results of each
query. Instead, we propose building indexes for intervals.

4. VERSION GRAPH
In this section, we present the version graph, a natural

concrete representation of an evolving graph. First, let us
define the notion of lifespan. For a node u (or, edge e),
its lifespan denotes the set of time intervals during which u

(resp. e) existed in an evolving graph. More formally, given
an evolving graph GI = {Gti , Gti+1, . . . , Gtj}, the lifespan,
L(u), (resp. L(e)) of a node u (resp. edge e) is a set of
intervals such that an interval [ti, tj ] ⊆ I belongs to L(u),
(resp. L(e)), if and only if, for all ti ≤ tm ≤ tj , u ∈ Vtm

(resp. e ∈ Etm).
We model lifespans as sets of time intervals to capture the

general case of graph evolution, where nodes and edges may
be deleted and then re-inserted at subsequent snapshots. Set
of time intervals are also known as temporal elements [11].
If we do not allow deleted nodes or edges to be re-inserted,
then lifespans are just intervals. Furthermore, if there are
no deletions, all lifespans are intervals of the form [ti, tcurr],
where ti is the time instant the node or edge first appeared
and tcurr is the time instant of the current snapshot. There-
fore, in this case, lifespans can be represented simply by the
time instant ti. In the following, we use I to denote time
intervals and I to denote sets of time intervals. To repre-
sent an evolving graph GI , we use a version graph V GI . A
version graph is a labeled directed graph that captures the
evolution of the graph in a concise manner.

Definition 3 (version graph). Given an evolving graph
GI = {Gti , Gti+1, . . . , Gtj}, its version graph is an edge and
node labeled, directed graph V GI = (VI , EI , Lu, Le) where:
VI =

⋃
tm ∈ I

Vtm , EI =
⋃

tm ∈ I
Etm , Lu : VI → I assigns

to each node u in VI its lifespan Lu(u) and Le : EI → I
assigns to each edge e in EI its lifespan Le(e).

An example is shown in Figure 1(b) which depicts the
version graph for the evolving graph in Figure 1(a).

4.1 Lifespan Operations
Let us define a number of operations on lifespans, i.e., set

of intervals. For two sets I and I′ of time intervals, we say
that I covers I′, denoted I ⊒ I′, if for each time instant t

in an interval I ′ of I′, there is an interval I in I such that t
belongs to I. We also use I ⊒ I for an interval I and I ⊒ t

for a time instant t. We say that two sets I and I′ of time
intervals are equivalent, I ≈ I′, if I ⊒ I′ and I′ ⊒ I.
We would like to maintain the smallest among equivalent

sets of intervals. We call such sets minimum sets. Let us
first define some simple properties for time intervals. Two
time intervals I = [ti, tj ] and I ′ = [t′i, t

′

j ] are called disjoint,
when I ∩ I ′ = ∅ and overlapping otherwise. They are called
continuous when t′i = tj + 1 and non-continuous otherwise.
It is easy to see that the following proposition holds.

Proposition 1.

(i) A set of intervals is minimum, if and only if, it consists
of disjoint and non-continuous intervals.

(ii) For each set of time intervals, there is a unique equiv-
alent minimum interval set.

We next define two useful operations on interval sets,
namely, join and merge. Given two sets of intervals, join
returns the time instants common to both, while merge re-
turns the time instants present in at least one of them.
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                                                       (a)                                                                                         (b)                                                                                      (c) 

Figure 1: Example of (a) an evolving graph, (b) the corresponding version graph, (c) SCC evolution

Definition 4 (Join and Merge of Interval Sets).
Let I = {I1, . . . Ik} and I′ = {I ′1, . . . I ′l} be two sets of
time intervals.

(i) Join I ⊗ I′ of I and I′ is the minimum set equivalent
to {I1 ∩ I ′1, . . . I1 ∩ I ′l , . . . , Ik ∩ I ′1, . . . Ik ∩ I ′l}.

(ii) Merge I ⊕ I′ of I and I′ is the minimum set equiva-
lent to I ∪ I′.

Note that if I and I′ are minimum, then the set {I1 ∩ I ′1,
. . . I1 ∩ I ′l . . . , Ik ∩ I ′1 } is a minimum set, whereas the set
{I1 ∪ I ′1, . . . I1 ∪ I ′l , . . . , Ik ∪ I ′1 . . . Ik ∪ I ′l} may not be
minimum.

The lifespan L(p) of a path p includes the time intervals
during which all its edges coexist. Clearly, for a path p = e1
. . . em, it holds that L(p) = Le(e1) ⊗ . . . ⊗ Le(em), where
Le(ei), 1 ≤ i ≤ m, is the lifespan of ei. For example, for
path p = ((u4, u3), (u3, u7), (u7, u6)) in Figure 1(b), L(p)
= {[2,3]} ⊗ {[1,3]} ⊗ {[0,1], [3, 3]} = {[3,3]}, while for path
p′= ((u1, u3), (u3,u7), (u7,u4)), L(p

′) = {[0,1]} ⊗ {[1,3]} ⊗
{[0,0], [2,3]} = ∅.
We can now define the lifespan, L(u, v), of the reachabil-

ity between two nodes u and v. Let P (u, v) = {p1, . . . pl}
be the set of all paths from u to v. L(u, v) depends on the
lifespans of all possible paths in V GI from u to v, in partic-
ular, L(u, v) = L(p1) ⊕ . . . ⊕ L(pl). For example, for nodes
u4 and u6 in Figure 1(b), P (u4, u6) = {p1, p2, p3, p4, p5, p6}
where p1 = u4u3u6, p2 = u4u3u7u6, p3 = u4u1u3u6, p4 =
u4u1u3u7u6, p5 = u4u1u2u3u6, p6 = u4u1u2u3u7u6 (note,
that for notational brevity, paths were denoted by the par-
ticipating nodes instead of edges). Then, L(u4, u6) = {[2, 3]}
⊕ {[3, 3]} ⊕ {[0, 1]} ⊕ {[1, 1]} ⊕ {[1, 1]} ⊕ {[1, 1]} = {[0, 3]}.
Clearly, historical reachability queries can be represented

in terms of lifespans. Specifically, given a version graph
V GI , a time interval IQ = [tk, tl] ⊆ [ti, tj ] and two nodes v,
u,

(i) a conjunctive historical reachability query u
IQ∧

❀ v re-
turns true, if and only if, {IQ} ⊗ L(u, v) ⊒ IQ.

(ii) a disjunctive historical reachability query u
IQ∨

❀ v re-
turns true, if and only if, {IQ} ⊗ L(u, v) 6= ∅.

To represent lifespans, we use bit arrays. Assume without
loss of generality, that the maximum time instant, that is,

the number of graph snapshots, is T . Then, a lifespan, i.e.,
set of intervals, I is represented by a bit array B of size T ,
such that B[i] = 1 if I ⊒ i, and 0, otherwise. For exam-
ple, take I = {[2, 4], [9, 10], [13, curr]} and T = 16. The bit
array representation of I is 00111000011001111. This leads
to an efficient implementation of both join ⊗ and merge
⊕. In particular, let I and I′ be two set of intervals and
B and B′ be their bit arrays. Then, I ⊗ I′ is computed
as B logical-AND B′ and I ⊕ I′ as B logical-OR B′. An
alternative representation would be to use ordered lists of
intervals. Lifespan operations would then be performed us-
ing variations of merge sort resulting in O(T ) complexity.
Lists impose in general large computational overheads in
computing reachability.

4.2 Baseline Approaches
There are two baseline approaches to answering reachabil-

ity queries on static graphs, namely pre-computation of the
graph transitive closure and online traversal of the graph.
In this section, we revisit these baseline approaches for his-
torical reachability queries on a version graph.

4.2.1 Historical Transitive Closure

Instead of maintaining a different transitive closure for
each graph snapshot of the evolving graph GI , we maintain
a single transitive closure, CLI for the version graph V GI .
The transitive closure includes for each pair of nodes u, v,
their reachability lifespan, L(u, v). To construct the transi-
tive closure, we use a variation of the Floyd-Warshall algo-
rithm that takes into account lifespans, shown in Algorithm
1. If there is a path pu,w from node u to node w and a path
pw,v from node w to node v then there exists a path pu,v =
(pu,w, pw,v) from u to v with L(pu,v) = L(pu,w) ⊗ L(pw,v)
and L(pu,v) is merged with the L(u, v) computed so far.
The time complexity for Algorithm 1 is O(|VI |

3T ) in the
worst case and requires storage in the order of |VI |

2. For

answering a reachability query u
IQ∨

❀ v or u
IQ∧

❀ v, initially
the entry L(u, v) in CLI is located and then joined with the
query interval IQ, thus requiring constant time complexity.

4.2.2 Online Traversal of the Version Graph

A straightforward approach to process a reachability query
for an interval IQ would be to perform an online traver-
sal on all graph snapshots Gt, t ∈ IQ. When using the
version graph representation, this corresponds to traversing
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Algorithm 1 TransitiveClosure(V GI)

Input: Version graph V GI

Output: The transitive closure CLI

1: for all u, v ∈ VI × VI do

2: if (u, v) ∈ EI then

3: CLI(u, v) = Le((u, v))
4: else

5: CLI(u, v) = ∅
6: end if

7: end for

8: for w = 1 to |VI | do
9: for all u, v ∈ VI × VI do

10: CLI(u, v) = CLI(u, v) ⊕ (CLI(u,w) ⊗ CLI(w, v))
11: end for

12: end for

only edges e such that Le(e) ⊒ t, once for each t ∈ IQ. We
call this approach, instant based traversal.

To avoid multiple traversals, i.e., one for each snapshot
in IQ, we consider an interval based traversal of the version
graph. The BFS-based interval traversal for disjunctive his-
torical queries is shown in Algorithm 2 and for conjunctive
historical queries in Algorithm 3.

In particular, for conjunctive queries, since a node v may
be reachable from u through different paths at different
graph snapshots, we maintain an interval set R with the
part of L(u, v) ⊗ IQ covered so far (line 9, Algorithm 3).
The traversal ends when R covers the whole query time in-
terval IQ (line 10, Algorithm 3).

To speed-up traversal, we perform a number of pruning
tests. The traversal stops when we reach a node whose lifes-
pan is outside the query interval. In addition, the traversal
stops at a neighbor w of a node n when {IQ} ⊗ Le(n,w) 6=
∅ since a node v cannot be reachable through an edge which
is not alive in at least one t inside the query interval (line 6,
Algorithms 2 and 3).

Still an edge may be traversed multiple times, if it partici-
pates in multiple paths from source to target. To reduce the
number of such traversals, we provide additional pruning by
recording for each node w, an interval set IN (w) with the
parts of the query interval for which it has already been tra-
versed. If the query reaches w again looking for interval I ′

⊆ IQ and IN (w) ⊒ I ′, the traversal is pruned (line 11 of
Algorithm 2, line 15 of Algorithm 3).

For example, consider the version graph in Figure 1(b) and

query u1
[0,3]∧
❀ u5. Paths p1 = u1u3u6u5, p2 = u1u3u7u6u5,

p3 = u1u2u3u6u5, p4 = u1u2u3u7u6u5, p5 = u1u4u3u6u5 and
p6 = u1u4u3u7u6u5 with L(p1) = {[0, 1]}, L(p2) = {[1, 1]},
L(p3) = {[1, 1]}, L(p4) = {[1, 1]}, L(p5) = {[2, 3]} and L(p6)
= {[3, 3]} need to be traversed to conclude correctly that the
result of the query is true. Hence, some edges, e.g., (u3, u6),
(u6, u5) need to be traversed multiple times for different
time intervals I ′i ⊆ IQ. However, when the query reaches u3

again through path p3, it is pruned and it does not traverse
the edge (u3, u6) since IN (u3) is equal to {[0,1]} which
covers the current query interval I ′ = {[1,1]}.

Since in the worst case for both instant and interval based
traversal each edge may be traversed |IQ| times, the com-
plexity for both traversals is O((|VI | + |EI |)|IQ|). However,
in practice interval based traversal outperforms the instant
based one since each edge traversal covers large parts of the

Algorithm 2 Disjunctive-BFS(V GI , u, v, {IQ})

Input: Version graph V GI , nodes u, v, interval IQ ⊆ I

Output: True if v is reachable from u in any time instant
in IQ and false otherwise

1: create a queue N , create a queue INT

2: enqueue u onto N , enqueue IQ onto INT

3: while N 6= ∅ do
4: n← N.dequeue()
5: i← INT.dequeue()
6: for all w s.t. (n, w) in V GI and {IQ} ⊗ Le((n,w))

6= ∅ do
7: if w == v then

8: Return(true)
9: end if

10: I′ = {IQ} ⊗ Le(u,w)
11: if IN (w) 6⊒ I′ then
12: IN (w) = IN (w) ⊕ I′

13: enqueue w onto N

14: enqueue I′ onto INT

15: end if

16: end for

17: end while

18: Return(false)

query interval instead of a single time instant. Furthermore,
pruning guarantees that an edge will not be traversed twice
for the same interval.

5. THE TIMEREACH INDEX

Our approach exploits the fact that many real-world so-
cial graphs are characterized by large strongly connected
components (SCC) [20, 15]. Thus, instead of maintaining
reachability information for pairs of nodes, we maintain in-
formation about the SCCs that each node belongs to. If two
nodes belong to the same component, then they are reach-
able. However, as the graph evolves over time, its strongly
connected components change as well. An example is shown
in Figure 1(c) that depicts the SCCs of the graph in Figure
1(b) as they evolve over time.
Given an evolving graph GI = {Gti , Gti+1, . . . , Gtj}, we

invoke at each graph snapshot Gtk ∈ GI an algorithm, e.g.,
Tarjan’s algorithm [24], to identify the corresponding set of
SCCs. A unique id is assigned to each SCC at each snapshot.
For each node u, we maintain a list P (u) that contains

(C, t) pairs specifying the strongly connected component C
to which node u belongs at time instant t. P (u) is called
posting list and each pair in the list a posting. The storage
complexity is Ω(|VI ||I|), since each node participates in at
most one SCC at each time instant. If we use Tarjan’s algo-
rithm [24], the time complexity for constructing the lists is
O((|VI |+ |EI |)|I|), since each run of the Tarjan’s algorithm
has an O(|VI |+ |EI |) complexity.
For presentation clarity, we assume that single nodes form

singleton SCCs whose ids are the ids of the corresponding
nodes. However, for space efficiency, we do not maintain
postings in this case.
We perform an additional optimization. Many nodes have

strong connections, i.e. they remain in the same components
even in the face of component splits and joins. We exploit
this fact to reduce the storage space required for the postings
by observing that the posting lists of these nodes consist of
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Algorithm 3 Conjunctive-BFS(V GI , u, v, {IQ})

Input: Version graph V GI , nodes u, v, interval IQ ⊆ I

Output: True if v is reachable from u in all time instants
in IQ and false otherwise

1: create a queue N , create a queue INT

2: enqueue u onto N , enqueue IQ onto INT

3: while N 6= ∅ do
4: n← N.dequeue()
5: i← INT.dequeue()
6: for all w s.t. (n, w) in V GI and {IQ} ⊗ Le((n,w))

6= ∅ do
7: I′ = {IQ} ⊗ Le(n,w)
8: if w == v then

9: R = R ⊕ I′

10: if R ⊒ IQ then

11: Return(true)
12: end if

13: continue
14: end if

15: if IN (w) 6⊒ I′ then
16: IN (w) = IN (w) ⊕ I′

17: enqueue w onto N

18: enqueue I′ onto INT

19: end if

20: end for

21: end while

22: Return(false)

the same elements. We avoid redundancy by storing such
lists only once and replacing the posting lists of the rele-
vant nodes with pointers to the common list. We call this
approach posting sharing.

An example is shown in Figure 2(a), where, for instance,
the first posting list indicates that nodes with ids 1 up to 50
belong to the strongly connected component with id C1 at
time t0, C6 at t1 and C9 at t2.

In addition, for each graph snapshot Gtk , we construct a
SCC graph snapshot GStk

= (VStk
, EStk

) such that there is
a node U in VStk

for each SCC in Gtk , and there is an edge

(U , V ) in EStk
, if and only if, there is an edge (u, v) in Gtk

from a node u that belongs to the SCC that corresponds to
U to a node v that belongs to the SCC that corresponds to
V . For a time interval I = [ti, tj ], this results in an evolving
SCC graph GSI

= {GSti
, GSti+1 , . . . , GStj

}. We construct

the SCC graphs incrementally, as the SCCs are created. The
size of each SCC graph depends on the size of the original
snapshot graph and in the worst case is equal to it.

We call this approach simple TimeReach (TR). To answer

a reachability query u
IQ∧

❀ v, (or, u
IQ∨

❀ v), we check for each
t ∈ IQ whether u and v belong to the same component. If
this is not the case, we traverse the corresponding GSt .

Next, we present a more space efficient method of exploit-
ing strongly connected components for historical queries.

5.1 Condensed TimeReach

While in the TR approach, we maintain information per
time instant, we would like to aggregate such information
to express SCC participations during time intervals. In this
case, a posting (C, I ′), I ′ ⊆ I, belongs to P (u), if u partic-
ipates in the SCC with id C at all time instants in I ′. Our

goal is to minimize the total number of such postings.

Problem 1 (Optimal SCC-id assignment). Given a
time interval I and a set of SCCs for each t ∈ I, find an as-
signment of ids to SCCs that results in the minimum number
of postings.

A new posting is created, each time a node participates
in a different SCC. Thus, SCC ids should be re-assigned so
that the number of such new postings is minimized. We use
a weighted graph to formalize the optimal assignment of ids
to SCCs.
In particular, we model SCC evolution over a time interval

I using a weighted graph GC(VC , EC , W) where each node
U ∈ VC corresponds to a SCC that existed at some time
instant t ∈ I, and an edge e = (U, V ) ∈ EC , if and only
if, SCC U existed at time tk, SCC V existed at time tk + 1
and there is at least one node that belongs to both U and
V . W assigns to each edge e = (U, V ) a weight W(e) that
corresponds to the number of nodes that belong to both U

and V .
An example of a weighted graph is shown in Figure 2(b)

that depicts the evolution of the graph whose posting lists
are shown in Figure 2(a). For instance, component C7 cre-
ated at time instant t1 consists of 100 nodes from component
C4 and 150 nodes from C5.
LetGC[tk,tk+1]

(VC[tk,tk+1]
, EC[tk,tk+1]

,W) be the subgraph

ofGC( VC , EC , w), that consists of the nodes U ∈ VC[tk,tk+1]

that correspond to the SCCs that exist at time interval
[tk, tk + 1]. GC[tk,tk+1]

represents one step in the SCC evo-

lution. Note that, from the definition of GC , GC[tk,tk+1]
is

a bipartite graph.
We make the following observation. At time instant tk +

1, a new posting is created exactly for those nodes that
participated in a different SCC at tk + 1 than at tk. The
number of these new postings is equal to the sum of weights
from node U to V in GC[tk,tk+1]

where U has a different id

than V . Thus, to minimize the number of new postings, we
have to maximize the weight of the edges between pairs of
nodes that have the same id. This corresponds to finding a
maximum bipartite matching of GC[tk,tk+1]

.

Theorem 1. The optimal SCC-id assignment problem can
be reduced to the problem of finding the maximum weight bi-
partite matching (MWM) Mk of each GC[tk,tk+1]

.

Proof. As shown above, solving the MWM for each bi-
partite graph GC[tk,tk+1]

minimizes the number of new post-

ings created at tk + 1. We shall show that this step-wise
assignment is optimal overall in GC . For the purposes of
contradiction, assume that the optimal assignment is a set
N of edges, N ⊂ EC and that N is different from the set
of edges attained through the maximum bipartite match-
ings, that is,

∑

e∈N

w(e) >
∑

k

∑

e∈Mk

w(e). Hence, for some

m, for Nm = N ∩ EC[tm,tm+1]
it holds that

∑

e∈Nm

w(e) >

∑

e∈Mm

w(e), which means that Mm is not a MWM, which is

a contradiction.

Figure 2(c) shows the weighted graph after the assignment
of new ids through bipartite matching, while Figure 2(d)
shows the new posting lists.
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Nodes Posting List

1-50 (C1,t0),(C6,t1),(C9,t2)

51-80 (C2,t0),(C6,t1),(C9,t2)

81-100 (C3,t0),(C6,t1),(C9,t2)

101-200 (C4,t0),(C7,t1),(C9,t2)

201-230 (C5,t0),(C7,t1),(C9,t2)

231-350 (C5,t0),(C7,t1),(C10,t2)

351-450 (C5,t0),(C8,t1),(C10,t2)

(a)                                                                                        (b)
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Nodes Posting List

1-50 (C1,[t0,t1]),(C4,[t2,t2])

51-80 (C2,[t0,t0]),(C1,[t1,t1]),(C4,[t2,t2])

81-100 (C3,[t0,t0]),(C1,[t1,t1]),(C4,[t2,t2])

101-200 (C4,[t0,t2])

201-300 (C5,[t0,t0]),(C4,[t1,t2])

231-350 (C5,[t0,t0]),(C4,[t1,t1]),(C5,[t2,t2])

351-450 (C5,[t0,t2])

(c)                                                      (d)
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Figure 2: (a) Shared posting lists, (b) weighted graph modeling the evolution of SCCs, (c) weighted graph after the bipartite
matching, and (d) the compressed shared posting lists

The maximum weight bipartite matching problem is well-
studied (e.g., see [8] for a survey). The most widely used
algorithm for solving this problem on a graph G(V,E) is
the Hungarian algorithm whose running time ranges from
O(|V |3) to O(|E||V |+ |V |2loglog|V |) depending on the im-
plementation. Another category of algorithms depends on
the edge weights and the fastest one runs inO(|E|

√

|V |logW )
time, where W is the maximum edge weight. In addition,
a number of fast approximation algorithms have been pro-
posed. The simplest such algorithm is the greedy algorithm
that sorts the edges by weight and repeatedly picks the edge
with the largest weight. This algorithm can be implemented
with O(|E|) time complexity and produces a 1/2 worst case
approximation.

The incremental algorithm for constructing the SCC post-
ings is presented in Algorithm 4. It takes as input the cur-
rent snapshot and the postings computed up to the previous
snapshot, and constructs the current postings. It starts by
computing the SCCs using Tarjan’s algorithm with com-
plexity O(|Vt|+ |Et|) (line 2). Then, it constructs the graph
GC[t,t+1]

with complexity O(|EC[t−1,t]
|) (line 5). Next, the

MWM is computed and new ids are assigned to the new
SCCs (lines 6 - 9). The complexity of this step depends
on which algorithm is used for computing the MWM. We
use the greedy algorithm with complexity O(|ES[t−1,t]

|). Fi-

nally, the SCC postings are created/updated for each node
of the current snapshot, creating a new entry only for nodes
that participate in a different SCC (with a different id) than
the one in time instant t− 1 (lines 11 - 22). The complexity
of these steps is O(|Vt|) since each operation in the loop has
constant time complexity. Thus, in total the running time
of the algorithm is O(|Vt|+ |Et|).
As in the simple TR approach, we also construct the evo-

lving SCC graph, which in this case has a much smaller num-
ber of nodes due to the reduction of the number of strongly
connected components achieved by the bipartite matching.
Finally, we construct the version graph V GSI

= (VSI
,

ESI
, Lu, Le) of the evolving SCC graph that we call con-

densed version graph. We construct the condensed version
graph incrementally as follows. For each snapshot Gti ∈ GI ,
for each edge (u, v) ∈ Eti we look up the postings P (u),
P (v) for entries (U, I ′), (V, I ′′) s.t. ti ∈ I ′ and ti ∈ I ′′. If U
6= V and edge (U, V ) 6∈ ESI

, the edge is added with lifespan
{[ti, ti]}, otherwise the lifespan of the edge is extended to in-
clude ti. We call the above approach condensed TimeReach

(TRC).

5.2 Query Processing
Query processing of a (disjunctive or conjunctive) reach-

ability query u
IQ
❀ v is performed in two steps. In the

first step, the appropriate postings of nodes u and v are

1           2          3          4           5          6           7          8          9          10        11         12 13        14        15

C6

C6

C5

C4

C4
P(u)

P(υ)

ΙQ1
ΙQ2 ΙQ3

Figure 3: Example of splitting query u
[1,15]∧
❀ v

retrieved. If the two nodes belong to the same strongly con-
nected component during the whole query interval for con-
junctive queries or once for disjunctive queries, the answer is
true. Otherwise, let I′

Q be the set of intervals during which
nodes u and v belong to different components. The query
is re-written as a set of reachability sub-queries of the form

Uk

IQi
❀ Vm, where u belongs to SCC Uk and v belongs to

SCC Vm for some common time interval IQi
, I′

Q ⊒ IQi
, the

set IQ =
⋃

i

IQi
consists of disjoint intervals, and IQ ≈ I′

Q.

The results of the sub-queries are combined to produce the
answer for the query through an AND (OR) for conjunctive
(disjunctive) queries.

For example, consider the query u
[1,15]∧
❀ v in Figure 3,

where the posting lists for u and v are respectively, P (u) =
(C6 [4, 7], C5 [8, 11], C4 [11, curr] and P (v) = (C6 [1, 8], C4

[11, 15]). The query is split in three sub-queries: u
IQ1∧
❀ C6,

u
IQ2∧
❀ C6, v

IQ3∧
❀ C5.

In the worst case, the two nodes belong to a different SCCs
at each time instant in IQ, thus we need to traverse the con-
densed version graph for each t with a cost of O(|IQ|(|VSI

|+
|ESI

|)) Two factors that influence performance are the num-
ber of postings for each node and the size of the condensed
version graph. The smaller the number of postings, the fewer
sub-queries are required in the second step. The smaller the
condensed version graph, the faster the traversals. Hence,
the optimal assignment of SCC ids is crucial to query pro-
cessing performance, since it keeps the posting lists short
and the size of the condensed version graph small.

5.3 Interval 2Hop
Reachability on version graphs can be made more efficient

by maintaining additional information. In this paper, we
use an approach based on pruned landmark 2hop labeling
[2, 29]. The idea is that for each node u of a given graph, we
maintain two labels Lin(u) and Lout(u) which include nodes
that can reach u and can be reached by u respectively. The
labels are computed such that a node u reaches v, if an only
if, Lin(v) ∩ Lout(u) 6= ∅. Instead of traversing the graph, a
reachability query can now be answered by using the labels.
For historical reachability queries, we also keep along with

each node w in Lin(v) the reachability lifespan L(w, v) and
along with each node w in Lout(u) the reachability lifespan
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Algorithm 4 ConstructSccPostings(Gt, Pt−1, GS[t−2,t−1]
)

Input: Snapshot Gt, SCC postings Pt−1

Output: SCC postings Pt

1: SSCCt = ∅, M = ∅
2: Run Tarjan’s algorithm on Gt

3: SSCCt is the set of the detected SCCs where each
SCCi ∈ SSCCt is assigned a unique id Ci

4: if t > 0 then
5: Construct GS[t−1,t]

from SSCCt and GS[t−2,t−1]

6: Compute maximum weight matching M

7: for all edges e = (U, V ) ∈M do
8: Cv = Cu

9: end for
10: end if
11: for all nodes u ∈ Vt do
12: find SCCi ∈ SSCCt s.t. u ∈ SCCi

13: if Pt−1(u) 6= ∅ then
14: if Pt−1(u)[end].C 6= Ci then
15: Pt−1(u)[end].I = [ts, t− 1]
16: Pt−1(u).add(Ci, [t, curr])
17: end if
18: else
19: Pt−1(u).add(Ci, [t, curr])
20: end if
21: end for
22: Pt = Pt−1

L(u,w). In the presence of 2hop labels, to answer a query

u
IQ∧
❀ v (u

IQ∨
❀ v), we compute the set Lin(v)∩Lout(u) and

then for each w in Lin(v) ∩ Lout, we join the lifespan of w
in Lin(v) with the lifespan of w in Lout(u). To answer the
query the joined lifespans L (w) of nodes w in Lin(v)∩Lout

are joined with the query interval L to see whether they
cover IQ (or, have at least a time instant in common).

