c proceedings

TimeReach: Historical Reachability Queries on Evolving
Graphs

Konstantinos Semertzidis, Kostas Lillis, Evaggelia Pitoura
Computer Science and Engineering Department
University of loannina, Greece

{ksemer Kilillis,pitoura}@cs.uoi.gr

ABSTRACT

Since most graphs evolve over time, it is useful to be able
to query their history. We consider historical reachability
queries that ask for the existence of a path in some time in-
terval in the past, either in the whole duration of the interval
(conjunctive queries), or in at least one time instant in the
interval (disjunctive queries). We study both alternatives of
storing the full transitive closure of the evolving graph and
of performing an online traversal. Then, we propose an ap-
propriate reachability index, termed TimeReach index, that
exploits the fact that most real-world graphs contain large
strongly connected components. Finally, we present an ex-
perimental evaluation of all approaches, for different graph
sizes, historical query types and time granularities.

Categories and Subject Descriptors

H.2 [Database Management|: Systems query processing

General Terms

Algorithms, Measurement, Performance

Keywords
Evolving Graphs, Historical Queries, Reachability

1. INTRODUCTION

In recent years, increasing amounts of graph structured
data are being made available from a variety of sources, such
as social, citation, computer and hyperlink networks. Al-
most all such real-world networks evolve over time, as nodes
and edges are added or deleted. Analysis of their evolution
finds a large spectrum of applications, ranging from social
network marketing, to virus propagation and digital foren-
sics.

In this paper, we assume that we are given an evolving set
of graph snapshots corresponding to the state of the graph at
different time instants. We address the problem of efficiently

(© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

answering queries that involve such snapshots. In particular,
we focus on a basic query type, namely reachability queries,
that ask whether a node u was reachable from another node
v during specific time intervals in the past. We call such
queries historical reachability queries.

Although, there has been considerable interest in process-
ing graph data, through a variety of graph queries including
reachability, distance and pattern-based ones, querying the
graph history is much less studied. The only other two ap-
proaches to building indexes for processing historical graph
queries that we are aware of consider historical shortest-
path queries [9, 2]. Specifically, the authors of [9] propose a
method based on ordering nodes or edges pertinent to short-
est path computation, while the dynamic index construction
proposed in [2] does not support node or edge deletions.

All other work on historical queries focuses mainly on ef-
ficiently storing and retrieving the graph snapshots required
for processing each query [14, 13, 21, 17]. In particular, in
[14], a combination of graph deltas and selected material-
ized snapshots are explored, while in [13], the focus is on
storing, sharing and processing deltas. In [21], temporally
close snapshots are clustered, one representative per cluster
is selected and used for an initial evaluation of the query.
Finally, in [17], the placement and replication of snapshots
in a distributed setting is studied. Instead, in this paper,
we address the problem of building indexes for answering
historical reachability queries.

Reachability queries on static graphs have been exten-
sively studied. Research in this area follows two general di-
rections through efficiently storing the transitive closure and
speeding-up online traversal. With regards to transitive clo-
sure, various approaches have been proposed including the
chain method [10, 5], methods exploring spanning trees, bit-
vector compression [26] and interval [1, 28, 12], and hop 7,
22, 6] labeling. In the case of online traversal, often interval
labeling [4, 25, 30] is used to prune the search space. There
has also been some work on incrementally maintaining the
reachability indexes in case of evolving graphs [1, 3, 23, 31],
however, reachability still considers a single snapshot, i.e.,
the current version of the graph.

In this paper, we explore a compact representation of
graph snapshots, called version graph, where each node and
edge is annotated with the set of time intervals during which
the corresponding node and edge existed in the evolving
graph. We call such sets lifespans and seek for their mini-
mum representation through using non-overlapping and non-
continuous intervals. We also introduce a set of basic oper-
ations for efficiently manipulating lifespans of paths.

121 10.5441/002/edbt .2015.12

For processing historical reachability queries, we start by
revisiting the basic transitive closure and online traversal ap-
proaches. For the transitive closure, we compute a minimum
representation of reachability information for each pair of
nodes. For the online traversal, we propose a novel interval-
based traversal of the version graph along with a number
of pruning steps. Furthermore, to avoid the cost and space
overheads associated with precomputing the transitive clo-
sure and improving the processing cost of the online traver-
sal, we propose a new approach, termed TimeReach.

TimeReach exploits the fact that most graphs consist of
strongly connected components (SCCs) [20, 15]. Thus, in-
stead of maintaining reachability information for pairs of
nodes, we maintain posting lists with information about node
membership in SCCs. We minimize the size of posting lists
through an appropriate assignment of identifiers to SCCs.
We show that the problem of the optimal assignment of
identifiers to SCCs is equivalent to the maximum bipartite
matching problem among SCCs in consequent graph snap-
shots. Along with postings, we maintain a condensed version
graph which corresponds to the version graph of the SCCs
evolution. To improve the performance of answering his-
torical queries, we also introduce an interval-2hop approach
based on pruned landmark labeling [2, 29] on the condensed
version graph.

We have extensively evaluated our approach with three
real social network datasets. Our experimental results show
that TimeReach is space efficient, in particular for graphs
consisting of large SCCs as is the case of social networks.
Its incremental construction is fast; indexing a new snapshot
graph takes just a few seconds. Finally, processing historical
queries using TimeReach is orders of magnitude faster than
the online traversal of the version graph.

The rest of this paper is structured as follows. In Section
2, we present related work, while in Section 3, we formally
define historical reachability queries. In Section 4, we in-
troduce the version graph and operations on lifespans and
present the two baseline approaches, namely, the transitive
closure and online traversal. In Section 5, we introduce the
TimeReach Index approach, while in Section 6, we present
experimental results. Section 7 concludes the paper.

2. RELATED WORK

Although, graph data management has been the focus of
much current research, work in processing historical queries
is rather limited. The main focus of research on evolving
graphs has been on efficiently storing and retrieving graph
snapshots. In this paper, our focus in on indexing for pro-
cessing queries. To this end, we assume a compact repre-
sentation of the sequence of graph snapshots in the form
of a version graph. Alternatively, one can store just some
subset of the graph snapshots in the sequence along with
appropriate deltas, such that, any other snapshot can be
reconstructed by applying the deltas on the selected snap-
shots [14, 13]. Various optimizations for reducing the storage
and snapshot re-construction overheads have been proposed,
such as a hierarchical index of deltas and a memory pool for
the overlapping storage of snapshots [13]. Clustering tem-
porally close snapshots and computing a representative for
each cluster was also proposed [21], Deltas from representa-
tives are stored for each cluster to achieve high compression.
In the G* graph database, snapshots are efficiently stored by
taking advantage of commonalities among them [16]. Dif-

ferent versions of each node are stored only once regardless
of the number of snapshots it belongs to, and indexed by a
compact in-memory index. For load balance and availability
snapshot data are replicated among a number of workers.

Historical query processing in these approaches requires as
a first and costly step reconstructing the relevant snapshots.
Then, queries are processed through an online traversal on
each of them. Query performance is addressed by trying to
minimize the number of snapshots that need to be recon-
structed by minimizing the number of deltas applied [14,
13], avoiding the reconstruction of all snapshots [21], or by
parallel query execution and proper snapshot placement and
distribution [17]. In this work, we address a different prob-
lem, that of indexing for historical reachability queries.

Historical shortest path distance queries were addressed
in [9]. The authors propose a method based on ordering
nodes or edges pertinent to shortest path computation. Fi-
nally, the recent work of [2] also proposes a dynamic in-
dexing scheme for historical distance queries. However, the
authors consider only insertions. This assumption simpli-
fies the problem, since two nodes that are reachable remain
reachable. The authors propose a dynamic 2hop index con-
struction that is not applicable in the case of node or edge
deletions.

Reachability queries on static graphs have been thoroughly
investigated along two general directions: transitive closure
compression and improving online search.

Transitive Closure Compression. Related research aims at
compressing the transitive closure by storing for each node
only a subset of the nodes it can reach. The first idea is to
decompose the graph in k node-disjoint chains and for each
node store only the first node it can reach in each chain [10,
5]. Another line of research extracts a spanning tree of the
graph, and uses it to compress the transitive closure. Each
node of the tree is labeled with an interval of integers such
that if node u is an ancestor of v, the interval of u contains
that of v. Reachability through tree edges can be easily
determined by a label containment check. To incorporate
reachability through non-tree edges each node inherits the
intervals of its successors in the graph [1], or a partial tran-
sitive closure of non-tree edges is constructed [28]. Building
upon the idea of interval labeling, a tree whose vertices are
pair-wise disjoint paths extracted from the original graph is
used in [12]. Another approach in compressing the transitive
closure is 2-hop labeling [7, 22, 6]. Each node stores two sets
of intermediate nodes: a set L,yu: of nodes it can reach and
a set L;, of nodes that can reach it. Node u can reach node
v only if Lout(u) N Lin(v) # 0.

Speeding-up Online Traversal. These methods use interval
labeling to aid online traversal by pruning the search space.
In [4] and [25], a tree cover of the graph is constructed and
then, for the queries that can not be answered by the tree
labeling, an online search on the non-tree edges is performed
using the labeling to guide the search. In [30], multiple inter-
vals are used for the labeling. If the label containment check
does not produce a negative answer, the graph is traversed
online using the intervals for pruning the search.

Some of the works discuss the incremental maintenance
of the index in the case of evolving graphs [1, 3, 23, 31].
However, the updated index contains reachability informa-
tion only about the current version of the graph and cannot
be used for answering historical queries.

122

The presented approaches are orthogonal to our approach
in that they can be adapted so that they can be used to
speed-up or avoid the online traversal of the condensed graph.
We have demonstrated this by adapting, one of them, namely
2hop labeling.

3. PROBLEM DEFINITION

Most real world graphs evolve over time as new nodes or
edges are added, or existing nodes or edges are deleted. We
assume that time is discrete and use successive integers to
denote successive time instants. There are two intuitive in-
terpretations of time instants. One interpretation is that of
actual time, for example time instant ¢ may correspond to
say October 20, 2014, 5:00am PDT. Another view is oper-
ational. In this case, time is advanced each time a graph
operation, update or delete, occurs. Both interpretations of
time instants are consistent with our representation.

Let G = (V, E) be a directed graph where V is the set
of nodes and F the set of edges. We use Gt = (W4, E¢) to
denote the graph snapshot at time instant ¢, that is, the set
of nodes and edges that exist at time instant ¢.

DEFINITION 1 (EVOLVING GRAPH). An evolving graph
Glt; 151 in time interval [t;, t5] is a sequence {G';, G;+1, - -,
Gy, } of graph snapshots.

An example is shown in Figure 1(a) which depicts an evo-
lving graph Gy, +,) consisting of four graph snapshots {Gj,,
Gt,, Gy, Giy}. For brevity, we denote time instant ¢; + 1
as t;+1 and use t; and 7 interchangeably, when the meaning
is clear from context.

We use the term time granularity to refer to how often a
new time instant and the corresponding graph snapshot are
created. In the case of actual time, granularity may range
for example from milliseconds to years, whereas, in the case
of operational time, granularity may be at the level of one
or more operations. A fine-grained time granularity necessi-
tates maintaining a large amount of historical information,
but supports precise historical queries.

Given a static directed graph G = (V, E) and two nodes
u, v € V, a reachability query asks whether there exists a
path from u to v in G. For evolving graphs, we introduce
the following two types of historical reachability queries.

DEFINITION 2 (HISTORICAL REACHABILITY QUERY). Let
Oltit;] = {Gy;, Gtﬁ_l, G}, be an euolvmg graph, Io =
[tk,ti] C [ts, t5] a time interval and v, u a pair of nodes:

I

(i) a conjunctive historical reachability query u 2 v re-

turns true, if there exists a path from u to v in all graph
snapshots Gy, , tx < tm < t; of Q[ti,tj].

I

(#) a disjunctive historical reachability query u Y v re-

turns true, if there exists a path from u to v in at least
one graph snapshot Gy, , trx < tm < ti, of g[t,i,tj]<

Our goal is to derive methods for answering reachability
queries efficiently. A straightforward solution would be to
build a different index for each of the graph snapshots and
then pose a reachability query at each one of them. However,
this solution imposes large space overheads. In addition, it
requires extra processing for combining the results of each
query. Instead, we propose building indexes for intervals.

4. VERSION GRAPH

In this section, we present the version graph, a natural
concrete representation of an evolving graph. First, let us
define the notion of lifespan. For a node u (or, edge e),
its lifespan denotes the set of time intervals during which u
(resp. e) existed in an evolving graph. More formally, given
an evolving graph Gr = {G4,, Gt,+1, - .., Gy, }, the lifespan,
L(u), (resp. L(e)) of a node u (resp. edge e) is a set of
intervals such that an interval [t;,t;] C I belongs to L(u),
(resp. L(e)), if and only if, for all t; < &, < t;, u € Vi,
(resp. e € Ey,,).

We model lifespans as sets of time intervals to capture the
general case of graph evolution, where nodes and edges may
be deleted and then re-inserted at subsequent snapshots. Set
of time intervals are also known as temporal elements [11].
If we do not allow deleted nodes or edges to be re-inserted,
then lifespans are just intervals. Furthermore, if there are
no deletions, all lifespans are intervals of the form [t;, tcurr],
where t; is the time instant the node or edge first appeared
and teyurr is the time instant of the current snapshot. There-
fore, in this case, lifespans can be represented simply by the
time instant ¢;. In the following, we use I to denote time
intervals and Z to denote sets of time intervals. To repre-
sent an evolving graph G;, we use a version graph VGr. A
version graph is a labeled directed graph that captures the
evolution of the graph in a concise manner.

DEFINITION 3
Gr ={Gy;, Gi;41, - - -, G, }, its version graph is an edge and
node labeled, directed graph VG = (Vi, Er, Ly, Lc) where:
Vi = UtmeIanw E; = UtmGIEtm, Ly : Vi — I assigns
to each node u in Vi its lifespan L, (u) and Le : B — T
assigns to each edge e in Er its lifespan Le(e).

An example is shown in Figure 1(b) which depicts the
version graph for the evolving graph in Figure 1(a).

4.1 Lifespan Operations

Let us define a number of operations on lifespans, i.e., set
of intervals. For two sets Z and Z’ of time intervals, we say
that Z covers Z’, denoted Z 3 T’, if for each time instant ¢
in an interval I’ of Z7, there is an interval I in Z such that ¢
belongs to I. We also use Z J I for an interval [and Z 3 ¢
for a time instant t. We say that two sets Z and Z' of time
intervals are equivalent, Z ~ 7', if Z J 7' and 7' J T.

We would like to maintain the smallest among equivalent
sets of intervals. We call such sets minimum sets. Let us
first define some simple properties for time intervals. Two
time intervals I = [t;,t;] and I’ = [¢,t}] are called disjoint,
when I N I’ = () and overlapping otherwise. They are called
continuous when t; = t; + 1 and non-continuous otherwise.
It is easy to see that the following proposition holds.

PROPOSITION 1.

(i) A set of intervals is minimum, if and only if, it consists
of disjoint and non-continuous intervals.

(%) For each set of time intervals, there is a unique equiv-
alent minimum interval set.

We next define two useful operations on interval sets,
namely, join and merge. Given two sets of intervals, join
returns the time instants common to both, while merge re-
turns the time instants present in at least one of them.

123

(VERSION GRAPH). Given an evolving graph

° ts
° tz

8

) OOGE
(c)

Figure 1: Example of (a) an evolving graph, (b) the corresponding version graph, (c¢) SCC evolution

DEFINITION 4
Let T ={I, ...
time intervals.

(JOIN AND MERGE OF INTERVAL SETS).
I} and T' = {I1, ... Ij} be two sets of

(i) JoinZT @ T' of T and T’ is the minimum set equivalent
to{lLhNnIy,... hNnIl,...., NI, ... Iy NI}

(i) Merge T ® T’ of T and I’ is the minimum set equiva-
lenttoZT UT'.

Note that if Z and Z' are minimum, then the set {I; N I,

.. NI ..., I N I{ } is a minimum set, whereas the set
{LUI,... LUI,..., I, Ul ... Iy UI} may not be
minimum.

The lifespan L£(p) of a path p includes the time intervals
during which all its edges coexist. Clearly, for a path p = e

. €m, it holds that L(p) = Lc(e1) ® ... ® Le(em), where
Le(ei), 1 < i < m, is the lifespan of e;. For example, for
path p = ((U4, U3), (U3, ’U,7), ('LL7, U‘G)) in Figure 1(b)7 ‘C(p)
= {12,3]} ® {[1,3]} ® {[0,1], [3,3]} = {[3,3]}, while for path
pl: ((’Uq, U3)7 (u37u7)7 (u77u4))7 ‘c(p/) = {[071]} & {[173}} ®
{[0,0], [2,3]} = 0.