We compute the labels for the nodes of the condensed
version graph, incrementally. For an interval I = [ti, tj ],
we compute the labels for the SCC graph snapshots at each
time t in I, starting from ti. For each time tk, tk > ti, we
merge the labels computed for a node C at time tk, with the
labels computed for C at the previous time tk − 1. For the
construction of Lin and Lout for each SCC graph snapshot at
time instant tk, we process the nodes of the graph by using
the INOUT strategy that starts a BFS traversal from the
nodes with the largest (indegree(u)+1) × (outdegree(u)+1)
[29]. An example of the final 2hop labels of each SCC node
in a version graph is given in Figure 4.

6. EXPERIMENTAL EVALUATION

To evaluate our approach, we used three real datasets:
Facebook (FB) [27], Flickr (FL) [19] and YouTube (YT) [18].
The characteristics of each dataset are shown in Table 3.
For example, FB consists of 871 daily snapshots of the New
Orleans Facebook friendship graph, which correspond to 125
weekly or 29 monthly snapshots. We report the number of
nodes, edges, and SCCs (singleton SCCs are not included)
and the size of the largest SCC at the first and last snapshot.

All three datasets are treated as directed. Also, all datasets
are insert-only, i.e. they do not contain information about
node/edge deletions. Therefore, we synthetically generate
random edge deletes. The input parameters and their de-

C
3

C
1

C
5

C
2

C
4

Lout: {C2,[0,3]}, {C3,[0,1]}, {C4,[0,3]}

Lin:{}

Lin: {C1,[0,3], C3,[0,1]} Lin: {C1,[0,3], C5,[0,3]}

Lout: {C2,[0,1]}

Lin: {C1,[1,2], C2,[1,2]}

[0,3][1,3]

[0,1]

Lout: {C3,[2,3]}

[1,2]

Lout:{C5,[1,2]}

Lout:{C4,[0,3]}

[0,1]

Lin: {C1,[0,3], C4,[2,3]}

[2,3]

[0,3]

Figure 4: An example of interval 2hop labels

fault values are shown in Table 1.
We evaluate the size and the construction time of the

Version Graph (VG), the Transitive Closure (TC), the sim-
ple TimeReach (TR), the condensed TimeReach (TRC) and
the condensed TimeReach with 2hop labels (TRCH). We
also evaluate the online processing of historical reachabil-
ity queries using an instant-based (INS) or interval-based
(INT) traversal of the version graph and using the various
TimeReach indexes. Table 2 summarizes the various ap-
proaches.
We ran our experiments on a system with a quad-core

Intel Core i7-3820 3.6 Ghz processor and 64 GB memory.
We only used one core for all experiments.

Table 1: Input parameters

Query

# of Snapshot interval % of

nodes granularity (in days) deletes

FB
Default 61,096 day 7 10

Range 117 - 61,096 day, week, month 7 - 35 0 - 30

YT
Default 1,138,499 day 7 10

Range 1,004,777 - 1,138,499 day, week, month 7 - 35 0 - 30

FL
Default 2,302,925 day 7 10

Range 1,487,058 - 2,302,925 day, week, month 7 - 35 0 - 30

6.1 Index Size

In the first set of experiments, we evaluate the various ap-
proaches in terms of their storage requirements. The size of
the TR and TRC include the storage required for maintain-
ing the posting lists and the SCC graphs, while the size of
the TRCH includes in addition the storage required for the
2hop labels.

Table 2: Overview of difference approaches

VG Version Graph

TC Transitive Closure

TR (Simple) TimeReach

TRC Condensed TimeReach

TRCH Condensed TimeReach with 2hop labels

INS Instant-based traversal of the version graph

INT Interval-based traversal of the version graph
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Table 3: Dataset properties

Snapshot Granularity # nodes # edges # SCC Max SCC (# nodes)

first last first last first last first last

FB

(daily) 871 117 61,096 128 1,139,081 10 374 3 51,286

(weekly) 125 1,429 61,096 2,365 1,139,081 138 374 18 51,286

(monthly) 29 4,239 61,096 12,224 1,139,081 279 374 96 51,286

YT

(daily) 37 1,004,777 1,138,499 4,379,283 4,452,646 9,807 11,360 457,932 509,332

(weekly) 6 1,025,536 1,138,499 4,379,283 4,452,646 9,807 11,360 465,668 509,332

(monthly) 2 1,116,602 1,138,499 4,446,042 4,452,646 10,664 11,360 485,273 509,332

FL

(daily) 134 1,487,058 2,302,925 17,022,083 33,140,018 42,163 58,636 1,004,426 1,605,184

(weekly) 20 1,507,700 2,302,925 17,393,321 33,140,018 42,163 58,636 1,010,498 1,605,184

(monthly) 5 1,585,173 2,302,925 18,987,847 33,140,018 42,459 58,636 1,081,499 1,605,184

Graph Size (scalability). Figure 6 reports the size for
varying number of nodes. As shown, TRC is much smaller
than TR in all cases. For FB and FL, the largest SCC
covers 83% and 70% of the graph respectively, while for YT,
it covers just 45% (see Table 3). Thus, the TRC size for the
FB dataset is 89% smaller, while for the YT and FL datasets,
we achieve 40% and 57% of compression respectively. The
larger the SCCs, the higher the compression achieved.

Since the size of the transitive closure (TC) grows rapidly,
we compute TC for a smaller subset of the FB dataset vary-
ing the number of nodes from 1,000 to 6,000. As shown in
Table 4, even for this small graph, the size of TC reaches
106 MB.
Percentage of Deletes. For each dataset, we vary the per-
centage of edge deletes from 0% to 30% of edge insertions.
Table 5 presents the results for the FB dataset. We observe
that the size of TR and TRC decreases; this can be explained
by the fact that deletions affect the isolated nodes that be-
come disconnected from the components and thus there are
less edges between components and isolated nodes. The size
of VG remains constant, since the size of the lifespan labels
remains the same. Finally, the size of TRCH increases, be-
cause in case of deletes, additional nodes need to be included
in the 2hop labels for ensuring the reachability test.

Table 4: Comparison with transitive closure

# nodes Size (MB) Constr. Time (sec)

TR TRC TC TR TRC TC

1,000 0.013 0.012 2.91 0.01 4.76 167.49

2,000 0.026 0.009 11.56 0.23 5.02 1,457

3,000 0.039 0.012 26.27 0.35 5.89 5,788

4,000 0.052 0.018 47.12 0.41 6.33 16,580

5,000 0.063 0.026 73.97 0.59 6.79 39,112

6,000 0.074 0.032 106.82 0.72 7.13 81,123

Snapshot Granularity. Table 6 reports the storage re-
quired for maintaining daily, weekly and monthly snapshots
of the three datasets. All sizes increase with the number of
snapshots. For example, for FL, the increase of the num-
ber of snapshots by a factor of 30 (from 5 monthly to 134
daily) causes an increase of the size of TR by a factor of
3.44. The size of TR and TRC decreases with the snap-
shot granularity (number of snapshots) since less snapshots
mean less postings and smaller SCC graphs. The size of VG

Table 5: Size per % of deletes (Facebook)

% of deletes Size (MB)

VG TR TRC TRCH

0 11 0.5 0.21 1,493

10 11 0.58 0.22 1,528

20 11 0.45 0.19 1,612

30 11 0.47 0.18 1,664
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Figure 5: Compression ratio achieved by posting sharing

does not decrease significantly, because it requires memory
to keep lifespan labels for all nodes and edges of the graph.
Posting Sharing. Finally, let us take a closer look at the
posting sharing optimization by evaluating the reduction in
the size of postings for various granularities as depicted in
Figure 5. In general, we achieve compression ratios for the
posting around 70% for FB, around 90% for FL and over
95% for YT. The compression ratio decreases with snapshot
granularity due to the increase of the posting combinations.
This is more evident for the FB dataset where the number
of snapshots is higher.

6.2 Construction Time

In this set of experiments, we evaluate the time to con-
struct the various indexes.
As seen in Figure 7, TRC is slower than TR, because

of the additional time required for performing the bipartite
matching. TRCH is even slower, since it also needs to con-
struct the 2hop labels. We use the greedy algorithm for the
bipartite matching and the INOUT strategy for computing
the interval-2hop labels.
Constructing the TC for the whole graphs is prohibitive,

since even for only 6, 000 nodes, it takes over 22 hours, while
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Table 6: Size (MB) per snapshot granularity

Facebook YouTube Flickr

Days Weeks Months Days Weeks Months Days Weeks Months

VG 11 6 5 7.87 7.34 6.94 45.52 39.85 38.15

TR 0.58 0.47 0.42 44.28 21.28 14.98 141 73 41

TRC 0.22 0.08 0.07 3.21 1.92 1.46 2.89 2.27 1.88

TRCH 1,528 1,041 845 5,865 4,936 4,062 7,951 6,684 5,719

the TR construction takes just 0.72 seconds (Table 4).
Comparison of Different Bipartite Matching Algo-

rithms. We also constructed the TRC using the Hungarian
algorithm. For all datasets, the size of the resulting TRC is
almost equal to the size of the TRC resulting from using the
greedy algorithm (the difference is in the order of KB), thus
confirming our expectation that greedy achieves a very close
approximation of the optimal solution for social graphs. The
Hungarian algorithm is much slower than greedy requiring
an additional 1.5 hour for large datasets such as FL.
Comparison with 2hop for insert only. We adopted
the pruned labeling algorithm proposed in [2] for distance
queries to create an indexing scheme for historical reacha-
bility queries. Pruned labeling incrementally updates the
index for each newly inserted edge, whereas in our approach
we compute 2hop labels per snapshot. The pruned labeling
algorithm does not support deletions, thus, we compare the
two algorithms on the Facebook dataset without deletions.
The pruned algorithm was found to be 5.4 times faster but
it produced labels that were 12 times larger that the ones
computed with our approach.

6.3 Query Processing
Let us now focus on query processing. In each experiment,

we ran 500 historical reachability queries where the source
and target nodes are chosen uniformly at random with the
restriction that both nodes are present in the graph at the
beginning and the end of the query interval. Queries involv-
ing nodes not present either at the beginning or the end of
the query interval can be pruned fast by checking the lifes-
pans of the nodes.
Online Traversal of the Version Graph. Let us first
compare between an instant-based (INS) and an interval-
based (INT) online traversal of the version graph for dif-
ferent time intervals (Figures 8 and 9). A general remark
that holds independently of the method used to evaluate
queries is that false conjunctive queries are faster than true
conjunctive queries, since processing stops as soon as a time
instant is found at which the two nodes are not reachable.
Analogously, true disjunctive queries are faster than false
disjunctive queries, since processing stops as soon as a time
instant is found at which the two nodes are reachable.

Interval-based traversal is faster that instant-based traver-
sal for almost all datasets and query types, since it can find
the answer faster by searching for longer intervals. The only
exception is FB and false conjunctive queries, where INS is
slightly better. This happens because with INS, the search
stops as soon as the first false answer is produced in any
traversal. Hence, if this answer is found in the first few
time instants of the query interval negative answers can be
produced quickly for the smaller graph (i.e, the FB graph).
Online Traversal versus TimeReach. Let us now com-

pare interval-based online traversal with query processing
using the TR, TRC and TRCH approaches. The results for
conjunctive queries are shown in Figure 10 and for disjunc-
tive queries in Figure 11.
We see that all approaches are not significantly affected by

the increase of the query interval due to fast posting lookups
and short distances in the SCC graph for the TR and TRC,
and the efficient implementation of edge lifespans for the
version graph. We see that the TRC approach does not
only produce a smaller structure than TR but it also attains
faster query response for almost all datasets. TR is slower
because for answering a query it needs to traverse the SCC
graph per time instant when the query nodes do not belong
to the same component. TRCH attains the fastest time
when compared with all other approaches. The performance
of TRCH is expected, since only two simple steps are needed:
first to obtain the intersection Lin(v) ∩ Lout(u), and after
that to check the lifespans L of the nodes in the intersection.

7. CONCLUSIONS
Most real-life graphs evolve over time. In this paper, we

address the problem of efficiently answering historical reach-
ability queries over such graphs. Such queries ask whether
a node u was reachable from another node v during a time
interval in the past. We have proposed an approach termed
TimeReach that exploits the fact that most graphs consist of
strongly connected components (SCCs). TimeReach main-
tains information about SCC membership for each node,
and a graph which represents the links between the strongly
connected components. We also maintain a condensed ver-
sion graph which corresponds to the version graph of the
SCCs evolution. Our extensive experiments with three real
social network datasets show that TimeReach is storage-
efficient and can be constructed incrementally with a small
overhead. Historical queries are processed efficiently even
when involving large time intervals.
There are many possible directions for future work. One

such direction is exploiting TimeReach towards answering
other types of historical queries, such as shortest path ones.
Another direction concerns the distribution of TimeReach.
Distribution may either be based on time or exploit the SCC
evolution by placing together nodes that belong to the same
SCCs.
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Figure 6: Size (log scale) for varying number of nodes in FB (left), YT (middle) and FL (right)
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Figure 10: Query time (log scale) for conjunctive queries in FB (left), YT (middle) and FL (right)
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Abstract The typical user interaction with a database sys-

tem is through queries. However, many times users do not

have a clear understanding of their information needs or

the exact content of the database. In this paper, we propose

assisting users in database exploration by recommending to

them additional items, called Ymal (“You May Also Like”)

results, that, although not part of the result of their original

query, appear to be highly related to it. Such items are com-

puted based on the most interesting sets of attribute values,

called faSets, that appear in the result of the original query.

The interestingness of a faSet is defined based on its fre-

quency in the query result and in the database. Database fre-

quency estimations rely on a novel approach of maintaining

a set of representative rare faSets. We have implemented our

approach and report results regarding both its performance

and its usefulness.

Keywords Recommendations · Faceted search ·

Data exploration

1 Introduction

Typically, users interact with a database system by for-

mulating queries. This query-response mode of interaction

assumes that users are to some extent familiar with the con-

tent of the database and that they have a clear understanding

of their information needs. However, as databases become

larger and accessible to a more diverse and less technically

M. Drosou (B) · E. Pitoura
Computer Science Department, University of Ioannina,

Ioannina, Greece

e-mail: mdrosou@cs.uoi.gr

E. Pitoura
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oriented audience, a more exploratory mode of information

seeking seems relevant and useful [15].

Previous research has mainly focused on assisting users

in refining or generalizing their queries. Approaches to the

many-answers problem range from reformulating the orig-

inal query so as to restrict the size of the result, for exam-

ple, by adding constraints to the query (e.g., [32]), to auto-

matically ranking query results and presenting to users only

the top-k most highly ranked among them (e.g., [12]). With

facet search (e.g., [20]), users start with a general query and

progressively narrow its results down to a specific item by

specifying at each step facet conditions, i.e., restrictions on

attribute values. The empty-answers problem is commonly

handled by relaxing the original query (e.g., [23]).

In this paper, we propose a novel exploratory mode of

database interaction that allows users to discover items that

although not part of the result of their original query are

highly correlated to this result.

In particular, at first, the interesting parts of the result

of the initial user query are identified. These are sets of

(attribute, value) pairs, called faSets, that are highly relevant

to the query. For example, assume a user who asks about the

characteristics (such as genre, production year or country) of

movies by a specific director, e.g., M. Scorsese. Our system

will highlight the interesting aspects of these results, e.g.,

interesting years, pairs of genre and years, and so on (Fig. 1).

The interestingness of each faSet is based on its frequency.

Intuitively, the more frequent a faSet in the result, the more

relevant to the query. To account for popular faSets, we

also consider their frequency in the database. For example,

the reason that a movie genre appears more frequently than

another may not be attributed to the specific director but to

the fact that this is a very common genre. To address the fun-

damental problem of locating interesting faSets efficiently,

we introduce appropriate data structures and algorithms.
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Fig. 1 YmalDB: On the left side, the original user query Q is shown at

the top and its result at the bottom. Q asks for the countries, genres and

years of movies directed by M. Scorsese. On the right side, interesting

parts of the result are presented grouped based on their attributes and

ranked in order of interestingness

Specifically, since the online computation of the frequency

of each faSet in the database imposes large overheads, we

maintain an appropriate summary that allows us to estimate

such frequencies when needed. To this end, we propose a

novel approach based on storing the frequencies of a set of

representative closed rare faSets. The size of the maintained

set is tunable by an ǫ-parameter so as to achieve a desired

estimation accuracy. The stored frequencies are then used to

estimate the interestingness of the faSets that appear in the

result of any given user query. We present a two-phase algo-

rithm for computing the k faSets with the highest interesting-

ness. In the first phase, the algorithm uses the pre-computed

summary to set a frequency threshold that is used in the sec-

ond phase to run a frequent itemset-based algorithm on the

result of the query.

After the k most interesting faSets have been located,

exploratory queries are constructed whose results possess

these interesting faSets. The results of the exploratory

queries, called Ymal (“You May Also Like”) results, are

also presented to the user. For example, by clicking on each

Fig. 2 YmalDB: Recommendations for a specific interesting piece of

information (Biography films of 1995)

important aspect of the query about movies by M. Scors-

ese, the user gets additional recommended Ymal results,

i.e., other directors who have directed movies with charac-

teristics similar to the selected ones (Fig. 2). This way, users
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get to know other, possibly unknown to the them, directors

who have directed movies similar to those of M. Scorsese in

our example.

Our system, YmalDB, provides users with exploratory

directions toward parts of the database that they have not

included in their original query. Our approachmay also assist

users who do not have a clear understanding of the database,

e.g., in the case of large databases with complex schemas,

where users may not be aware of the exact information that

is available.

The offered functionality is complementary to query-

response and recommendation systems. Contrary to facet

search and related approaches, our goal is not to refine the

original query so as to narrow its results. Instead, we provide

users with items that do not belong to the results of their

original query but are highly related to them. Traditional rec-

ommenders [6] and OLAP navigation systems [17] assume

the existence of a log of previous user queries or results and

recommend items based on the past behavior of this particu-

lar user or other similar users. Ymal results are based solely

on the database content and the initial query.

We have implemented our approach on top of a relational

database system. We present experimental results regard-

ing the performance of our summaries and algorithms using

both synthetic and real datasets, namely one dataset contain-

ing information about movies [1] and one dataset containing

information about automobiles [3]. We have also conducted

a user study using the movie dataset and report input from

the users.

Paper outline. In Sect. 2, we present our result-driven frame-

work (called ReDrive) for defining interesting faSets, while

in Sect. 3, we use interesting faSets to construct exploratory

queries and produce Ymal results. Sections 4 and 5 intro-

duce the summary structures and algorithms used to imple-

ment our framework. Section 6 presents our prototype imple-

mentation along with an experimental evaluation of the per-

formance and usefulness of our approach. Finally, related

work is presented in Sect. 7, and conclusions are offered in

Sect. 8.

2 The REDRIVE framework

Our database exploration approach is based on exploiting

the result of each user query to identify interesting pieces of

information. In this section, we formally define this frame-

work, which we call the ReDrive framework.

Let D be a relational database with n relations R =

{R1, . . . , Rn} and let A be the set of all attributes in R.

We useAC to denote the set of categorical attributes andAN

to denote the set of numeric attributes, whereAC ∩AN = ∅

andAC ∪ AN = A. Without loss of generality, we assume

that relation and attribute names are distinct.

We also define a selection predicate ci to be a predicate of

the form (Ai = ai ), where Ai ∈ AC andai ∈ domain(Ai ),

or of the form (li ≤ Ai ≤ ui ), where Ai ∈ AN , li , ui ∈

domain(Ai ) and li ≤ ui . If li = ui , we simplify the notation

by writing (Ai = li ).

To locate items of interest in the database, users pose

queries. In particular, we consider select-project-join (SPJ)

queries Q of the following form:

SELECT proj (Q)

FROM rel(Q)

WHERE scond(Q) AND jcond(Q)

where rel(Q) is a set of relations, scond(Q) is a disjunction

of conjunctions of selection predicates, jcond(Q) is a con-

junction of join conditions among the relations in rel(Q),

and proj (Q) is the set of projected attributes. The result set,

Res(Q), of a query Q is a relation with schema proj (Q).

2.1 Interesting faSets

Let us first define pieces of information in the result set. We

define such pieces, or facets, of the result, as parts of the

result that satisfy specific selection predicates.

Definition 1 (m-FaSet) An m-faSet, m ≥ 1, is a set of m

selection predicates involving m different attributes.

We shall also use the term faSet when the size of them-faSet

is not of interest.

For a faSet f , we use Att ( f ) to denote the set of attributes

that appear in f . Let t be a tuple from a set of tuples S with

schema R; we say that t satisfies a faSet f , where Att ( f ) ⊆

R, if t[Ai ] = ai , for all predicates (Ai = ai ) ∈ f and

li ≤ t[Ai ] ≤ ui , for all predicates (li ≤ Ai ≤ ui ) ∈ f .

We call the percentage of tuples in S that satisfy f , support

of f in S.

Example. Consider the movies database of Fig. 3 and the

query and its corresponding result set depicted in Fig. 4.

{G.genre = “Biography”} is a 1-faSet with support 0.375

and {1990 ≤ M.year ≤ 2009, G.genre = “Biography”} is a

2-faSet with support 0.25.

We are looking for interesting pieces of information at

the granularity of a faSet: this may be the value of a single

attribute (i.e., a 1-faSet) or the values of m attributes (i.e., an

m-faSet).

Example. Consider the example in Fig. 4, where a user

poses a query to retrieve movies directed by M. Scorsese.

{G.genre = “Biography”} is a 1-faSet in the result that is

likely to interest the user, since it is associated with many of

the movies directed by M. Scorsese. The same holds for the

2-faSet {1990 ≤M.year ≤ 2009, G.genre = “Biography”}.
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Fig. 3 Movies database schema

movieid title year rating
movieid actorid character actorid name sex

ACTORS (A)MOVIES2ACTORS (M2A)

movieid directorid notes directorid name

DIRECTORS (D)MOVIES2DIRECTORS (M2D)

movieid producerid notes producerid name

PRODUCERS (P)MOVIES2PRODUCERS (M2P)

movieid writerid notes writerid name

WRITERS (W)MOVIES2WRITERS (M2W)

MOVIES (M)

movieid country

COUNTRIES (C)

movieid genre

GENRES (G)

movieid language

LANGUAGE (L)

movieid keywords

KEYWORDS (K)

SELECT
FROM
WHERE

AND
AND

, 2 , ,

.directorid = 2 .directorid
2 .movieid = .movieid
.movieid = .movieid

D M.title, M.year, G.genre

D ‘ ’

.name,

.name = M. Scorsese
D  M D  M  G

D M D
M D M
M G

AND

;

(a)

D.name M.title M.year G.genre

M. Scorsese The Aviator 2004 Biography

M. Scorsese Gangs of New York 2002 Drama

M. Scorsese Goodfellas 1990 Biography

M. Scorsese Casino 1995 Drama

M. Scorsese Shutter Island 2004 Thriller

M. Scorsese M. Jackson: Video Greatest Hits 1995 Drama

M. Scorsese The Last Waltz 1978 Biography

M. Scorsese Raging Bull 1980 Documentary

(b)

Fig. 4 a Example query and b result set

To define faSet relevance formally, we take an IR-based

approach and rank faSets in decreasing order of their odds of

being relevant to a user information need. Let uQ be a user

information need expressed through a query Q, and let RuQ

for a tuple t be a binary random variable that is equal to 1 if

t satisfies uQ and 0 otherwise. Then, the relevance of a faSet

f for uQ can be expressed as:

p(RuQ
= 1| f )

p(RuQ
= 0| f )

where p(RuQ
= 1| f ) is the probability that a tuple that satis-

fies f also satisfies uQ , and p(RuQ
= 0| f ) is the probability

that a tuple that satisfies f does not satisfy uQ . Using the

Bayes rule we get:

p(RuQ
= 1| f )

p(RuQ
= 0| f )

=
p( f |RuQ

= 1)p(RuQ
= 1)

p( f |RuQ
= 0)p(RuQ

= 0)

Since the terms p(RuQ
= 1) and p(RuQ

= 0) are inde-

pendent of the faSet f and thus do not affect their relative

ranking, they can be ignored.

We make the assumption that all relevant to uQ tuples are

those that appear in Res(Q), thus p( f |RuQ
= 1) is equal

with the probability that a tuple in the result satisfies f , writ-

ten p( f |Res(Q)). Similarly, p( f |RuQ
= 0) is the probabil-

ity that a tuple that is not relevant, i.e., a tuple that does

not belong to the result set, satisfies f . We make the logical

assumption that the result set is small in comparison with

the size of the database and approximate the non-relevant

tuples with all tuples in the database, that is, all tuples in the

global relation denoted by D, with schema A. Based on the

above motivation, we arrive at the following definition for

the relevance of a faSet.

Definition 2 (interestingness score) Let Q be a query and

f be a faSet with Att ( f ) ⊆ proj (Q). The interestingness

score, score( f, Q), of f for Q is defined as:

score( f, Q) =
p ( f |Res(Q))

p( f |D)

The term p( f |Res(Q)) is estimated by the support of f in

Res(Q), that is, the percentage of tuples in the result set that

satisfy f . The term p( f |D) is a global measure that does

not depend on the query. It serves as an indication of the

frequency of the faSet in the whole dataset, i.e., it measures

the discriminative power of f . Note that when the attributes

in Att ( f ) do not belong to the same relation, to estimate this

value, we may need to join the respective relations first.

Intuitively, a faSet stands out when it appears more fre-

quently in Res(Q) than anticipated. For a faSet f, score( f,

Q) > 1, if and only if, its support in the result set is larger

than its support in the database, while score( f, Q) = 1

means that f appears as frequently as expected, i.e., its sup-

port in Res(Q) is the same as its support in the database.

Yet, another way to interpret the interestingness score of

a faSet is with relation to the tf-idf (term frequency-inverse
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document frequency) measure in IR, which aims to promote

terms that appear often in the searched documents but are

not very often encountered in the entire corpus. Here, the

document roughly corresponds to the result set, the term to

a faSet and the corpus to the database.

An association rule interpretation of interestingness. Let r

be the current instance of the global database D. r can be

interpreted as a transaction database where each tuple con-

stitutes a transaction whose items are the specific (attribute,

value) pairs of the tuple. For each query Q, we aim at iden-

tifying interesting rules of the form R f : scond(Q) → f . In

other words, we search for faSets that are highly correlated

with the conditions expressed in the user query. Each faSet

f is then ranked based on the interestingness or importance

of the associated rule R f . But what makes a rule interesting?

There is large body of research on the topic (see, for

example, [25,27,38,39]). For simplicity, let us assume that

Att (proj (Q)) ⊃ Att (scond(Q)). Let count (scond(Q))

be the number of tuples in r that satisfy scond(Q). Clearly,

count (scond(Q)) = |Res(Q)|. Common measures of the

importance of an association rule are support and confidence,

where the support of a rule is defined as the percentage

of tuples that satisfy both parts of the rule, whereas confi-

dence corresponds to the probability that a tuple that satis-

fies the LHS of the rule also satisfies the RHS. In our case,

support (R f ) = (number of tuples in the Res(Q) that satisfy

f ) / |D| and con f idence(R f ) = (number of the tuples in the

result of Q that satisfy f )/|Res(Q)|. Using either the support

or the confidence of R f to define the interestingness of faSet

f would result in ranking faSets based solely on their fre-

quency in the result set. Note also that for the same number

of appearances in the result set, it holds that the larger the

result, the smallest the confidence of the rule. This means that

more selective queries provide us with rules with higher con-

fidence. However, both measures favor faSets with popular

attribute values.

This bias is a known problem of such measures, caused by

the fact that the frequency of the RHS of the rule is ignored.

This is often demonstrated with the following simple exam-

ple. Assume that we are looking into the relationship between

people who drink tea and coffee, e.g., of a rule of the form

tea→coffee. The confidence of such a rule may be high, even

when the percentage of people that drink both tea and coffee

is smaller than the percentage of the general population of

coffee drinkers, as long as this population is large enough.

To handle this problem, another measure of importance

for association rules has been introduced, called lift, that also

accounts for the RHS of the rule so that popular values, or

faSets in our case, have to appear more often than less popular

ones in the result set to be considered equally important. Lift

expresses the probability that a tuple that satisfies the RHS

of the rule also satisfies the LHS. We show next that our

definition of interestingness for a faSet f corresponds to the

lift of rule R f . Let p(A) be the probability of A appearing

in the database. It holds that:

li f t (R f ) =
p(scond(Q) ∧ f )

p(scond(Q))P( f )

=
count (scond(Q)∧ f )

|D| /count (scond(Q))count ( f )
|D||D|

=
|D|

|Res Q|

count (scond(Q) ∧ f )

count ( f )

since |Res(Q)| and |D| are the same for all faSets in the

result, lift corresponds to the interestingness measure we use

in this paper.

Empty-/Many-answers problem. The goal of our approach

is to assist users in exploring a portion of the database that is

interesting according to their initial query. This goal is mean-

ingful, when the initial query retrieves a non-empty result set.

When the user query retrieves an empty result set, there is

no “lead” to point us to possible exploratory directions and

the interestingness score of all faSets is zero. In such cases,

it is possible to fall back to some default recommendation

mechanism or to resort to query relaxation techniques. When

Res(Q) contains many answers, the interestingness score

still provides us with a means of ranking faSets extracted

from these answers. Recall that, we do not aim at narrow-

ing down the initial result of the user query, but rather at

locating interesting data related to this result. In this case,

the presented faSets can help in highlighting some interest-

ing aspects of this large result set. Note that when the result

set has a size comparable to that of the database, one of the

assumptions made to motivate the definition of interesting-

ness, namely that the result is small in comparison with the

database, may not be valid. However, our definition of inter-

estingness is still valid and provides us with a score based on

the relative frequency of each faSet in the result and in the

database.

2.2 Attribute expansion

Definition 2 provides a means of ranking the various faSets

that appear in the result set, Res(Q), of a query Q and dis-

covering the most interesting ones among them. However,

there may be interesting faSets that include attributes that do

not belong to proj (Q) and, thus, do not appear in Res(Q).

We would like to extend Definition 2 toward discovering

such potentially interesting faSets. This can be achieved by

expanding Res(Q) toward other attributes and relations in D.

Consider, for example, the following query that returns

just the titles of movies directed by M. Scorsese in the data-

base of Fig. 3:

SELECT M.title

FROM D, M2D, M

WHERE D.name = ‘M. Scorsese’
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SELECT
FROM
WHERE

AND

G.genre, C.country
D, M2D, M, G, C

D.name
M.year 1963

= ‘ ’
>

AND

AND

AND

AND

D.directorid M2D.directorid
M2D.movieid M.movieid
M.movieid G.movieid
M.movieid C.movieid

=
=

=
=

M. Scorsese

(a)

SELECT
FROM
WHERE

AND
AND

D.name, M.year
D, M2D, M, G, C

G.genre Drama
C.country
D.name

M.year 1963

= ‘ ’
= Italy

( <> ‘ ’
<= )OR

AND

AND

AND

AND

D.directorid M2D.directorid
M2D.movieid M.movieid
M.movieid G.movieid
M.movieid C.movieid

=
=

=
=

M. Scorsese

(b)

SELECT
FROM
WHERE

AND
AND
AND

D.name, M.year
D, M2D, M, G, C

G.genre Drama
C.country
D.name
M.year 1963

= ‘ ’
= ‘Italy’

= ‘ ’
<=

D.directorid M2D.directorid
M2D.movieid M.movieid
M.movieid G.movieid
M.movieid C.movieid

=
=

=
=

AND

AND

AND

AND

M. Scorsese

(c)

SELECT
FROM
WHERE

AND
AND
AND

D.name, M.year
D, M2D, M, G, C

G.genre Drama
C.country
D.name
M.year 1963

= ‘ ’
= Italy

<> ‘ ’
>

D.directorid M2D.directorid
M2D.movieid M.movieid
M.movieid G.movieid
M.movieid C.movieid

=
=

=
=

AND

AND

AND

AND

M. Scorsese

(d)

Fig. 5 a Original user query and b the default exploratory query for

the interesting faSet {G.genre = “Drama”, C.country = “Italy”}. c, d

are variations of the default exploratory query; in the former, we rec-

ommend M. Scorsese drama movies produced in Italy in different years

than those specified in the original user query, and in the latter, we rec-

ommend non–M. Scorsese drama movies produced in Italy in the same

years as those specified in the original user query

AND D.directorid =M2D.directorid

AND M2D.movieid =M.movieid

All faSets in the result set of Q will appear once (unless

M. Scorsese has directed more than one movie with the

same title). However, including, for instance, the relation

that contains the attribute “Country” in rel(Q) and modi-

fying jcond(Q) accordingly may disclose interesting infor-

mation, e.g., that many of the movies directed by M. Scorsese

are related to Italy.

The definition of interestingness is extended to include

faSets with attributes not in proj (Q), by introducing an

expanded query Q′ with the same selection condition as the

original query Q but with additional attributes in proj (Q′)

and additional relations in rel(Q′).

Definition 3 (expanded interestingness score) Let Q be a

query and f be a faSet with Att ( f ) ⊆ A. The interest-

ingness score of f for Q is defined as:

score( f, Q) =
p( f |Res(Q′))

p( f |D)

where Q′ is an SPJ query with proj (Q′) = proj (Q) ∪

Att ( f ), rel(Q′)= rel(Q)∪{R′|Ai ∈ R′, for Ai ∈ Att ( f )},

scond(Q′) = scond(Q) and jcond(Q′) = jcond(Q)∧

(joins with {R′ | Ai ∈ R′, for Ai ∈ Att ( f )}).

For instance, expanding our example query toward the

“Country” attribute is achieved by the following Q′:

SELECT M. t i t l e, C . c o u n t r y

FROM D, M2D, M, C

WHERE D . name = ‘M. S c o r s e s e’

AND D . d i r e c t o r i d = M2D . d i r e c t o r i d

AND M2D . m o v i e i d = M. m o v i e i d

AND M. m o v i e i d = C . m o v i e i d

We defer the discussion on how we select relations toward

which to expand user queries until Sect. 5.3.

3 Exploratory queries

Besides presenting interesting faSets to the users, we use

faSets to discover interesting pieces of data that are poten-

tially related to the user needs but do not belong to the

results of the original user query. In particular, we construct

exploratory queries that retrieve results strongly correlated

with those of the original user query Q by replacing the

selection condition, scond(Q), of Q with equivalent ones,

thus allowing new interesting results to emerge. Recall that

a high interestingness score for f means that the lift of

scond(Q) → f is high, indicating replacing scond(Q)

with f , since scond(Q) seems to suggest f .

For example, for the interesting faSet {G.genre =

“Drama”} in Fig. 4, the following exploratory query:

SELECT D . name

FROM D, M2D, M, G

WHERE G . g e n r e = ‘ Drama’

AND D . name <> ‘M. S c o r s e s e’

AND D . d i r e c t o r i d = M2D . d i r e c t o r i d

AND M2D . m o v i e i d = M. m o v i e i d

AND M. m o v i e i d = G . m o v i e i d

will retrieve other directors that have also directed drama

movies, which is an interesting value appearing in the orig-

inal query result set. The negation term “D.name <> M.

Scorsese” is added to prevent values appearing in the selec-

tion conditions of the original user query from being recom-

mended to the users.

Next, we formally define exploratory queries.

Definition 4 (exploratory query) Let Q be a user query

and f be an interesting faSet for Q. The exploratory

query Q̂ that uses f is an SPJ query with proj (Q̂) =

Att (scond(Q)), rel(Q̂) = rel(Q) ∪ {R′ | Ai ∈ R′,

for Ai ∈ Att ( f )}, scond(Q̂) = f ∧ ¬ scond(Q) and

jcond(Q̂) = jcond(Q)∧ (joins with {R′ | Ai ∈ R′, for

Ai ∈ Att ( f )}).

The results of an exploratory query are called Ymal (“You

May Also Like”) results.

When the selection condition, scond(Q), of the original

user query Q contains more than one selection predicate, then

instead of just negating scond(Q), we could consider vari-

ous combinations of these predicates. This means replacing

scond(Q̂) = f ∧ ¬ scond(Q) in the above definition with
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scond(Q̂) = f ∧ scond(Q)\{ci } ∧ ¬ ci ci ∈ scond(Q).

As an example, consider the user query Q of Fig. 5a and

assume the interesting faSet {G.genre = “Drama”, C.country

= “Italy”}. Then, the exploratory queries of Fig. 5b–d can

be constructed. In general, it is possible to construct up to

2|scond(Q)|− 1 exploratory queries for each interesting faSet

f , each one of them focusing on different aspects of the

interesting faSets. In our approach, as a default, we use the

exploratory query Q̂ where scond(Q̂) = f ∧ ¬ scond(Q)

for each interesting faSet f . If the users wish to, they can

request the execution of other exploratory queries for f as

well by specifying combinations of conditions in scond(Q).

The results of an exploratory Q̂ are recommended to the

user. Since in general, the success of recommendations is

found to depend heavily on explaining the reasons behind

them [40], we include an explanation for why each result of

Q̂ is suggested. The explanation specifies that the presented

result appears often with a value that is very common in the

result of the original query Q. For example, assuming that

F.F. Coppola is a director retrieved by our exploratory query,

then the corresponding explanation would be “You may also

like F.F. Coppola, since F.F. Coppola appears frequently with

the interesting genre Drama and country Italy of the original

query.”

Clearly, one can use the interesting faSets in the results of

an exploratory query to construct other exploratory queries.

This way, users may start with an initial query Q and follow

the various exploratory queries suggested to them to grad-

ually discover other interesting information in the database.

Currently, we do not set an upper limit on the number of

exploration steps. Instead, we let users explore the database

at the extend they wish, similar to the manner users perform

web browsing by following interesting links.

Framework overview. In summary, ReDrive database

exploration works as follows. Given a query Q, the most

interesting faSets for Q are computed and presented to the

users. Such faSets may be either interesting pieces (sub-

tuples) of the tuples in the result set of Q or expanded tuples

that include additional attributes not in the original result.

Interesting faSets are further used to construct exploratory

queries that lead to discovering additional information, i.e.,

recommendations, related to the initial user query. Users can

explore further the database by exploiting such recommenda-

tions for different interesting faSets of the original query or by

recursively applying the same procedure on the exploratory

queries to retrieve additional interesting faSets and, thus, rec-

ommendations.

In the next two sections, we focus on algorithms for the

efficient computation of interesting faSets. Note that our

algorithms are based on maintaining statistics regarding the

frequency of faSets in the database and thus are applicable

to any interpretation of interestingness that exploits frequen-

cies.

4 Estimation of interestingness

Let Q be a query with schema proj (Q) and f be an m-faSet

with m predicates {c1, . . . , cm}. To compute the interesting-

ness of f , according to Definition 2 (and Definition 3), we

have to compute two quantities: p( f |Res(Q)) and p( f |D).

p( f |Res(Q)) is the support of f in Res(Q). This quan-

tity is different for each user query Q and, thus, has to be

computed online. p( f |D), however, is the same for all user

queries. Clearly, the value of p( f |D) for a faSet f could also

be computed online. For example, this can be achieved by the

following simple count query:

SELECT count (∗)

FROM rel(Q)

WHERE f AND jcond(Q)

that returns as a result the number of database tuples that

satisfy the faSet f . However, one such query is needed for

each faSet in Res(Q). Since the number of faSets even for

a small Res(Q) is large, this online computation makes the

location of interesting faSets prohibitively slow. Thus, we opt

for computing offline some information about the frequency

of selected faSets in the database and use this information to

estimate p( f |D) online. Next, we show how we can maintain

such information.

4.1 Basic approaches

Let mmax be the maximum number of projected attributes

of any user query, i.e., mmax = |A|. A brute force approach

would be to generate all possible faSets of size up to mmax and

pre-compute their support in D. Such an approach, however,

is infeasible even for small databases due to the combina-

torial amount of possible faSets. As an example, consider a

database with a single relation R containing 10 categorical

attributes. If each attribute takes on average 50 distinct values,

R may contain up to
∑10

i=1

[

(

10
i

)

× 50i
]

= 1.1904 × 1017

faSets.

A feasible and efficient solution must reach a compromise

between the online computation of p( f |D) and the mainte-

nance of frequency information for selected faSets. A first

such approach would be to pre-compute and store the support

for all 1-faSets that appear in the database. Then, assuming

that faSet conditions are satisfied independently from each

other, the support of a higher-order m-faSet can be estimated

by:

p( f |D) = p ({c1, . . . , cm} |D) =

m
∏

i=1

p({ci }|D)

This approach requires the storage of information for only

a relatively small number of faSets. In our previous exam-

ple, we only have to maintain information about 10 × 50
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1-faSets. However, although commonly used in the litera-

ture, the independence assumption rarely holds in practice

and may lead to losing interesting information. Consider, for

example, that the 1-faSets {M.year = 1950} and {M.year =

2005} have similar supports, while the supports of {G.genre

= “Sci-Fi”, M.year = 1950} and {G.genre = Sci-Fi, M.year =

2005} differ significantly with {G.genre = “Sci-Fi,” M.year

= 1950} appearing very rarely in the database. Under the

independence assumption, similar estimation values will be

computed for these two 2-faSets.

4.2 The closed rare faSets approach

We propose a different form of maintaining frequency sum-

maries, aiming at capturing such fluctuations in the support

of related faSets. Our approach is based on maintaining a set

of faSets, called ǫ-tolerance closed rare faSets (ǫ-CRFs), and

using them to estimate the support of other faSets in the data-

base. Next, we define ǫ-CRFs and show that the estimation

error of the support of other faSets is bounded by ǫ, where ǫ is

a parameter that tunes the size of the maintained summaries.

Background definitions. First, we define subsumption among

faSets. We say that a faSet f is subsumed by a faSet f ′, if

every possible tuple in the database that satisfies f also satis-

fies f ′. For example, {G.genre = “Sci-Fi”, 2005 ≤M.year ≤

2008} is subsumed by {2000 ≤M.year ≤ 2010}. Formally:

Definition 5 (faSet subsumption) Let D be any database and

f, f ′ be two faSets. We say that f is subsumed by f ′, f �

f ′, if and only if, every possible tuple in the database that

satisfies f also satisfies f ′.

When f � f ′, we also say that f is more specific than f ′

and f ′ is more general than f . If f � f ′ and f ′ � f , we

say that f and f ′ are equivalent. f is called a proper more

specific faSet of f ′, denoted f ≺ f ′, if f is subsumed by

f ′ but is not equivalent to it. We also say that f ′ is a proper

more general faSet of f .

Note that, for two faSets f, f ′ with f ⊆ f ′, it holds that

f ′ � f . For example, {G.genre = “Sci-Fi”, 2005≤M.year

≤ 2008} is subsumed by {2005 ≤M.year ≤ 2008}.

Following the terminology from frequent itemset mining,

given a support threshold ξr , we say that a faSet f is fre-

quent(FF) for a set of tuples S, if its support in S is greater

than or equal to ξr and rare (RF) if its support is in [1, ξr ).

We also call a faSet f closed frequent (CFF) for S if it

is frequent and has no proper more specific faSet f ′, such

that, f ′ has the same support as f in S. Similarly, we define

a faSet f to be closed rare (CRF) for S if it is rare and has

no proper more general faSet f ′, such that f ′ has the same

support as f in S.

Finally, we say that a faSet f is maximal frequent (MFF)

for S, if it is frequent for S and has no more specific faSet f ′

such that f ′ is frequent for S and a faSet f is minimal rare

(MRF) for S if it is rare and has no more general faSet f ′

such that f ′ is rare for S.

Summaries based onǫ-tolerance. Maintaining the support of

a number of representative faSets can assist us in estimating

the support of a given faSet f . In general, it is more useful

to maintain information about the frequency of rare faSets in

D, since when rare faSets appear in a result set, it is more

likely that they are interesting than when frequent ones do.

Since the number of rare faSets (RFs) may be large, main-

taining the support of all rare faSets may not be cost-effective.

Minimal rare faSets (MRFs) cannot be maintained either,

although their number is small and RFs can be retrieved from

MRFs, it is not possible to accurately estimate the support

of an RF from MRFs. Instead, closed rare faSets (CRFs) can

provide us with both all RFs and their support. Since any RF

that has a distinct support value is also a CRF, the number of

CRFs may be very close to that of RFs. Thus, in our approach,

we maintain a tunable number of CRFs. This number is such

that we can achieve a bound on the estimation of the support

of any RF as a function of a given parameter ǫ.

We use count ( f, S) to denote the absolute number of

tuples in a set of tuples S that satisfy a faSet f . We first define

the (m, ǫ)-cover set of a set of rare m-faSets, or Cov(m, ǫ),

as follows:

Definition 6 (Cov(m, ǫ)) A set of m-faSets is called an

(m, ǫ)-cover set for a set of tuples S, denoted Cov(m, ǫ),

if (1) all its faSets are satisfied by at least one tuple in S,

(2) for every rare m-faSet f in S, there exists a more gen-

eral rare m-faSet f ′ ∈ Cov(m, ǫ) with count ( f ′, S) ≤

(1 + ǫ) count ( f, S), where ǫ ≥ 0, and (3) it has no proper

subset for which the above two properties hold.

In the following, we seek to locate (m, ǫ)-cover sets that are

minimum, i.e., there is no other (m, ǫ)-cover set for the same

set of faSets that has a smaller size.

We say that a faSet f ′ ǫ-subsumes a faSet f , if f � f ′

and count ( f ′, S) ≤ (1+ ǫ) count ( f, S).

Example. Consider the attribute M.year of the database in

Fig. 3 and let us focus, for illustration purposes, on a sim-

ple example concerning the movies produced from 1960 to

1990. Assume that there are 10 movies produced in the 60 s,

10 movies produced in the 70 s and 20 movies produced in

the 80 s. Consider the 1-faSets {1960 ≤ M.year ≤ 1970},

{1960 ≤M.year ≤ 1980}, {1960 ≤M.year ≤ 1990}, {1970

≤M.year ≤ 1980}, {1970 ≤M.year ≤ 1990} and {1980 ≤

M.year≤1990} with counts 10, 20, 40, 10, 30 and 20, respec-

tively. Let also ǫ = 1.0. Then, {1960 ≤ M.year ≤ 1980}

ǫ-subsumes {1960 ≤M.year ≤ 1970} and {1970 ≤M.year

≤ 1980}, {1970 ≤ M.year ≤ 1990} ǫ-subsumes {1980 ≤

M.year ≤ 1990} and {1960 ≤M.year ≤ 1990} ǫ-subsumes

{1980 ≤ M.year ≤ 1990}, {1960 ≤ M.year ≤ 1980} and

{1970≤M.year≤ 1990} (Fig. 6). The sets {{1960≤M.year
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1960 M.year 1990 40

1960 M.year 1980 20 1970 M.year 1990 30

1960 M.year 1970 10 1970 M.year 1980 10 1980 M.year 1990 20

Fig. 6 Example of a minimum (m, ǫ)-cover set (depicted in gray) for

the faSets depicted here (m = 1) along with their counts for ǫ = 1.0.

Arrows represent subsumption relations and bold arrows represent ǫ-

subsumption relations

Algorithm 1 Locating an (m, ǫ)-cover set.

Input: A set of m-faSets X , ǫ.

Output: An (m, ǫ)-cover set for X .

1: begin

2: Y ← ∅

3: while at least one faSet in X ǫ-subsumes another do

4: pick the faSet f ′ ∈ X that ǫ-subsumes the largest number of

faSets in X

5: for each such faSet f do

6: merge f with f ′

7: X ← X\{ f }

8: end for

9: X ← X\{ f ′}

10: Y ← Y ∪ { f ′}

11: end while

12: return Y

13: end

≤1980}, {1960≤M.year≤1990}} and {{1960≤M.year≤

1970}, {1970≤M.year≤ 1980}, {1960≤M.year≤ 1990}}

are both (1, 1.0)-cover sets for this set of faSets, since they

both cover all faSets. The former is also a minimum set with

this property.

An (m, ǫ)-cover set is, intuitively, the smallest set that can

represent all faSets of the same size if we allow the counts of

the faSets being represented to differ up to a scale of (1+ ǫ)

from the count of the faSet that represents them. The problem

of locating (m, ǫ)-cover sets is an NP-hard problem, similar

to the case of the Set Cover problem. We can use a greedy

heuristic to locate sub-optimal (m, ǫ)-cover sets. Locating

sub-optimal (m, ǫ)-cover sets affects only the size of the sum-

maries we maintain and not the bound of the estimations they

provide. In this paper, we use the greedy heuristic shown in

Algorithm 1; at each round, we select to add to Cov(m, ǫ) the

faSet f ′ that ǫ-subsumes the largest number of other faSets

and ignore those other faSets from further consideration.

Cover sets allow us to group together faSets of the same

size. To group together faSets of different sizes, we build

upon the notion of δ-tolerance closed frequent itemsets [13]

and define ǫ-CRFs as follows:

Definition 7 (ǫ-CRF) An m-faSet f is called an ǫ-CRF for

a set of tuples S, if and only if, f ∈ Cov(m, ǫ) for S and it

has no proper more general rare faSet f ′ with | f |− | f ′| = 1

and f ′ ∈ Cov(m − 1, ǫ), such that count ( f ′, S) ≤ (1 +

ǫ) count ( f, S), where ǫ ≥ 0.

Intuitively, a rare m-faSet f is an ǫ-CRF if, even if we

increase its count by a constant ǫ, all the (m − 1)-faSets

that subsume it still have a larger count than f . This means

that f has a significantly different count from all its more

general faSets and cannot be estimated (or represented) by

any of them.

Let us assume that a set of ǫ-CRFs is maintained for some

value of ǫ. We denote this set C . An RF f either belongs to C

or not. If f ∈ C , then the support of f is stored and its count

is readily available. If not, then, according to Definitions 6

and 7, there is some faSet that subsumes f that belongs to

C whose support is close to that of f . Therefore, given an

RF f , we can estimate its count based on its closest more

general faSet in C . If there are many such faSets, we use the

one with the smallest count, since this can estimate the count

of f more accurately. We use C( f ) to denote the faSet in C

that is the most suitable one to estimate the count of f . The

following lemma holds:

Lemma 1 Let C be a set of ǫ-CRFs for a set of tuples S and

f be an RF for S, f /∈ C. Then, there exists f ′, f ′ ∈ C with

| f | − | f ′| = i , such that, count ( f ′, S) ≤ φ count ( f, S),

where φ = (1+ ǫ)2i+1.

Proof Let f be a faSet of size m and C the set of main-

tained ǫ-CRFs. If f /∈ C , then, according to Definition 6,

there exists an m-faSet f1, such that, count ( f1, S) ≤ (1 +

ǫ) count ( f, S). If f1 /∈ C , then, according to Definition 7,

there exists an (m − 1)-faSet f2, such that, count ( f2, S) ≤

(1+ǫ) count ( f1, S) and so on. At some point, we will reach

a faSet f ′ that belongs in C . Let | f |− | f ′| = i . To reach this

faSet, we have made at most i + 1 steps between faSets of

the same size and at most i steps between faSets of different

size, and thus, the lemma holds. ⊓⊔

To provide more accurate estimations, each ǫ-CRF f is

stored along with its frequency extension, i.e., a summary

of the actual frequencies of all the faSets that f represents.

Recall that, an ǫ-CRF f may represent faSets of different

sizes, as indicated by Lemma 1. The frequency extension of

an ǫ-CRF is defined as follows.

Definition 8 (frequency extension) Let C be a set of ǫ-CRFs

for a set of tuples S and f be a faSet in C . Let also X ( f )

be the set of all RFs represented in C by f . Then, X i ( f ) =

{x |x ∈ X ( f ) ∧ |x | − | f | = i}, 0 ≤ i ≤ m, where m =

max{i |X i ( f ) 6= ∅}. The frequency extension of f for i, 0 ≤

i ≤ m, is defined as:

ext ( f, i) =

∑

x∈Xi ( f )
count (x,S)
count ( f,S)

|X i ( f )|
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Intuitively, the frequency extension of f for i is the average

count difference between f and all the faSets that f repre-

sents whose size difference from f is equal to i . Given a

faSet f , the estimation of p( f |D), denoted p̃( f |D), is equal

to:

p̃( f |D) = count (C( f ), S) · ext (C( f ), | f | − |C( f )|)

It holds that

Lemma 2 Let f be an ǫ-CRF. Then, for each i , it holds that
1
φ
≤ ext ( f, i) ≤ 1, where φ = (1+ ǫ)2i+1.

Proof At one extreme, all faSets in X i ( f ) have the same

count as f . Then, ∀x ∈ X i ( f ), it holds that count (x, S) =

count ( f, S) and ext ( f, i) = 1. At the other extreme, all

faSets in X i ( f ) differ as much as possible from f . Then,

∀x ∈ X i ( f ), it holds that count ( f, S) = φ count (x, S) and

ext ( f, i) = 1/φ. ⊓⊔

Similar to the proof in [13], it can be shown that the esti-

mation error is bounded by φ, i.e., by ǫ.