We can now define the lifespan, £(u,v), of the reachabil-
ity between two nodes u and v. Let P(u,v) = {p1,...pi}
be the set of all paths from u to v. L£(u,v) depends on the
lifespans of all possible paths in VG from u to v, in partic-
ular, L(u,v) = L(p1) ® ... ® L(p1). For example, for nodes
us and ug in Figure 1(b), P(u4,ue) = {p1,p2,p3,ps,ps5,p6}
where P1 = U4U3UE, P2 = U4U3UTUE, P3 = U4UIU3U6, P4 =
U4UIU3UTUE, P5 — U4UIU2U3UE, P6 — U4UIU2U3UTUE (note,
that for notational brevity, paths were denoted by the par-
ticipating nodes instead of edges). Then, £(u4, us) = {[2, 3]}
@ {[3,3]} @ {[0,1]} & {[1, 1]} & {[1, 1]} & {[1, 1]} = {[0, 3]}

Clearly, historical reachability queries can be represented
in terms of lifespans. Specifically, given a version graph
VG, a time interval Ig = [tk, t:] C [ti, t;] and two nodes v,
u7

I
(i) a conjunctive historical reachability query w 2 re-
turns true, if and only if, {Igo} ® L(u,v) 3J Ig.
I
(i) a disjunctive historical reachability query u <% v re-
turns true, if and only if, {Io} ® L(u,v) # 0.

To represent lifespans, we use bit arrays. Assume without
loss of generality, that the maximum time instant, that is,

the number of graph snapshots, is T. Then, a lifespan, i.e.,
set of intervals, Z is represented by a bit array B of size T,
such that B[i] = 1 if Z J 4, and 0, otherwise. For exam-
ple, take 7 = {[2,4],[9,10], [13, curr]} and T = 16. The bit
array representation of Z is 00111000011001111. This leads
to an efficient implementation of both join ® and merge
@®. In particular, let Z and Z' be two set of intervals and
B and B’ be their bit arrays. Then, Z ® Z’ is computed
as B logical-AND B’ and Z @ 7’ as B logical-OR B’. An
alternative representation would be to use ordered lists of
intervals. Lifespan operations would then be performed us-
ing variations of merge sort resulting in O(T') complexity.
Lists impose in general large computational overheads in
computing reachability.

4.2 Baseline Approaches

There are two baseline approaches to answering reachabil-
ity queries on static graphs, namely pre-computation of the
graph transitive closure and online traversal of the graph.
In this section, we revisit these baseline approaches for his-
torical reachability queries on a version graph.

4.2.1 Historical Transitive Closure

Instead of maintaining a different transitive closure for
each graph snapshot of the evolving graph Gr, we maintain
a single transitive closure, C'L; for the version graph VGj.
The transitive closure includes for each pair of nodes u, v,
their reachability lifespan, £(u,v). To construct the transi-
tive closure, we use a variation of the Floyd-Warshall algo-
rithm that takes into account lifespans, shown in Algorithm
1. If there is a path py,. from node u to node w and a path
Pw,v from node w to node v then there exists a path py ., =
(Pu,wy Pw,v) from u to v with L(pu,v) = L(Pu,w) @ L(Pw,v)
and L(pu,v) is merged with the £(u,v) computed so far.

The time complexity for Algorithm 1 is O(|V7|>T) in the
worst case and requires storage in the order of |V7|?. For

I I
answering a reachability query u LY voru Y v, initially
the entry £(u,v) in CLy is located and then joined with the
query interval I, thus requiring constant time complexity.

4.2.2 Online Traversal of the Version Graph

A straightforward approach to process a reachability query
for an interval Ig would be to perform an online traver-
sal on all graph snapshots G, t € Ig. When using the
version graph representation, this corresponds to traversing

124

Algorithm 1 TransitiveClosure(V Gr)

Algorithm 2 Disjunctive-BFS(VG7y, u, v, {Ig})

Input: Version graph VGr
Output: The transitive closure C' Ly

1: for all u, v € V; x Vi do
2: if (u,v) € E; then

3: CLi(u,v) = Le((u,v))
4: else

5: CLi(u,v) =0

6: end if

7: end for

8

: for w =1 to |V;| do
for all u, v € Vi x V7 do
CL;i(u,v) = CLi(u,v) ® (CLi(u,w) ® CLi(w,v))
11: end for
12: end for

,_.
=

only edges e such that L.(e) 3 ¢, once for each t € Io. We
call this approach, instant based traversal.

To avoid multiple traversals, i.e., one for each snapshot
in Ig, we consider an interval based traversal of the version
graph. The BFS-based interval traversal for disjunctive his-
torical queries is shown in Algorithm 2 and for conjunctive
historical queries in Algorithm 3.

In particular, for conjunctive queries, since a node v may
be reachable from w through different paths at different
graph snapshots, we maintain an interval set R with the
part of L(u,v) ® Ig covered so far (line 9, Algorithm 3).
The traversal ends when R covers the whole query time in-
terval Ig (line 10, Algorithm 3).

To speed-up traversal, we perform a number of pruning
tests. The traversal stops when we reach a node whose lifes-
pan is outside the query interval. In addition, the traversal
stops at a neighbor w of a node n when {Ig} ® Lc(n,w) #
() since a node v cannot be reachable through an edge which
is not alive in at least one t inside the query interval (line 6,
Algorithms 2 and 3).

Still an edge may be traversed multiple times, if it partici-
pates in multiple paths from source to target. To reduce the
number of such traversals, we provide additional pruning by
recording for each node w, an interval set ZA (w) with the
parts of the query interval for which it has already been tra-
versed. If the query reaches w again looking for interval I’
C Ig and ZN(w) 3 I, the traversal is pruned (line 11 of
Algorithm 2, line 15 of Algorithm 3).

For example, consider the version graph in Figure 1(b) and

[0,3]A

query ui; ~»" us. Paths p1 = uiususus, p2 = uiusurusus,
P3 = ULU2U3UEUS, P4 = UL U2U3UTUEUS, P5 = U1ULU3UsUs and
ps = urususurueus with L(p1) = {[0, 1]}, L(p2) = {[1, 1]},
L(ps) = {[1,1]}, L(pa) = {[1, 1]}, L(ps) = {[2, 3]} and L(ps)
= {[3, 3]} need to be traversed to conclude correctly that the
result of the query is true. Hence, some edges, e.g., (us, us),
(ue, us) need to be traversed multiple times for different
time intervals I; C Ig. However, when the query reaches us
again through path ps, it is pruned and it does not traverse
the edge (us, ue) since ZA (us3) is equal to {[0,1]} which
covers the current query interval I’ = {[1,1]}.

Since in the worst case for both instant and interval based
traversal each edge may be traversed |Ig| times, the com-
plexity for both traversals is O((|Vz| + |E1|)|1g]|). However,
in practice interval based traversal outperforms the instant
based one since each edge traversal covers large parts of the

Input: Version graph VG, nodes u, v, interval I C I
Output: True if v is reachable from u in any time instant
in I and false otherwise

1: create a queue N, create a queue INT

2: enqueue u onto N, enqueue I onto INT

3: while N # 0 do

4: n <+ N.dequeue()

5: i+ INT.dequeue()

6: for all ws.t. (n, w) in VG and {Ig} ® Lc((n,w))

(0 do
7 if w == v then
8: Return(true)
9: end if
10: T ={Ig} @ Le(u,w)
11: if ZN(w) 2 7' then
12: IN(w) =IN(w) & T
13: enqueue w onto N
14: enqueue Z' onto INT
15: end if
16: end for

17: end while
18: Return(false)

query interval instead of a single time instant. Furthermore,
pruning guarantees that an edge will not be traversed twice
for the same interval.

S. THE TIMEREACH INDEX

Our approach exploits the fact that many real-world so-
cial graphs are characterized by large strongly connected
components (SCC) [20, 15]. Thus, instead of maintaining
reachability information for pairs of nodes, we maintain in-
formation about the SCCs that each node belongs to. If two
nodes belong to the same component, then they are reach-
able. However, as the graph evolves over time, its strongly
connected components change as well. An example is shown
in Figure 1(c) that depicts the SCCs of the graph in Figure
1(b) as they evolve over time.

Given an evolving graph Gr = {Gy,, Gt;+1, -, Gi; }, we
invoke at each graph snapshot G, € Gr an algorithm, e.g.,
Tarjan’s algorithm [24], to identify the corresponding set of
SCCs. A unique id is assigned to each SCC at each snapshot.

For each node u, we maintain a list P(u) that contains
(C, t) pairs specifying the strongly connected component C
to which node w belongs at time instant t. P(u) is called
posting list and each pair in the list a posting. The storage
complexity is Q(|V7]||I]), since each node participates in at
most one SCC at each time instant. If we use Tarjan’s algo-
rithm [24], the time complexity for constructing the lists is
O((|Vr| + |E1])|1]), since each run of the Tarjan’s algorithm
has an O(|Vz| + |E1|) complexity.

For presentation clarity, we assume that single nodes form
singleton SCCs whose ids are the ids of the corresponding
nodes. However, for space efficiency, we do not maintain
postings in this case.

We perform an additional optimization. Many nodes have
strong connections, i.e. they remain in the same components
even in the face of component splits and joins. We exploit
this fact to reduce the storage space required for the postings
by observing that the posting lists of these nodes consist of

125

Algorithm 3 Conjunctive-BFS(V Gy, u, v, {Ig})

Input: Version graph V Gy, nodes u, v, interval I C I
Output: True if v is reachable from u in all time instants
in I and false otherwise

1: create a queue N, create a queue INT
2: enqueue u onto N, enqueue Ig onto INT
3: while N # () do

4: n <+ N.dequeue()

5: i« INT.dequeue()

6: for all ws.t. (n, w) in VG and {Ig} ® Le((n,w))

(0 do

T T ={Ig} ® Le(n,w)

8: if w == v then

9: R=RoT

10: if R J Ig then

11: Return(true)

12: end if

13: continue

14: end if

15: if ZV (w) 2 7' then

16: IN(w) =IN(w) & T’

17: enqueue w onto N

18: enqueue Z' onto INT

19: end if
20: end for

21: end while
22: Return(false)

the same elements. We avoid redundancy by storing such
lists only once and replacing the posting lists of the rele-
vant nodes with pointers to the common list. We call this
approach posting sharing.

An example is shown in Figure 2(a), where, for instance,
the first posting list indicates that nodes with ids 1 up to 50
belong to the strongly connected component with id Cy at
time to, Ce at t1 and Cg at to.

In addition, for each graph snapshot G, , we construct a
SCC graph snapshot G's,, = (Vs,, , Es,,) such that there is
anode U in Vg, for each SCC in Gy, and there is an edge
(U, V) in Es,, , if and only if, there is an edge (u,v) in Gy,
from a node u that belongs to the SCC that corresponds to
U to a node v that belongs to the SCC that corresponds to
V. For a time interval I = [t;, ¢;], this results in an evolving
SCC graph Gs, = {Gsti, Gsti+17 e GSf,j }. We construct
the SCC graphs incrementally, as the SCCs are created. The
size of each SCC graph depends on the size of the original
snapshot graph and in the worst case is equal to it.

We call this approach simple TimeReach (TR). To answer

a reachability query u I'%A v, (or, u fey v), we check for each
t € Ig whether w and v belong to the same component. If
this is not the case, we traverse the corresponding G, .
Next, we present a more space efficient method of exploit-
ing strongly connected components for historical queries.

5.1 Condensed TimeReach

While in the TR approach, we maintain information per
time instant, we would like to aggregate such information
to express SCC participations during time intervals. In this
case, a posting (C,I"), I’ C I, belongs to P(u), if u partic-
ipates in the SCC with id C at all time instants in I’. Our

goal is to minimize the total number of such postings.

PROBLEM 1 (OPTIMAL SCC-ID ASSIGNMENT). Given a
time interval I and a set of SCCs for eacht € I, find an as-
signment of ids to SCCs that results in the minimum number
of postings.

A new posting is created, each time a node participates
in a different SCC. Thus, SCC ids should be re-assigned so
that the number of such new postings is minimized. We use
a weighted graph to formalize the optimal assignment of ids
to SCCs.

In particular, we model SCC evolution over a time interval
I using a weighted graph G¢(Ve, Ec, W) where each node
U € Ve corresponds to a SCC that existed at some time
instant ¢ € I, and an edge e = (U, V) € Eg¢, if and only
if, SCC U existed at time t;, SCC V existed at time tx + 1
and there is at least one node that belongs to both U and
V. W assigns to each edge e = (U, V) a weight W(e) that
corresponds to the number of nodes that belong to both U
and V.

An example of a weighted graph is shown in Figure 2(b)
that depicts the evolution of the graph whose posting lists
are shown in Figure 2(a). For instance, component C'7 cre-
ated at time instant ¢; consists of 100 nodes from component
Cy and 150 nodes from Cf.

Let Gc[tk,tkﬂ] (VC[thkH] , Ec[tk»tk+1]’ W) be the subgraph
of Ge(Ve, Ec, w), that consists of the nodes U € Vc[tk,tk-l—l]
that correspond to the SCCs that exist at time interval
[tr,tr + 1]. Gc“k’tkﬂ] represents one step in the SCC evo-
lution. Note that, from the definition of G¢, Gc[tkvtk+1] is
a bipartite graph.

We make the following observation. At time instant ¢, +
1, a new posting is created exactly for those nodes that
participated in a different SCC at tx + 1 than at tx. The
number of these new postings is equal to the sum of weights
from node U to V in GC[‘k«tk+1] where U has a different id
than V. Thus, to minimize the number of new postings, we
have to maximize the weight of the edges between pairs of
nodes that have the same id. This corresponds to finding a
maximum bipartite matching of Gc[tk,tkﬂ]'

THEOREM 1. The optimal SCC-id assignment problem can
be reduced to the problem of finding the mazimum weight bi-
partite matching (MWM) My, of each GC[%

t1]

PROOF. As shown above, solving the MWM for each bi-
partite graph Gc[%tkﬂl minimizes the number of new post-
ings created at t; + 1. We shall show that this step-wise
assignment is optimal overall in G¢. For the purposes of
contradiction, assume that the optimal assignment is a set
N of edges, N C Ec¢ and that N is different from the set
of edges attained through the maximum bipartite match-

ings, that is, > w(e) > > > w(e). Hence, for some
eEN k e€My
m, for N, = NN EC[tm,th] it holds that EXN: w(e) >
> w(e), which means that M,, is not a MWM, which is
eEMm
a contradiction. [

Figure 2(c) shows the weighted graph after the assignment
of new ids through bipartite matching, while Figure 2(d)
shows the new posting lists.

126

Nodes Posting List

150 | (€1t (Catib(Coty) , ,

51-80 | (Cyt),(Coty).(Coty) 120 100
81-100 | (Cat)(Coty).(Coty)

en e R CUR O OL
201-230 | (Co,tp),(Coty),(Carty) 100 150 . 100
231-350 | (Cto), (ot (Crorta) @ @ @ .
351450 | (Cotoh(Coty)(Crots) @ ‘ ’

(a) (b)

o 231350 | (Coltotol)(Caltu til)(Co [ty)
° [351-450 (Csltota])

Posting List

t, Nodes
1-50 (Cy [t ta]),(Cortot])

120 100 51-80 | (G [totol),(Cy [ty,ta]),(Ca [t 15])

e t, [81100 | (Cyltotol),(Culty til)(Colty to])
101-200 (Caltot])

100 150 | 100 201-300 (Cs [t to]), (Ca [ty t51)

(d)

Figure 2: (a) Shared posting lists, (b) weighted graph modeling the evolution of SCCs, (c) weighted graph after the bipartite

matching, and (d) the compressed shared posting lists

The maximum weight bipartite matching problem is well-
studied (e.g., see [8] for a survey). The most widely used
algorithm for solving this problem on a graph G(V, E) is
the Hungarian algorithm whose running time ranges from
O(|V|?) to O(|E||V| + |V|*loglog|V|) depending on the im-
plementation. Another category of algorithms depends on

the edge weights and the fastest one runs in O(|E|+/|V |logWV)

time, where W is the maximum edge weight. In addition,
a number of fast approximation algorithms have been pro-
posed. The simplest such algorithm is the greedy algorithm
that sorts the edges by weight and repeatedly picks the edge
with the largest weight. This algorithm can be implemented
with O(|E|) time complexity and produces a 1/2 worst case
approximation.