Theorem 1 Let f be an RF and | f | − |C( f )| = i . The

estimation error for p( f |D) is bounded as follows:

1

φ
− 1 ≤

p̃( f |D)− p( f |D)

p( f |D)
≤ φ − 1

Proof From Lemma 2, it holds that
p(C( f )|D)

φ
≤ p(C( f )|D)

× ext (C( f ), i) ≤ p(C( f )|D). Since p̃( f |D) = count

(C( f ), S) × ext (C( f ), i), it holds that
p(C( f )|D)

φ
≤

p̃( f |D) ≤ p(C( f )|D) (1). Also, it holds that
p(C( f )|D)

φ
≤

p( f |D) and, since f � C( f ), p( f |D) ≤ p(C( f )|D).

Therefore,
p(C( f )|D)

φ
≤ p( f |D) ≤ p(C( f )|D) (2). From

(1), (2) the theorem holds. ⊓⊔

Tuningǫ.Parameter ǫ bounds the estimation error for the fre-

quencies of the various faSets. Smaller ǫ values lead to better

frequency estimations. However, this comes at the price of

increased storage requirements, since in the case of smaller

ǫ values, more faSets enter the set of ǫ-CRFs and, therefore,

the size of the maintained statistics increases. Next, we pro-

vide a method to assist the system administrator in deciding

an appropriate ǫ value, given a maximum storage budget b

available for maintaining statistics.

Our basic idea is to start with a rough estimation of ǫ and

then further refine it to reach the minimum ǫ value that can

provide statistics which can fit in the allocated storage space.

Our initial estimation is computed as follows. Let MG F( f )

be the set of more general proper faSets of a faSet f , i.e.,

MG F( f ) includes all faSets f ′ that are more general than f

with | f | − | f ′| = 1. We define g( f ) to be the average count

difference between f and the faSets in MG F( f ), i.e, g( f ) =

(1/|M FG( f )|)
∑

f ′∈M FG( f )
count ( f ′,S)
count ( f,S)

. Then, we define the

set of all rare faSets in S as RF(S) and set the initial value of

ǫ, denoted ǫ0 to be equal to (1/|RF(S)|)
∑

f ∈RF(S) g( f )− 1.

We proceed as follows. Let ǫ0 be that initial value. We use

ǫ0 to locate ǫ0-CRFs. If the number of located faSets is larger

than the maximum allowed threshold, we set ǫ1 = 2ǫ0,

otherwise we set ǫ1 = ǫ0/2 and we locate ǫ1-CRFs. We repeat

this process until we reach the first value of ǫi that crosses

the storage boundary. ǫi−1 and ǫi can be used as upper and

lower bounds for the final estimation, since it holds either

|ǫi -CRFs| > b and |ǫi−1-CRFs| ≤ b or vice versa. We set

ǫi+1 = (ǫi−1+ǫi )/2, update either the upper or lower bound,

respectively, and repeat this binary search process until either

|ǫi+1-CRFs| = b or |ǫi+1-CRFs| = |ǫi -CRFs|.

In the above process, we generate all rare faSets once and

then we proceed with multiple generations of ǫ-CRFs. As

shown in our performance evaluation, the cost of generating

statistics is dominated by the cost of generating all rare faSets,

while the cost of locating ǫ-CRFs is negligible in comparison.

Estimation overview. Given a threshold ξr and a value for ǫ,

we maintain the set of ǫ-CRFs along with the corresponding

frequency extensions. This set, whose size can be tuned by

varying ǫ, provides us with bounded estimations of p( f |D)

for all rare faSets, that is, for all faSets with support smaller

than ξr . For frequent faSets, we have only the information

that their support is larger than ξr , but this in general suffices,

since it is not likely that these faSets are interesting.

5 Top-k faSets computation

In this section, we present an online two-phase algorithm

for computing the top-k most interesting faSets for a user

query Q. We consider first faSets f in the result set, i.e.,

Att ( f ) ⊆ proj (Q) and discuss attribute expansion later.

A straightforward method would be to generate all faSets

in Res(Q), compute their interestingness score and then

selecting the best among them. This approach, however, is

exponential on the number of distinct values that appear in

Res(Q). Applying an a priori approach for generating and

pruning faSets is not applicable either, since the interesting-

ness score is neither an upwards nor a downwards closed

measure, as shown below. A function d is monotone or

upwards closed if for any two faSets f1 and f2, f2 � f1 ⇒

d( f1) ≤ d( f2) and anti-monotone or downwards closed if

f2 � f1 ⇒ d( f1) ≥ d( f2).

Proposition 1 Let Q be a query and f be a faSet. Then,

score( f, Q) is neither an upwards nor a downwards closed

measure.

Proof Let f1, f2, f3 be three faSets with f1 � f2 �

f3. Consider a database consisting of a single relation

R with three attributes A, B and C and three tuples

{1, 1, 1} , {1, 1, 2}, {1, 2, 1}. Let Res(Q) = {{1, 1, 1},

{1, 2, 1}} and f1 = {A = 1, B = 1, C = 1}, f2 = {A =

1, B = 1} and f3 = {A = 1}. For f2, there exists both a more

general faSet, i.e., f3, and a more specific faSet, i.e., f1, with
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Algorithm 2 Two-Phase Algorithm (TPA).

Input: Q, Res(Q), k, C , ξr of C .

Output: The top-k interesting faSets for Q.

1: begin

2: F ← ∅

3: A← all 1-faSets of Res(Q)

4: for all faSets f ∈ C do

5: if all 1-faSets g ⊆ f are contained in A then

6: f.score = score( f, Q)

7: F ← F ∪ { f }

8: end if

9: end for

10: for all tuples t ∈ Res(Q) do

11: generate all faSets f ⊆ t , s.t. ∃ g ∈ F with g ⊆ f

12: for all such faSets f do

13: f.score = score( f, Q)

14: F ← F ∪ { f }

15: end for

16: end for

17: ξ f ← (kth highest score in F) × ξr

18: candidates← frequentFaSetMiner(Res(Q), ξ f )

19: for all faSets f in candidates do

20: f.score = score( f, Q)

21: F ← F ∪ { f }

22: end for

23: return The k faSets in F with the highest scores

24: end

larger interestingness scores than it. The interestingness score

is not closed even for the case of faSets of the same size. For

example, consider the relation R′ with a single attribute A

and three tuples {1}, {3}, {4} and Res(Q) = {{1}, {4}} and

let f1 = {0 ≤ A ≤ 10}, f2 = {2 ≤ A ≤ 8}, f3 = {4 ≤

A ≤ 5}. Again, for f2, there exists both a more general and a

more specific faSet with larger interestingness score than it.

This implies that we cannot employ any subsumption rela-

tions among the faSets of Res(Q) to prune the search space.

5.1 The two-phase algorithm

To avoid generating all faSets in Res(Q), as a baseline

approach, we consider only the frequent faSets, since these

are the faSets of potential interest. To generate all frequent

faSets, i.e., all faSets whose support in Res(Q) is above a

given threshold ξ f , we apply an adaptation of a frequent item-

set mining algorithm [19] such as the Apriori or FP-Growth.

Then, for each frequent faSet f , we use the maintained sum-

maries to estimate p( f |D) and compute score( f, Q).

The problem with the baseline approach is that it is highly

dependent on the support threshold ξ f . A large value of ξ f

may lead to losing some less frequent in the result but very

rarely appearing in the dataset faSets, whereas a small value

may result in a very large number of candidate faSets being

examined. Therefore, we propose a Two-Phase Algorithm

(TPA), described next, that addresses this issue by setting ξ f

to an appropriate value so that all top-k faSets are located

without generating redundant candidates. The TPA assumes

that the maintained summaries are based on keeping rare

faSets of the database D. Let ξr be the maximum support of

the maintained rare faSets.

In the first phase of the algorithm, all 1-faSets that appear

in Res(Q) are located. The TPA checks which rare faSets

of D, according to the maintained summaries, contain only

conditions that are satisfied by at least one tuple in Res(Q).

Let F be this set of faSets. Then, in one pass of Res(Q), all

faSets of Res(Q) that are more specific than some faSet in F

are generated and their support in Res(Q) is measured. For

each of the located faSets, score( f, Q) is computed. Let s

be the kth highest score among them. The TPA sets ξ f equal

to s × ξr and proceeds to the second phase where it executes

a frequent faSet mining algorithm with threshold equal to

ξ f to retrieve any faSets that are potentially more interesting

than the kth most interesting faSet located in the first phase.

Theorem 2 The Two-Phase Algorithm retrieves the top-k

most interesting faSets.

Proof It suffices to show that any faSet in Res(Q) less fre-

quent than ξ f clearly has interestingness score smaller than

s, i.e., the score of the kth most interesting faSet located in

the first phase and, thus, can be safely ignored. To see this,

let f be a faSet examined in the second phase of the algo-

rithm. Since the score of f has not been computed in the first

phase, then p( f |D) > ξr . Therefore, for score( f, Q) > s

to hold, it must be that p( f |Res(Q)) > s × p( f |D), i.e.,

p( f |Res(Q)) > s × ξr .

The TPA is shown in Algorithm 2, where we use C to

denote the collection of maintained summaries.

5.2 Improving performance

Next, we discuss a number of improvements concerning the

performance of summaries generation and the TPA.

Discretization of numeric values. The cost of generating

summaries and executing the TPA mostly depends on the

number of distinct attribute values that appear in the data-

base. The higher this number is, the more faSets have to be

generated and have their frequencies computed. To reduce

the computational cost of our approach, we consider fur-

ther summarizing numeric attribute values by partitioning

the domain space of numeric attributes into non-overlapping

intervals and replacing each value in the database by the

corresponding interval of values close to it. Similar tech-

niques for domain partitioning have been used in the field

of data mining. As in [35], which considers the problem of

mining association rules in the presence of both categorical

and numeric attributes, we follow the approach of splitting

the domain of numeric attributes into intervals and mapping

each value to the corresponding interval prior to process-

ing our data. The intervals are chosen in different ways for
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each attribute, depending on the semantical meaning of the

attribute or the distribution of values. For example, in case

of attributes containing information such as years and ages,

the intervals correspond to decades. It is possible to follow a

similar approach for categorical attributes as well by group-

ing attribute values based on some hierarchy. However, this

requires the knowledge of such hierarchies which are not

usually available. In our work, we do not further consider

grouping categorical values.

Exploiting Bloom filters for fast frequency estimations. Most

real datasets have a large number of rare faSets that appear

only once. Consider, for example, the movies database of

Fig. 3, where many directors have directed only one movie

in their lifetime and, therefore, they appear only once in the

database. Although such values may have high interesting-

ness score, since they are extremely rare in the whole dataset,

they are not useful for recommending additional results to

the users. To see this, let us assume that a user queries the

database for Sci-Fi movies and a director who appears only

once in the dataset is found in the result. Our framework

would attempt to recommend to the user other genres that

this specific director has directed. However, since this direc-

tor appears only once in the database, no such recommenda-

tions can emerge.

To avoid generating and maintaining information for all

other faSets that these rare faSets subsume, we use the fol-

lowing approach. In a single scan of the data, we identify

all faSets that appear only once and insert them in a hash-

based data structure. In particular, we use a Bloom filter [8].

A Bloom filter consists of a bit array of size l and a set of

h hash functions. Each of the hash functions maps a value

to one of the l positions of the bit array. To add a value into

the Bloom filter, the value is hashed using each of the hash

functions and the h corresponding bits are set to 1. To decide

whether a value has been added into the Bloom filter, the

value is again hashed using each of the hash functions and

the corresponding h bits are checked. If all of them are set

to 1, then it can be concluded that the value has been added

into the Bloom filter. It is possible that those h bits were set

to 1 during the insertion of other values; in that case, we have

a false positive. It is known that, when n values have been

inserted into a Bloom filter, the probability of a false positive

is equal to (1−e−hn/ l)h and, thus, can by tuned by choosing

an appropriate size l for the Bloom filter.

Any faSet that is subsumed by some faSet in the Bloom fil-

ter can appear only once in the database. We exploit this fact

in two ways. First, we avoid the generation and maintenance

of ǫ-CRFs that are subsumed by faSets in the Bloom filter,

maintaining only the Bloom filter instead which is more space

efficient and can support faSet lookups faster. More specifi-

cally, whenever a candidate rare faSet f is constructed during

the generation of the summaries, we query the Bloom filter

for any sub-faSet of f . In case such sub-faSets exist, then

f cannot appear more than once in the database and, thus,

f is also inserted in the Bloom filter and pruned from fur-

ther consideration. Second, during the candidate generation

phase of the TPA, we also prune candidates that are sub-

sumed by some faSet in the Bloom filter, thus reducing the

computational cost of the algorithm. The frequency of those

faSets can be estimated as being equal to 1.

We have also generalized the use of Bloom filers for prun-

ing more faSets during the generation of ǫ-CRFs. In partic-

ular, we also insert into the Bloom filter all faSets with fre-

quency below some small system defined threshold value ξ0,

with ξ0 < ξr .

Using random walks for the generation of rare faSets. Our

approach is based on the generation of all ǫ-CRFs for a

given threshold ξr . A number of different algorithms exist

in the literature on which this generation can be based (e.g.,

[37]). Generally, the generation of all CRFs and even RFs

is required as an intermediate step in most cases. However,

locating all respective RFs for large datasets becomes inef-

ficient, due to the exponential nature of algorithms such as

Apriori. To overcome this, we use a random walks-based

approach [18] to generate RFs. In particular, we do not pro-

duce all RFs as an intermediate step for computing ǫ-CRFs

but, instead, we produce only a subset of them discovered

by random walks initiated at the MRFs. Our experimental

results indicate that, even though not all RFs are generated,

we still achieve good estimations for the frequencies of the

various faSets.

5.3 FaSet expansion

For a query Q, following the discussion of Sect. 2.2, besides

considering the faSets whose attributes belong to proj (Q),

we would also like to consider potentially interesting faSets

that have additional attributes. Clearly, considering all pos-

sible faSets for all combinations of (attribute, value) pairs is

prohibitive. Instead, we consider adding to proj (Q) a few

additional attributes B that appear relevant to it. Then, we

construct and execute Q′ as defined in Definition 3 and use

the TPA to compute the top-k (expanded) most interesting

faSets of Q′.

The selection of these attributes is dictated by expansion

rules. An expansion rule is a rule of the form A → B,

where A is a set of attributes in the user query, i.e., A ⊆

proj (Q) and B is a set of attributes in the database, i.e.,

B ⊆ A\proj (Q). The meaning of an expansion rule is that

when a query Q contains all attributes of A in its select clause,

then it should be expanded to contain the attributes of B as

well. The attributes of B do not necessarily belong to the rela-

tions of rel(Q). Let A1, . . . , Ar be attributes of proj (Q) and

123



YmalDB: exploring relational databases

Fig. 7 The system architecture

of YmalDB

A1 → B1, . . . , Ar → Br be the corresponding applicable

expansion rules. Then, B = ∪r
i=1 Bi .

Our default approach to faSet expansion is to expand each

user query Q toward one relation from the database D. We

consider only the relations that are adjacent to the query

Q, i.e., have a foreign key connection to some relation in

rel(Q). From these adjacent relations, we choose the one that

is “mostly connected” with rel(Q), i.e., the one for which

the size of its join with its adjacent relation in rel(Q) is the

largest. The main reason for this is that the relation with the

largest size of join will offer more database tuples, and there-

fore, more interesting faSets may be located. We expand Q

toward all the non-id attributes from the relation that was

selected as described above.

6 Experimental results

In this section, we first present YmalDB, our prototype rec-

ommendation system. Then, we present experimental results

regarding the efficiency of our approach. We conclude the

section with a user study.

6.1 YmalDB

YmalDB is implemented in Java (JDK 1.6) on top of MySQL

5.0. Our system architecture is shown in Fig. 7. After the

user submits a query, an optional query expansion step is

performed. Then, the query results along with the maintained

ǫ-CRFs are exploited to locate interesting faSets in the result.

These faSets are presented to the user who can request the

execution of exploratory queries for any of the presented

faSets and retrieve the corresponding recommendations.

We next describe the user interface and information flow

in YmalDB in more detail. YmalDB can be accessed via a

simple web browser using an intuitive GUI. Users can sub-

mit their SQL queries and see recommendations, i.e., Ymal

results. Along with the results of their queries, users are pre-

sented with a list of interesting faSets based on the query

result (Fig. 1). Since the number of interesting faSets may be

large, interesting faSets are grouped in categories according

to the attributes they contain. Larger faSets (i.e., faSets that

include more attributes) are presented higher in the list, since

larger faSets are in general more informative. The faSets in

each category are ranked in decreasing order of their inter-

estingness score and the top-5 faSets of each category are

displayed. Additional interesting faSets for each category

can be displayed by clicking on a “More” button. We also

present the top-5 faSets with the overall best interestingness

score independent of the category they belong to.

An arrow button appears next to each interesting faSet.

When the user clicks on it, a set of Ymal results, i.e., rec-

ommendations, appear (Fig. 2). These recommendations are

retrieved by executing an exploratory query for the corre-

sponding faSet. An explanation is also provided explaining

how these specific recommendations are related to the origi-

nal query result. Users are allowed to turnoff the explanation

feature.

Since the number of results for each exploratory query

may be large, these results are ranked. Many ranking criteria

can be used. In our current implementation, we present the

results ranked based on a notion of popularity. Popularity

is application-specific, for example, in our movies dataset,

when the Ymal results refer to people, such as directors or

actors, we use the average rating of the movies in which

they participate and present recommendations in descending

order of the associated rank. We present the top-10 recom-

mendations for each faSet. If users wish to do so, they can

request to see more recommendations.

Furthermore, users may ask to execute more exploratory

queries. This can be achieved by either (a) recursively, i.e.,

treating the exploratory query as a regular query and finding

interesting faSets in its result, or (b) relaxing the negation

of the exploratory query, i.e., relaxing some of the selection

conditions of the original query.

Finally, users may request the expansion of their original

queries with additional attributes. Instead of automatically

performing attribute expansion, expansion is done only if

requested explicitly, to avoid confusing the users with unre-

quested attributes. The results of the original user query are

expanded toward the set of attributes indicated by the expan-

123



M. Drosou, E. Pitoura

sion rules. Users receive a list of interesting faSets and rec-

ommendations as before.

We have also provided an administrator interface to allow

the fine tuning of the various performance-related parameters

(i.e., ǫ, ξr and ξ0) and also the specification of additional

expansion rules if needed.

In our user study in Sect. 6.4, we evaluate many of the

design decisions regarding the presentation of interesting

faSets and recommendations as well as regarding explana-

tions and expansions.

6.2 Datasets

We use both real and synthetic datasets. Synthetic datasets

consist of single relations, where each attribute takes values

from a zipf distribution with parameter θ . We use 10,000

tuples and 7 or 10 attributes for each relation. We also exper-

iment with different values of θ (we report results for θ = 1.0

and θ = 2.0). We use “ZIPF-|A|-θ” to denote a synthetic

dataset with |A| attributes and zipf parameter θ . We also

use two real databases. The first one (“AUTOS”) is a single-

relation database consisting of 12 characteristics for 15,191

used cars from Yahoo!Auto [3]. We also use a subset of this

dataset containing 7 of these characteristics. The second one

(“MOVIES”) is a multi-relation database containing infor-

mation extracted from the Internet Movie Database [1]. The

schema of this database is shown in Fig. 3. The cardinality

of the various relations ranges from around 10,000 to almost

1,000,000 tuples. We report results for a subset of relations,

namely Movies, Movies2Directors, Directors, Genres and

Countries.

6.3 Performance evaluation

We start by presenting performance results. There are two

building blocks in our framework. The first one is a pre-

computation step that involves maintaining information, or

summaries, for estimating the frequency of the various faSets

in the database. The second one involves the run-time deploy-

ment of the maintained information in conjunction with the

results of the user query toward discovering the k most inter-

esting faSets for the query. Next, we evaluate the efficiency

and the effectiveness of these two blocks.

We executed our experiments on an Intel Pentium Core2

2.4 GHz PC with 2 GB of RAM.

6.3.1 Generation of ǫ-CRFs

We evaluate the various options for maintaining rare faSets

in terms of (1) storage requirements, (2) generation time and

(3) accuracy. We base our implementation for locating MRFs

and RFs on the MRG-Exp and Arima algorithms [37] and

use an adapted version of the CFI2TCFI algorithm [13] for

producing ǫ-CRFs.

Tuning parameters. The basic parameters that control the

generation of the maintained ǫ-CRFs are the support thresh-

old ξr for considering a faSet rare and the accuracy-tuning

parameter ǫ. Other parameters include the Bloom filter

threshold (ξ0) and the number of employed random walks

(as described in Sect. 5.2). In our experiments, as a default,

we use a Bloom filter threshold ξ0 equal to 1 %, except for

MOVIES, for which many faSets appear in less than 1 % of

the tuples in the dataset. In this case, we use ξ0 = 0.01 %

(or around 12 tuples in absolute frequency). Also, we keep

the number of random walks fixed (equal to 50 per exam-

ined faSet). The values of our tuning parameters are shown

in Table 3.

We discretize the numeric values of our real datasets as

discussed in Sect. 5.2. In particular, we partition both the

production years of movies in the MOVIES dataset and cars

in the AUTOS dataset into decades and the price and mileage

attributes of the AUTOS dataset into intervals of length

equal to 10,000. Throughout our evaluation, we excluded

id attributes, since they do not contain information useful in

our case.

Effect of ξr and ǫ. Table 1 shows the number of gener-

ated faSets for our datasets for different values of ξr and

ǫ. Note that all MRFs are maintained as RFs independently

of the number of random walks. As ǫ increases, an ǫ-CRF is

allowed to represent faSets with a larger support difference,

and thus, the number of maintained faSets decreases. Also,

as ξr increases, more faSets of the database are considered

to be rare, and thus, the size of the maintained information

becomes larger. The number of ǫ-CRFs is smaller than the

number of RFs, even for small values of ǫ. This is especially

evident in the case of the AUTOS dataset, where many faSets

have similar frequencies.

Table 2 reports the execution time required for generating

faSets. We break down the execution time into three stages:

(1) the time required to locate all MRFs, (2) the time required

to generate RFs based on the MRFs and (3) the time required

to extract the CRFs and the final ǫ-CRFs based on all RFs.

We see that the main overhead is induced by the stage of gen-

erating the RFs of the database. We can reduce that overhead

by decreasing the number of employed random walks. This

has a tradeoff with the accuracy of the estimations we receive

as we will later see.

To evaluate the accuracy of the estimation of the support

of a rare faSet provided by ǫ-CRFs, we randomly construct

a number of rare faSets for our datasets. For each dataset,

we generate random faSets of length 1, . . . , ℓ, where ℓ is the

largest size for which there exist faSets with count in (ξ0, ξr ].

Then, we probe our summaries to retrieve estimations for the

frequency of 100 such rare faSets for each size. Here, we

report results for one synthetic and one real dataset, namely

ZIPF-10-2.0 and AUTOS-7. Similar results are obtained
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Table 1 Number of generated faSets

ξr # MRFs # RFs # CRFs # ǫ-CRFs # BF Pruned

ǫ = 0.1 ǫ = 0.3 ǫ = 0.5 ǫ = 0.7 ǫ = 0.9

ZIPF-7-2.0

5 % 129 1172 1172 1172 1171 680 138 129 1623 27644

10 % 59 1211 1211 1211 1210 707 104 95 1623 28339

20 % 44 1627 1627 1627 1626 942 110 101 1623 35667

ZIPF-10-2.0

5 % 259 5676 5676 5676 5674 2968 271 259 7753 228213

10 % 106 7065 7065 7065 7063 3778 202 190 7873 267504

20 % 61 10329 10329 10329 10327 5388 202 190 8090 363260

ξr # MRFs # RFs # CRFs #ǫ-CRFs # BF Pruned

ǫ = 1.0 ǫ = 2.0 ǫ = 3.0 ǫ = 4.0 ǫ = 5.0

ZIPF-7-1.0

5 % 402 758 758 758 496 403 402 402 3968 32090

10 % 217 927 927 927 491 335 329 263 4108 38665

20 % 84 1032 1032 1032 475 286 280 170 4129 42114

ZIPF-10-1.0

5 % 838 1895 1895 1895 1075 840 838 838 12174 131843

10 % 430 2377 2377 2377 1076 674 667 537 13014 163887

20 % 135 2772 2772 2772 1064 559 552 327 13266 18715

ξr # MRFs # RFs # CRFs # ǫ-CRFs # BF Pruned

ǫ = 0.1 ǫ = 0.3 ǫ = 0.5 ǫ = 0.7 ǫ = 0.9

AUTOS-7

5 % 80 1498 1103 397 243 190 162 133 1438 43569

10 % 74 1882 1404 502 299 238 203 170 1513 57091

20 % 43 2006 1511 531 319 253 216 175 1354 61797

AUTOS-12

5 % 214 36555 22360 3153 1361 1003 813 661 9225 1740111

MOVIES

5 % 452 591 556 547 544 543 541 539 68137 2101

for the other datasets as well. Figure 8 shows the average esti-

mation error as a percentage of the actual count of the faSets

when varying ǫ and ξr (ignore, for now, the dashed lines). We

observe that the estimation error remains low even when ǫ

increases. For example, it remains under 5 % in all cases for

ZIPF-10-2.0. Even though we do not have the complete

set of ǫ-CRFs available for our real dataset, because of our

random walks approach for producing RFs, the estimation

error remains under 15 % for that dataset as well.

Tuning ǫ. Next, we evaluate our heuristic for suggesting ǫ

values. Figure 9 depicts the ǫ values and corresponding num-

ber of ǫ-CRFs for each of the steps of our tuning algorithm for

two of our datasets, namely ZIPF-7-1.0 and AUTOS-7,

ξr = 10 % and various values of the storage limit b. We let

our algorithm suggest an ǫ value for each case. The suggested

value appears last in the x-axis of each plot. The located ǫ val-

ues vary depending on b and the specific dataset. Many times,

the storage limit b set by the system administrator may be

flexible, i.e., the system administrator may decide to allocate

a bit more space, if this results in a significant improvement of

ǫ, as is for example the case in Fig. 10a where an increase in

b from 330 to 340 leads to decreasing ǫ from 3.932 to 2.364.

Using Bloom filters and varying ξ0. As previously detailed,

Bloom filters can be exploited for fast estimations of faSet

frequencies when the number of faSets that appear only a

handful of times in the database is large (see, for example,

Fig. 11). Table 1 reports the number of faSets inserted into the

Bloom filter during the generation of the ǫ-CRFs (“# BF”)

and the number of faSets that we were able to prune dur-

ing the generation of RFs because they had a sub-faSet in
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Table 2 Execution time (in ms) for generating faSets

ξr MRFs RFs CRFs # ǫ-CRFs

ǫ = 0.1 ǫ = 0.3 ǫ = 0.5 ǫ = 0.7 ǫ = 0.9

ZIPF-7-2.0

5 % 10313 171641 610 657 687 657 750 735

10 % 5219 179031 657 656 719 688 765 782

20 % 1812 268063 1219 1219 1313 1282 1312 1344

ZIPF-10-2.0

5 % 31203 1421281 16922 17140 16688 16937 17266 17469

10 % 16265 1890844 24265 25046 26281 27781 25844 24328

20 % 5281 2991125 51859 53828 52094 56765 53453 51313

ξr MRFs RFs CRFs # ǫ-CRFs

ǫ = 0.1 ǫ = 0.3 ǫ = 0.5 ǫ = 0.7 ǫ = 0.9

ZIPF-7-1.0

5 % 33484 157250 203 219 219 218 219 219

10 % 8719 197375 297 313 313 344 313 313

20 % 1390 230344 375 407 422 422 453 390

ZIPF-10-1.0

5 % 98515 680359 1360 1406 1453 1437 1453 2203

10 % 24078 855734 2125 2188 2203 2218 2219 3485

20 % 3703 1081219 3703 3890 3969 3703 3875 4078

ξr MRFs RFs CRFs # ǫ-CRFs

ǫ = 0.1 ǫ = 0.3 ǫ = 0.5 ǫ = 0.7 ǫ = 0.9

AUTOS-7

5 % 22437 1416797 1297 985 1000 985 969 1015

10 % 13984 1977250 2203 1578 1562 1547 1719 1593

20 % 6782 2205453 2453 1797 1891 2125 1937 1891

AUTOS-12

5 % 98078 54142515 763235 440969 437531 443219 458766 467969

MOVIES

5 % 149844 15021781 125 125 109 110 109 125

Table 3 Tuning parameters

Parameter Default value Range

Estimation factor ǫ – 0.1–5.0

Rare threshold ξr 10 % 5 –20%

Bloom filter threshold ξ0 1 % 0.1–5 %

Random walks per faSet 50 10–50

the Bloom filter (“pruned”). We see that using Bloom filters

reduces the cost of generating faSets significantly. Figure 12

shows how the number of the generated MRFs varies as we

change the threshold ξ0 of the Bloom filter for one synthetic

and one real dataset and, also, the number of faSets inserted

into the Bloom filter during the generation of MRFs. In both

cases, we used ξr = 10 % and varied ξ0 from 1 to 5 %. We see

that, as ξ0 increases, more faSets are added into the Bloom

filter and less MRFs are generated. This has an impact on

the following steps of computing RFs, CRFs and ǫ-CRFs,

since we avoid storing all possible faSets that are subsumed

by some faSet in the Bloom filter. Setting ξ0 too high, how-

ever, excludes many faSets from being considered later by

the TPA (Fig. 13).

Effect of random walks. The cost of generating our sum-

maries can be reduced by employing the random walks

approach. Figure 13 reports the number of generated ǫ-CRFs

for ZIPF-7-2.0 and AUTOS-7 and the corresponding

execution time when we vary the number of random walks

per faSet. We see that by increasing the number of random

walks, we can retrieve more ǫ-CRFs. The generation time
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Fig. 8 Estimation error for 100 random rare faSets for different values of ξr when varying ǫ. a ZIPF-10-2.0 (ξr = 5%), b ZIPF-10-2.0

(ξr = 10%), c ZIPF-10-2.0 (ξr = 20%), d AUTOS-7 (ξr = 5%), e AUTOS-7 (ξr = 10%), f AUTOS-7 (ξr = 20%)
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Fig. 9 Automatically suggesting values for ǫ given a storage limit b. a ZIPF-7-1.0 (ξr = 10 %), b AUTOS-7 (ξr = 10 %)

of those ǫ-CRFs is dominated by the time required for the

intermediate step of generating the RFs, and thus, ǫ does not

affect the execution time considerably.

Next, we evaluate how the estimation accuracy is affected

by the number of random walks. We employ our two datasets

(ZIPF-10-2.0 and AUTOS-7) and generate ǫ-CRFs for

both of them varying the number of random walks used.

We use a larger number of random walks for the AUTOS-7

dataset, since this dataset contains more RFs than the syn-

thetic one. Figure 14 reports the corresponding average esti-

mation error. We see that the estimation error remains low

even when fewer random walks are used (Fig. 15).

Exploiting subsumption. We also conduct an experiment

to evaluate the performance of our greedy heuristic (Algo-

rithm 1) for exploiting subsumption among faSets of the same
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Fig. 10 Suggested ǫ values when varying b. a ZIPF-7-1.0 (ξr =

10%), b AUTOS-7 (ξr = 10%)

size. To do this, we randomly generate 10,000 tuples with

|A| = 1 taking values uniformly distributed in [1, v] for var-

ious values of v. Then, we construct all 1-faSets of the form

(ai ≤ A ≤ v) where ai ∈ [1, v], i.e., there are initially v

available faSets. We merge the available faSets using (1) the

greedy heuristic (GR) and (2) a random approach where, at

each round, we randomly select one of the available faSets

and check whether it can ǫ-subsume any other faSets (RA).

Figure 16 shows the final number of faSets when varying ǫ,

i.e., the size of the corresponding (1, ǫ)-cover sets. We see

that merging faSets of the same size can greatly reduce the

size of maintained information and that GR produces sets

of considerably smaller sizes than those produced by RA.

This gain is larger as the number of initially available faSets

increases.

6.3.2 Top-k faSet discovery

Next, we compare the baseline and the two-phase algorithms

described in Sect. 4. The TPA is slightly modified to take

into consideration the special treatment of very rare faSets

that have been inserted into the Bloom filter.

To test our algorithms, we generate random queries for

the synthetic datasets, while for AUTOS and MOVIES, we

use the example queries shown in Fig. 17. These queries are

selected so that their result set includes various combinations

of rare and frequent faSets. Figure 15 shows the 1st and 20th

highest ranked interestingness score retrieved, i.e., for the

TPA, we set k = 20, and for the baseline approach, we

start with a high ξ f and gradually decrease it until we get at

least 20 results. We see that the TPA is able to retrieve more

interesting faSets, mainly due to the first phase where rare

faSets of Res(Q) are examined.

We set k = 20 and ξr = 5% and experimented with

various values of ǫ. We saw that ǫ does not affect the inter-

estingness scores of the top-k results considerably. For the

above-reported results, ǫ was equal to 0.5. In all cases except

for q3 of the AUTOS database, the TPA located k results dur-

ing phase one, and thus, phase two was never executed. This

means that in all cases, there were some faSets present in

Res(Q) that were quite rare in the database, and thus, their

interestingness was high.

The efficiency of the TPA depends on the size of Res(Q),

since in phase one, the tuples of Res(Q) are examined for

locating supersets of faSets in themaintained summaries. The

TPA was very efficient for result sizes up to a few hundred

results, requiring from under a second to around 5s to run.

6.3.3 Comparison with other methods

We next discuss some alternative approaches for generating

database frequency statistics.

Maintaining faSets up to size ℓ. Instead of maintaining a

representative subset of rare faSets, we consider maintaining

the frequencies of all faSets of up to some specific size ℓ. As

an indication for the required space requirements, Table 4

reports the number of faSets up to size 3 for our datasets.

First, let us consider maintaining only 1-faSets and using

the independence assumption as described in Sect. 4.1. Fig-

ure 8 reports the estimation error when following this alter-

native approach (denoted “IND”). This approach performs

well for the synthetic dataset due to the construction of the

dataset, since the values of each attribute are drawn inde-

pendently from a different zipf distribution. However, this

is not the case for the real dataset, where the independence

assumption leads to a much larger estimation error than our
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Fig. 11 Support of the faSets for the AUTOS dataset (x-axis is the number of faSet ordered by their support, e.g., x=50 means that this is the 50th

less frequent faSet. a FaSet size 1, b FaSet size 2, c FaSet size 3, d FaSet size 4
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Fig. 12 Number of generated

MRFs and number of faSets

inserted into the Bloom filter for

different values of ξ0 when

ξr = 10 %. a ZIPF-7-2.0,

b AUTOS-12
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Fig. 13 Number of produced

faSets (top row) and execution

time (bottom row) when using

different numbers of random

walks for generating faSets for

ξr = 5%. a ZIPF-10-2.0,

b AUTOS-7, c ZIPF-10-2.0,

d AUTOS-7
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approach, even for small values of ǫ. Therefore, this approach

cannot be employed in real applications.

Considering that we are willing to afford some extra space

to maintain the support of faSets up to size ℓ, ℓ> 1, a more

sophisticated approach is Iterative Proportional Fitting (IPF)

[7]. Let f = {c1, . . . , cm} be a faSet with size m, m > ℓ. f

can be viewed as the result of a probabilistic experiment: We

associate with each selection condition ci ∈ f a binary vari-

able. This binary variable denotes whether the corresponding

selection condition is satisfied or not. The experiment has

v=2m possible outcomes. Let p1 be the probability that the

outcome is (0, 0, . . . , 0), p2 be the probability that the out-

come is (0, 0, . . . , 1) and so on. That is, pi is the probability

of f being satisfied by exactly the conditions corresponding

to the variables equal to 1 as specified by the i th possible

outcome, 1≤ i ≤ v (see Fig. 18 for an example with m = 3

and ℓ = 2). Having pre-computed the support of faSets up

to size ℓ, we have some knowledge (or constraints) for the

values of the discrete distribution p= (p1, . . . , pv)
T . First,

all pi s for which a faSet f of size m with m≤ ℓ is satisfied

must sum up to p( f |D), i.e., the pre-computed support. Sec-

ond, all pi s must sum up to 1. For example, for ℓ = 2, we

have m constraints due to the pre-computed support values

of all 1-faSets andm(m−1)/2 constraints due to the 2-faSets.
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Fig. 14 Estimation error for 100 random rare faSets and ξr = 5%

for different number of random walks employed during the generation

of ǫ-CRFs when varying ǫ. a ZIPF-10-2.0 (10 random walks), b

ZIPF-10-2.0 (20 random walks), c ZIPF-10-2.0 (30 random

walks), d ZIPF-10-2.0 (40 random walks), e ZIPF-10-2.0 (50

random walks), f AUTOS-7 (40 random walks), g AUTOS-7 (50 ran-

dom walks), h AUTOS-7 (60 random walks), i AUTOS-7 (70 random

walks), j AUTOS-7 (80 random walks)
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Fig. 15 Interestingness scores of the top 20 most interesting faSets retrieved by the TPA and the baseline approach. a ZIPF-10-2.0,

b AUTOS-12, c MOVIES

Therefore, we have m+m(m−1)/2+1 constraints in total.

However, there are more variables than constraints; there-

fore, we cannot determine all values of p. IPF is based on the

principle of maximum entropy, which states that, since there

is no reason to bias the estimated distribution of p toward

any specific form, then the estimation should be as close to

the uniform distribution as possible. IPF initializes the ele-

ments of p randomly and then iteratively checks each avail-

able constraint and scales by an equal amount the elements

of p participating in the constraint so that the constraint is

satisfied. It can be proved that this process converges to the

maximum entropy distribution.

The performance of IPF for ℓ = 2 and ℓ = 3 is shown in

Fig. 8, denoted “IPF-2” and “IPF-3”, respectively.We see that

for our synthetic dataset, IPF cannot outperform the indepen-

dence assumption approach. This is not the case for our real

dataset, where IPF performs better. Using IPF with ℓ = 2

results in much higher estimation errors than our ǫ-CRFs

approach. Increasing ℓ to 3 improves the performance of

IPF. However, this requires maintaining over 6,000 faSets in

total for the AUTOS-7 dataset, while the ǫ-CRFs approach

requires up to at most around 500 faSets, depending on the

value of ǫ and ξr .

In general, our ǫ-CRFs approach provides a tunable

method to retrieve frequency estimations of bounded error

for rare faSets of any size, without relying on an indepen-

dence approach. Also, the estimation error does not increase

for larger faSets, since wemaintain a representative set of not

only small faSets, as in the case of IPF, but also larger ones.

Non-derivable faSets. In the case of frequent itemsets, an

alternative approach for creating compact representations

is proposed in [10], where non-derivable frequent itemsets

are introduced. Non-derivable itemsets can be viewed as

an extension of closed frequent itemsets. In particular, a

non-derivable frequent itemset I is an itemset whose sup-

port cannot be derived based on the supports of its sub-

itemsets. For each sub-itemset, a deduction rule is formed,

based on the inclusion/exclusion principle. For example, con-

sider three items a, b and c and let supp(I ) (resp. supp(I ))

be the number of tuples containing (resp. not containing) I .
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Fig. 16 Size of the produced cover sets by the greedy heuristic (GR)

and the random approach (RA) when varying the number of initial

faSets v

Table 4 Number of faSets up to size 3

Dataset # 1-faSets # 2-faSets # 3-faSets

ZIPF-7-2.0 70 1901 13681

ZIPF-10-2.0 100 4048 46293

ZIPF-7-1.0 70 2100 31004

ZIPF-10-1.0 100 4500 106497

AUTOS-7 79 1022 4925

AUTOS-12 117 2844 28704

MOVIES 66726 380603 743152

The inclusion/exclusion principle for the itemset abc states

that supp(abc) = supp(a) − supp(ab) − supp(ac) +

supp(abc). Since supp(abc) must be greater than or equal

to zero, we can deduce that supp(abc) ≥ supp(ab) +

supp(ac) − supp(a). Generally, for every subset X of I ,

it is shown that:

supp(I ) ≤
∑

X⊆J⊂I

(−1)|I\J |+1supp(J ), if |I\X | is odd

supp(I ) ≥
∑

X⊆J⊂I

(−1)|I\J |+1supp(J ), if |I\X | is even

Therefore, for each itemset I , there are a number of rules pro-

viding upper and lower bounds for I . Let u I and lI be these

bounds, respectively. If u I = lI , then we can deduce that

supp(I ) = u I and I is a derivable itemset. The monotonic-

ity property holds for derivable itemsets, i.e., if I is derivable,

then every superset of I is derivable as well. Thus, an Apriori-

like algorithm is employed to generate all non-derivable fre-

quent itemsets.

There are two non-trivial extensions that need to be

addressed for applying non-derivability in our case. First, a

method is required for generating non-derivable rare faSets,

(a)

(b)

Fig. 17 Dataset queries used for evaluating TPA and the baseline

approach. a AUTOS, b MOVIES.

Fig. 18 Example of IPF constraints for ℓ = 2 when estimating

the support of the faSet {D.name = “M. Scorsese”, M.year = “2010”,

G.genre = “Action”}

instead of frequent ones. Second, frequency bounding must

be extended to allow approximations of the frequencies of

the various faSets.
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Fig. 19 Frequent, closed frequent, non-derivable frequent and minimal frequent faSets for various datasets. a ZIPF-7-1.0, b AUTOS-7,

c Mushroom
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Fig. 20 Interestingness of the top-10 faSets for queries with different number of results. a Different queries (|Res(Q)| ≈ 100), b Different queries

(|Res(Q)| ≈ 30), c Different (|Res(Q)|)

The first issue seems to not be easily solvable. When con-

structing deduction rules for a faSet I , it is assumed that

the frequencies of all its sub-faSets are either stored or can

be derived from the frequencies of the stored faSets. This is

not the case for a rare faSet I , since many of the sub-faSets

of I may be frequent, and thus, their frequency may not be

known.We considered following a reverse approach of form-

ing deduction rules based on super-faSets. However, we saw

that only lower bounds can be derived from such rules. The

second issue could be addressed by relaxing the notion of

derivability and allow the upper and lower bounds of a faSet

to differ by a factor δ. However, such an extension is not

clear, even for frequent faSets, since it is not clear how the

estimation error is bounded. The reason for this is that bounds

are computed based on multiple deduction rules where many

different sub-itemsets participate.

Nevertheless, to get some intuition about the prospects

of employing non-derivable faSets, we conducted an exper-

iment for frequent faSets. Figure 19 reports the number of

FFs,MFFs,CFFs andnon-derivable frequent faSets (NDFFs)

for our ZIPF-7-1.0 and AUTOS-7 datasets. The number

of CFFs and NDFFs is almost identical to that of FFs for

our datasets, even for small values of ξ f down to 1%, where

almost all faSets are considered frequent. This is due to the

fact that most faSets in our datasets have distinct frequen-

cies, and thus, the upper and lower bounds derived for the

various itemsets are not equal. Figure 19 also reports results

for Mushroom [2], a dataset widely used in the literature

of frequent itemset mining which does not have the same

property. Employing CFFs and NDFFs performs better for

this dataset. However, we see that the numbers of CFFs and

NDFFs are comparable.

6.3.4 Impact of result size

Next, we study the impact of the query result size on the

usefulness of our method. In general, the interestingness of

a faSet does not depend on the result size per se but rather on

the specific query. To illustrate this, we report the interest-

ingness score of the top-10 faSets of different queries with

roughly the same result size, in particular of queries retriev-

ing the country, year and genre of movies by a number of

different directors that have directed around 100 (Fig. 20a)

and 30 (Fig. 20b) movies each. We see that, even though

these queries have the same result size, the interestingness

of their faSets depends on the specific selection conditions,

i.e., director, of the query.

We also consider queries about movies of the same direc-

tor, namely F.F. Coppola, each retrieving a different num-

ber of results (Fig. 20c). These queries produce many com-
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Fig. 21 Query templates for the MOVIES database used for the user

evaluation

mon faSets which (especially the top 1-3 ones) get a higher

interestingness scores for smaller result sizes, since in this

case, their support in |Res(Q)| is larger. However, the rela-

tive ranking of these common faSets is the same in all queries.

Thus, the output of our approach is not affected by the result

size of the query (Fig. 17).

6.4 User evaluation

To evaluate the usefulness of YmalDB and its various

aspects, we conducted an empirical evaluation using the

MOVIES dataset, with 20 people having a moderate inter-

est in movies, 12 of which were computer science graduate

students, while the rest of them had no related background.

Although this may be considered a relatively small group of

users, it provides an indication of the potential impact of our

approach.

Users were first introduced to the system and were given

some time to familiarize themselves with the interface. Then,

each user was allowed to submit a number of queries to the

system. A set of template queries was available (Fig. 21)

which users could adjust by filling in their preferred direc-

tors, actors, genres and so on. Users could also submit non-

template queries. All users started by submitting template

queries. As they became more comfortable with the system,

many of our computer science users started experimenting

with their own (non-template) queries. The result size of the

various queries was between 20 and 6,700 tuples. User feed-

back seemed to be independent of the size of the retrieved

result set.

We evaluated the effectiveness of the system in two ways:

first, by asking users to explicitly comment on the usefulness

of the various aspects of the system and, second, by monitor-

ing their interactions with the system. More specifically, users

were asked to evaluate the following aspects: (1) the presen-

tation of interesting faSets as an intermediate step before

presenting recommendations, (2) the quality of the recom-

mendations, (3) the usefulness of explanations, (4) the use-

fulness of attribute expansion and (5) the depth of exploration

which can also be seen as an indication of the user engage-

ment with the system. Concerning system interaction, we

monitored: (1) how many template and non-template queries

the users submitted, (2) how many and which interesting

faSets the users clicked on for each query, (3) how many and

which recommendations users were interested, and (4) how

many exploration steps the users followed, i.e., how many

exploratory queries initiated at the originally submitted user

query were submitted. Table 5 summarizes our findings. We

also report the variation in these values. These variations

are relatively small and seems to be attributed to behavioral

habits whose analysis is beyond the scope of this paper. We

present some related comments along with the results.

Interesting faSets. All users preferred being presented first

with interesting faSets instead of being presented directly

with recommendations. Almost all users preferred seeing

interesting faSets grouped in categories according to the

attributes they contain. They felt that this made it easier

for them to focus on the attributes that they found to be

more interesting, which were different for each submitted

query. In particular, one user found this grouping interesting

in itself, in the sense that it provided a summary of the most

important aspects of the result of the original query. Only two

computer science users stated that, even though they gener-

ally preferred being presented with grouped faSets, they also

liked being presented with the top-5 most interesting faSets

independently of their categories. All of our non–computer

science users found this global top-k confusing and preferred

seeing only faSets grouped into categories. For this reason,

we decided to let users enable or disable this feature. Also,

most users, independently of their background, were more

interested in categories corresponding to large faSets because

they felt that these faSets were more informative.

Our monitoring concerning which faSets users eventually

clicked on showed that there were two types of users, those

that clicked on the first one or two faSets from each category

and those that chose one or two categories that seemed the

most interesting to them and then proceeded with clicking

all faSets in these categories, often using the “More” button

to retrieve more faSets in these categories. Around 75 % of

our users belonged to the former type.

Recommendations. Concerning recommendations, we

observed that the exploratory queries that users decided to

proceed with depended on the specific attributes for which

recommendations were being made. For example, when rec-

ommending movie years or genres, around 80 % of the users

decided to click on the first couple of available recommen-

dations. However, when recommending actors or directors,

the same users clicked on the names they were more familiar

with. This supports our decision to rank our recommenda-

tions based on the popularity of values in the dataset.
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Table 5 Summary of the results

of the user study
User comments Clicks

Query submission Computer science students preferred

non-template queries/others felt more

comfortable with template queries

5 template queries for all users

2–3 non-template queries on average

in addition for computer science users

(min = 1, max = 5)

Interesting faSets Liked the attribute grouping preferred

faSets with more attributes

75 % 1–2 faSets of all groups (breadth

exploration) (min = 1, max = 4)

25 % all faSets of 1–2 groups (depth

exploration) (min = 1, max = 3)

Recommendations Choice depends on attributes 80 % on the first 1–2 recommen-

dations (genre, year, etc.) and on

all recommendations known to them

(actors, directors)

20 % on many recommendations (up to 8)

Explanations Brief –

Optional

Attribute expansion 80 % liked it Over 90 % clicked first on expanded faSets

20 % found it arbitrary

Exploration depth – 70 % a “close” neighborhood of the original

query (1-2 steps)

30 % navigate away (6–7 steps)

Explanations. Contrary to what we expected, user feelings

toward using explanations were mixed. Generally, the more

users became familiarized with using the system, the less

useful they found explanations. Explanations were better

received by our non-computer science users, since our com-

puter science users were more interested in understanding

how our ranking algorithm works rather than reading the

explanations. Nevertheless, all users agreed that explanations

should be brief, as they felt that detailed explanations would

only clutter the page. Following user feedback, we added an

option to allow users to turn explanations off.

Attribute expansions. Around 70 % of our computer sci-

ence users and all others found query expansion very use-

ful, as they received more recommendations. This behavior

seems to be linked with the fact that users preferred seeing

larger interesting faSets, since more such faSets appear when

expanding queries. Some of our users felt that query expan-

sion was able to retrieve more “hidden” information from the

database, which was something they liked.

Exploration depth. Finally, concerning the amount of explo-

ration steps followed by the users, again, there were two types

of users. Almost 70 % of the users decided to explore a close

“neighborhood” around their original query (1–2 exploration

steps), by following a recommendation and then navigating

back to the previous page to select a different recommenda-

tion for their original query. The remaining users, after fol-

lowing a recommendation and seeing the results and the new

interesting recommendations of the corresponding explor-

ing query, would most often find something interesting in

the new recommendations and navigate further away from

their original query (6–7 exploration steps on average), most

often never returning back to the initial page from which their

exploration originated. As an example of such an exploration,

upon asking for thriller movies in 2006, one of our users fol-

lowed an interesting faSet about Germany and a consequent

recommendation about war movies in 2009. The interest-

ing faSets of the corresponding exploratory query included

the countries Serbia and Bosnia and Herzegovina as well as

Pantelis Voulgaris, which is a director of civil war movies in

Greece.

7 Related work

In this paper, we have proposed a novel database exploration

model based on exploring the results of user queries. Another

exploration technique is faceted search (e.g., [16,20,30]),

where results of a query are classified into different multi-

ple categories, or facets, and the user refines these results by

selecting one or more facet condition. Our approach is differ-

ent in that we do not tackle refinement. Our goal is to identify

faSets, possibly expand them and then use them to discover

other interesting results that are not part of the original query

results.

There is also some relation with query reformulation. In

this case, a query is relaxed or restricted when the number of

results of the original query is too few or too many, respec-

tively, using term rewriting or query expansion to increase

the recall and precision of the original query (e.g., [32]).

Again, our aim is not to increase or decrease the number of

retrieved query results but to locate and present interesting

results that, although not part of the original query, are highly

related to it. Besides reformulating the query, another com-

mon method of addressing the too many answers problem is
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ranking the results of a query and presenting only the top-k

most highly ranked ones to the user. This line of research is

extensive; the work most related to ours is research based on

automatically ranking the results [5,12]. Besides addressing

a different problem, our approach is also different in that the

granularity of ranking in our approach is in the level of faSets

as opposed to whole tuples. We also propose a novel method

for frequency estimation that does not rely on an indepen-

dence assumption.

Yet another method of exploring results relies on why

queries that consider the presence of unexpected tuples in

the result and why not queries that consider the absence of

expected tuples in the result. For example, ConQueR [41]

proposes posing follow-up queries for why not by relaxing

the original query. In our approach, we find interesting faSets

in the result based on their frequency and other faSets highly

correlated with them. Another related problem is construct-

ing a query whose execution will yield results equivalent to a

given result set [33,42]. Our work differs in that we do not aim

at constructing queries but rather guiding the users toward

related items in the database that they may be unaware of.

Other approaches toward making database queries more

user-friendly include query auto-completion (e.g., [21]) and

free-form queries (e.g., [34]). Khoussainova et al. [21] con-

sider the auto-completion of SQL user queries while they are

being submitted to the database. In our work, we consider the

expansion of user queries to retrieve more interesting infor-

mation from the database. The focus of our work is not on

assisting users in query formulation but rather on exploring

query results for locating interesting pieces of information.

[34] considers exploiting database relations that are not part

of user queries to locate information that may be useful to the

users. The focus of this work, however, is on allowing users

to submit free-form, or unstructured, queries and provide

answers that are close to a natural language representation.

In some respect, exploratory queries may be seen as

recommendations. Traditional recommendation methods are

generally categorized into content-based that recommend

items similar to those the user has preferred in the past (e.g.

[26,29]) and collaborative that recommend items that similar

users have liked in the past (e.g. [9,22]). Adomavicius and

Tuzhilin [4] provide a comprehensive survey of the current

generation of recommendation systems. Several extensions

have been proposed, such as extending the typical recom-

menders beyond the two dimensions of users and items to

include further contextual information [28]. Here, we do not

exploit such information but rather rely solely on the query

result and database frequency statistics.

Extending database queries with recommendations has

been suggested in some recent works, namely [24] and

[6,11]. Koutrika et al. [24] propose a general framework

and a related engine for the declarative specification of the

recommendation process. Our recommendations here are of

a very specific form. Recommendations in [6,11] have the

form of queries and are based on the relations they involve

and the similarity of their structure to that of the original user

query. Given past behavor of other users, the goal is to pre-

dict which tuples in the database the user is interested in and

recommend suitable queries to retrieve them. Those recom-

mendations are based on the past behavior of similar users,

whereas we consider only the content of the database and the

query result.

A somewhat related problem is finding interesting or

exceptional cells in an OLAP cube [31]. These are cells

whose actual value differs substantially from the anticipated

one. The anticipated value for a cell is estimated based on

the values of its adjacent cells at all levels of group-bys. The

techniques used in that area are different though, and no addi-

tional items are presented to the users. Giacometti et al. [17]

consider recommending to the users of OLAP cubes queries

that may lead to the discovery of useful information. This is

a form of database exploration. However, such recommenda-

tions are computed based on the analysis of former querying

sessions by other users. Here, we do not exploit any history

or query logs but, instead, we use only the result of the user

query and database information.