The incremental algorithm for constructing the SCC post-
ings is presented in Algorithm 4. It takes as input the cur-
rent snapshot and the postings computed up to the previous
snapshot, and constructs the current postings. It starts by
computing the SCCs using Tarjan’s algorithm with com-
plexity O(|Vi|+ |E¢|) (line 2). Then, it constructs the graph
Gey,) With complexity O(|Ec¢,_, ,|) (line 5). Next, the
MWM is computed and new ids are assigned to the new
SCCs (lines 6 - 9). The complexity of this step depends
on which algorithm is used for computing the MWM. We
use the greedy algorithm with complexity O(|Es,_, ,). Fi-
nally, the SCC postings are created/updated for each node
of the current snapshot, creating a new entry only for nodes
that participate in a different SCC (with a different id) than
the one in time instant ¢ — 1 (lines 11 - 22). The complexity
of these steps is O(|V4|) since each operation in the loop has
constant time complexity. Thus, in total the running time
of the algorithm is O(|V4| + |E¢]).

As in the simple TR approach, we also construct the evo-
lving SCC graph, which in this case has a much smaller num-
ber of nodes due to the reduction of the number of strongly
connected components achieved by the bipartite matching.

Finally, we construct the version graph VGs, = (Vs,,
Es,, Ly, L) of the evolving SCC graph that we call con-
densed version graph. We construct the condensed version
graph incrementally as follows. For each snapshot Gy, € Gr,
for each edge (u,v) € E;, we look up the postings P(u),
P(v) for entries (U,I'), (V,I")st. t; € I"and t; € I". If U
V and edge (U,V) € Eg,, the edge is added with lifespan
{[ti, t:]}, otherwise the lifespan of the edge is extended to in-
clude t;. We call the above approach condensed TimeReach
(TRC).

5.2 Query Processing

Query processing of a (disjunctive or conjunctive) reach-

I
ability query u 2ovis performed in two steps. In the
first step, the appropriate postings of nodes v and v are

1 1
1 1
l—! 1
i i H i
! ! C C ! C
£ — 4 -)
S — G
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[1,15] A
Figure 3: Example of splitting query u ~~»" v

retrieved. If the two nodes belong to the same strongly con-
nected component during the whole query interval for con-
junctive queries or once for disjunctive queries, the answer is
true. Otherwise, let Zg be the set of intervals during which
nodes u and v belong to different components. The query
is re-written as a set of reachability sub-queries of the form

Ig,

Uk A Vi, where u belongs to SCC Uy and v belongs to
SCC Vi, for some common time interval Io,, Zo 3 Ig,, the
set Zog = (Jlo, consists of disjoint intervals, and Zg ~ Zg.

The results of the sub-queries are combined to produce the
answer for the query through an AND (OR) for conjunctive
(disjunctive) queries.

. 1,15 N
For example, consider the query u 31 v in Figure 3,

where the posting lists for « and v are respectively, P(u) =
(Cs [4,7], Cs [8,11], C4 [11, curr] and P(v) = (Cs [1,8], Ca

I
[11,15]). The query is split in three sub-queries: u B Cs,

u I%A Ce, v I%A Cs.

In the worst case, the two nodes belong to a different SCCs
at each time instant in /g, thus we need to traverse the con-
densed version graph for each ¢t with a cost of O(|Ig|(|Vs, |+
|Es,|)) Two factors that influence performance are the num-
ber of postings for each node and the size of the condensed
version graph. The smaller the number of postings, the fewer
sub-queries are required in the second step. The smaller the
condensed version graph, the faster the traversals. Hence,
the optimal assignment of SCC ids is crucial to query pro-
cessing performance, since it keeps the posting lists short
and the size of the condensed version graph small.

5.3 Interval 2Hop

Reachability on version graphs can be made more efficient
by maintaining additional information. In this paper, we
use an approach based on pruned landmark 2hop labeling
[2, 29]. The idea is that for each node u of a given graph, we
maintain two labels L;y (u) and Loyt (u) which include nodes
that can reach u and can be reached by w respectively. The
labels are computed such that a node u reaches v, if an only
if, Lin(v) N Lout(u) # 0. Instead of traversing the graph, a
reachability query can now be answered by using the labels.

For historical reachability queries, we also keep along with
each node w in L;,(v) the reachability lifespan £(w,v) and
along with each node w in Loyt (u) the reachability lifespan

127

Algorithm 4 ConstructSccPostings(Gy, Pi—1, GS[t—2,t—1])

Input: Snapshot G, SCC postings P;_1
Output: SCC postings P;

1: Ssce, =0, M =0
: Run Tarjan’s algorithm on G
: Ssce, is the set of the detected SCCs where each
SCC; € Sscc, is assigned a unique id C;
if ¢ > 0 then
Construct Gs,_, , from Sscc, and Gs;,_,,_y
Compute maximum weight matching M
for all edges e = (U,V) € M do
C,=0Cy
end for
10: end if
11: for all nodes u € V; do
12: find SCC; € Sscc, s.t. uwe SCC;
13: if P,_1(u) # 0 then

w N

14: if P,_1(u)[end].C # C; then
15: Pi_i(u)[end].I = [ts,t — 1]
16: Pi_1(u).add(Cy, [t, curr])
17: end if

18: else

19: P,_1(u).add(C, [t, curr])

20: end if

21: end for

22: Pt = Ptfl

L(u,w). In the presence of 2hop labels, to answer a query

I T
u v (u 2 v), we compute the set Lin(v) N Loy (u) and

then for each w in Lin(v) N Lout, we join the lifespan of w
in Ly, (v) with the lifespan of w in Loyu¢(u). To answer the
query the joined lifespans £ (w) of nodes w in L;n (v) N Lowt
are joined with the query interval £ to see whether they
cover Ig (or, have at least a time instant in common).

We compute the labels for the nodes of the condensed
version graph, incrementally. For an interval I = [t;,¢;],
we compute the labels for the SCC graph snapshots at each
time ¢ in I, starting from ¢;. For each time ti, tx > t;, we
merge the labels computed for a node C' at time ¢, with the
labels computed for C' at the previous time ¢, — 1. For the
construction of L;, and Lo, for each SCC graph snapshot at
time instant tx, we process the nodes of the graph by using
the INOUT strategy that starts a BF'S traversal from the
nodes with the largest (indegree(u)+1) x (outdegree(u)+1)
[29]. An example of the final 2hop labels of each SCC node
in a version graph is given in Figure 4.

6. EXPERIMENTAL EVALUATION

To evaluate our approach, we used three real datasets:
Facebook (FB) [27], Flickr (FL) [19] and YouTube (YT) [18].
The characteristics of each dataset are shown in Table 3.
For example, FB consists of 871 daily snapshots of the New
Orleans Facebook friendship graph, which correspond to 125
weekly or 29 monthly snapshots. We report the number of
nodes, edges, and SCCs (singleton SCCs are not included)
and the size of the largest SCC at the first and last snapshot.

All three datasets are treated as directed. Also, all datasets
are insert-only, i.e. they do not contain information about
node/edge deletions. Therefore, we synthetically generate
random edge deletes. The input parameters and their de-

Lin:{}
Lout: {C,,[0,3]}, {G5,[0,1]}, {C,,[0,3]}

Lin: {C,,(0,3], C5,(0,1]
Lout:{Cs,[1,2]}

Lin: {C,,[0,3], C,[0,3]}
Lout: {C5,[2,3]}

Lin: {C,,[0,3], C,,[2,31}
Lout: {C,,[0,1]}

Lin: {C;,[1,2], C,,[1,2]}
Lout:{C,,[0,3]}

Figure 4: An example of interval 2hop labels

fault values are shown in Table 1.

We evaluate the size and the construction time of the
Version Graph (VG), the Transitive Closure (TC), the sim-
ple TimeReach (TR), the condensed TimeReach (TRC) and
the condensed TimeReach with 2hop labels (TRCH). We
also evaluate the online processing of historical reachabil-
ity queries using an instant-based (INS) or interval-based
(INT) traversal of the version graph and using the various
TimeReach indexes. Table 2 summarizes the various ap-
proaches.

We ran our experiments on a system with a quad-core
Intel Core i7-3820 3.6 Ghz processor and 64 GB memory.
We only used one core for all experiments.

Table 1: Input parameters

Query
of Snapshot interval % of
nodes granularity (in days) deletes
FB Default 61,096 day 7 10
Range 117 - 61,096 day, week, month 7-35 0-30
YT Default 1,138,499 day 7 10
Range 1,004,777 - 1,138,499 day, week, month 7-35 0-30
FL Default 2,302,925 day 7 10
Range 1,487,058 - 2,302,925 day, week, month 7-35 0-30

6.1 Index Size

In the first set of experiments, we evaluate the various ap-
proaches in terms of their storage requirements. The size of
the TR and TRC include the storage required for maintain-
ing the posting lists and the SCC graphs, while the size of
the TRCH includes in addition the storage required for the
2hop labels.

Table 2: Overview of difference approaches

VG Version Graph

TC Transitive Closure

TR (Simple) TimeReach

TRC Condensed TimeReach

TRCH Condensed TimeReach with 2hop labels
INS Instant-based traversal of the version graph
INT Interval-based traversal of the version graph

128

Table 3: Dataset properties

Snapshot Granularity # nodes # edges # SCC Max SCC (# nodes)

first last first last first last first last

(daily) 871 117 61,096 128 1,139,081 10 374 3 51,286

FB (weekly) 125 1,429 61,096 2,365 1,139,081 138 374 18 51,286
(monthly) 29 4,239 61,096 12,224 1,139,081 279 374 96 51,286

(daily) 37 1,004,777 1,138,499 4,379,283 4,452,646 9,807 11,360 457,932 509,332

YT (weekly) 6 1,025,536 1,138,499 4,379,283 4,452,646 9,807 11,360 465,668 509,332
(monthly) 2 1,116,602 1,138,499 4,446,042 4,452,646 10,664 11,360 485,273 509,332

(daily) 134 1,487,058 2,302,925 17,022,083 33,140,018 42,163 58,636 1,004,426 1,605,184

FL (weekly) 20 1,507,700 2,302,925 17,393,321 33,140,018 42,163 58,636 1,010,498 1,605,184
(monthly) 5 1,585,173 2,302,925 18,987,847 33,140,018 42,459 58,636 1,081,499 1,605,184

Graph Size (scalability). Figure 6 reports the size for
varying number of nodes. As shown, TRC is much smaller
than TR in all cases. For FB and FL, the largest SCC
covers 83% and 70% of the graph respectively, while for YT,
it covers just 45% (see Table 3). Thus, the TRC size for the
FB dataset is 89% smaller, while for the YT and FL datasets,
we achieve 40% and 57% of compression respectively. The
larger the SCCs, the higher the compression achieved.
Since the size of the transitive closure (TC) grows rapidly,
we compute TC for a smaller subset of the FB dataset vary-
ing the number of nodes from 1,000 to 6,000. As shown in
Table 4, even for this small graph, the size of TC reaches
106 MB.
Percentage of Deletes. For each dataset, we vary the per-
centage of edge deletes from 0% to 30% of edge insertions.
Table 5 presents the results for the FB dataset. We observe
that the size of TR and TRC decreases; this can be explained
by the fact that deletions affect the isolated nodes that be-
come disconnected from the components and thus there are
less edges between components and isolated nodes. The size
of VG remains constant, since the size of the lifespan labels
remains the same. Finally, the size of TRCH increases, be-
cause in case of deletes, additional nodes need to be included
in the 2hop labels for ensuring the reachability test.

Table 4: Comparison with transitive closure

nodes Size (MB) Constr. Time (sec)
TR TRC TC TR TRC TC

1,000 0.013 0.012 291 0.01 4.76 167.49
2,000 0.026 0.009 11.56 0.23 5.02 1,457

3,000 0.039 0.012 26.27 0.35 5.89 5,788

4,000 0.052 0.018 47.12 041 6.33 16,580
5,000 0.063 0.026 73.97 059 6.79 39,112
6,000 0.074 0.032 106.82 0.72 7.13 81,123

Snapshot Granularity. Table 6 reports the storage re-
quired for maintaining daily, weekly and monthly snapshots
of the three datasets. All sizes increase with the number of
snapshots. For example, for FL, the increase of the num-
ber of snapshots by a factor of 30 (from 5 monthly to 134
daily) causes an increase of the size of TR by a factor of
3.44. The size of TR and TRC decreases with the snap-
shot granularity (number of snapshots) since less snapshots
mean less postings and smaller SCC graphs. The size of VG

Table 5: Size per % of deletes (Facebook)

% of deletes Size (MB)
VG TR TRC TRCH
0 11 0.5 021 1,493
10 11 0.58 0.22 1,528
20 11 045 0.19 1,612
30 11 047 0.18 1,664

99; b

94 7

g

S

7 89| e

g —— Facebook

g 84 —e— Youtube |

It Flickr

8

® 9 b
T4 B
69 -
month week day

Figure 5: Compression ratio achieved by posting sharing

does not decrease significantly, because it requires memory
to keep lifespan labels for all nodes and edges of the graph.
Posting Sharing. Finally, let us take a closer look at the
posting sharing optimization by evaluating the reduction in
the size of postings for various granularities as depicted in
Figure 5. In general, we achieve compression ratios for the
posting around 70% for FB, around 90% for FL and over
95% for YT. The compression ratio decreases with snapshot
granularity due to the increase of the posting combinations.
This is more evident for the FB dataset where the number
of snapshots is higher.

6.2 Construction Time

In this set of experiments, we evaluate the time to con-
struct the various indexes.

As seen in Figure 7, TRC is slower than TR, because
of the additional time required for performing the bipartite
matching. TRCH is even slower, since it also needs to con-
struct the 2hop labels. We use the greedy algorithm for the
bipartite matching and the INOUT strategy for computing
the interval-2hop labels.

Constructing the TC for the whole graphs is prohibitive,
since even for only 6, 000 nodes, it takes over 22 hours, while

129

Table 6: Size (MB) per snapshot granularity

Facebook YouTube Flickr
Days Weeks Months Days Weeks Months Days Weeks Months
VG 11 6 5 7.87 7.34 6.94 45.52 39.85 38.15
TR 0.58 0.47 0.42 44.28 21.28 14.98 141 73 41
TRC 0.22 0.08 0.07 3.21 1.92 1.46 2.89 2.27 1.88
TRCH 1,528 1,041 845 5,865 4,936 4,062 7,951 6,684 5,719

the TR construction takes just 0.72 seconds (Table 4).
Comparison of Different Bipartite Matching Algo-
rithms. We also constructed the TRC using the Hungarian
algorithm. For all datasets, the size of the resulting TRC is
almost equal to the size of the TRC resulting from using the
greedy algorithm (the difference is in the order of KB), thus
confirming our expectation that greedy achieves a very close
approximation of the optimal solution for social graphs. The
Hungarian algorithm is much slower than greedy requiring
an additional 1.5 hour for large datasets such as FL.
Comparison with 2hop for insert only. We adopted
the pruned labeling algorithm proposed in [2] for distance
queries to create an indexing scheme for historical reacha-
bility queries. Pruned labeling incrementally updates the
index for each newly inserted edge, whereas in our approach
we compute 2hop labels per snapshot. The pruned labeling
algorithm does not support deletions, thus, we compare the
two algorithms on the Facebook dataset without deletions.
The pruned algorithm was found to be 5.4 times faster but
it produced labels that were 12 times larger that the ones
computed with our approach.

6.3 Query Processing

Let us now focus on query processing. In each experiment,

we ran 500 historical reachability queries where the source
and target nodes are chosen uniformly at random with the
restriction that both nodes are present in the graph at the
beginning and the end of the query interval. Queries involv-
ing nodes not present either at the beginning or the end of
the query interval can be pruned fast by checking the lifes-
pans of the nodes.
Online Traversal of the Version Graph. Let us first
compare between an instant-based (INS) and an interval-
based (INT) online traversal of the version graph for dif-
ferent time intervals (Figures 8 and 9). A general remark
that holds independently of the method used to evaluate
queries is that false conjunctive queries are faster than true
conjunctive queries, since processing stops as soon as a time
instant is found at which the two nodes are not reachable.
Analogously, true disjunctive queries are faster than false
disjunctive queries, since processing stops as soon as a time
instant is found at which the two nodes are reachable.

Interval-based traversal is faster that instant-based traver-
sal for almost all datasets and query types, since it can find
the answer faster by searching for longer intervals. The only
exception is FB and false conjunctive queries, where INS is
slightly better. This happens because with INS, the search
stops as soon as the first false answer is produced in any
traversal. Hence, if this answer is found in the first few
time instants of the query interval negative answers can be
produced quickly for the smaller graph (i.e, the FB graph).
Online Traversal versus TimeReach. Let us now com-

pare interval-based online traversal with query processing
using the TR, TRC and TRCH approaches. The results for
conjunctive queries are shown in Figure 10 and for disjunc-
tive queries in Figure 11.

We see that all approaches are not significantly affected by
the increase of the query interval due to fast posting lookups
and short distances in the SCC graph for the TR and TRC,
and the efficient implementation of edge lifespans for the
version graph. We see that the TRC approach does not
only produce a smaller structure than TR but it also attains
faster query response for almost all datasets. TR is slower
because for answering a query it needs to traverse the SCC
graph per time instant when the query nodes do not belong
to the same component. TRCH attains the fastest time
when compared with all other approaches. The performance
of TRCH is expected, since only two simple steps are needed:
first to obtain the intersection L;n(v) N Lout(u), and after
that to check the lifespans £ of the nodes in the intersection.

7. CONCLUSIONS

Most real-life graphs evolve over time. In this paper, we
address the problem of efficiently answering historical reach-
ability queries over such graphs. Such queries ask whether
a node u was reachable from another node v during a time
interval in the past. We have proposed an approach termed
TimeReach that exploits the fact that most graphs consist of
strongly connected components (SCCs). TimeReach main-
tains information about SCC membership for each node,
and a graph which represents the links between the strongly
connected components. We also maintain a condensed ver-
sion graph which corresponds to the version graph of the
SCCs evolution. Our extensive experiments with three real
social network datasets show that TimeReach is storage-
efficient and can be constructed incrementally with a small
overhead. Historical queries are processed efficiently even
when involving large time intervals.

There are many possible directions for future work. One
such direction is exploiting TimeReach towards answering
other types of historical queries, such as shortest path ones.
Another direction concerns the distribution of TimeReach.
Distribution may either be based on time or exploit the SCC
evolution by placing together nodes that belong to the same
SCCs.

8. ACKNOWLEDGMENTS

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program "Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

130

—4—\VG —@—TR —&—TRC TRCH
10,000.00
1,000.00
100.00
2 1000 //*_+_+—q—o———’
100
010 .F'zég_—__—';ﬁ—:t
0.01
10,000 20,000 30,000 40,000 50,000 60,00
of nodes
Figure 6: Size (log scale) for
—+—VG —@—TR —&—TRC TRCH
10,000
1,000
% 100
£
) /,/o——*”"‘
1
10,000 20,000 30,000 40,000 50,000 60,000
#of nodes

——VG ——TR —&—TRC TRCH

10,000

1,000

Size (MB)

0 1,004 1,029 1,054 1,079 1,104 1,129

#of nodes in thousands

——VG —m—TR —&—TRC TRCH

10,000

1,000

Size (MB)

1,487 1,687 1,887 2,087 2,287

of nodes in thousands

varying number of nodes in FB (left), YT (middle) and FL (right)

——VG —m—TR —4—TRC TRCH

1,000,000

100,000

10,000

3 1000
E
=

100

10

1

1,004 1,029 1,054 1,079 1,104 1,129

#of nodes in thousands

Time (sec)

——VG —m—TR —&—TRC TRCH

10,000,000
1,000,000
100,000
10,000
1,000

100

10

1

1,487 1,687 1,887

#of nodes in thousands

2,087 2,287

Figure 7: Construction time (log scale) for varying number of nodes in FB (left), YT (middle) and FL (right)

1000

® INTtrue ® INStrue M INT false INS false

D ' . i i '
1
7 14 21 28 35

Query Interval

Time (ms)
5
8

Figure 8: Query time (log scale) INS

1000 W INTtrue MINStrue MOTINT false INS false

100
D ' I ' '
1
7 14 21 28 35

Query Interval

Time (ms)

Figure 9: Query time (log scale) INS

—e—INTtrue —@—INT false

10000 wiNTtrue WINStrue mINTfalse - INS false

1,000
100
10
1

14 21 28 35

Query Interval

Time (ms)

and INT for

10,000

WINT true W INS true m INT false INS false

1,000

4444

Query Interval

Time (ms)
8

15

conjunctive queries in

100,000

WINTtrue ®INStrue WINT false INS false

10,000
1,000
100
0
1

7 14 21 28 35

Query Interval

Time (ms)

FB (left), YT (middle) and FL (right)

100,000

W INT true W INS true W INT false INS false

10,000

1,000
100
10
1

7 14 21 28 35

Query Interval

Time (ms)

and INT for disjunctive queries in FB (left), YT (middle) and FL (right)

—ai—TR true TR false —4—INTtrue =——INTfalse =—d—TR true TR false —4—INTtrue ~—=—INTfalse == TR true TR false
=H=TRCtrue =——@=—TRC false =m==TRCH true TRCH false =H=TRCtrue =——@=—TRC false =mmp==TRCH true TRCH false =¥=TRCtrue ~—@=TRC false =mp==TRCH true TRCH false
1000 1E+03
. o N v —————8 1003
_ 10 1.E+0]
B .__’-r/"—__’_’. 1E401 *
T 3 = — - 1E-01
g o1 P Z 1E01
F o o £ _
~— it ~—= : -
£ £ 1.E-03
0.00001 " 1eo0s . 1.E-05
0.0000001 1.E-07 1.E-07
1€-09 1.E-09 1.E-09
7 14 21 28 35 7 14 21 28 35 7 14 21 28 35
Query Interval Query interval Query interval
Figure 10: Query time (log scale) for conjunctive queries in FB (left), YT (middle) and FL (right)
—4—INTtrue ~—=—INTfalse ——d—TR true TR false —4—INTtrue =—=INTfalse == TR true TR false —4—INTtrue == INTfalse == TR true TR false
—*—TRCtrue —@—TRCfalse =———TRCH true TRCH false —4—TRCtrue —>—TRCfalse =——TRCH true TRCH false —*—TRCtrue —@—TRCfalse ———TRCH true ——TRCH false
1E+03 1.E+03 1.E+04
LE+02 —a LE+02 LE+03
_1E+01 _1E+01 ez .___.__—0’—‘___.
E £ £ 16401
TLE00 o e © 3 140 7 e F—
£ £ £ 1E+00 Y=
£ £ £
1E01 P + 1.E01 Leor
LE02 LE02 1602
1E-03 1.E-03 1.E-03
7 14 21 28 35 7 14 21 28 35 7 14 21 28 35

Query interval

Figure 11:

Query interval

131

Query interval

Query time (log scale) for disjunctive queries in FB (left), YT (middle) and FL (right)

9.
(1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

REFERENCES

Rakesh Agrawal, Alexander Borgida, and H. V.
Jagadish. Efficient management of transitive
relationships in large data and knowledge bases. In
SIGMOD, pages 253—-262, 1989.

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida.
Dynamic and historical shortest-path distance queries
on large evolving networks by pruned landmark
labeling. In WWW, pages 237-248, 2014.

Ramadhana Bramandia, Byron Choi, and Wee Keong
Ng. On incremental maintenance of 2-hop labeling of
graphs. In WWW, pages 845-854, 2008.

Li Chen, Amarnath Gupta, and M. Erdem Kurul.
Stack-based algorithms for pattern matching on dags.
In VLDB, pages 493-504, 2005.

Yangjun Chen and Yibin Chen. An efficient algorithm
for answering graph reachability queries. In ICDE,
pages 893-902, 2008.

Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun
Wang, and Philip S. Yu. Fast computing reachability
labelings for large graphs with high compression rate.
In EDBT, pages 193-204, 2008.

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri
Zwick. Reachability and distance queries via 2-hop
labels. SIAM J. Comput., 32(5):1338-1355, 2003.
Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling
algorithms for approximate and exact maximum
weight matching. Arziv preprint arXiv:1112.0790,
2011.

Wenyu Huo and Vassilis J. Tsotras. Efficient temporal
shortest path queries on evolving social graphs. In
Conference on Scientific and Statistical Database
Management, SSDBM ’14, Aalborg, Denmark, June
30 - July 02, 2014, page 38, 2014.

H. V. Jagadish. A compression technique to
materialize transitive closure. ACM Trans. Database
Syst., 15(4):558-598, 1990.

Christian S. Jensen and Richard T. Snodgrass.
Temporal element. In Encyclopedia of Database
Systems, page 2966. 2009.

Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun
Wang. Efficiently answering reachability queries on
very large directed graphs. In SIGMOD, pages
595-608, 2008.

Udayan Khurana and Amol Deshpande. Efficient
snapshot retrieval over historical graph data. In ICDE,
pages 997-1008, 2013.

Georgia Koloniari, Dimitris Souravlias, and Evaggelia
Pitoura. On graph deltas for historical queries. WOSS,
2012.

Ravi Kumar, Jasmine Novak, and Andrew Tomkins.
Structure and evolution of online social networks. In
ACM SIGKDD, pages 611-617, 2006.

Alan G. Labouseur, Jeremy Birnbaum, Paul W. Olsen
Jr, Sean R. Spillane, Jayadevan Vijayan, Jeong-Hyon
Hwang, and Wook-Shin Han. The g* graph database:
efficiently managing large distributed dynamic graphs.
Distributed and Parallel Databases, To appear, 2014.
Alan G. Labouseur, Paul W. Olsen, and Jeong-Hyon
Hwang. Scalable and robust management of dynamic
graph data. In VLDB, pages 43-48, 2013.

Alan Mislove. Online social networks: Measurement,

19]

[20]

21]

22]

23]

[30]

31]

132

analysis, and applications to distributed information
systems. Rice University, Department of Computer
Science, 2009.

Alan Mislove, Hema Swetha Koppula, Krishna P.
Gummadi, and Bobby Bhattacharjee Peter Druschel.
Growth of the flickr social network. In ACM
SIGCOMM WOSN, pages 25-30, 2008.

Alan Mislove, Massimiliano Marcon, Krishna P.
Gummadi, Peter Druschel, and Bobby Bhattacharjee.
Measurement and analysis of online social networks.
In ACM SIGCOMM IMC;, pages 29-42, 2007.
Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and
Reynold Cheng. On querying historical evolving graph
sequences. PVLDB, 4(11):726-737, 2011.

Ralf Schenkel, Anja Theobald, and Gerhard Weikum.
Hopi: An efficient connection index for complex xml
document collections. In EDBT, pages 237255, 2004.
Ralf Schenkel, Anja Theobald, and Gerhard Weikum.
Efficient creation and incremental maintenance of the
hopi index for complex xml document collections. In
ICDE, pages 360-371, 2005.

Robert Tarjan. Depth-first search and linear graph
algorithms. STAM Journal on Computing,
1(2):146-160, 1972.

Silke Trifll and Ulf Leser. Fast and practical indexing
and querying of very large graphs. In SIGMOD, pages
845-856, 2007.

Sebastiaan J. van Schaik and Oege de Moor. A
memory efficient reachability data structure through
bit vector compression. In SIGMOD Conference, pages
913-924, 2011.

Bimal Viswanath, Alan Mislove, Meeyoung Cha, and
Krishna P. Gummadi. On the evolution of user
interaction in facebook. In ACM SIGCOMM WOSN,
pages 37-42, 2009.

Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and
Jeffrey Xu Yu. Dual labeling: Answering graph
reachability queries in constant time. In ICDE,

page 75, 2006.

Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi
Yoshida. Fast and scalable reachability queries on
graphs by pruned labeling with landmarks and paths.
In CIKM, pages 1601-1606, 2013.

Hilmi Yildirim, Vineet Chaoji, and Mohammed J.
Zaki. Grail: a scalable index for reachability queries in
very large graphs. VLDB J., 21(4):509-534, 2012.
Hilmi Yildirim, Vineet Chaoji, and Mohammed J.
Zaki. Dagger: A scalable index for reachability queries
in large dynamic graphs. CoRR, abs/1301.0977, 2013.

The VLDB Journal
DOI 10.1007/s00778-013-0311-4

REGULAR PAPER

YMALDB: exploring relational databases via result-driven

recommendations

Marina Drosou - Evaggelia Pitoura

Received: 22 February 2012 / Revised: 8 February 2013 / Accepted: 13 March 2013

© Springer-Verlag Berlin Heidelberg 2013

Abstract The typical user interaction with a database sys-
tem is through queries. However, many times users do not
have a clear understanding of their information needs or
the exact content of the database. In this paper, we propose
assisting users in database exploration by recommending to
them additional items, called YMAL (“You May Also Like”)
results, that, although not part of the result of their original
query, appear to be highly related to it. Such items are com-
puted based on the most interesting sets of attribute values,
called faSets, that appear in the result of the original query.
The interestingness of a faSet is defined based on its fre-
quency in the query result and in the database. Database fre-
quency estimations rely on a novel approach of maintaining
a set of representative rare faSets. We have implemented our
approach and report results regarding both its performance
and its usefulness.

Keywords Recommendations - Faceted search -
Data exploration

1 Introduction

Typically, users interact with a database system by for-
mulating queries. This query-response mode of interaction
assumes that users are to some extent familiar with the con-
tent of the database and that they have a clear understanding
of their information needs. However, as databases become
larger and accessible to a more diverse and less technically

M. Drosou (X)) - E. Pitoura

Computer Science Department, University of loannina,
JToannina, Greece

e-mail: mdrosou@cs.uoi.gr

E. Pitoura
e-mail: pitoura@cs.uoi.gr

Published online: 17 May 2013

oriented audience, a more exploratory mode of information
seeking seems relevant and useful [15].

Previous research has mainly focused on assisting users
in refining or generalizing their queries. Approaches to the
many-answers problem range from reformulating the orig-
inal query so as to restrict the size of the result, for exam-
ple, by adding constraints to the query (e.g., [32]), to auto-
matically ranking query results and presenting to users only
the top-k most highly ranked among them (e.g., [12]). With
facet search (e.g., [20]), users start with a general query and
progressively narrow its results down to a specific item by
specifying at each step facet conditions, i.e., restrictions on
attribute values. The empty-answers problem is commonly
handled by relaxing the original query (e.g., [23]).

In this paper, we propose a novel exploratory mode of
database interaction that allows users to discover items that
although not part of the result of their original query are
highly correlated to this result.

In particular, at first, the interesting parts of the result
of the initial user query are identified. These are sets of
(attribute, value) pairs, called faSets, that are highly relevant
to the query. For example, assume a user who asks about the
characteristics (such as genre, production year or country) of
movies by a specific director, e.g., M. Scorsese. Our system
will highlight the interesting aspects of these results, e.g.,
interesting years, pairs of genre and years, and so on (Fig. 1).

The interestingness of each faSet is based on its frequency.
Intuitively, the more frequent a faSet in the result, the more
relevant to the query. To account for popular faSets, we
also consider their frequency in the database. For example,
the reason that a movie genre appears more frequently than
another may not be attributed to the specific director but to
the fact that this is a very common genre. To address the fun-
damental problem of locating interesting faSets efficiently,
we introduce appropriate data structures and algorithms.

@ Springer

M. Drosou, E. Pitoura

YMAL RECOMMENDATIONS SYSTEM

Your query was

| select country, genre, year
:from‘ g_"'e_nres, movies, movies2directors, directors, countries
' whare genres.movieid = movies.movieid
and movies.movieid = movies2directors.movieid
and movies2directors.directorid = directors.directorid
and movies.movieid = countries.movieid
and name = 'Scorsese, Martin';

Query result (82):

|

usa Comedy 1985 |
Usa Thriller 1985

Usa Drama 1974

Usa Romance 1974

Usa Short 1987

Usa Music 1987

USA Musical 1987

usa Crime 1972

Usa Drama 1972

USa Romance 1972

usa Drama 1999

usa Thriller 1999

USA Crime 1991

usa Horror 1991

Usa Thriller 1991

Usa Biography 1995

usa Crime 1995

Usa Drama 1995

France Biography 1995

France Crime 1995

France Drama 1995

USA Crime 2002

usa Drama 2002

USA History 2002 vl

Fig. 1 YMALDB: On the left side, the original user query Q is shown at
the fop and its result at the bottom. Q asks for the countries, genres and
years of movies directed by M. Scorsese. On the right side, interesting

Specifically, since the online computation of the frequency
of each faSet in the database imposes large overheads, we
maintain an appropriate summary that allows us to estimate
such frequencies when needed. To this end, we propose a
novel approach based on storing the frequencies of a set of
representative closed rare faSets. The size of the maintained
set is tunable by an e-parameter so as to achieve a desired
estimation accuracy. The stored frequencies are then used to
estimate the interestingness of the faSets that appear in the
result of any given user query. We present a two-phase algo-
rithm for computing the k faSets with the highest interesting-
ness. In the first phase, the algorithm uses the pre-computed
summary to set a frequency threshold that is used in the sec-
ond phase to run a frequent itemset-based algorithm on the
result of the query.