Finally, note that we base the computation of interesting-

ness for our results on the interestingness score. There is a

large number of possible alternatives none of which is con-

sistently better than the others in all application domains (see

[38] for a collection of such measures). In this paper, we use

an intuitive definition of interestingness that depends on the

relative frequency of each piece of information in the query

result and the database. Nevertheless, our exploration frame-

work could be employed along with some different inter-

estingness measure as well by adapting the estimation of

interestingness scores accordingly.

This paper is an extended version of [14] including gener-

alized faSets with range conditions, a prototype system and

a user evaluation. Some of our initial ideas on this line of

research appeared in [36].

8 Conclusions and future work

In this paper, we presented a novel database exploration

framework based on presenting to the users additional items

which may be of interest to them although not part of the

results of their original query. The computation of such

results is based on identifying the most interesting sets of

(attribute, value) pairs, or faSets, that appear in the result of

the original user query. The computation of interestingness

is based on the frequency of the faSet in the user query result

and in the database instance. Besides proposing a novel mode

of exploration, other contributions of this work include a fre-

quency estimation method based on storing an ǫ-tolerance
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CRFs representation and a two-phase algorithm for comput-

ing the top-k most interesting faSets.

There are many directions for future work. One such direc-

tion is to explore those faSets that appear in the result set less

frequently than expected, that is, the faSets that have the

smallest interestingness value. Such faSets seem to be the

ones most loosely correlated with the query and they could

be used to construct exploratory queries of a different nature.

Another interesting line for future research is to apply our

faSet-based approach in the case in which a history of pre-

vious database queries and results is available. In this case,

the definition of interestingness should be extended to take

into consideration the frequency of faSets in the history of

results.
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In this paper we demonstrate that it is possible to enrich query answering with a short

data movie that gives insights to the original results of an OLAP query. Our method,

implemented in an actual system, CineCubes, includes the following steps. The user

submits a query over an underlying star schema. Taking this query as input, the system

comes up with a set of queries complementing the information content of the original

query, and executes them. For each of the query results, we execute a set of highlight

extraction algorithms that identify interesting patterns and values in the data of the

results. Then, the system visualizes the query results and accompanies this presentation

with a text commenting on the result highlights. Moreover, via a text-to-speech

conversion the system automatically produces audio for the constructed text. Each

combination of visualization, text and audio practically constitutes a movie, which is

wrapped as a PowerPoint presentation and returned to the user.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Can we answer user queries with data movies? Why should

query results be treated simply as sets of tuples returned by the

DBMS as if they would be visualized in an orange CRT of the

70s? So far, database systems assume their work is done once

results are produced, effectively prohibiting evenwell-educated

end-users to work with them. Can we do something better?

In this paper, we revise the traditional assumptions of

query answering in order to raise the issue of insight gaining.

We serve the purpose of insight gaining in two ways, by

demonstrating that

 it is possible to produce query results that are (a) properly

visualized, (b) textually exploitable, i.e., enriched with an

automatically extracted text that comments on the result,

(c) vocally enriched, i.e., enriched with audio that allows

the user not only to see, but also hear, and,
 it is possible to come up with a working, extensible method

that accompanies a query result with the results of com-

plementary queries which allow the user to contextualize

and analyze the information content of the original query.

Interestingly, an insightful sequence of related queries that

provide context and depth to the original query, “dressed”

with the appropriate visualization and sound, ends up to be

nothing else but a data movie where cubes star.

Motivation: Yet, what does insight mean? In a recent

approach, Dove and Jones [1] combine the definitions from

the communities of Information Visualization and Cognitive

Psychology: whereas the InfoVis community defines insight

as “something that is gained” (after the observation of data by

a participant), psychologists define it as an “Aha!” moment

which is experienced. Interestingly, the two definitions can be

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys
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http://dx.doi.org/10.1016/j.is.2014.12.006

0306-4379/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.

E-mail address: pvassil@cs.uoi.gr (P. Vassiliadis).
1 Work conducted while in the Univ. of Ioannina.

Information Systems 53 (2015) 60–86



combined in a common view, where once the user works

with information, starting with an original state of mind on

the current state of affairs, there is an “Aha!”moment, where

the user suddenly realizes a new way of looking at the data,

resulting in a new mental model for the state of affairs, or

else, new understanding [1].

In order to facilitate the “Aha!” moment that creates

insight, the scientific community is spending more and

more effort nowadays in the area of data analysis. In a

recent SIGMOD keynote speech in 2012 [2], Pat Hanrahan

from Stanford University and Tableau Software makes a

case for visual analytics as the best way to support the data

analysis process; whereas the former involves the auto-

matic extraction of information accompanied by the

appropriate visualization, the latter can be summarized

as follows: “get the data, deliver them in a clean usable

form, contextualize them, extract relationships and pat-

terns hidden within them, generalize for insight, confirm

hypotheses and errors, share with others, decide and act”.

Our goal with the CineCubes system is to provide an

extensible tool that acts as the platform that supports the

insight generation of the data analysis lifecycle (contextualiza-

tion, pattern extraction, insight) by producing small stories

that make an impression “in a memorable way” to the data

enthusiast or the data worker who performs data analysis.

Key contributions: Then, the question arises: And how

can we do that? In a nutshell, our main result is the

introduction of a fully automated and extensible method

that allows the generation of a data movie, over an OLAP

database, with a simple user query as starting point. In

detail, our individual assumptions and contributions can

be listed as follows:

 We start with a realistic assumption that empowers us

with the ability to address the challenge in a clear

setting. We assume the existence of a star schema with

clean, reconciled hierarchies of reference data; we also

assume that the end users are interested in working

with OLAP queries over these data.
 We demonstrate how to complement the original query

with additional queries that allow the contextualization

and analysis of the original result. To provide contextuali-

zation, we exploit the defining values (i.e., selection con-

ditions) of the original query and automatically generate

complementary queries that compare its results with the

results of queries having similar values. Practically, this

exploits OLAP hierarchies and compares sibling values

within the same hierarchy. For example, if the user has

scoped the data of interest with selection conditions

Continent¼North America and Gender¼Male, we accom-

pany the original query with queries that compare North

America to other continents and men to women. To

provide further analysis of the results, we drill in the

grouping levels of the original result to see the breakdown

of its (aggregate) measures and understand its internal

structure. So, for example, if the user originally aggregates

information by 10 Year intervals and Continent, we provide

details by drilling-in to 5 Year intervals and Country.
 Whereas the above actions produce a first step towards

supporting the contextualization and analysis of the

data, we have also implemented a fully automated

mechanism for producing patterns and trends within

each of the above results. To this end, we introduce

highlight extraction methods that operate on the result

of a query and discover interesting findings (like e.g.,

the fact that a column contains a large share of the

highest or lowest values of a result, or that a row

systematically has higher/lower values than another).

These highlights serve also the visual presentation of

the data via appropriate coloring of important values.
 Automatic highlight generation is a key contribution and

not only for visualization purposes. In this paper, we also

demonstrate how to automate the generation of text

describing the aforementioned highlight findings (by

accompanying each type of highlight with a template

text) and how to convert this text to audio (via publicly

available text-to-speech conversion software).
 Much like movies, we organize our stories in acts, with

each act including several episodes all serving the same

purpose. We demonstrate that all the above can be

packaged with small programming effort in a Power-

Point presentation, practically presenting a small movie

to the user. The emphasis on small programmatic effort

is intended: an important goal of this paper is to

demonstrate that the technical barrier for someone

who would be interested to conduct research on this

problem is low. Existing API's for the construction of

PowerPoint presentations [3] and for text to speech

conversion [4] allow us to produce a PowerPoint pre-

sentation programmatically: each query can have a slide

where its result is neatly visualized; the slide's notes can

contain the text explaining the result and the slide's

audio can be produced via text-to-speech conversion.
 Quite importantly, and orthogonally to the above, we

have intentionally built our system in a way that is both

fully automated and extensible. Extensibility has been a

cornerstone of our approach and it is best demonstrated

by two extensibility mechanisms, (i) one concerning the

generation of the complementary queries to the original

question, and, (ii) another concerning the automatic

identification of interesting highlights within the results

of each query. In this paper, we discuss the points of

extensibility of CineCubes in detail.

Target audience and added value: Who can benefit

from CineCubes? There are many kinds of people that

currently work with data in order to deliver a report, a

live or a self-running presentation, an on-line talk, or a

journal article, and who would all benefit from such a

system. Business users with particular questions in mind

are a first such case [2]. People creating self-running

presentations [5] (i.e., presentations publicly available for

mass audiences without the presenter being involved),

either in a film-clip or a slide-show can benefit from a

system giving both insights and visual representations.

Collaborative work in small groups [5] can benefit from

CineCube presentations as they provide the basis to

broaden the scope of the original search and lead to new

questions to be answered. Journalists nowadays are more
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and more preparing data-driven articles that involve work-

ing with data and using infographics to make a case (see

[6] for a large list of examples – typically, New York Times,

Washington Post and the Guardian are reference news

media for infographics).

Overall, we claim that any data worker creating a report

summarizing findings and insights based on data can benefit

from CineCubes in many ways: automated highlight extrac-

tion, auxiliary query results, automatically generated text,

audio and visual highlight do not only work together to

generate contextualization, analysis, probes for further

exploration, and ultimately, insight, but also provide a

reusable means of precanned text and visual graphics that

can speed-up the compilation of the desired report. The

results of a user study that we have conducted (Section 5.4)

reveal that improvements come in two ways, and specifi-

cally, (a) better quality and (b) faster creation of the report.

Novelty: We believe that despite the vast amount of

work (refer to Section 6) in the areas of data visualization,

query recommendation, pattern mining, and, to a lesser

extent, text generation from query results, this paper

makes a disruptive contribution by raising the issue of

gaining insight from the data via small data movies (as

opposed to traditional, simple query answering) and provid-

ing an automated solution to it via (a) auxiliary queries and

(b) automated highlight extraction. The idea of a data movie

has been a driver for the compilation of individual tech-

niques in a single, fully automated and extensible packa-

ging: a movie requires episodes in its structure, visual

effects and audio; these needs have produced the solution

of query sequences, automatic highlight extraction, as well

as automatic text and audio generation via simple pro-

grammatic APIs. Thus, one should not regard the indivi-

dual parts of the method as the novel contribution of the

paper; it is their principled and extensible bundling in a

single, extensible tool that creates a research opportunity

and practically new research ground to explore.

Roadmap: In Section 2, we give an overview of the

method as well as a reference example. In Section 3, we

discuss our method's internals. In Section 4 we present the

software architecture of CineCubes with special emphasis

on the extensibility aspect and explain the low technical

barrier of the method, too. In Section 5, we show experi-

mental results in terms of efficiency and usability. In

Section 6, we discuss related work. We conclude with a

presentation of open issues in Section 7.

2. Method overview

2.1. Constructing a CineCube story

A really useful characteristic of cubes is that dimensions

provide a context for facts [7]. This is especially important

if combined with the fact that dimension values come in

hierarchies; therefore, every single fact can be simulta-

neously placed in multiple hierarchically structured con-

texts, providing thus the ability to analyze sets of facts

from multiple perspectives. For the reader who is not

knowledgable of OLAP hierarchies, Fig. 2 depicts two

dimension hierarchies in terms of both data and schema;

for the latter, see for example, dimension Education which

is characterized by a hierarchy of dimension levels

L0-L1⋯-L4, (from the most detailed to the most coarse

abstraction of values). At the same time, hierarchies allow

the comparison of their members with (a) ancestors, (b)

descendants and (c) siblings (children of the same parent).

For example, in Fig. 2, the ancestor of value ‘PhD’ (defined

at level L1) at level L3 is ‘Post secondary’ (denoted as

ancL3L1 ð‘PhD’Þ ¼ Post#Secondary). Assume now, a detailed

cube DS0 (which is the most detailed data set that we

can work with – a.k.a a fact table in OLAP terminology). We

require that DS0 is defined (a) over a set of dimensions

D¼ fD1;…;Dng and (b) over a measure M.

A query q in our context exploits the multidimension-

ality of the cube space and can be considered as a

quadruple q¼ ðDS0;ϕ; L; aggðMÞÞ where:

& ϕ is a conjunction of dimensional restrictions of the

form Di.Lj¼valuei – i.e., constraints that focus the

context of the query to certain dimensional values.
& L is a set of grouper dimensional levels (practically

comprising the GROUP BY attribute set in a SQL query),

over which the information will ultimately be grouped.
& agg(M) is an aggregate function applied to the measure of

the cube; again, we restrict ourselves to a single measure.

The semantics of a cube query q in terms of SQL over a

star schema defined by and D and DS0:

SELECT L , agg(M)

FROM DS
0, Dq

WHERE ϕ AND ϕ
⋈

GROUP BY L

where Dq and ϕ
⋈
serve the syntactic correctness of the query,

as Dq is the set of all the necessary dimension tables Di that

appear in the body of the query, Dq
DfD1;…;Dng and the

expression ϕ
⋈
is a conjunction of atoms needed to join DS0

and the tables of Dq. For practical reasons, in all our delibera-

tions, the set L is restricted to two groupers ½Lα; Lβ(, so that the

results can be represented as a crosstab table in a 2D screen.

Given a query q and its result q.RS, we can create a short

“data story” by seeking for answers to the following

questions:

0. A first assessment of the current state of affairs. Practi-

cally, this requirement refers to the execution of the

original query.

1. Put the state in Context. Are the results of agg(M) good?

What does “good” mean in this case? Typically, we

would expect to compare the result of the query q

to the results of similar queries over siblings of the

values that appear in the filter list ϕ.
2. Analysis of why things are this way. Given a certain

cuboid that is the result of a query, we would like

to provide some more insight on the presented

results; one way to achieve this is to show the

breakdown of the contributions of the detailed

values to the overall, aggregate value. Practically

speaking, this involves drilling-down for each of

the involved groupers and presenting the anal-

ysis of the internal breakdown for each of the

groupers.

D. Gkesoulis et al. / Information Systems 53 (2015) 60–8662



Clearly, this set of complementary queries that a story

comprises is extensible; existing and novel results in query

recommendation (see Section 6) can be progressively

plugged in our method in order to produce more informa-

tive CineCube movies.

2.2. Running example

To demonstrate our approach we use an example from

the well known Adult (a.k.a census income) data set

referring to data from 1994 USA census. There are 7

dimensions (Age, Native Country, Education, Occupation,

Marital status, Work class, and Race) in the data set and a

single measure, Hours per Week. We will use a uniform

terminology to refer to the dimensions' levels, (L0, L1, ‥).

Also, the ragged dimensions are complemented with

values identical to their parent, to make them balanced

and fit to the model of [8].

We start with an original query where the user has fixed

Education to ‘Post-Secondary’ (at level L3), and Work to

‘With-Pay’ (at level L2) and requests the Avg of HrsPerWeek

grouped by Education at level 2, and Work at level 1. We

depict these two dimensions in Fig. 2. We arrange the

presentation of the result in columns (Education) and rows

(Work). In Fig. 1, in the slide with the indication , one

can also see the actual presentation as a 2D matrix, the

visualization interventions (highlighting high and low

values with color) and the text accompanying the visual

presentation. The text is (a) part of the slide's notes (so that

the user can reuse it) and (b) orally voiced as an audio file

accompanying the slide. The slide's text is delivered via a

set of highlight extractionmethods that search the 2Dmatrix

for prominent features (high and low values, rows or

columns dominating some of these indicatory values, etc.).

Once the original query has been answered, we move on

to put it in context. Act I of the CineCube movie, including

slides and (dressed in blue color), performs the

following analysis: since there is a selection condition with

two atoms (Education.L3¼ ‘Post-Secondary’ and Work.

L2¼ ‘With-Pay’), we compare each of the defining values

with its sibling. So, slide presents a comparison

between the siblings of ‘Post-Secondary’ at level L3 of

Education (specifically, the single value ‘W/O post second-

ary’). The analysis shows that in 3 out of 3 cases people with

Fig. 1. An excerpt of a CineCubes story over the Adult data set. (For interpretation of the references to color in this figure caption, the reader is referred to

the web version of this paper.)
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Post-Secondary education work more (see Fig. 1 at top right

for the respective text). Similarly, in slide we relax the

constraint on Work and compare the value ‘With-Pay’ with

its siblings at level L2 of Work (again the single value ‘W/O

Pay’). The results are inconclusive; for lack of space we omit

the respective text from Fig. 1. In both these cases, we did

two things: (a) we took a single atomic formula from the

selection condition of the original query and replaced it by

fixing the defining value to the parent of the original value,

and (b) we set the grouping level at the level of the

replaced value.

Then, we detail the results of the original query in Act II

of the CineCube movie. In slides and (dressed in

red color) we present the results of drilling-down one level

per grouper value. Observe slide as an example (slide

is similar): for each of the values in the rows of the

original query (at level L1 of dimension Work) we drill-

down one level (at level L0 that is) and group-by accord-

ingly. For each aggregated cell of the result we also show

the number of detailed tuples that correspond to it, in

parentheses. The text is constructed similarly with the

previous act and includes a discussion of trends for high

and low values along columns and rows.

In the actual presentation that we generate, the set of

information-carrying slides is also enriched with transition

slides among the acts, explaining the intuition behind

them as well as with a summary of the key highlights in

the end (see Fig. 3).

One can find information about CineCubes at its web

page (http://www.cs.uoi.gr/ pvassil/projects/cinecubes/),

where links to source code, examples and a demo site are

available.

2.3. Internal structure of the CineCube movie

A typical movie story is structured in approximately 3

acts [9]: the first providing contextualization for the char-

acters as well as the incident that sets the story on the

move, the second where the protagonists and the rest of the

roles build up their actions and reactions and the third

where the resolution of the film is taking place. Each act is

composed of sequences of scenes: each scene involves a

change in the status of the plot (typically oscillating this

status in order to keep viewers interested) and a sequence

drives a subset of the plot to a major status update [9].

We follow this traditional structure of a movie in our

effort. We are clearly avoiding the temptation to automate

a 90' movie; on the contrary, we wish to keep the story

short and limited, as we anticipate users will explore

several CineCube stories before gathering their results

and discoveries from exploring the data. We organize Acts

in Episodes: each episode practically corresponds to a pptx

slide (although, we can envision extensions to other

formats – e.g., it could be a section in a document).

This result-based structure of the CineCube movie (left-

hand side of Fig. 4) is accompanied by a procedural-based

Fig. 2. Dimensions Workclass and Education.
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structure, with a set of classes that actually get the job done

(right-hand side of Fig. 4). Specifically, the generation of

queries (and slides) within each Act is delegated to the

abstract class Task. For reasons of extensibility, Task is an

abstract class: therefore, we materialize it differently for each

kind of Act (in Fig. 4 we depict two such materializations, for

Act I and Act II). The crux of the approach is that each episode

comes with (typically one, but sometimes more) queries in its

background; therefore, each Act generates SubTasks, with each

Subtask carrying and being responsible for the execution of a

query that gathers the data (that are ultimately visualized in

the main part of the slide). An Episode can have several

SubTasks to compute its contents. Since each SubTask carries

its own query depending on the Act/Task, the above mechan-

ism is extensible by appropriately constructing the method

generateSubTasks() for each materialization of Act.

Moreover, the determination of key findings, or High-

lights within each Episode is performed by the homon-

ymous class. We fundamentally consider the presentation

of results as a 2D matrix on the screen2; to this end, we

have structured several methods that scan a 2D matrix and

isolate interesting cells (top-k max or top-k min values,

domination of a class of values by a column or row, etc.).

The class Highlight is a point of extensibility where

methods for result extraction can be added to search for

more results within the answer of a query.

For more information on the internal structuring of

CineCubes, we refer the interested reader to Section 4, where

we discuss the software architecture as well as the two

aforementioned extensibility mechanisms in more detail.

Before that, however, our next step is to present the essence

of our method along with its formal foundations.

3. Foundations and method internals

In this section, we start with a short description of the

model for cubes and cube queries and then we move on to

describe (a) acts, as the means for collecting data via

complementary queries and (b) highlights as the means

for automatically detecting some important findings

within query results and the means for text construction.

We also provide the basic steps of our method for the

creation of CineCube movies.

3.1. Formal background

We base our approach on an OLAP model that involves (a)

dimensions defined as lattices of dimension levels, (b) ancestor

functions, mapping values between related levels of a dimen-

sion, (c) detailed data sets, practically modeling fact tables at

the lowest granule of information for all their dimensions, and

(d) cubes, defined as aggregations over detailed data sets. We

follow the logical cube model of [8], accurately summarized in

[11], which we customize here for the context of Cinecubes.

For the reader who is knowledgable of the OLAP terminology

but does not want to spend time on the formalities it is

sufficient to refer to Section 2.1 for the intuition of the basic

concepts; then, this subsection can be omitted.

Domains: We assume four countable pairwise disjoint

infinite sets exist: a set of level names (or simply levels) UL,

a set of measure names (or simply measures) UM, a set of

dimension names (or simply dimensions) UD and a set of

cube names (or simply cubes) UC . The set of attributes U is

defined as U ¼ UL [ UM. For each AAUL, we define a

Fig. 3. A snapshot of the internal structure of the CineCube movie.

Fig. 4. Extensibility mechanism for CineCubes.

2 Of course, other forms of visualization can accompany the result;

however, it is our conviction that the actual data should definitely be part

of the answer [10].
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countable totally ordered set dom(A), the domain of A,

which is isomorphic to the integers. Similarly, for each

AAUM, we define an infinite set dom(A), the domain of A,

which is isomorphic to the real numbers. We can impose

the usual comparison operators to all the values partici-

pating to totally ordered domains fo ; 4 ; r ; Zg.

Dimensions and levels: A dimension D is a lattice

(L,!) such that:

" L ¼ fL1;…; Lng is a finite subset of UL.
" domðLiÞ \ domðLjÞ ¼∅ for every ia j.
" ! is a partial order defined among the levels of L.
" The highest level of the hierarchy is the level D. ALL

with a domain of a single value, namely ‘D. all’.

Each path in the dimension lattice, beginning from its

upper bound and ending in its lower bound is called a

dimension path.

A family of functions ancL2L1 is defined, satisfying the

following conditions:

1. For each pair of levels L1 and L2 such that L1!L2, the

function ancL2L1 maps each element of domðL1Þ to an

element of domðL2Þ.

2. Given levels L1, L2 and L3 such that L1!L2!L3, the

function ancL3L1 equals to the composition ancL2L1○anc
L3
L2
.

This implies that:
" ancL1L1 ðxÞ ¼ x;
" if y¼ ancL2L1 ðxÞ and z¼ ancL3L2 ðyÞ, then z¼ ancL3L1 ðxÞ;
" for each pair of levels L1 and L2 such that L1!L2, the

function ancL2L1 is monotone (preserves the ordering

of values). In other words: 8x; yAdomðL1Þ: xoy )

anc L2
L1
ðxÞrancL2L1 ðyÞ; L1!L2.

Schemata and data sets: A schema S is a finite subset of

U . Normally, we will represent a schema as divided in two

parts: S¼ ½D1 * L1;…;Dn * Ln;A1;…;Am+, where:

" {L1,…,Ln} are levels from a dimension set D¼{D1,…, Dn}

and level Li comes from dimension Di, for 1r irn.
" {A1,…, Am} are attributes, i.e. measures and levels.

A detailed schema S0 is a schema whose levels are the

lowest in the respective dimensions. When we refer to a

level L as the lowest in the dimension, it means that there

does not exist any other level L’, such that L’ !L.

A tuple t over a schema S¼[D1.L1,…, Dn.Ln, A1,…, Am] is

a total and injective mapping from S to domðL1Þ,

⋯, domðLnÞ , domðA1Þ ,⋯, domðAmÞ, such that

t½X+AdomðXÞ for each XAS.

A data set DS over a schema S¼[D1.L1, …, Dn.Ln, A1, …,

Am] is a finite set of tuples over S such that:

" 8t1; t2ADS, t1[L1,…, Ln]¼t2[L1, …, Ln] ) t1¼t2.
" for no strict subset X - fL1;…; Lng, the previous

also holds.

In other words, A1, …, Am are functionally dependent

(in the relational sense) on levels {L1,…,Ln} of schema S. A

detailed data set DS0 is a data set over a detailed schema S0.

A star schema (D, S0Þ is a couple comprising a finite set

of dimensions D and a detailed schema ðS0Þ defined over (a

subset of) these dimensions.

Selection filters: An atom is true, false, (with obvious

semantics) or an expression of the form ancL1L0 ðL1Þ ¼ v, or in

shorthand, L1¼v, with vAdomðL1Þ.

A selection condition ϕ is a formula involving atoms

connected via the logical connective 4 , with at most one

atom per dimension. The expression ϕðDSÞ is a set of

tuples X belonging to DS such that when, for all the

occurrences of level names in ϕ, we substitute the respec-

tive level values of every xAX, the formula ϕ becomes

true. A detailed selection condition ϕ0 is a selection condi-

tion where all participating levels are the detailed levels of

their dimensions.

Cube queries: The user can submit cube queries to the

system. A cube query specifies (a) the (basic) cube over

which it is imposed, (b) the selection condition that

isolates the records that qualify for further processing, (c)

the aggregator levels, that determine the level of coarse-

ness for the result, and (d) an aggregation over one of the

measures of the underlying cube that accompanies the

aggregator levels in the final result. More formally, a cube

query is an expression of the form:

q¼ ðDS0;ϕ; ½Lα; Lβ+; aggðM
0
mÞÞ

where:

" DS0 is a detailed data set over the schema S¼ ½L01;

…; L0n;M
0
1;…;M0

k +, mrk.
" ϕ is a detailed selection condition, expressed as a

conjunction of atoms ϕ14…4ϕk.
" Mm

0
is a measure, mrk.

" Each of the levels Lα and Lβ belongs to a dimension

of DS0.
" aggAfsum;min;max; count; avgg.

The semantics of a cube query in terms of SQL over a

star schema are:

SELECT Lα , Lβ , aggðM
0
mÞ

FROM DS
0, Dq

WHERE ϕ AND ϕ
⋈

GROUP BY Lα , Lβ

where Dq is the set of all the necessary dimension tables Di

that appear in the body of the query, Dq
DfD1;…;Dng and

the expression ϕ
⋈

is a conjunction of atoms of the join

conditions between DS0 and the tables of Dq (in the

extreme case, this involves all dimension tables and

Dq ¼ fD1;…;Dng).

The respective semantics in terms of relational algebra

are:

c¼ γ
aggðM0

mÞ

Lα ;Lβ
ðσϕðDS

0
⋈DqÞÞ

where γaggðMÞ

A denotes the grouping operator where the

aggregate function agg is applied to a measure M, over a

set of grouper attributes A.
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For clarity, we summarize here the assumptions we have

made for the query class of the supported cube queries:

 We work with cube queries that involve a single

measure.
 We assume strictly two aggregator levels for the result;

this allows a straightforward tabular representation of

the result in a 2D screen.
 We assume that the selection condition is defined as the

conjunction of a set of atomic formulae, one per dimen-

sion, each of which is of the form L¼ v, with L being a

dimension level and v being a valid value for this level.