After the k most interesting faSets have been located,
exploratory queries are constructed whose results possess
these interesting faSets. The results of the exploratory
queries, called YMAL (“You May Also Like”) results, are
also presented to the user. For example, by clicking on each

@ Springer

Interesting results (99):

Interesting values for: genre yea

Biography 1995
History 2002
Documentary 1999
Biography 2004
Crime 1995
More

Interesting values for: country year

USA 2013
Hong Kong 2006
Italy 2002

France 1995

USA 1995
Mare

USA Biography
USA Music
USA Crime
USA Documentary

USA History
Maore

Interesting values for: ¢

Hang Kong
usA
Italy
Garmany
France

parts of the result are presented grouped based on their attributes and
ranked in order of interestingness

E Close

Recommendations for: Biography 1995
You may also like the following values since they appear frequently with
Biography 1995

|__directors.name |
Gibson, Mel (1)
Caton-lones, Michael
Stone, Oliver (1)
Holland, Agnieszka
Hoffman, Michael (1)
Hill, walter (1)

Ivory, James

Boris, Robert (1)
Wenders, Wim

10 Robinson, Todd (I)

L= - B I = TR T B S T R Y

Fig. 2 YMALDB: Recommendations for a specific interesting piece of
information (Biography films of 1995)

important aspect of the query about movies by M. Scors-
ese, the user gets additional recommended YMAL results,
i.e., other directors who have directed movies with charac-
teristics similar to the selected ones (Fig. 2). This way, users

YMALDB: exploring relational databases

get to know other, possibly unknown to the them, directors
who have directed movies similar to those of M. Scorsese in
our example.

Our system, YMALDB, provides users with exploratory
directions toward parts of the database that they have not
included in their original query. Our approach may also assist
users who do not have a clear understanding of the database,
e.g., in the case of large databases with complex schemas,
where users may not be aware of the exact information that
is available.

The offered functionality is complementary to query-
response and recommendation systems. Contrary to facet
search and related approaches, our goal is not to refine the
original query so as to narrow its results. Instead, we provide
users with items that do not belong to the results of their
original query but are highly related to them. Traditional rec-
ommenders [6] and OLAP navigation systems [17] assume
the existence of a log of previous user queries or results and
recommend items based on the past behavior of this particu-
lar user or other similar users. YMAL results are based solely
on the database content and the initial query.

We have implemented our approach on top of a relational

database system. We present experimental results regard-
ing the performance of our summaries and algorithms using
both synthetic and real datasets, namely one dataset contain-
ing information about movies [1] and one dataset containing
information about automobiles [3]. We have also conducted
a user study using the movie dataset and report input from
the users.
Paper outline. In Sect. 2, we present our result-driven frame-
work (called REDRIVE) for defining interesting faSets, while
in Sect. 3, we use interesting faSets to construct exploratory
queries and produce YMAL results. Sections 4 and 5 intro-
duce the summary structures and algorithms used to imple-
ment our framework. Section 6 presents our prototype imple-
mentation along with an experimental evaluation of the per-
formance and usefulness of our approach. Finally, related
work is presented in Sect. 7, and conclusions are offered in
Sect. 8.

2 The REDRIVE framework

Our database exploration approach is based on exploiting
the result of each user query to identify interesting pieces of
information. In this section, we formally define this frame-
work, which we call the REDRIVE framework.

Let D be a relational database with n relations R =
{R1, ..., R,} and let A be the set of all attributes in R.
We use A to denote the set of categorical attributes and Ay
to denote the set of numeric attributes, where Ac N Ay = @
and Ac U Ay = A. Without loss of generality, we assume
that relation and attribute names are distinct.

We also define a selection predicate c; to be a predicate of
the form (A; = a;), where A; € Ac anda; € domain(4A;),
or of the form (I; < A; < u;), where A; € Ay, li, u; €
domain(A;) andl; < u;.Ifl; = u;, we simplify the notation
by writing (A; = ;).

To locate items of interest in the database, users pose
queries. In particular, we consider select-project-join (SPJ)
queries Q of the following form:

SELECT proj(Q)
FROM rel(Q)
WHERE scond(Q) AND jcond(Q)

where rel (Q) is a set of relations, scond (Q) is a disjunction
of conjunctions of selection predicates, jcond(Q) is a con-
junction of join conditions among the relations in rel(Q),
and proj (Q) is the set of projected attributes. The result set,
Res(Q), of a query Q is a relation with schema proj(Q).

2.1 Interesting faSets

Let us first define pieces of information in the result set. We
define such pieces, or facets, of the result, as parts of the
result that satisfy specific selection predicates.

Definition 1 (m-FaSet) An m-faSet, m > 1, is a set of m
selection predicates involving m different attributes.

We shall also use the term faSet when the size of the m-faSet
is not of interest.

For afaSet f, we use At¢(f) to denote the set of attributes
that appear in f. Let ¢ be a tuple from a set of tuples S with
schema R; we say that ¢ satisfies a faSet f, where Att(f) C
R, if t[A;] = a;, for all predicates (A; = a;) € f and
li < t[A;] < u;, for all predicates (I[; < A; < u;) € f.
We call the percentage of tuples in S that satisfy f, support
of fin S.

Example. Consider the movies database of Fig. 3 and the
query and its corresponding result set depicted in Fig. 4.
{G.genre = “Biography”} is a 1-faSet with support 0.375
and {7990 < M.year < 2009, G.genre = “Biography”} is a
2-faSet with support 0.25.

We are looking for interesting pieces of information at
the granularity of a faSet: this may be the value of a single
attribute (i.e., a 1-faSet) or the values of m attributes (i.e., an
m-faSet).

Example. Consider the example in Fig. 4, where a user
poses a query to retrieve movies directed by M. Scorsese.
{G.genre = “Biography”} is a 1-faSet in the result that is
likely to interest the user, since it is associated with many of
the movies directed by M. Scorsese. The same holds for the
2-faSet {1990 < M.year < 2009, G.genre = “Biography”}.

@ Springer

M. Drosou, E. Pitoura

Fig. 3 Movies database schema MOVIES2ACTORS (M2A) ACTORS (A)
MOVIES (M)
| movieid | actorid |character | |actorid| name | sex |
| movieid | title year rating |
MOVIES2DIRECTORS (M2D) DIRECTORS (D)
| movieid | directorid | notes | |directorid name |
MOVIES2WRITERS (M2W) WRITERS (W) MOVIES2PRODUCERS (M2P) PRODUCERS (P)
| movieid | writerid | notes | | writerid | name | | movieid | producerid | notes | |producerid| name |
.) Y)
COUNTRIES (C) GENRES (G) LANGUAGE (L) KEYWORDS (K)
| movieid | country | | movieid | genre | | movieid | language | | movieid | kcywordsl
T

SELECT D.name, M.title, M.year, G.genre

FROM D, M2D, M, G

WHERE D.name = ‘M. Scorsese’
AND D .directorid = M2D.directorid
AND M2D.movieid = M.movieid
AND M.movieid = G.movieid;

(@)

D.name M.title M.year | G.genre
M. Scorsese | The Aviator 2004 Biography
M. Scorsese | Gangs of New York 2002 Drama
M. Scorsese | Goodfellas 1990 Biography
M. Scorsese | Casino 1995 Drama
M. Scorsese | Shutter Island 2004 Thriller
M. Scorsese | M. Jackson: Video Greatest Hits | 1995 Drama
M. Scorsese | The Last Waltz 1978 Biography
M. Scorsese | Raging Bull 1980 Documentary

(b)

Fig. 4 a Example query and b result set

To define faSet relevance formally, we take an IR-based
approach and rank faSets in decreasing order of their odds of
being relevant to a user information need. Let u g be a user
information need expressed through a query Q, and let R,
for a tuple ¢ be a binary random variable that is equal to 1 if
t satisfies u ¢ and O otherwise. Then, the relevance of a faSet
f for ug can be expressed as:

P(Rug = 111)
P(Rug = 01)

where p(Ry, = 1|f) is the probability that a tuple that satis-
fies f also satisfies u g, and p(R,, = 0 f) is the probability
that a tuple that satisfies f does not satisfy u . Using the
Bayes rule we get:

@ Springer

P(Rug =1S) p(flRug = 1p(Ruy = 1)
P(Rug =01f) — p(fIRug = 0)p(Ryy = 0)

Since the terms PRy, = 1) and PRy, = 0) are inde-
pendent of the faSet f and thus do not affect their relative
ranking, they can be ignored.

We make the assumption that all relevant to u ¢ tuples are
those that appear in Res(Q), thus p(f|Ry, = 1) is equal
with the probability that a tuple in the result satisfies f, writ-
ten p(f|Res(Q)). Similarly, p(f|Ry, = 0) is the probabil-
ity that a tuple that is not relevant, i.e., a tuple that does
not belong to the result set, satisfies f. We make the logical
assumption that the result set is small in comparison with
the size of the database and approximate the non-relevant
tuples with all tuples in the database, that is, all tuples in the
global relation denoted by D, with schema 4. Based on the
above motivation, we arrive at the following definition for
the relevance of a faSet.

Definition 2 (interestingness score) Let Q be a query and
f be afaSet with At¢(f) € proj(Q). The interestingness
score, score(f, Q), of f for Q is defined as:

P (/IRes(Q))
p(fID)

The term p(f|Res(Q)) is estimated by the support of f in
Res(Q), that is, the percentage of tuples in the result set that
satisfy f. The term p(f|D) is a global measure that does
not depend on the query. It serves as an indication of the
frequency of the faSet in the whole dataset, i.e., it measures
the discriminative power of f. Note that when the attributes
in Att(f) do not belong to the same relation, to estimate this
value, we may need to join the respective relations first.

Intuitively, a faSet stands out when it appears more fre-
quently in Res(Q) than anticipated. For a faSet f, score(f,
Q) > 1, if and only if, its support in the result set is larger
than its support in the database, while score(f, Q) = 1
means that f appears as frequently as expected, i.e., its sup-
portin Res(Q) is the same as its support in the database.

Yet, another way to interpret the interestingness score of
a faSet is with relation to the tf-idf (term frequency-inverse

score(f, Q) =

YMALDB: exploring relational databases

document frequency) measure in IR, which aims to promote
terms that appear often in the searched documents but are
not very often encountered in the entire corpus. Here, the
document roughly corresponds to the result set, the term to
a faSet and the corpus to the database.

An association rule interpretation of interestingness. Let r
be the current instance of the global database D. r can be
interpreted as a transaction database where each tuple con-
stitutes a transaction whose items are the specific (attribute,
value) pairs of the tuple. For each query Q, we aim at iden-
tifying interesting rules of the form R ¢: scond(Q) — f.In
other words, we search for faSets that are highly correlated
with the conditions expressed in the user query. Each faSet
f is then ranked based on the interestingness or importance
of the associated rule R y. But what makes a rule interesting?

There is large body of research on the topic (see, for
example, [25,27,38,39]). For simplicity, let us assume that
Att(proj(Q)) D Att(scond(Q)). Let count(scond(Q))
be the number of tuples in r that satisfy scond(Q). Clearly,
count(scond(Q)) = |Res(Q)|. Common measures of the
importance of an association rule are support and confidence,
where the support of a rule is defined as the percentage
of tuples that satisfy both parts of the rule, whereas confi-
dence corresponds to the probability that a tuple that satis-
fies the LHS of the rule also satisfies the RHS. In our case,
support (R) = (number of tuples in the Res(Q) that satisfy
f)/1D] and confidence(R r) = (number of the tuples in the
result of Q that satisfy f)/|Res(Q)|. Using either the support
or the confidence of R s to define the interestingness of faSet
f would result in ranking faSets based solely on their fre-
quency in the result set. Note also that for the same number
of appearances in the result set, it holds that the larger the
result, the smallest the confidence of the rule. This means that
more selective queries provide us with rules with higher con-
fidence. However, both measures favor faSets with popular
attribute values.

This bias is a known problem of such measures, caused by
the fact that the frequency of the RHS of the rule is ignored.
This is often demonstrated with the following simple exam-
ple. Assume that we are looking into the relationship between
people who drink tea and coffee, e.g., of a rule of the form
tea — coffee. The confidence of such a rule may be high, even
when the percentage of people that drink both tea and coffee
is smaller than the percentage of the general population of
coffee drinkers, as long as this population is large enough.

To handle this problem, another measure of importance
for association rules has been introduced, called /ift, that also
accounts for the RHS of the rule so that popular values, or
faSets in our case, have to appear more often than less popular
ones in the result set to be considered equally important. Lift
expresses the probability that a tuple that satisfies the RHS
of the rule also satisfies the LHS. We show next that our
definition of interestingness for a faSet f corresponds to the

lift of rule Ry. Let p(A) be the probability of A appearing
in the database. It holds that:

p(scond(Q) A f)
p(scond(Q))P(f)

M/ count (scond (Q))count (f)
DI oo

. D] count(scond(Q) A f)
" |ResQ| count (f)

since |Res(Q)| and |D| are the same for all faSets in the
result, lift corresponds to the interestingness measure we use
in this paper.

Empty-/Many-answers problem. The goal of our approach
is to assist users in exploring a portion of the database that is
interesting according to their initial query. This goal is mean-
ingful, when the initial query retrieves a non-empty result set.
When the user query retrieves an empty result set, there is
no “lead” to point us to possible exploratory directions and
the interestingness score of all faSets is zero. In such cases,
it is possible to fall back to some default recommendation
mechanism or to resort to query relaxation techniques. When
Res(Q) contains many answers, the interestingness score
still provides us with a means of ranking faSets extracted
from these answers. Recall that, we do not aim at narrow-
ing down the initial result of the user query, but rather at
locating interesting data related to this result. In this case,
the presented faSets can help in highlighting some interest-
ing aspects of this large result set. Note that when the result
set has a size comparable to that of the database, one of the
assumptions made to motivate the definition of interesting-
ness, namely that the result is small in comparison with the
database, may not be valid. However, our definition of inter-
estingness is still valid and provides us with a score based on
the relative frequency of each faSet in the result and in the
database.

lift(Ry) =

2.2 Attribute expansion

Definition 2 provides a means of ranking the various faSets
that appear in the result set, Res(Q), of a query Q and dis-
covering the most interesting ones among them. However,
there may be interesting faSets that include attributes that do
not belong to proj(Q) and, thus, do not appear in Res(Q).
We would like to extend Definition 2 toward discovering
such potentially interesting faSets. This can be achieved by
expanding Res(Q) toward other attributes and relations in D.

Consider, for example, the following query that returns
just the titles of movies directed by M. Scorsese in the data-
base of Fig. 3:

SELECT M.title
FROM D, M2D, M
WHERE D.name = ‘M. Scorsese’

@ Springer

M. Drosou, E. Pitoura

SELECT D.name, M.year
FROM D, M2D, M, G, C
WHERE G.genre = ‘Drama’
AND C.country = Italy
AND (D.name <> ‘M. Scorsese’
OR M.year <= 1963)
AND D.directorid = M2D.directorid
AND M2D.movieid = M.movieid
AND M.movieid = G.movieid

SELECT G.genre, C.country

FROM D, M2D, M, G, C

WHERE D.name = ‘M. Scorsese’
AND M.year > 1963
AND D.directorid = M2D.directorid
AND M2D.movieid = M.movieid
AND M.movieid = G.movieid
AND M.movieid = C.movieid AND M.movieid = C.movieid

(a) (b)

Fig. 5 a Original user query and b the default exploratory query for
the interesting faSet {G.genre = “Drama”, C.country = “Italy”}. ¢, d
are variations of the default exploratory query; in the former, we rec-
ommend M. Scorsese drama movies produced in Italy in different years

AND D .directorid = M2D.directorid
AND M2D.movieid = M.movieid

All faSets in the result set of O will appear once (unless
M. Scorsese has directed more than one movie with the
same title). However, including, for instance, the relation
that contains the attribute “Country” in re/(Q) and modi-
fying jcond(Q) accordingly may disclose interesting infor-
mation, e.g., that many of the movies directed by M. Scorsese
are related to Italy.

The definition of interestingness is extended to include
faSets with attributes not in proj(Q), by introducing an
expanded query Q" with the same selection condition as the
original query Q but with additional attributes in proj(Q’)
and additional relations in rel(Q").

Definition 3 (expanded interestingness score)Let Q be a
query and f be a faSet with Arz(f) < .A. The interest-
ingness score of f for Q is defined as:
p(fIRes(Q"))

p(f1D)
where Q' is an SPJ query with proj(Q’) = proj(Q) U
Att(f), rel(Q")=rel(Q)U{R'|A; € R, for A; € Att(f)},
scond(Q") = scond(Q) and jcond(Q') = jcond(Q) A
(joins with {R' | A; € R/, for A; € Art(f)}).

score(f, Q) =

For instance, expanding our example query toward the
“Country” attribute is achieved by the following Q’:
SELECT M. title, C.country

FROM D, M2D, M, C
WHERE D.name = ‘M. Scorsese’

AND D. directorid = M2D. directorid

AND M2D. movieid = M. movieid

AND M. movieid = C.movieid

We defer the discussion on how we select relations toward
which to expand user queries until Sect. 5.3.

3 Exploratory queries

Besides presenting interesting faSets to the users, we use
faSets to discover interesting pieces of data that are poten-

@ Springer

SELECT D.name, M.year
FROM D, M2D, M, G, C
WHERE G.genre = ‘Drama’
AND C.country = ‘Ttaly’
AND D.name = ‘M. Scorsese’
AND M.year <= 1963
AND D.directorid = M2D.directorid
AND M2D.movieid = M.movieid
AND M.movieid = G.movieid
AND M.movieid = C.movieid AND M.movieid = C.movieid

(c) (d)

than those specified in the original user query, and in the latter, we rec-
ommend non—-M. Scorsese drama movies produced in Italy in the same
years as those specified in the original user query

SELECT D.name, M.year

FROM D, M2D, M, G, C

WHERE G.genre = ‘Drama’
AND C.country = Italy
AND D.name <> ‘M. Scorsese’
AND M.year > 1963
AND D.directorid = M2D.directorid
AND M2D.movieid = M.movieid
AND M.movieid = G.movieid

tially related to the user needs but do not belong to the
results of the original user query. In particular, we construct
exploratory queries that retrieve results strongly correlated
with those of the original user query Q by replacing the
selection condition, scond(Q), of Q with equivalent ones,
thus allowing new interesting results to emerge. Recall that
a high interestingness score for f means that the lift of
scond(Q) — f is high, indicating replacing scond(Q)
with f, since scond(Q) seems to suggest f.

For example, for the interesting faSet {G.genre =
“Drama”} in Fig. 4, the following exploratory query:

SELECT D.name

FROM D, M2D, M, G

WHERE G. genre = ‘Drama’

AND D.name <> ‘M. Scorsese’

AND D. directorid = M2D. directorid
AND M2D. movieid = M. movieid

AND M. movieid = G.movieid

will retrieve other directors that have also directed drama
movies, which is an interesting value appearing in the orig-
inal query result set. The negation term “D.name <> M.
Scorsese” is added to prevent values appearing in the selec-
tion conditions of the original user query from being recom-
mended to the users.

Next, we formally define exploratory queries.

Definition 4 (exploratory query) Let Q be a user query
and f be an interesting faSet for Q. The exploratory
query Q that uses f is an SPJ query with proj(Q) =
Att(scond(Q)), rel(Q) = rel(Q) U{R'|A; € R,
for A; € Att(f)},scond(Q) = f A —scond(Q)and
jcond(Q) = jcond(Q) A (joins with {R' | A; € R/, for
Ai € Art(f)D).

The results of an exploratory query are called YMAL (“You
May Also Like”) results.

When the selection condition, scond(Q), of the original
user query Q contains more than one selection predicate, then
instead of just negating scond(Q), we could consider vari-
ous combinations of these predicates. This means replacing
scond(Q) = f A —scond(Q) in the above definition with

YMALDB: exploring relational databases

scond(Q) = f A scond(Q)\{ci} AN —cici € scond(Q).
As an example, consider the user query Q of Fig. 5a and
assume the interesting faSet { G.genre = “Drama”, C.country
= “Italy”}. Then, the exploratory queries of Fig. 5b—d can
be constructed. In general, it is possible to construct up to
2lscond(@)l _ 1 exploratory queries for each interesting faSet
f, each one of them focusing on different aspects of the
interesting faSets. In our approach, as a default, we use the
exploratory query Q where scond (Q) = f A =scond(Q)
for each interesting faSet f. If the users wish to, they can
request the execution of other exploratory queries for f as
well by specifying combinations of conditions in scond(Q).

The results of an exploratory O are recommended to the
user. Since in general, the success of recommendations is
found to depend heavily on explaining the reasons behind
them [40], we include an explanation for why each result of
Q is suggested. The explanation specifies that the presented
result appears often with a value that is very common in the
result of the original query Q. For example, assuming that
FEF. Coppola is a director retrieved by our exploratory query,
then the corresponding explanation would be “You may also
like F.F. Coppola, since F.F. Coppola appears frequently with
the interesting genre Drama and country Italy of the original
query.”

Clearly, one can use the interesting faSets in the results of

an exploratory query to construct other exploratory queries.
This way, users may start with an initial query Q and follow
the various exploratory queries suggested to them to grad-
ually discover other interesting information in the database.
Currently, we do not set an upper limit on the number of
exploration steps. Instead, we let users explore the database
at the extend they wish, similar to the manner users perform
web browsing by following interesting links.
Framework overview. In summary, REDRIVE database
exploration works as follows. Given a query Q, the most
interesting faSets for Q are computed and presented to the
users. Such faSets may be either interesting pieces (sub-
tuples) of the tuples in the result set of Q or expanded tuples
that include additional attributes not in the original result.
Interesting faSets are further used to construct exploratory
queries that lead to discovering additional information, i.e.,
recommendations, related to the initial user query. Users can
explore further the database by exploiting such recommenda-
tions for different interesting faSets of the original query or by
recursively applying the same procedure on the exploratory
queries to retrieve additional interesting faSets and, thus, rec-
ommendations.

In the next two sections, we focus on algorithms for the
efficient computation of interesting faSets. Note that our
algorithms are based on maintaining statistics regarding the
frequency of faSets in the database and thus are applicable
to any interpretation of interestingness that exploits frequen-
cies.

4 Estimation of interestingness

Let Q be a query with schema proj(Q) and f be an m-faSet
with m predicates {c1, ..., ¢;,}. To compute the interesting-
ness of f, according to Definition 2 (and Definition 3), we
have to compute two quantities: p(f|Res(Q)) and p(f|D).

p(f|Res(Q)) is the support of f in Res(Q). This quan-
tity is different for each user query Q and, thus, has to be
computed online. p(f|D), however, is the same for all user
queries. Clearly, the value of p(f|D) for afaSet f could also
be computed online. For example, this can be achieved by the
following simple count query:

SELECT count (%)
FROM rel(Q)
WHERE f AND jcond(Q)

that returns as a result the number of database tuples that
satisfy the faSet f. However, one such query is needed for
each faSet in Res(Q). Since the number of faSets even for
a small Res(Q) is large, this online computation makes the
location of interesting faSets prohibitively slow. Thus, we opt
for computing offline some information about the frequency
of selected faSets in the database and use this information to
estimate p(f|D) online. Next, we show how we can maintain
such information.

4.1 Basic approaches

Let mmax be the maximum number of projected attributes
of any user query, i.e., mmax = |.A]. A brute force approach
would be to generate all possible faSets of size up to mmax and
pre-compute their support in D. Such an approach, however,
is infeasible even for small databases due to the combina-
torial amount of possible faSets. As an example, consider a
database with a single relation R containing 10 categorical
attributes. If each attribute takes on average 50 distinct values,
R may contain up to Z}gl [(1;)) X SOi] = 1.1904 x 10"
faSets.

A feasible and efficient solution must reach a compromise
between the online computation of p(f|D) and the mainte-
nance of frequency information for selected faSets. A first
such approach would be to pre-compute and store the support
for all 1-faSets that appear in the database. Then, assuming
that faSet conditions are satisfied independently from each
other, the support of a higher-order m-faSet can be estimated
by:

p(fID) = p(ect,....cn} D) = [| pUec}ID)

i=1

This approach requires the storage of information for only
a relatively small number of faSets. In our previous exam-
ple, we only have to maintain information about 10 x 50

@ Springer

M. Drosou, E. Pitoura

1-faSets. However, although commonly used in the litera-
ture, the independence assumption rarely holds in practice
and may lead to losing interesting information. Consider, for
example, that the 1-faSets {M.year = 1950} and {M.year =
2005} have similar supports, while the supports of {G.genre
=“Sci-Fi”, M.year = 1950} and { G.genre = Sci-Fi, M.year =
2005} differ significantly with {G.genre = “Sci-Fi,” M.year
= 1950} appearing very rarely in the database. Under the
independence assumption, similar estimation values will be
computed for these two 2-faSets.

4.2 The closed rare faSets approach

We propose a different form of maintaining frequency sum-
maries, aiming at capturing such fluctuations in the support
of related faSets. Our approach is based on maintaining a set
of faSets, called e-tolerance closed rare faSets (e-CRFs), and
using them to estimate the support of other faSets in the data-
base. Next, we define e-CRFs and show that the estimation
error of the support of other faSets is bounded by €, where € is
a parameter that tunes the size of the maintained summaries.
Background definitions. First, we define subsumption among
faSets. We say that a faSet f is subsumed by a faSet f, if
every possible tuple in the database that satisfies f also satis-
fies f'. For example, {G.genre = “Sci-Fi”’, 2005 < M.year <
2008} is subsumed by {2000 < M.year < 2010}. Formally:

Definition 5 (faSet subsumption) Let D be any database and
/> f/ be two faSets. We say that f is subsumed by f/, f <
f', if and only if, every possible tuple in the database that
satisfies f also satisfies f.

When f < f’, we also say that f is more specific than f’
and f’ is more general than f.If f < f'and ' < f, we
say that f and f’ are equivalent. f is called a proper more
specific faSet of f/, denoted f < f’,if f is subsumed by
/' but is not equivalent to it. We also say that f’ is a proper
more general faSet of f.

Note that, for two faSets f, f' with f C f’, it holds that
f' = f.Forexample, {G.genre = “Sci-Fi”, 2005 < M.year
< 2008} is subsumed by {2005 < M.year < 2008}.

Following the terminology from frequent itemset mining,
given a support threshold &, we say that a faSet f is fre-
quent(FF) for a set of tuples S, if its support in S is greater
than or equal to &, and rare (RF) if its support is in [1, &,).

We also call a faSet f closed frequent (CFF) for S if it
is frequent and has no proper more specific faSet f’, such
that, f/ has the same support as f in S. Similarly, we define
a faSet f to be closed rare (CRF) for S if it is rare and has
no proper more general faSet f’, such that f’ has the same
support as f in S.

Finally, we say that a faSet f is maximal frequent (MFF)
for S, if it is frequent for S and has no more specific faSet f’
such that f’ is frequent for S and a faSet f is minimal rare

@ Springer

(MRF) for § if it is rare and has no more general faSet f’
such that f” is rare for S.

Summaries based on e-tolerance. Maintaining the support of
a number of representative faSets can assist us in estimating
the support of a given faSet f. In general, it is more useful
to maintain information about the frequency of rare faSets in
D, since when rare faSets appear in a result set, it is more
likely that they are interesting than when frequent ones do.

Since the number of rare faSets (RFs) may be large, main-
taining the support of all rare faSets may not be cost-effective.
Minimal rare faSets (MRFs) cannot be maintained either,
although their number is small and RFs can be retrieved from
MREFs, it is not possible to accurately estimate the support
of an RF from MRFs. Instead, closed rare faSets (CRFs) can
provide us with both all RFs and their support. Since any RF
that has a distinct support value is also a CRF, the number of
CRFs may be very close to that of RFs. Thus, in our approach,
we maintain a tunable number of CRFs. This number is such
that we can achieve a bound on the estimation of the support
of any RF as a function of a given parameter €.

We use count(f, S) to denote the absolute number of
tuples in a set of tuples S that satisfy a faSet f. We first define
the (m, €)-cover set of a set of rare m-faSets, or Cov(m, €),
as follows:

Definition 6 (Cov(m, €)) A set of m-faSets is called an
(m, €)-cover set for a set of tuples S, denoted Cov(m, €),
if (1) all its faSets are satisfied by at least one tuple in S,
(2) for every rare m-faSet f in S, there exists a more gen-
eral rare m-faSet f’ € Cov(m, ¢) with count(f',S) <
(1 4 €) count(f, S), where ¢ > 0, and (3) it has no proper
subset for which the above two properties hold.

In the following, we seek to locate (m, €)-cover sets that are
minimum, i.e., there is no other (m, €)-cover set for the same
set of faSets that has a smaller size.

We say that a faSet f’e-subsumes a faSet f, if f < f’
and count (f', S) < (1 +¢€) count(f, S).

Example. Consider the attribute M.year of the database in
Fig. 3 and let us focus, for illustration purposes, on a sim-
ple example concerning the movies produced from 1960 to
1990. Assume that there are 10 movies produced in the 60s,
10 movies produced in the 70s and 20 movies produced in
the 80s. Consider the 1-faSets {1960 < M.year < 1970},
{1960 < M.year < 1980}, {1960 < M.year < 1990}, {1970
< M.year < 1980}, {1970 < M.year < 1990} and {1980 <
M.year < 1990} with counts 10, 20,40, 10, 30 and 20, respec-
tively. Let also € = 1.0. Then, {/960 < M.year < 1980}
e-subsumes {7960 < M.year < 1970} and {1970 < M.year
< 1980}, {1970 < M.year < 1990} e-subsumes {1980 <
M.year < 1990} and {1960 < M.year < 1990} e-subsumes
{1980 < M.year < 1990}, {1960 < M.year < 1980} and
{1970 < M.year < 1990} (Fig. 6). The sets {{ 1960 < M.year

YMALDB: exploring relational databases

1960 < M.year < 1990[40

1960 < M.year < 1980]20)]

:

1960 < M.year < 1970]10] [1970 < M.year < 1980] 10] [1980 < M.year < 1990]20]

11970 < M.year < 1990[30

Fig. 6 Example of a minimum (m, €)-cover set (depicted in gray) for
the faSets depicted here (m = 1) along with their counts for € = 1.0.
Arrows represent subsumption relations and bold arrows represent e-
subsumption relations

Algorithm 1 Locating an (m, €)-cover set.

Input: A set of m-faSets X, €.
Output: An (m, €)-cover set for X.

1: begin
2:Y <@
3: while at least one faSet in X e-subsumes another do
4: pick the faSet f/ € X that e-subsumes the largest number of
faSets in X
for each such faSet f do
merge f with f/
X < X\(f)
end for
9: X « X\{f}
10: Y < YU{f)}
11: end while
12: return Y
13: end

S AN

<1980}, {1960 <M.year <1990} } and { {1960 < M.year <
1970}, {1970 < M.year < 1980}, {1960 < M.year < 1990} }
are both (1, 1.0)-cover sets for this set of faSets, since they
both cover all faSets. The former is also a minimum set with
this property.

An (m, €)-cover set is, intuitively, the smallest set that can
represent all faSets of the same size if we allow the counts of
the faSets being represented to differ up to a scale of (1 4 ¢€)
from the count of the faSet that represents them. The problem
of locating (m, €)-cover sets is an NP-hard problem, similar
to the case of the SET COVER problem. We can use a greedy
heuristic to locate sub-optimal (m, €)-cover sets. Locating
sub-optimal (m, €)-cover sets affects only the size of the sum-
maries we maintain and not the bound of the estimations they
provide. In this paper, we use the greedy heuristic shown in
Algorithm 1; at each round, we select to add to Cov(m, €) the
faSet f’ that e-subsumes the largest number of other faSets
and ignore those other faSets from further consideration.

Cover sets allow us to group together faSets of the same
size. To group together faSets of different sizes, we build
upon the notion of §-tolerance closed frequent itemsets [13]
and define €-CRFs as follows:

Definition 7 (¢-CRF) An m-faSet f is called an e-CRF for
a set of tuples S, if and only if, f € Cov(m, €) for S and it
has no proper more general rare faSet " with | f|—|f'| =1

and f' € Cov(m — 1, ¢€), such that count (f',S) < (1 +
€) count (f, S), where ¢ > 0.

Intuitively, a rare m-faSet f is an €-CRF if, even if we
increase its count by a constant €, all the (m — 1)-faSets
that subsume it still have a larger count than f. This means
that f has a significantly different count from all its more
general faSets and cannot be estimated (or represented) by
any of them.

Let us assume that a set of e-CRFs is maintained for some
value of €. We denote this set C. An RF f either belongs to C
ornot. If f € C, then the support of f is stored and its count
is readily available. If not, then, according to Definitions 6
and 7, there is some faSet that subsumes f that belongs to
C whose support is close to that of f. Therefore, given an
RF f, we can estimate its count based on its closest more
general faSet in C. If there are many such faSets, we use the
one with the smallest count, since this can estimate the count
of f more accurately. We use C(f) to denote the faSet in C
that is the most suitable one to estimate the count of f. The
following lemma holds:

Lemma 1 Let C be a set of e-CRFs for a set of tuples S and
fbeanRF for S, f ¢ C. Then, there exists ', f' € C with
| fl = |f'| =i, such that, count(f', S) < ¢ count(f,S),
where ¢ = (1 + €)X T1,

Proof Let f be a faSet of size m and C the set of main-
tained e-CRFs. If f ¢ C, then, according to Definition 6,
there exists an m-faSet fi, such that, counz(f1, S) < (1 +
€) count(f, S). If fi ¢ C, then, according to Definition 7,
there exists an (m — 1)-faSet f5, such that, count(f>, S) <
(1+¢€) count(f1, S) and so on. At some point, we will reach
afaSet f’ that belongs in C. Let | f| — | f'| = i. To reach this
faSet, we have made at most i + 1 steps between faSets of
the same size and at most i steps between faSets of different
size, and thus, the lemma holds. O

To provide more accurate estimations, each e-CRF f is
stored along with its frequency extension, i.e., a summary
of the actual frequencies of all the faSets that f represents.
Recall that, an €-CRF f may represent faSets of different
sizes, as indicated by Lemma 1. The frequency extension of
an €-CRF is defined as follows.