Naturally, the above list implies that extending the

query class to multiple measures and groupers as well as

to selection conditions involving disjunctions or level

comparisons is a research challenge for future work.

A note on data presentation is due at this point. Although

there are several methods that we can employ to visualize

results, like for example scatter plots on a 2D space or bar

charts with multiple data series, we would like to stress once

again that any such visualization methods are complementary

to the actual data [10]. So, in the rest of our deliberations, we

treat the results of a cube query of the above form as being

visualized in tabular format with the values of Lα as rows and

the values of Lβ as columns. Expanding the method for more

than two dimensions (via the typical nesting of dimensions

in rows and columns) is part of future work.

3.2. Act I: putting things in context – or “How good is the

original cube compared to its siblings?”

In this subsection, we deal with the first of the acts. The

main purpose of the first act is to provide a context for the

original query. So, we compare the marginal aggregate

results of the original query to the results of “sibling”

queries that use “similar” values in their selection condi-

tions (to be explained right next).

Method: We assume an original query and we want to

compare its results with similar queries. We define a sibling

query as a query with a single difference to the original:

instead of an atomic selection formula Li¼vi, the sibling

query contains a formula of the form LiAchildrenðparentðviÞÞ.

Formally, given an original query

q¼ ðDS0;ϕ14…ϕx4…4ϕk; ½Lα; Lβ%; aggðMÞÞ;

ϕi: Li ¼ vi; i¼ 1;…; k

a new query qs is a sibling query if it is of the form

qs ¼ ðDS0;ϕ14…ϕ
n

x4…4ϕk; ½Lα; Lβ%; aggðMÞÞ;

ϕi: Li ¼ vi; i¼ 1;…; x&1; xþ1;…; k;ϕ
n

x : Lxþ1 ¼ anc
Lxþ 1

Lx
ðvÞ

Naturally, if q originally has k atomic selections, it also

has k sibling queries.

To compare the results of the original query to the ones

of its siblings, one would need to lay out all the k sibling

queries on the same screen and visually inspect their

differences. This becomes too hard to exploit as k increases

– in fact, even with a very small k (e.g., k¼2) it can be too

hard to be able to visually compare the results. So we need

to resort to auxiliary comparisons that provide the context

needed. To this end, we introduce two marginal sibling

queries, one for each aggregator. Each time, we keep one of

the two aggregators, and the other becomes Lx. If we

combine this with the fact that the new selection condi-

tion ϕ
n

x restricts Lx to the siblings of the original value v,

then the resulting 2D matrix has one of the original

aggregators in one of its two dimensions and the siblings

of v on the other. This way, the marginal values of the

original query on one of the two aggregators are compared

to the respective marginal values of the siblings.

Formally, given an original query

q¼ ðDS0;ϕ14…ϕx4…4ϕk; ½Lα; Lβ%; aggðMÞÞ;

ϕi: Li ¼ vi; i¼ 1;…; k

its two marginal sibling queries are

qsα ¼ ðDS0;ϕ14…ϕ
n

x4…4ϕk; ½Lα; Lx%; aggðMÞÞ;

ϕi: Li ¼ vi; i¼ 1;…; x&1; xþ1;…; k;ϕ
n

x : Lxþ1 ¼ anc
Lxþ 1

Lx
ðvÞ

qsβ ¼ ðDS0;ϕ14…ϕ
n

x4…4ϕk; ½Lx; Lβ%; aggðMÞÞ;

ϕi: Li ¼ vi; i¼ 1;…; x&1; xþ1;…; k;ϕ
n

x : Lxþ1 ¼ anc
Lxþ 1

Lx
ðvÞ

Example. The original query is expressed as

q¼ ðDS0;W(L2 ¼ ‘With&Pay’4

E(L3 ¼ ‘Post&Sec’; ½W(L1; E(L2%; avgðHrsÞÞ

In the reference example, slides and involve

the two marginal subqueries – see for example the former

with the selection set to the parent(‘With-Pay’) (i.e., setting

the workclass dimension one level higher than the original

query, to E:L4) and the grouper pertaining to workclass to

the level of ‘With-Pay’ (i.e., E:L3):

The equivalent SQL statements are:

D. Gkesoulis et al. / Information Systems 53 (2015) 60–86 67



3.3. Act II: explaining variation – or ‘drilling into the

breakdown of the original result”

The purpose of Act II is to help the user understand why

the situation is as observed in the original query. In order to

shed some more light to what is happening, we drill in the

details of the cells of the original result in order to inspect the

internals of the aggregated measures of the original query.

Assume a cube query

q¼ ðDS0;ϕ14…4ϕk; ½Lα; Lβ#; aggðMÞÞ; ϕi: Li ¼ vi; i¼ 1;…; k

and its result, visualized as a 2D matrix. Then, each cell c of

this result is characterized by the following cube query:

qc ¼ ðDS0;ϕ14…4ϕk4ϕc ; ½Lα; Lβ#; aggðMÞÞ;

ϕi: Li ¼ vi; i¼ 1;…; k;

ϕc:ϕ
c
α4ϕ

c
β ¼ ðLα ¼ vcα4Lβ ¼ vcβÞ

For each of the aggregator dimensions, we can generate

a set of explanatory drill in queries, one per value in the

original result:

qαi ¼ ðDS0;ϕ14…4ϕk4ϕ
αi
; ½Lα%1; Lβ#; aggðMÞÞ;

qβi ¼ ðDS0;ϕ14…4ϕk4ϕ
βi
; ½Lα; Lβ%1#; aggðMÞÞ;

with αi and βi being all the values of the original result for

the grouper levels. So, each of the two slides has a set of

such queries.

Example. Observe slide where we drill-down for

values Gov, Private and Self-emp via the explanatory drill

in queries for dimension Work.

qgov ¼ ðDS0;W&L2 ¼ ‘With% Pay’4W&L1 ¼ ‘Gov’4

E&L3 ¼ ‘Post% Sec’; ½W&L0; E&L2#; avgðHrsÞÞ

qprv ¼ ðDS0;W :L2 ¼ ‘With% Pay’4W :L1 ¼ ‘Private’4

E:L3 ¼ ‘Post% Sec’; ½W :L0; E:L2#; avgðHrsÞÞ

qs%e ¼ ðDS0;W & L2 ¼ ‘With% Pay’4W & L1 ¼ ‘s% e’4

E & L3 ¼ ‘Post% Sec’; ½W & L0; E & L2#; avgðHrsÞÞ

Observe that due to the fact that this is the special case

where selection conditions involve grouper values at finer

levels of detail, we have completely removed the ato-

mic formula of the dimension that we drill-down

(W & L2 ¼ ‘With% Pay’). The equivalent SQL statements are

depicted in Fig. 5.

3.4. Highlights and text

As already mentioned, the extraction of highlights is

orthogonal to the query that creates the results of a slide.

Once the results of the query are computed and organized

in a 2D matrix, we utilize a palette of highlight extraction

methods that take a 2D matrix as input and produce

important findings as output. This way, (a) we can reuse

highlight extraction methods to all the query results,

independently of the Act or the query that has been

executed, and, (b) we can gracefully extend the palette of

highlight extraction methods with more results. We have

implemented a small number of highlight extraction meth-

ods for the moment that include the highlighting of the top

and bottom quartile of values in a matrix, the absence of

values from a row or column, the domination of a quartile

by a row or a column (i.e., when all the values of a quartile

appear in a certain row or column), the identification of min

and max values, etc. Clearly, there is a vast area of enriching

this palette (trend analysis, correlations, relative relation-

ships of rows and columns, to name just a few); however,

implementing the full spectrum of such techniques can be

done with diligence as part of future work.

Text is constructed by a Text Manager that customizes

the text per Act, by plugging values to a template that

comes with each act. Compare the following excerpt with

the text of slide in Fig. 1.

In this slide, we drill-down one level for all values of

dimension odim4at levelol4 . For each cell we show

both the oagg4of omeasure4 and the number of

tuples that correspond to it …

3.5. Creation of CineCubes

Having explained all the individual steps, we nowmove

on to discuss the overall process for creating a CineCube

movie. In its current configuration, a CineCube movie

Fig. 5. Generation of queries for Act II (in SQL).
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includes three kinds of acts: the Introductory Act (including

the introductory slide), three Operational Acts including

the act involving the original query and the two acts for

the management of complementary queries, and, finally, a

Summary Act with a summary slide with all the important

highlights of the previous three acts.

Overall the method includes the following steps:

1. Construct Introductory Act

2. For all the Operational Acts, execute the Construct

Operational Act algorithm that calculates the Act's con-

tents (result visualization, highlights, text and audio)

3. Construct Summary Act in the end

4. Wrap-up the Acts in a PowerPoint movie

The first step of the method, the construction of the

Introductory Act, is trivial. The second step, the compu-

tation of the contents and presentation of the Opera-

tional Acts, is outlined in the Algorithm of Fig. 6. The

third step, which involves the construction of the Sum-

mary Act, is simply a slide with the text of the highlights

copied to it, organized per act. Finally, the fourth step,

wrapping-up the individual acts in a single report,

introduces a few programmatic tasks worth mentioning

here. In a nutshell, for every episode, we create a slide,

with its title and contents (i.e., the 2D tables or the text,

depending on the type of slide). This can be done

straightforwardly with the programming facilities pro-

vided by the Apache POI. Unfortunately, though, POI

does not support the management of notes, where we

actually store the text of each slide, and audio. This is

done by exploiting the open nature of pptx documents

(see Section 4.1).

4. Software architecture and the pledge to extensibility

In this section, we start with a description of the

employed technologies that allow the programmatic con-

struction of CineCube movies; we believe this description

can help the interested reader to probe further in the

employed API's that come with a quite low technological

barrier for the new-comer. Second, in this section, we

describe the software architecture of CineCubes with the

main goal of highlighting the different ways in which

CineCubes is extensible. Extensibility is a key feature that

should not be underestimated by no means, as it can allow

a system to expand in diverse ways. In fact, in this case, the

extensibility-oriented architecture of CineCubes is the

backbone for all the diverse ways in which future research

can be pursued. Readers who are not interested in the

software-related aspects of our method may prefer to

jump directly to Section 5 for the experimental assessment

of our method; this can be done without a gap in the

understandability of the text.

4.1. Employed technologies

One of the major goals of this paper is to highlight how

we can automatically construct a CineCube presentation

that includes result visualization, text and audio. So, before

elaborating further in the software architecture of Cine-

Cubes, it is worth discussing the programmatic simplicity3

of our method. In this subsection, we explain the main

technologies via which our PowerPoint presentations are

programmatically constructed.

Apache POI [3] is a Java API that provides several

libraries to create and modify Microsoft Word, PowerPoint

and Excel files. MS Office files obey the Office Open XML

standards (OOXML) and Microsoft's OLE 2 Compound

Document format (OLE2). More specifically, XSLF is the

Java implementation of the PowerPoint 2007 OOXML

(.pptx) file format in POI.

The automatic manipulation of .pptx files is relatively

simple for simple tasks. See the following excerpt for

creating a file and a slide:

XMLSlideShow ss¼new XMLSlideShow();

XSLFSlideMaster sm¼ss.getSlideMasters()[0];

XSLFSlide sl¼ss.createSlide

(sm.getLayout(SlideLayout.TITLE_AND_CONTENT));

XSLFTable t¼sl.createTable();

t.addRow().addCell().setText(‘‘added a cell’’); …

Fig. 6. Constructing an Operational Act.

3 We would insist that simplicity is a strong feature of any method,

making it scalable, extensible and maintainable and fundamentally

different to naiveness or superficiality.
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Also, we automate the construction of text that char-

acterizes each slide. We add the text for each slide that we

create as a slide's note. At the same time, the existence of

text can help us create a narrative as audio. We use the API

provided by MARY [4], which is an open-source, multi-

lingual Text-to-Speech Synthesis (TTS) platform written in

Java and allows to generate one audio file per slide, simply

by providing the notes of the slide as input to a method call.

MaryInterface m¼new LocalMaryInterface();

m.setVoice(‘‘cmu-slt-hsmm’’);

AudioInputStream audio¼m.generateAudio(‘‘Hello’’);

AudioSystem.write(audio, audioFileFormat.Type.WAVE,

new

File(‘‘myWav.wav’’)); …

It is worth mentioning here, that unfortunately, the

current version of POI does not support the management

of notes, where we actually store the text of each slide, and

audio. Fortunately, the open nature of MS Office allows us to

exploit its internal structure. It is noteworthy that each MS

Office file is actually a zipped folder with a rigid structure,

within which, XML and media files are located in a

principled fashion. So, to deliver a presentation in the form

that we wish to have it, we proceed as follows (via the

appropriate WrapUp Manager): (i) we unzip the pptx in a

temporary folder, (ii) create appropriate files for the notes

in the ppt/notes/ folder, along with the necessary links that

link them to their slide, (iii) do the same for audio at the

ppt/media folder, and (iv) zip the folder again to a .pptx file.

Overall, despite the existence of several nuts and bolts

that need fine tuning, the main lesson learned here is that

the packaging of the results of our method, one by one as

slides in a presentation is attainable with neat programming

facilities, already available in the Web.

4.2. Architecture under the prism of extensibility

As already mentioned, CineCubes is built with inherent

points of extensibility in its internal structure. In this

subsection, we review the core parts of the internal

architecture of Cinecubes and discuss how they can be

extended. In Fig. 7 we depict the core classes of the tool

and in Fig. 8 we depict the sequence diagram of our

method, as described in Section 3.5.

Tasks and subtasks are the main mechanism via which

queries are generated. The package TaskMgr contains the

necessary classes which help us to create a new kind of Act.

Here we have a TaskMgr class to manage the tasks. A first

point of extensibility of our method involves the creation of

tasks: the Task class is abstract to facilitate the creation of a

different type of task for each new kind of Act via the

appropriate materialization – e.g., in our implementation

we have created two subclasses for Act I and Act II and one

subclass to implement the original request. Another point of

extensibility, with an eye to future work, is located in the

abstract class ExtractionMethod which is used in order to

provide us with results. Currently, we materialize this class

via SqlQuery to get the result from a relational database;

however, in future we can materialize it differently to get

data from different sources e.g., XML or SPARQL files. Class

Result keeps the query result in a 2D matrix and imple-

ments a set of functions to manipulate this matrix (Fig. 9).

One of the strongest points of extensibility and key to

the operation of CineCubes is the enrichment of each slide

with the possibility of extracting highlights from the data

that it hosts. The package HighlightMgr hosts a dedicated

Highlight Manager class to extract Highlights and an

abstract class Highlight, which is open to extension for

finding highlight in episodes. In our current implementa-

tion, we have created the subclasses of Fig. 10, with the

obvious semantics, all of which implement a method

execute() that takes a 2D matrix of values as input and

creates lists of values where the findings are stored.

The parts of a story are glued together via the Story class

and the respective StoryMgr. In the package StoryMgr, we

host the main classes needed to create a Story. This package

has the class StoryMgr to manage the story and the Story

class. Also, it has the classes which implement the acts, the

episodes of each act and the visualization of an episode.

There are several points of extensibility here:

! The implementation of the episodes of Act is performed

via an abstract class Episode, which in our approach is

materialized as PptxSlide, although in the future one

can materialize it in other ways too, to create different

types of episodes (e.g., frames in :wmv file).
! In a similar fashion, the Story class relates to the

abstract class FinalResult, currently materialized as

PptxSlideshow in our method and also open to exten-

sions (such as :wmv file), in the future.
! The Visual class is an abstract class, currently materi-

alized by the Tabular class, which visualizes the result

as a pivot table; again, in the future we can create new

kinds of visualization (such as a chart of all kinds).

Episodes are key for managing results: observe how the

Episode class is associated with the Highlight, the Audio, the

Visual class and the Subtask class (of package TaskMrg, not

depicted here) and glues all these together.

A final point of extensibility involves the format of the

result presented to the user. The package WrapUpMgr

serves the purpose of packaging all the different parts

computed by the previous packages in a single, final result

delivered to the user. Again, this package is constructed in

an extensible way as it contains the abstract class Wra-

pUpMgr which, then, has to be materialized by a subclass

in order to construct the proper format for a story.

Currently, we create the subclass PPTXWrapUpMgr which

returns to the user a Microsoft PowerPoint presentation.

4.3. Extending the set of result formats

One possible way to extend the tool involves adding

more kinds of formats for the final result (e.g., as docu-

ments, movies, etc.). To achieve this extension, one should

extend the following abstract classes by materializing the

appropriate subclasses dedicated to the new format:

! the abstract class Episode should be appropriately mate-

rialized in order to shape the results into presentable
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form (in the current implementation, the PptxSlide class

does that; we could have a dedicated class for para-

graphs for MS Word, PDF or HTML documents).

Remember that episodes hold all the important infor-

mation (highlights, visual, and audio parts – see Fig. 11

and the respective discussion).

Fig. 7. Core classes of Cinecubes.
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 the class FinalResult should be materialized in

order to hold the final result in a file in the new

format (in the current implementation, the PptxSlide-

show class does that; a respective document class

should do the work per document format), and, finally,
 the abstract class WrapUpMgr should be appropriately

materialized in order to produce this file (in the current

implementation, the PptxWrapUpMgr class does that).

4.4. Extending the set of Acts

In this subsection, we present the sequence of steps

needed in order to extend the system with a new Act,

along with its constituents. We will use the existing acts

that we have already implemented as reference cases for

this discussion. To create a new act for our current method

we must implemented one new class which materializes

the class Task. Moreover, the new class must implement

the two abstract methods of class Task: (a) the generate-

SubTask() and (b) conctructActEpisodes(). Also, we must add

a new method in class TextExtractionPPTX such that to

extract the proper contextual description added at each

slide of new act. For example, for Act I of our approach we

materialized the class TaskActI which implements the two

aforementioned abstract methods along with the method

createTextForAct1(). Similarly, for Act II, we materialized

the class TaskActII which implements the two abstract

methods and the method createTextForAct2().

4.5. Extending the set of highlight extraction methods

To have the ability to create different highlights we create

an abstract class Highlightwhich has an abstract method with

name execute(). In our current implementation, we have

created six subclasses which help us to create the different

highlights for our episodes. In Fig. 10, we can observe that all

the subclasses of Highlight implement the abstract function

execute(). In addition, every time we want to add a new kind

of Highlight we must add a new method in class TextExtrac-

tionPPTX such that to extract the proper text for new high-

light. We conclude that in order to enter a new highlight we

must create a new class (which materializes the Highlight

class), to implement the abstract method execute(), and to add

a new method to class TextExtractionPPTX.

Fig. 8. Sequence diagram.
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4.6. Assessing the Extensibility of our framework

In Fig. 12, we present the programming effort which was

needed in order to extend the current approach of our method

for adding Act II. As already mentioned, adding a new kind of

Act requires to create one new class and to implement three

methods. Moreover, in order to create a new kind of highlight,

we must create one new class and implement two methods.

We believe that in summary, the programming effort to extend

our method in each flavor of extensibility is too low.

5. Experiments

In this section, we describe our experimental assess-

ment of the CineCubes tool.

5.1. Experimental setup

For all our experiments, we have experimented with the

Adult (a.k.a census income) data set referring to data from

1994 USA census. The data set in its cleansed version (after

uncertain and NULL values are removed) comprises 30 162

tuples of the 1994 USA census. There are 8 dimensions

(Age, NativeCountry, Education, Occupation, Maritalstatus,

Workclass, Gender, and Race) in the data set and a single

measure, HoursperWeek. The hierarchies for the dimensions

Education and Work class are depicted in Fig. 2. The

hierarchies for the dimensions Occupation, Marital status,

Gender, and Race are depicted in Fig. 13 and the hierarchy of

dimension Native Country, except the level 0 (which

includes too many values), is depicted in Fig. 14. The

dimension Age is organized in years, 5-year intervals,

10-years intervals, 20-year intervals and n.

In terms of efficiency, what we are interested to discover

is where we spend more time during the generation of a

CineCubes movie. As the generation of the pptx file

advanced, we have carefully monitored all the individual

steps of the method. Therefore, we are able to discuss the

time costs of the method from two points of view: (i)

concerning the individual parts of the method (results /

highlight / text and audio generation etc.) and (ii) concern-

ing the different acts of the method. To provide a thorough

evaluation, we have worked with a variant number of two,

three, four or five atomic selection conditions in the WHERE

clause of the original query. This results in an increase in

the number of slides in Act I as the number of atomic

selections in the WHERE clause increases: since Act I

compares with sibling values of the selection values, each

selection condition adds two extra slides, where the siblings

of the involved value are grouped for the two groupers

(Fig. 15). Instead, the slides of Act II remain in all cases

constant, which is consistent to the essence of the method,

which drills down the grouping levels of the original query.

All experiments have taken place in a conventional PC

Fig. 9. Class diagram for package TaskMgr.
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running Windows 7 over an Intel Core Duo CPU at

2.50 GHz, and with 3GB main memory.

5.2. Analysis of results per part of the method

Our first experimental goal has been to assess the

amount of time taken by each of the parts of our method.

We have measured the time needed to perform each part

of the method in milliseconds. The individual steps of the

method have been grouped in 5 parts that are executed for

each slide as follows:

I. Result Generation: Result generation involves the

construction and execution of queries to the underlying

database. Specifically, this part involves the following

individual tasks:

 Produce Cube Query: in this step, we create a Cube

Query from the original query.
 Produce SQL Query: in this step, we convert a Cube

Query to SQL query.
 Execute SQL Query: in this step, we perform the query to

the database and take the result back.

II. Highlight Generation & Visualization: This part

involves the shaping of the presentation of the results, as

well as the identification of important highlights.

 Tabular Creation: in this step, we format the result of

query execution as a pivot table.
 Highlight Creation: in this step, we calculate the high-

lights over the pivot table (such as row domination and

largest values)
 Color Table Creation: in this step, we add color to each

cell of pivot table.

 Combine Pivots in the SameSlide: this action is per-

formed only on Act II, as the slides of this act contain

more than one subqueries (and therefore, pivot tables)

which have to be combined in a single slide.

III. Text Creation: in this part, we produce the slide's

text from the calculated highlights.

IV. Audio Creation: in this part, we pass the produced

text to the text-to-speech conversion API, in order to

create the audio file.

V. Put all in pptx: in this part, which is the only one

that takes place for the entire presentation, we wrap up all

the above to a slideshow presentation.

As already mentioned, our experimental method

involves varying the number of atomic selection condi-

tions within the WHERE clause. Remember that as the

number of selection conditions rises, each time we have

two extra slides at Act I for every extra atomic selection

condition. We depict all the results in Fig. 16 (the number

of slides of each try is depicted in parentheses at the

header of the table of values in Fig. 16).

Clearly, the audio generation dominates the entire

process, being several orders of magnitude larger than

anything else and presenting a clear case for improvement.

As the number of slides slowly increases, the time needed

to generate text slowly increases too. Concerning the rest

of the parts of the process, we see that query generation

and execution takes up two orders of magnitude more

than the other two tasks; therefore, being prudent with

the number of slides (and thus, executed queries) is also

necessary – esp., if someone would decide to exclude

audio generation from the process.

A very interesting observation is also that, so far, both

text creation and highlight extraction are extremely fast,

and thus, provide the potential for enrichment with more

Fig. 10. Class diagram for package HighlightMgr.
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algorithms that try to find interesting highlights and create

representative textual descriptions for them.

5.3. Analysis of results per act

The second goal of our study was to find out how time is

divided within the acts of the story. Again, we have mea-

sured the time needed to produce each Act of the story

(measured in milliseconds). We depict our findings in Fig. 17.

As the number of selection conditions rises, each time

we have two extra slides at Act I (the number of slides of

each try is depicted in parentheses at the header of the

table in Fig. 17). Clearly, we can observe that the time of

each Act is increasing as the number of atomic selection

conditions increases. Moreover, the construction of Act I in

three of the four cases takes more time than the construc-

tion of the others – only in the case when we have two

atomic selection conditions, the construction of Act II takes

about 90 ms more. In addition, the time needed to create

Act II is practically stable, independently of the number of

atomic selection conditions in the WHERE clause.

In Fig. 17, observe that as the number of slides increases

(2 extra slides each time) Act I increases with significant rate;

the Summary Act behaves similarly, albeit with a lower

increase. Both these effects are mainly due to the text and

audio generation (as already mentioned). The linearity of the

increase for Act I can safely be attributed to the cost of the

extra slides that are added each time to the Act (in fact, this

is also corroborated by the detailed measurements per

individual slide that are not included here).

Also in Fig. 17, we can observe that the Summary Act

neededmore time than the Act II in three of the four cases. This

happens because the Summary Act, as described in Chapter 2,

has all the highlights of the story (i.e., all the text for these

highlights) which must be also converted to sound. Once again

the text to speech API dominates the time of our result.

Why does the Summary Act increase with a smaller

rate than Act I? This happens because the Summary Act

has only the highlights of all episodes (and not the entire

text). Due to the text that dresses and contextualizes the

highlights in each slide, Act I has always more words to be

Fig. 11. Class diagram for package StoryMgr.

Fig. 12. Assessment of the extensibility effort for CineCubes.
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converted to sound from Summary Act (Table 1). It is

noteworthy (observe Fig. 18) that the difference in number

words between Act I and Summary Act, in each case, is

linearly related to the extra time needed each time; the

bond is extremely strong with a Pearson correlation

of 0.999.

5.4. Effectiveness assessment via a user study

We have conducted a user study to verify the effectiveness

of our approach and assess its benefits and shortcomings. In

the sequel, we present the experimental setting and method,

and then we move on to present our findings.

5.4.1. Experimental method

The epicenter of the effort was to assess the effective-

ness of CineCubes compared to simple querying in the

presence of dimension hierarchies. To this end, we con-

structed a simple system answering aggregate queries in

OLAP style to compare it against CineCubes. Both systems

had the same user interface that allows users to construct

queries by point-n-click without having to actually write

Fig. 13. Dimensions Occupation, Marital Status and Race.

Fig. 14. Dimension Native Country (the most detailed level L0 is not depicted due to its large number of instances).

Fig. 15. Number of slides for different numbers of atomic selection

conditions.
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them in SQL. The users that participated in the study were

12 PhD students from our Department, all of which were

experienced in data management and statistics.

The user study consisted of four phases.

Phase 0 (warm-up): In the first phase, the users were

familiarized with the data set and the tools. To this end, we

presented the data set, its dimensions and levels. We also

gave a demo of how to pose queries to the systems. We

explained to the users that they could use any combination

of (a) slideshow, (b) browsing through the slides, and (c)

reading a printout of a query result or a CineCubes report.

All users were given a pamphlet reminding the basics of

the above. Then, the users returned to their offices, where

they all had ample networking, computing and printing

facilities to work with the next of the phases.

Phase 1 (simple OLAP functionality): The first part of the

evaluation was to ask the users to prepare a report on a

specified topic. The report should contain (a) a bullet list of

key, highlight findings, (b) a text presenting the overall

situation and, (c) optionally, any supporting statistical

charts and figures to elucidate the case better.

Phase 2 (CineCubes functionality): We assigned the same

task to the users, but now, they had CineCubes available.