Definition 8 (frequency extension) Let C be a set of e-CRFs
for a set of tuples S and f be a faSet in C. Let also X'(f)
be the set of all RFs represented in C by f. Then, X;(f) =
{xlx e X(f) Alx| —1f]l =i}, 0 <i < m, where m =
max{i|X;(f) # 0}. The frequency extension of f fori, 0 <
i < m,is defined as:

ZxGXi (f) %

1Xi ()

ext(f,i) =

@ Springer

M. Drosou, E. Pitoura

Intuitively, the frequency extension of f for i is the average
count difference between f and all the faSets that f repre-
sents whose size difference from f is equal to i. Given a
faSet f, the estimation of p(f|D), denoted p(f|D), is equal
to:

p(fID) = count(C(f),S) - ext(C(f), | f| = 1C(H])
It holds that

Lemma 2 Let f be an e-CRF. Then, for each i, it holds that

é <ext(f,i) <1, where p = (1 + €)1,

Proof At one extreme, all faSets in X;(f) have the same
count as f. Then, Vx € X;(f), it holds that count (x, S) =
count(f,S) and ext(f,i) = 1. At the other extreme, all
faSets in X;(f) differ as much as possible from f. Then,
Vx € X;(f), it holds that count(f, S) = ¢ count(x, S) and
ext(f,i)=1/¢. O

Similar to the proof in [13], it can be shown that the esti-
mation error is bounded by ¢, i.e., by €.

Theorem 1 Let f be an RF and |f| — |C(f)| = i. The
estimation error for p(f|D) is bounded as follows:

1_, _ bUID) = p(fID)
¢ p(fID)
Proof FromLemma 2, itholds that%{)lp) < p(C(NHID)

x ext(C(f),i) < p(C(f)ID). Since p(f|D) = count
(C(f), S) x ext(C(f),i), it holds that p(c%f)m) -

<¢—-1

AFID) < p(C(f)ID) (1). Also, it holds that%ﬁ‘”) <
p(fID) and, since f < C(f), p(fID) < p(C(f)ID).
Therefore, %{”)‘D) < p(fID) < p(C(f)|D) (2). From

(1), (2) the theorem holds. |

Tuning €. Parameter € bounds the estimation error for the fre-
quencies of the various faSets. Smaller € values lead to better
frequency estimations. However, this comes at the price of
increased storage requirements, since in the case of smaller
€ values, more faSets enter the set of e-CRFs and, therefore,
the size of the maintained statistics increases. Next, we pro-
vide a method to assist the system administrator in deciding
an appropriate € value, given a maximum storage budget b
available for maintaining statistics.

Our basic idea is to start with a rough estimation of € and
then further refine it to reach the minimum € value that can
provide statistics which can fit in the allocated storage space.
Our initial estimation is computed as follows. Let M G F (f)
be the set of more general proper faSets of a faSet f, i.e.,
MGPF (f) includes all faSets f” that are more general than f
with | f| — | f/| = 1. We define g(f) to be the average count

difference between f andthe faSetsin MG F (f),i.e,g(f) =

(/IMFGHD) 2 premra(s) % Then, we define the

set of all rare faSets in S as R F'(S) and set the initial value of
€, denoted € to be equal to (I/|RF(S)) X repp(s) 8(f) — 1.

@ Springer

We proceed as follows. Let €(be that initial value. We use
€o to locate €9-CRFs. If the number of located faSets is larger
than the maximum allowed threshold, we set €; = 2¢g,
otherwise we sete; = €o/2 and we locate €1-CRFs. We repeat
this process until we reach the first value of ¢; that crosses
the storage boundary. €;_1 and ¢; can be used as upper and
lower bounds for the final estimation, since it holds either
le;-CRFs| > b and |¢;_1-CRFs| < b or vice versa. We set
€i+1 = (e—1+e)/2, update either the upper or lower bound,
respectively, and repeat this binary search process until either
|€i+1-CRFs| = b or |€;4+1-CRFs| = |€;-CRFsl.

In the above process, we generate all rare faSets once and
then we proceed with multiple generations of €-CRFs. As
shown in our performance evaluation, the cost of generating
statistics is dominated by the cost of generating all rare faSets,
while the cost of locating e-CRFs is negligible in comparison.
Estimation overview. Given athreshold &, and a value for €,
we maintain the set of e-CRFs along with the corresponding
frequency extensions. This set, whose size can be tuned by
varying €, provides us with bounded estimations of p(f|D)
for all rare faSets, that is, for all faSets with support smaller
than &,. For frequent faSets, we have only the information
that their support is larger than &,, but this in general suffices,
since it is not likely that these faSets are interesting.

5 Top-k faSets computation

In this section, we present an online two-phase algorithm
for computing the top-k most interesting faSets for a user
query Q. We consider first faSets f in the result set, i.e.,
Att(f) € proj(Q) and discuss attribute expansion later.
A straightforward method would be to generate all faSets
in Res(Q), compute their interestingness score and then
selecting the best among them. This approach, however, is
exponential on the number of distinct values that appear in
Res(Q). Applying an a priori approach for generating and
pruning faSets is not applicable either, since the interesting-
ness score is neither an upwards nor a downwards closed
measure, as shown below. A function d is monotone or
upwards closed if for any two faSets fi and f», f» < f1 =
d(f1) < d(f>) and anti-monotone or downwards closed if

f2 = fi = d(f) = d(f2).

Proposition 1 Let Q be a query and f be a faSet. Then,
score(f, Q) is neither an upwards nor a downwards closed
measure.

Proof Let f1, f2, f3 be three faSets with f1 < f =<
f3. Consider a database consisting of a single relation
R with three attributes A, B and C and three tuples
{1,1,1},{1, 1,2}, {1,2,1}. Let Res(Q) = {{1,1,1},
{L,2,1}}and f1={A=1,B=1,C =1}, p ={A =
1, B =1}and f3 ={A=1}.For f,, there exists both a more
general faSet, i.e., f3, and a more specific faSet, i.e., f1, with

YMALDB: exploring relational databases

Algorithm 2 Two-Phase Algorithm (TPA).

Input: Q, Res(Q),k, C, & of C.
Output: The top-k interesting faSets for Q.

1: begin

2: F <0

3: A < all 1-faSets of Res(Q)

4: for all faSets f € C do

5: if all 1-faSets g C f are contained in A then
6: f.score = score(f, Q)

7: F < FU{f}

8: endif

9: end for

10: for all tuples ¢ € Res(Q) do

11: generate all faSets f C¢,s.t.3g € Fwithg C f
12: for all such faSets f do

13: f.score = score(f, Q)

14: F << FU{f}

15: end for

16: end for

17: &¢ < (k'™ highest score in F) x &,

18: candidates < frequentFaSetMiner(Res(Q), &)
19: for all faSets f in candidates do

20: f.score = score(f, Q)

21: F <« FU{f}

22: end for

23: return The k faSets in F' with the highest scores
24: end

larger interestingness scores than it. The interestingness score
is not closed even for the case of faSets of the same size. For
example, consider the relation R’ with a single attribute A
and three tuples {1}, {3}, {4} and Res(Q) = {{1}, {4}} and
let fi ={0=A=<10}, ob ={2=<A<8}, f3 ={4=<
A < 5}. Again, for f5, there exists both a more general and a
more specific faSet with larger interestingness score than it.

This implies that we cannot employ any subsumption rela-
tions among the faSets of Res(Q) to prune the search space.

5.1 The two-phase algorithm

To avoid generating all faSets in Res(Q), as a baseline
approach, we consider only the frequent faSets, since these
are the faSets of potential interest. To generate all frequent
faSets, i.e., all faSets whose support in Res(Q) is above a
given threshold & ¢, we apply an adaptation of a frequent item-
set mining algorithm [19] such as the Apriori or FP-Growth.
Then, for each frequent faSet f, we use the maintained sum-
maries to estimate p(f|D) and compute score(f, Q).

The problem with the baseline approach is that it is highly
dependent on the support threshold & . A large value of &
may lead to losing some less frequent in the result but very
rarely appearing in the dataset faSets, whereas a small value
may result in a very large number of candidate faSets being
examined. Therefore, we propose a Two-Phase Algorithm
(TPA), described next, that addresses this issue by setting & ¢
to an appropriate value so that all top-k faSets are located
without generating redundant candidates. The TPA assumes

that the maintained summaries are based on keeping rare
faSets of the database D. Let &, be the maximum support of
the maintained rare faSets.

In the first phase of the algorithm, all 1-faSets that appear
in Res(Q) are located. The TPA checks which rare faSets
of D, according to the maintained summaries, contain only
conditions that are satisfied by at least one tuple in Res(Q).
Let F be this set of faSets. Then, in one pass of Res(Q), all
faSets of Res(Q) that are more specific than some faSetin F
are generated and their support in Res(Q) is measured. For
each of the located faSets, score(f, Q) is computed. Let s
be the k™ highest score among them. The TPA sets &1 equal
tos x & and proceeds to the second phase where it executes
a frequent faSet mining algorithm with threshold equal to
&y toretrieve any faSets that are potentially more interesting
than the k™ most interesting faSet located in the first phase.

Theorem 2 The Two-Phase Algorithm retrieves the top-k
most interesting faSets.

Proof It suffices to show that any faSet in Res(Q) less fre-
quent than &7 clearly has interestingness score smaller than
s, i.e., the score of the k™ most interesting faSet located in
the first phase and, thus, can be safely ignored. To see this,
let f be a faSet examined in the second phase of the algo-
rithm. Since the score of f has not been computed in the first
phase, then p(f|D) > §&,.. Therefore, for score(f, Q) > s
to hold, it must be that p(f|Res(Q)) > s x p(f|D),i.e.,
p(fIRes(Q)) > s x §&.

The TPA is shown in Algorithm 2, where we use C to
denote the collection of maintained summaries.

5.2 Improving performance

Next, we discuss a number of improvements concerning the
performance of summaries generation and the TPA.

Discretization of numeric values. The cost of generating
summaries and executing the TPA mostly depends on the
number of distinct attribute values that appear in the data-
base. The higher this number is, the more faSets have to be
generated and have their frequencies computed. To reduce
the computational cost of our approach, we consider fur-
ther summarizing numeric attribute values by partitioning
the domain space of numeric attributes into non-overlapping
intervals and replacing each value in the database by the
corresponding interval of values close to it. Similar tech-
niques for domain partitioning have been used in the field
of data mining. As in [35], which considers the problem of
mining association rules in the presence of both categorical
and numeric attributes, we follow the approach of splitting
the domain of numeric attributes into intervals and mapping
each value to the corresponding interval prior to process-
ing our data. The intervals are chosen in different ways for

@ Springer

M. Drosou, E. Pitoura

each attribute, depending on the semantical meaning of the
attribute or the distribution of values. For example, in case
of attributes containing information such as years and ages,
the intervals correspond to decades. It is possible to follow a
similar approach for categorical attributes as well by group-
ing attribute values based on some hierarchy. However, this
requires the knowledge of such hierarchies which are not
usually available. In our work, we do not further consider
grouping categorical values.

Exploiting Bloom filters for fast frequency estimations. Most
real datasets have a large number of rare faSets that appear
only once. Consider, for example, the movies database of
Fig. 3, where many directors have directed only one movie
in their lifetime and, therefore, they appear only once in the
database. Although such values may have high interesting-
ness score, since they are extremely rare in the whole dataset,
they are not useful for recommending additional results to
the users. To see this, let us assume that a user queries the
database for Sci-Fi movies and a director who appears only
once in the dataset is found in the result. Our framework
would attempt to recommend to the user other genres that
this specific director has directed. However, since this direc-
tor appears only once in the database, no such recommenda-
tions can emerge.

To avoid generating and maintaining information for all
other faSets that these rare faSets subsume, we use the fol-
lowing approach. In a single scan of the data, we identify
all faSets that appear only once and insert them in a hash-
based data structure. In particular, we use a Bloom filter [8].
A Bloom filter consists of a bit array of size [and a set of
h hash functions. Each of the hash functions maps a value
to one of the / positions of the bit array. To add a value into
the Bloom filter, the value is hashed using each of the hash
functions and the & corresponding bits are set to 1. To decide
whether a value has been added into the Bloom filter, the
value is again hashed using each of the hash functions and
the corresponding A bits are checked. If all of them are set
to 1, then it can be concluded that the value has been added
into the Bloom filter. It is possible that those / bits were set
to 1 during the insertion of other values; in that case, we have
a false positive. It is known that, when n values have been
inserted into a Bloom filter, the probability of a false positive
isequal to (1 — e~/ l)h and, thus, can by tuned by choosing
an appropriate size [for the Bloom filter.

Any faSet that is subsumed by some faSet in the Bloom fil-
ter can appear only once in the database. We exploit this fact
in two ways. First, we avoid the generation and maintenance
of €-CRFs that are subsumed by faSets in the Bloom filter,
maintaining only the Bloom filter instead which is more space
efficient and can support faSet lookups faster. More specifi-
cally, whenever a candidate rare faSet f is constructed during
the generation of the summaries, we query the Bloom filter

@ Springer

for any sub-faSet of f. In case such sub-faSets exist, then
f cannot appear more than once in the database and, thus,
f is also inserted in the Bloom filter and pruned from fur-
ther consideration. Second, during the candidate generation
phase of the TPA, we also prune candidates that are sub-
sumed by some faSet in the Bloom filter, thus reducing the
computational cost of the algorithm. The frequency of those
faSets can be estimated as being equal to 1.

We have also generalized the use of Bloom filers for prun-
ing more faSets during the generation of e-CRFs. In partic-
ular, we also insert into the Bloom filter all faSets with fre-
quency below some small system defined threshold value &,
with & < &,.

Using random walks for the generation of rare faSets. Our
approach is based on the generation of all e-CRFs for a
given threshold &,.. A number of different algorithms exist
in the literature on which this generation can be based (e.g.,
[37]). Generally, the generation of all CRFs and even RFs
is required as an intermediate step in most cases. However,
locating all respective RFs for large datasets becomes inef-
ficient, due to the exponential nature of algorithms such as
Apriori. To overcome this, we use a random walks-based
approach [18] to generate RFs. In particular, we do not pro-
duce all RFs as an intermediate step for computing €-CRFs
but, instead, we produce only a subset of them discovered
by random walks initiated at the MRFs. Our experimental
results indicate that, even though not all RFs are generated,
we still achieve good estimations for the frequencies of the
various faSets.

5.3 FaSet expansion

For a query Q, following the discussion of Sect. 2.2, besides
considering the faSets whose attributes belong to proj(Q),
we would also like to consider potentially interesting faSets
that have additional attributes. Clearly, considering all pos-
sible faSets for all combinations of (attribute, value) pairs is
prohibitive. Instead, we consider adding to proj(Q) a few
additional attributes B that appear relevant to it. Then, we
construct and execute Q' as defined in Definition 3 and use
the TPA to compute the top-k (expanded) most interesting
faSets of Q’.

The selection of these attributes is dictated by expansion
rules. An expansion rule is a rule of the form A — B,
where A is a set of attributes in the user query, i.e., A C
proj(Q) and B is a set of attributes in the database, i.e.,
B € A\ proj(Q). The meaning of an expansion rule is that
when aquery Q contains all attributes of A inits select clause,
then it should be expanded to contain the attributes of B as
well. The attributes of B do not necessarily belong to the rela-
tions of rel(Q).Let A', ..., A” beattributes of proj(Q) and

YMALDB: exploring relational databases

Fig. 7 The system architecture

&

of YMALDB
User
Query Q l«——————Recommendaions————
Rez(@)
| B Attibute Interesing " Exdoratory | . || Recommendaions
%*Delne expansioniies .| Expansion FaSetst ' Queres@® [Ranking
k
Ad minis|itor *
ee—{(C1 D Sie
e-CRFs Data YMALDB
Al — B!, ..., A" — B’ be the corresponding applicable to the attributes they contain. Larger faSets (i.e., faSets that

expansion rules. Then, B = U/_ B'.