Both the simple querying system and CineCubes were at

the disposal of the users in order to pose auxiliary requests

for simple queries or CineCubes reports. To speed up the

Fig. 16. Time breakdown (ms) for the method's parts.
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process, we also provided a link with a version of Cine-

cubes without audio.

Phase 3 (Questionnaire completion): Once the users had

used the two systems, they were asked to complete a

questionnaire, where they would comment on the usage of

the two systems. The questionnaire prompted the users to

complete information for the time needed to complete

their reports, an assessment in a scale of 1–5 of the

usefulness of the different acts of the CineCubes report,

as well as of the textual parts and the voice features of

CineCubes and an overall assessment of the two reports

after having produced both of them.

5.4.2. Evaluation of Cinecube's parts

In this part of the questionnaire, the users were asked

to provide an assessment of the usefulness of the parts of

CineCubes in a scale of 1–5, with 1 being the worst value

and 5 being the best. In Fig. 19 we depict the frequencies of

the scores assigned by the users.

The figures reveal that the users appreciated differently

the different acts and parts of the system – in fact, some of

the findings have been surprising. All features scored an

Fig. 17. Time breakdown (ms) for the method's acts.

Table 1

Count of words for Act I and Summary Act.

# atomic selections in WHERE clause

2 (10 sl.) 3 (12 sl.) 4 (14 sl.) 5 (16 sl.)

Act I 244 499 764 1069

Summary Act 200 298 357 424
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average higher than 3. The most popular feature was Act II,

with the detailed, drill-down analysis of the groupers. The

users attributed this to the fact that it provided them with

information they thought interesting to include in the

report, as it enlarged the picture of the situation that was

presented to them. The second most popular feature was

the treatment of the original query (that includes coloring,

and highlight extraction compared to the simple query

results given to them by the simple querying system).

It has been quite interesting that the two less appre-

ciated parts were Act I (which contextualizes the result by

comparing it to similar values) and the summary act

(presenting all the highlights in a single slide). Although

this originally came as a surprise to us, with the benefit of

the hindsight we reckon that it should not have been

surprising in the first place: users love concise reporting of

facts and dislike information provided in large volumes to

them. The free-form comments of the users and a post-

mortem discussion with them confirmed this observation.

The contextualization and the summary acts provide too

much information (and in fact, too many highlights). So,

although the peak is in the median value (3), the average

value for both Act I and the Summary Act was 3.4 stars and

the distribution of values towards the high end, the

phenomenon was not so heavy tailed on the higher values

as for Act II and Act 0. Lesson learned: above all, be concise!

The textual part was quite appreciated by most of the

users; at the same time, out of 5 users that worked with audio,

the result was split in half in terms of likes and dislikes. This is

both due to the quality of the produced audio by the TTS and

the quality of the text that is served to it as input. A lesson

learned here is that audio seems to be useful for some users but

not for all; so, it should be optional, which can provide gains in

terms of efficiency without affecting effectiveness.

5.4.3. Evaluation of the produced reports

The users were also asked to assess the quality of the

produced report with the benefit of the hindsight. The

results are depicted in Fig. 20.

Overall, the distribution appears shifted by one star

upwards, with the median shifting from 3 to 4. The

average value was raised from 3 to 3.7 which is a 23%

improvement of quality. The free-form comments indi-

cated that the score would have been higher if the tool

automatically produced graphs and charts (an issue of

small research but high practical value).

5.4.4. Time considerations

We asked the users to measure the time they spent for

the creation of each report. In Fig. 21 we depict the actual

data as well as their visual representation. The graphical

representation of Fig. 21 compares the benefit in time

(x-axis) over the benefit in stars (y-axis). In other words,

does it pay off to spend more time working with the system

for the quality of the report one gets? The diagonal line

splits the plane in two parts: the right, green part is the area

where you get more quality for the time you invest; the left,

rose part is an area of loss. The intensely colored parts of the

two areas are parts with two-fold benefit (more quality for

less time) or loss (less quality for more time).

The findings are quite interesting. A first very interesting

observation lies in the fact that CineCubes did not result in

clear time gains, as we would expect. In fact, there was a
Fig. 18. Difference in words and execution time for Act I and

Summary Act.

Fig. 19. Evaluation of the usefulness of Cinecubes' parts, in a scale of 1 (worst) to 5 (best); x-axis depicts each score and y-axis the number of users that

assigned it .
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large number of people who spent more time with Cine-

Cubes than with the simple querying system! Although this

originally did strike us as a failure, a better look at the data

(and the graph) refutes this result. Whenwe sorted the data

by time spent without CineCubes (second column), it was

clear that the users who demonstrated this kind of time loss

were the ones who spent too little time (way less than the

rest) for their original report. The small amount of time

devoted to the original report, skyrockets the percentage

deficit (a user who spends 10 min for the original report

and 20 min for Cinecubes, gets a 100% time penalty). At the

same time, this resulted also in an original report of rather

poor quality, and significant improvements in the quality of

the report, too. This also explains why there are no users

with dual loss. Again, the explanation for the time increase

is that the users spent extra time to go through the high-

lights offered by CineCubes.

A second observation concerns the people who spent less

time with CineCubes than without it. These are people who

invested more time working with data than the previous

group. In all but one cases, there was no loss of quality for

this group of users. So, clearly, for the people who would

spend at least 30 min for their original report, there is a

benefit in time gains. In fact, in all but one cases, the benefit

rises with the time spent in the original report (the relation-

ship betweenΔTime and the pctΔTime for the people with a

positive time gain is almost linear, with a Pearson correlation

of 0.940; the same applies for the correlation of the time

spent without Cinecubes and pctΔTime with a Pearson

correlation of 0.868). It is interesting that because these

Fig. 20. Evaluation of the original and the Cinecubes' report, in a scale of 1 (worst) to 5 (best); x-axis depicts each score and y-axis the number of users that

assigned it.

Fig. 21. Evaluation of the time gains versus the quality gains for the construction of the report with and without CineCubes. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this paper.)
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users devoted quite some time working with the data in the

first place, they had a quite satisfactory report in the first

place (in all but one cases, no less than 3 stars). Therefore,

the improvement in terms of stars is on average half star out

of five (although the distribution of values is clearly biased,

as the last column of the data in Fig. 21 indicates). The

speedup however rises on average to 37.5 min (or 46.00% as

percentage) for these cases.

Lessons learned: For people in need of a fast report,

conciseness is key, as too many results will slow them down;

yet, CineCubes allows these people to create reports of better

quality. For people who would be willing to spend more time

to author a report in the first place, CineCubes speeds up their

work by a factor of 46% on average.

6. Related work

In this section, we discuss related work around the

topic of our discourse. Specifically, research pertaining to

our work can be identified in the fields of query recom-

mendation, advanced OLAP operators, text synthesis from

query results, data narration, and visualization for OLAP.

We present each of these categories in the following.

6.1. Query recommendations

The first area that relates to our work is the area of query

recommendation. Roughly speaking, the general theme of this

area revolves around the situation where the user has sub-

mitted a query to the system and the system suggests one or

more related queries to the user as a guide that helps him

continue his search. The suggestion can be based on the user's

profile, history of queries, history of other users’ queries, or

other information. There is an excellent survey on the topic by

Marcel and Negre [12]; thus, here we restrict ourselves to a

handful of characteristic approaches and refer the interested

reader to [12] for a broader discussion.

The query recommendations that are related to our

work can be classified in two orthogonal taxonomies,

already found in [12]. In terms of the data management

environment within which query recommendation takes

place, we can distinguish between works in the general

field of databases and works in the specific field of OLAP. In

terms of the means employed for the recommendation of

queries, we can discern methods exploiting profiles,

methods exploiting query logs and hybrid methods.

6.1.1. Database-related efforts

Stefanidis et al. [13] propose the enrichment of the

results of a query with extra tuples that may have

potential interest to the user. The method is entitled YMAL

(“You May Also Like”), and tries to find tuples in the

underlying relational database on the grounds of a prin-

cipled tuple-recommendation approach. One of the con-

tributions of [13] is that the authors suggest a classification

of methods for recommendation: (a) current state based,

(b) history based, and (c) based on external sources.

The current-state approachmakes use of the current query

result and schema in conjunction to the data of a database to

produce the YMAL result. To implement this approach the

authors suggest three kinds of analysis: (i) local, (ii) global and

(iii) hybrid analysis. Local analysis involves finding patterns in

the results of a query and searching the rest of the database in

order to add to the original result extra tuples that abide by

the discovered patterns. The global approach searches the

database to find values that are correlated to the values

involved in the selection condition of the submitted query;

the k most correlated of these values are selected and tuples

that contain them are recommended to the user. To calculate

relevant tuples, the history-based approach uses (i) the

previously submitted queries of the user, and, (ii) similar

sessions of other users that have similar behavior of the

current user. The last of these approaches involves external

sources and does not search the local database for relevant

tuples, but the web or another schema.

Chatzopoulou et al. in [14] propose a recommender

system called QueRIE (Query Recommendations for Inter-

active data Exploration). The main goal of this recommen-

der system is to help the common user, who is not familiar

with SQL and database schemata, to find parts of database

with useful or interesting information. To this end, the

authors have implemented a system with the ability of

tracking the querying behavior of a user and generating a

personalized query recommendation. The system is built

on a simple premise, inspired by Web recommender

systems: if a user A has similar querying behavior to user

B, then they are likely interested in the same data. Hence,

the queries of user B can serve as a guide for user A.

6.1.2. OLAP-related methods

Cariou et al. in [15] describe a method to help user to

explore OLAP data. The proposed method combines OLAP

and data mining techniques to facilitate the process of the

exploration of a data cube by identifying the most relevant

dimensions to expand. The implementation of this task is

performed in a step by step approach. In each step, the most

relevant dimensions from the current session of the user

are identified and then, the system suggests to the user

which one to explore first. The dimensions are of relatively

simple structure with two levels only (ALL and detailed).

The main idea behind the method is that each dimension

takes a degree of interest. Each time the degree of interest is

calculated by the amount of information revealed when

including the details of this dimension in the grouping of

the detailed data (remember that each dimension has only

two levels; thus including it in the group by practically

means that the dimension's detailed values split the group-

ing space with a factor equal to their number).

A different approach for suggesting an OLAP query to user

is introduced in the work of Giacometti et al., first in [16] and

later in [17]. Unlike [15], the authors of [17] use the query log

of previous users to find similar queries which can give

information to user that he may not know it is available.

The main idea is to recommend to the user the discoveries

detected in former sessions of other users that investigated

the same unexpected data as the current session. To this end,

the proposed method analyzes the query log to discover pairs

of cells at various levels of detail for which the measure values

differ significantly. In addition, the method analyzes the

current query, in order to detect if a particular pair of cells

for which the measure values differ significantly can be

related to what is discovered in the log.
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Aligon et al. in [18] work along the same context and

provide some very interesting insights for log-based OLAP

sessions. A first major result of [18] has to do with the fact

that the user study conducted in this paper gives a first

account of what users deem interesting in characterizing a

query. Apparently, users think of the selection predicate as

the most characteristic feature of a cube query; other

features in decreasing order of importance are the set of

groupers and the set of measures. The paper also gives a

detailed survey of similarity measures for OLAP queries and

an experimental verification of which similarity function

seems to capture best the intuition of users for OLAP queries.

6.2. Advanced OLAP operators

Apart from recommending queries to the users, related

research has explored the possibility of providing users

with explanations for the results they observe in an OLAP

report. We distinguish the work of Sarawagi in a series of

papers in VLDB and briefly summarize the results.

Sarawagi introduces the DIFF operator in [19], with the

aim to help the analyst get a concise set of tuples

explaining the reasons for drops or increases observed at

an aggregated level. As input, the operator receives two

cells of a report that are different. As output, the operator

returns a set of tuples that best describe this difference. To

achieve this result, the paper proposes a greedy and a

dynamic-programming algorithm. The idea is that the

operator keeps as fixed the common selections that

characterize the originally selected cells (so, it is important

that they do have some common selection conditions for

the computation to make sense) and drills-down the levels

of aggregation for the involved hierarchy that is produced

by the combination of these common dimensions. The

crux of the approach is that it computes the respective

difference when the data are aggregated for any of the

tuples in this multidimensional space. Every tuple in this

multi-level space is compared to its “parent” tuple (in one

level of aggregation higher) and, if selected, it is placed in

the top-N results that will ultimately be displayed to the

user. For a tuple to make it in the top-N it has to contribute

a significant percentage of the difference of the original

cells compared to the contribution of its father.

The same author, Sarawagi, in [20], presents a tool that

helps users explore the multidimensional OLAP data using

their prior knowledge of the data. This tool uses a profile that

tracks down the areas of the cube that the user has visited in

the past, and thus, it is aware of what the user already knows

about the data. Then, the tool guides the user to unexplored

data that he will find most informative. The author in [20]

describes a method that uses the classical Maximum Entropy

principle and a profile per user to recommend to the user the

parts of the cube which contain the most surprising values

compared to what the user has already seen.

In [21], Sathe and Sarawagi introduce the operator

RELAX which helps the user of OLAP data to go from a

detailed level of information to a more general one, in order

to verify whether a pattern observed at the detailed level is

also present at a more summarized level. The operator

reports in a single step a summary of all possible maximal

generalizations along various roll-up paths of the observed

sub-cube. The goal is to report all possible consistent and

maximal generalizations. The term consistent means that

all subsets of dimensions that are examined also abide by

the pattern. On the other hand, the term maximal means

that there is no superset of dimensions that can yield

consistent generalizations. For the implementation of this

operator the authors develop a two stage algorithm. In the

first stage, the algorithm finds all possible maximal general-

izations using aggregation queries. In the second stage, the

algorithm uses the results of the first stage and finds

summarized exceptions of the generalizations.

6.3. Text synthesis from query results

In [22], Simitsis et al. propose a method to synthesize a

textual answer in response to a query over a relational

database. The authors employ a graph model with nodes

being attributes and relations, edges being part-of rela-

tionships and join relationships and labels for relations,

attributes and edges (labels are used to produce a text for a

query's result). The method takes a query as input,

computes its result and tries to produce a sentence for

each of the tuples that appear in the result. This is derived

by following specific graph navigation patterns, each of

which produces a different type of text.

6.4. Data narration, narrative visualization and visual

analysis

Last but not least, a research area that is closely related to

our approach involves data narration. Whereas data visuali-

zation involves depicting data to the user in a way that

allows the user to extract interesting information easily, data

narration tells the story of data, i.e., gives context, explana-

tions and, fundamentally, appropriate visualizations. Due to

the close relationship of visualization and narration, the area

is also referred to as narrative visualization.

In an interesting article [5], Kosara and McKinley,

researchers in Tableau Software, highlight how storytelling

can be the next step for visualization, and – as we add here –

for gaining insights into the observed data. To quote the

authors “Humans have always tied facts together into stories,

effectively presenting information and making a point in a

memorable way”. The connection between data and stories

is being elevated only very recently; however, it is clear that

a story supported by data gains in authority and trust, and at

the same time, data-based insights are way more memorable

when successfully blended in a story. It is only natural, then,

that data storytelling is becoming more and more popular

these days, with sites and tools like GapMinder, ManyEyes

and Tableau Software allowing people to work with data and

gain insights, but also with newspapers and mass media (like

New York Times, Washington Post and The Guardian) using

infographics to express stories in both a vivid and data-

driven, convincing way.

In a highly cited paper, Segel and Heer [6] provide a survey

and classification of narrative visualization techniques, along

with a very long list of examples that demonstrate actual

cases of narrative visualization, mainly in newspapers. The

authors reviewed a vast number of examples to come up with

a taxonomy for the design space of narrative visualization.
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The taxonomy organizes the characteristics of visualizations

in seven groups, organized in three families. The first family-

group concerns the genre of the visualization (e.g., slide show,

comic strip, poster, film, etc.). The second family concerns the

techniques used for the visualization of a story. The first group

in this family concerns the structure of the visualization

(consistent visual platforms, progress indication, etc.), the

second group concerns visual highlight features (zoom,

motion, audio, etc.), and the third group concerns the way

transitions among visualized information is made (e.g., via

continuity principles, or animation). The third family concerns

the structuring and interactivity of a visual presentation. The

first group in this family concerns the order of the presenta-

tion's parts, the second group concerns the modes of inter-

activity via which the user can interact with the visualization

(e.g., hovering tooltips, tacit tutorials, navigation buttons, etc.)

and the third group concerns the messaging tools employed

to inform the user on important parts of the presentation (e.

g., captions, annotations, summaries, etc.). One typical differ-

ence between traditional storytelling and data narration that

[6] highlights concerns the potential for interactivity in the

latter. In fact, one of the main problems of data narration is

built around the interactivity issue: how does one balance (a)

a certain amount of control that the author needs to preserve

and impose in order to manage to tell the story in the end,

versus (b) the need of the users to go through alternative

explorations, pose verification or explanatory questions, and

in any case, work with the data inways not already present in

the linear storytelling of the author. The authors highlight

three ways of interacting with the users. First, the Martini

Glass principle, where the presentation starts with a user-

centric part for the exploration of data, continues with a strict,

non-interactive sequence to convey its core message and

concludes with a large number of choices for follow-up

exploration by the user. The Interactive Slideshow principle

follows a typical slideshow format (i.e., a sequence of author-

driven “slides”) but allows some degrees of interaction within

each slide, allowing thus the user to interact with the data

mid-narrative. The Drill-Down Story principle gives the most

degrees of interaction to the user, by presenting a central

theme as a portal for interactive data exploration.

In a similar trend, Hullman and Diakopoulos [23] conduct

a similar study to provide a taxonomy of techniques (“rheto-

ric”) used to illustrate or obscure information. Information

access rhetoric methods concern which data to include or

exclude, and at what level of aggregation or abstraction.

Provenance rhetoric methods concern ways to highlight or

obscure the source of information and the uncertainty

involved in the reporting of facts and estimations. Mapping

rhetoric concerns techniques like visual metaphors, contrast,

color coding etc., used to map data to a visual representation

that conveys a message. Linguist-based rhetoric methods are

focused on the textual level and concern how the presenter

uses text to make a point or make the user be involved.

A central role in data narration is played by interactive

visual analytics that facilitate the extraction of information

from data via interactive visualization and automated infor-

mation mining. Ben Shneiderman gave the famous “Visual

Information Seeking Mantra” back in 1996 [24], as the

foundation of visual design: Overview first, zoom and filter,

then details-on-demand. Fifteen years later, in [25], Heer and

Schneiderman provide a taxonomy of visual tools that

facilitate the interaction of a user with data, in what the

authors call “analytic dialogues”. The taxonomy consists of 12

typical task types grouped in categories as follows: (a) data

and view specification (visualize, filter, sort, and derive),

practically facilitating the setup and focus of a data visualiza-

tion task, (b) view manipulation (select, navigate, coordinate,

and organize), practically covering the part where a user

explores the presented data interactively, and (c) analysis

process and provenance (record, annotate, share, and guide),

covering the part where the user has gained insight and is

preparing his data-driven story's presentation.

6.5. Visualization for OLAP

Although database research has not dealt with visuali-

zation issues in depth, there exist some efforts towards

visualizing data cubes and OLAP results.

Visualization for mobile devices has been a central motive

for these efforts that go back to early '00s. A method reported

by Maniatis et al. [11] introduced a formal presentation model

for OLAP and focused on the problems coming from the small

display of mobile devices (putting focus to important values).

A method by Cuzzocrea et al. [26,27] addressed the lack of

storage facilities in mobile devices and placed its emphasis on

working with a highly summarized view of the data that is

representative enough for the user to work with. Recently, the

authors of [28] made another attempt to the problem of

presenting data in mobile devices by addressing problems

caused by the network latencies. So, the authors propose a

software architecture and method for in-place calculations

and data prefetching in order to accommodate the need of

immediate data presentation in cases like top-k scrolling or

moving average calculations.

Apart from efforts particularly tailored for mobile devices,

there have been efforts for visualizing the results of hierarch-

ical multidimensional data in the broader area of OLAP. As

expected, the main obstacle to overcome is the limitation of

the dimensionality of the display media (screen and paper are

2D) as opposed to the multidimensional nature of the data.

The presence of hierarchies makes the task even harder. The

employed techniques range from traditional ones to quite

elaborate visualization schemes. The most scalable visualiza-

tion scheme in terms of dimensionality is parallel coordinates:

Inselberg in [29] discusses the possibilities provided by parallel

coordinates to handle the problems of large dimensionalities.

Of course, this comes at the price of a learning curve, as our

visual system (and our Cartesian-based education) are oriented

towards more traditional visualization schemes. So, at the

other end of the spectrum, we see efforts like the one by

Dyreson and Florez [30] who employ traditional crosstabs to

display data along with different shading levels to indicating

the completeness of each value (as data come in a streaming

way). In between these two extremes, we can find some other

attempts. A notable effort by Vinnik and Mansmann in [31]

provides a classification of visualization schemes and make a

case for trees reflecting the hierarchical aggregation of data.

Then, the paper proposes ways to instruct the users in their

navigation of the lattice of cuboids via paths on such a tree

along with other visualization methods for demonstrating

measures (resulting e.g., in a bar-chart tree showing measures
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in par with the navigation tree). More exotic visual schemes

like Treemaps or Solar plots are discussed in [32]. The latest

effort that we are aware of, in the area of OLAP visualization,

comes by Ordonez et al. in [33]. The authors are based on the

aforementioned hierarchical decomposition family of methods

and provide a sophisticated method based on the layered,

visual placement of cuboids on the lattice produced by all the

possible aggregators of a fact table. Cuboids interesting to the

user (via a query specification) are colorized differently;

drilling-into them provides a visual overview of the values

involved in the cuboid. Interestingly, this graphical representa-

tion is complemented by the visualization of the relationship

of interesting results. Following [34], the authors perform

statistical tests to highly similar groupings of the cube; when

the difference of two similar cells in a measure is statistically

important, this is highlighted as a significant result and the

pair is linked via an edge on the screen.

6.6. Relationship of our work with the state of the art

Concerning all the above works, our method comes with

an extensible architecture that is especially constructed

with a mindset of being able to plug in more and more of

them, both at the part where new queries can be added and

in the part where new analyses can be performed over their

results. Our Act II resembles the DIFF operator to a certain

extent, in the sense that it tries to explain the reasons of the

originally observed result. DIFF goes one step further, in

providing maximal explanations by picking the most profit-

able rows. Although DIFF can be integrated in our tool, the

emphasis so far has been in coming up with a prototype

that can provide a reasonable CineCube movie; research

results like DIFF can be integrated in the tool in subsequent

tool extensions and revisions. The same applies for all the

other advanced OLAP operators.

Concerning text synthesis, we avoid describing the

result of a query row-by-row, as [22] does. On the contrary,

we provide an extensible architecture where each high-

light extraction method comes with a generic text to

describe the detected highlights. Of course, improvements

on the produced text are clearly part of future work.

Concerning the visualization aspect, as already men-

tioned, we take special care to depict the actual data for

each slide that we generate, in our attempt to facilitate

Tufte's motos for “data integrity” and “intense clarity via

intense detail”. For the moment, we constrain our visual

representation of query results to a crosstab form. Of

course, this representation can be accompanied by graphi-

cal representations of all kinds. In the future, interesting

visualization challenges will arise if Cinecubes departs

from its reporting nature (which is very well served by

the 2D crosstabs) and allow interactivity (refer to the

Discussion section). Then, visualization will need to con-

sider interactive settings like [29–31,33].

We would also like to highlight that our method is

synchronized with the key findings of [18], as (a) the main

criterion that we use for suggestions in Act I is what [18]

identified as the key characteristic feature of cube queries,

i.e., the selection condition and (b) the key feature for

explaining results in Act II is the second most character-

istic feature, groupers.

6.7. Relationship to our previous work

A first version of this paper has appeared in [35]. In the

present version of the paper, we extend [35] in the follow-

ing ways. We provide a detailed explanation of the internal

architecture and the extensibility mechanisms of Cine-

Cubes. We also provide an assessment on the effort needed

to extend CineCubes. We discuss in detail the results of our

experimental study, both in terms of the anatomy of the

time spent in the different tasks and acts and in terms of

usability, via a user study. We accompany these extensions,

with explanations, an extended discussion of our motiva-

tions, and a detailed survey of the related literature that

were not present in the short version of this paper.

7. Discussion

In this paper we have introduced CineCubes, a system

that allows the automatic generation of a CineCube movie,

over an OLAP database, with a simple user query as

starting point. To produce a movie, we need several

“episodes”, text, and voice. To this end, we have automated

(a) the process of complementing the original query with

additional queries that provide contextualization (by com-

paring its results to the results of queries carrying similar

information) and (b) the process of extracting meaningful

relationships within the data, as we search for interesting

patterns in the results of all these queries. Moreover, we

have also automated the generation of text describing

these findings and their conversion of this text to audio.

Finally, we have shown that all the above can be packaged

in a PowerPoint presentation, practically presenting a

small data movie to the user.

From the practical point of view, as already mentioned,

we have demonstrated the practical application of our

method via a prototype. The integration of our method to

existing tools should pose no significant challenges, due to

the simplicity of the underlying assumptions (a simple,

typical OLAP environment with dimensions and detailed

cubes, queries involving simple filters and aggregations

and a single user query as seed for the process to start).

From the research perspective, we believe that our method

creates new research ground, by bundling all the indivi-

dual steps in a single-yet-extensible framework that

allows data workers gain insights. This is – in our point

of view – the core contribution of this paper. Naturally, as

typically happens in science, this new research ground can

be further expanded in a systematic way. In the following,

we list a few important problems and opportunities.

Extensibility: Cinecubes comes with an extensible

architecture that is especially constructed with a mindset

of hosting more and more techniques both from existing

and foreseeable research results in the areas of knowledge

extraction, query recommendation, text analysis, trend

prediction, and data visualization. We firmly believe that

this extensibility can and should be exploited via a synergy

with the research community in order to further enhance

the benefits of this approach.

Efficiency: Scaling with data size and complexity, let

along with user needs, in user time, is also necessary for an

effort like this to succeed. Techniques like multi-query
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optimization have a good chance to succeed, especially

since we operate with a knownworkload of queries as well

as under the divine simplicity of OLAP.

Can I be the director? Interactively maybe? Persona-

lization and interactivity are two clear paths for extending

the approach mentioned here. Interactivity, i.e., the possi-

bility of allowing the user to intervene and semi-

automatically guide the query generation can be served

in many ways (e.g., the Martini Glass and the Interactive

SlideShow of [6]). This user-driven interaction can be aided

by incorporating extra knowledge into the report genera-

tion – e.g., via user profiles or user logs, like in [17] – that

guide the users in their explorations around the basic

results that they see in a CineCubes movie.

Be compendious; if not; at least be concise! The sin-

gle most important challenge that the research problem of

answer-with-a-movie faces is the identification of what to

exclude. The problem is not to add more and more

recommendations or findings (at the price of time

expenses): this can be done both effectively (too many

algorithms to consider) and efficiently (or, at least, toler-

ably in terms of user time). The main problem is that it is

very hard to keep the story both interesting and informa-

tive and, at the same time, automate the discovery of

highlights and findings. To address this task, a clearly

important topic of research involves the automatic mer-

ging, ranking and pruning of highlights.
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