Our default approach to faSet expansion is to expand each
user query Q toward one relation from the database D. We
consider only the relations that are adjacent to the query
0, i.e., have a foreign key connection to some relation in
rel(Q). From these adjacent relations, we choose the one that
is “mostly connected” with rel(Q), i.e., the one for which
the size of its join with its adjacent relation in rel(Q) is the
largest. The main reason for this is that the relation with the
largest size of join will offer more database tuples, and there-
fore, more interesting faSets may be located. We expand Q
toward all the non-id attributes from the relation that was
selected as described above.

6 Experimental results

In this section, we first present YMALDB, our prototype rec-
ommendation system. Then, we present experimental results
regarding the efficiency of our approach. We conclude the
section with a user study.

6.1 YMALDB

YMALDB is implemented in Java (JDK 1.6) on top of MySQL
5.0. Our system architecture is shown in Fig. 7. After the
user submits a query, an optional query expansion step is
performed. Then, the query results along with the maintained
€-CRFs are exploited to locate interesting faSets in the result.
These faSets are presented to the user who can request the
execution of exploratory queries for any of the presented
faSets and retrieve the corresponding recommendations.
We next describe the user interface and information flow
in YMALDB in more detail. YMALDB can be accessed via a
simple web browser using an intuitive GUI. Users can sub-
mit their SQL queries and see recommendations, i.e., YMAL
results. Along with the results of their queries, users are pre-
sented with a list of interesting faSets based on the query
result (Fig. 1). Since the number of interesting faSets may be
large, interesting faSets are grouped in categories according

include more attributes) are presented higher in the list, since
larger faSets are in general more informative. The faSets in
each category are ranked in decreasing order of their inter-
estingness score and the top-5 faSets of each category are
displayed. Additional interesting faSets for each category
can be displayed by clicking on a “More” button. We also
present the top-5 faSets with the overall best interestingness
score independent of the category they belong to.

An arrow button appears next to each interesting faSet.
When the user clicks on it, a set of YMAL results, i.e., rec-
ommendations, appear (Fig. 2). These recommendations are
retrieved by executing an exploratory query for the corre-
sponding faSet. An explanation is also provided explaining
how these specific recommendations are related to the origi-
nal query result. Users are allowed to turnoff the explanation
feature.

Since the number of results for each exploratory query
may be large, these results are ranked. Many ranking criteria
can be used. In our current implementation, we present the
results ranked based on a notion of popularity. Popularity
is application-specific, for example, in our movies dataset,
when the YMAL results refer to people, such as directors or
actors, we use the average rating of the movies in which
they participate and present recommendations in descending
order of the associated rank. We present the top-10 recom-
mendations for each faSet. If users wish to do so, they can
request to see more recommendations.

Furthermore, users may ask to execute more exploratory
queries. This can be achieved by either (a) recursively, i.e.,
treating the exploratory query as a regular query and finding
interesting faSets in its result, or (b) relaxing the negation
of the exploratory query, i.e., relaxing some of the selection
conditions of the original query.

Finally, users may request the expansion of their original
queries with additional attributes. Instead of automatically
performing attribute expansion, expansion is done only if
requested explicitly, to avoid confusing the users with unre-
quested attributes. The results of the original user query are
expanded toward the set of attributes indicated by the expan-

@ Springer

M. Drosou, E. Pitoura

sion rules. Users receive a list of interesting faSets and rec-
ommendations as before.

We have also provided an administrator interface to allow
the fine tuning of the various performance-related parameters
(i.e., €, & and &p) and also the specification of additional
expansion rules if needed.

In our user study in Sect. 6.4, we evaluate many of the
design decisions regarding the presentation of interesting
faSets and recommendations as well as regarding explana-
tions and expansions.

6.2 Datasets

We use both real and synthetic datasets. Synthetic datasets
consist of single relations, where each attribute takes values
from a zipf distribution with parameter 6. We use 10,000
tuples and 7 or 10 attributes for each relation. We also exper-
iment with different values of 6 (we report results for6 = 1.0
and 6 = 2.0). We use “ZIPF-|.A|-6" to denote a synthetic
dataset with | A| attributes and zipf parameter 6. We also
use two real databases. The first one (“AUTOS”) is a single-
relation database consisting of 12 characteristics for 15,191
used cars from Yahoo!Auto [3]. We also use a subset of this
dataset containing 7 of these characteristics. The second one
(“MOVIES”) is a multi-relation database containing infor-
mation extracted from the Internet Movie Database [1]. The
schema of this database is shown in Fig. 3. The cardinality
of the various relations ranges from around 10,000 to almost
1,000,000 tuples. We report results for a subset of relations,
namely Movies, Movies2Directors, Directors, Genres and
Countries.

6.3 Performance evaluation

We start by presenting performance results. There are two
building blocks in our framework. The first one is a pre-
computation step that involves maintaining information, or
summaries, for estimating the frequency of the various faSets
in the database. The second one involves the run-time deploy-
ment of the maintained information in conjunction with the
results of the user query toward discovering the k most inter-
esting faSets for the query. Next, we evaluate the efficiency
and the effectiveness of these two blocks.

We executed our experiments on an Intel Pentium Core2
2.4GHz PC with 2GB of RAM.

6.3.1 Generation of €e-CRFs

We evaluate the various options for maintaining rare faSets
in terms of (1) storage requirements, (2) generation time and
(3) accuracy. We base our implementation for locating MRFs
and RFs on the MRG-Exp and Arima algorithms [37] and
use an adapted version of the CFI2TCFI algorithm [13] for
producing €-CRFs.

@ Springer

Tuning parameters. The basic parameters that control the
generation of the maintained €-CRFs are the support thresh-
old &, for considering a faSet rare and the accuracy-tuning
parameter €. Other parameters include the Bloom filter
threshold (£§p) and the number of employed random walks
(as described in Sect. 5.2). In our experiments, as a default,
we use a Bloom filter threshold &y equal to 1 %, except for
MOVIES, for which many faSets appear in less than 1% of
the tuples in the dataset. In this case, we use §y = 0.01 %
(or around 12 tuples in absolute frequency). Also, we keep
the number of random walks fixed (equal to 50 per exam-
ined faSet). The values of our tuning parameters are shown
in Table 3.

We discretize the numeric values of our real datasets as
discussed in Sect. 5.2. In particular, we partition both the
production years of movies in the MOVIES dataset and cars
in the AUTOS dataset into decades and the price and mileage
attributes of the AUTOS dataset into intervals of length
equal to 10,000. Throughout our evaluation, we excluded
id attributes, since they do not contain information useful in
our case.

Effect of & and €. Table 1 shows the number of gener-
ated faSets for our datasets for different values of & and
€. Note that all MRFs are maintained as RFs independently
of the number of random walks. As € increases, an €-CRF is
allowed to represent faSets with a larger support difference,
and thus, the number of maintained faSets decreases. Also,
as &, increases, more faSets of the database are considered
to be rare, and thus, the size of the maintained information
becomes larger. The number of €-CRFs is smaller than the
number of RFs, even for small values of €. This is especially
evident in the case of the AUTOS dataset, where many faSets
have similar frequencies.

Table 2 reports the execution time required for generating
faSets. We break down the execution time into three stages:
(1) the time required to locate all MRFs, (2) the time required
to generate RFs based on the MRFs and (3) the time required
to extract the CRFs and the final e-CRFs based on all RFs.
We see that the main overhead is induced by the stage of gen-
erating the RFs of the database. We can reduce that overhead
by decreasing the number of employed random walks. This
has a tradeoff with the accuracy of the estimations we receive
as we will later see.

To evaluate the accuracy of the estimation of the support
of a rare faSet provided by e-CRFs, we randomly construct
a number of rare faSets for our datasets. For each dataset,
we generate random faSets of length 1, ..., ¢, where € is the
largest size for which there exist faSets with count in (&g, &,].
Then, we probe our summaries to retrieve estimations for the
frequency of 100 such rare faSets for each size. Here, we
report results for one synthetic and one real dataset, namely
ZIPF-10-2.0 and AUTOS-7. Similar results are obtained

YMALDB: exploring relational databases

Table 1 Number of generated faSets

&, # MRFs # RFs # CRFs # ¢-CRFs #BF Pruned
e =0.1 e=03 e=05 e=0.7 e=09
ZIPF-7-2.0
5% 129 1172 1172 1172 1171 680 138 129 1623 27644
10% 59 1211 1211 1211 1210 707 104 95 1623 28339
20% 44 1627 1627 1627 1626 942 110 101 1623 35667
ZIPF-10-2.0
5% 259 5676 5676 5676 5674 2968 271 259 7753 228213
10 % 106 7065 7065 7065 7063 3778 202 190 7873 267504
20% 61 10329 10329 10329 10327 5388 202 190 8090 363260
& # MRFs # RFs # CRFs #¢c-CRFs #BF Pruned
e=10 €e=20 e=30 € =40 €e=50
ZIPF-7-1.0
5% 402 758 758 758 496 403 402 402 3968 32090
10% 217 927 927 927 491 335 329 263 4108 38665
20 % 84 1032 1032 1032 475 286 280 170 4129 42114
ZIPF-10-1.0
5% 838 1895 1895 1895 1075 840 838 838 12174 131843
10% 430 2377 2377 2377 1076 674 667 537 13014 163887
20% 135 2772 2772 2772 1064 559 552 327 13266 18715
&, # MRFs # RFs # CRFs # ¢-CRFs #BF Pruned
e =0.1 e=03 e=05 €e=0.7 €e=09
AUTOS-7
5% 80 1498 1103 397 243 190 162 133 1438 43569
10% 74 1882 1404 502 299 238 203 170 1513 57091
20 % 43 2006 1511 531 319 253 216 175 1354 61797
AUTOS-12
5% 214 36555 22360 3153 1361 1003 813 661 9225 1740111
MOVIES
5% 452 591 556 547 544 543 541 539 68137 2101

for the other datasets as well. Figure 8 shows the average esti-
mation error as a percentage of the actual count of the faSets
when varying € and &, (ignore, for now, the dashed lines). We
observe that the estimation error remains low even when €
increases. For example, it remains under 5 % in all cases for
ZIPF-10-2.0. Even though we do not have the complete
set of e-CRFs available for our real dataset, because of our
random walks approach for producing RFs, the estimation
error remains under 15 % for that dataset as well.

Tuning €. Next, we evaluate our heuristic for suggesting €
values. Figure 9 depicts the € values and corresponding num-
ber of e-CRFs for each of the steps of our tuning algorithm for
two of our datasets, namely ZIPF-7-1.0 and AUTOS-7,
& = 10 % and various values of the storage limit b. We let
our algorithm suggest an € value for each case. The suggested

value appears last in the x-axis of each plot. The located € val-
ues vary depending on b and the specific dataset. Many times,
the storage limit b set by the system administrator may be
flexible, i.e., the system administrator may decide to allocate
abit more space, if this results in a significant improvement of
€, as is for example the case in Fig. 10a where an increase in
b from 330 to 340 leads to decreasing € from 3.932 to 2.364.

Using Bloom filters and varying &y. As previously detailed,
Bloom filters can be exploited for fast estimations of faSet
frequencies when the number of faSets that appear only a
handful of times in the database is large (see, for example,
Fig. 11). Table 1 reports the number of faSets inserted into the
Bloom filter during the generation of the e-CRFs (“# BF”)
and the number of faSets that we were able to prune dur-
ing the generation of RFs because they had a sub-faSet in

@ Springer

M. Drosou, E. Pitoura

Table 2 Execution time (in ms) for generating faSets

&, MRFs RFs CRFs # ¢-CRFs
e =0.1 e =03 e =05 e =07 e =09
ZIPF-7-2.0
5% 10313 171641 610 657 687 657 750 735
10% 5219 179031 657 656 719 688 765 782
20 % 1812 268063 1219 1219 1313 1282 1312 1344
ZIPF-10-2.0
5% 31203 1421281 16922 17140 16688 16937 17266 17469
10% 16265 1890844 24265 25046 26281 27781 25844 24328
20% 5281 2991125 51859 53828 52094 56765 53453 51313
& MRFs RFs CRFs # ¢-CRFs
e =0.1 e =03 e =05 e =07 e =09
ZIPF-7-1.0
5% 33484 157250 203 219 219 218 219 219
10% 8719 197375 297 313 313 344 313 313
20 % 1390 230344 375 407 422 422 453 390
ZIPF-10-1.0
5% 98515 680359 1360 1406 1453 1437 1453 2203
10 % 24078 855734 2125 2188 2203 2218 2219 3485
20% 3703 1081219 3703 3890 3969 3703 3875 4078
&, MRFs RFs CRFs # ¢-CRFs
e =0.1 e =03 e =05 e =07 e =09
AUTOS-7
5% 22437 1416797 1297 985 1000 985 969 1015
10 % 13984 1977250 2203 1578 1562 1547 1719 1593
20 % 6782 2205453 2453 1797 1891 2125 1937 1891
AUTOS-12
5% 98078 54142515 763235 440969 437531 443219 458766 467969
MOVIES
5% 149844 15021781 125 125 109 110 109 125

Table 3 Tuning parameters

Parameter Default value Range
Estimation factor € - 0.1-5.0
Rare threshold &, 10% 5-20%
Bloom filter threshold & 1% 0.1-5%
Random walks per faSet 50 10-50

the Bloom filter (“pruned”). We see that using Bloom filters
reduces the cost of generating faSets significantly. Figure 12
shows how the number of the generated MRFs varies as we
change the threshold & of the Bloom filter for one synthetic
and one real dataset and, also, the number of faSets inserted
into the Bloom filter during the generation of MRFs. In both

@ Springer

cases, we used & = 10 % and varied &y from 1 to 5 %. We see
that, as & increases, more faSets are added into the Bloom
filter and less MRFs are generated. This has an impact on
the following steps of computing RFs, CRFs and e-CRFs,
since we avoid storing all possible faSets that are subsumed
by some faSet in the Bloom filter. Setting &y too high, how-
ever, excludes many faSets from being considered later by
the TPA (Fig. 13).

Effect of random walks. The cost of generating our sum-
maries can be reduced by employing the random walks
approach. Figure 13 reports the number of generated e-CRFs
for ZIPF-7-2.0 and AUTOS-7 and the corresponding
execution time when we vary the number of random walks
per faSet. We see that by increasing the number of random
walks, we can retrieve more €-CRFs. The generation time

YMALDB: exploring relational databases

(a)

ZIPF-10-2.0 (&r =5%)

(b)

ZIPF-10-2.0 (ér =10%)

~_~
(<]
~

ZIPF-10-2.0 (& =20%)

03F —%—0.1-CRFs 03 _%—0.1-CRFs 03] —%—0.1-CRFs
—©—0.3-CRFs —©—0.3-CRFs —©—0.3-CRFs
0.25 0.5-CRFs 025 0.5-CRFs 025 0.5-CRFs
g ——0.7-CRFs . . ——0.7-CRFs - 5 ——0.7-CRFs -
g o 09-CRFs /] ~.) E o2 09-CRFs /] ~.] S 09-CRFs /| >, p
g [-©-IND ! AN T g [-©-IND K AN BN o U4 -&-IND /) S 5T
5 -A-1PF-2 , N ,/',’ S g -A-IPF-2 , N ,;,’ R ‘5 -A-IPF-2 , N :,’ R
S 015| ~F-IPF-3 . g 015p ~F-IPF-3 . Z 015} -9-IPF-3 ¢ .
£ £ £

(d)

AUTOS-7 (Zr =5%)

Faset size

(e)

AUTOS-7 (Ej,r =10%)

Faset size

C

Faset size

AUTOS-7 " =20%)

0.7} —%—0.1-CRFs 0.7} —%—0.1-CRFs 0.7} —%—0.1-CRFs
—6—0.3-CRFs —©—0.3-CRFs —©—0.3-CRFs
06 0.5-CRFs 06 0.5-CRFs 06 0.5-CRFs
| ——0.7-CRFs 5 | —+—0.7-CRFs 5 | —+—0.7-CRFs
5 . s 5 . s 5 . s
£ 05 0.9-CRFs _ ,% 5 05 0.9-CRFs _ ,¢ 5 05 0.9-CRFs _ ,é
Z -9-IND @ %,/ = -&-IND Q %,»’ = -&-IND Q -
-A-IPF- H--"7 2 -A-1PF- $--"7 2 -A-1PF-2 H--77
& o4} “A-TPF2 - 04 IPF-2 - 2 04 -
E -v-1pF3 & %___-4 g -y-wE3 & %___-4 = -v-pE3 L& é___-
m = m

Faset size

Faset size

Faset size

Fig. 8 Estimation error for 100 random rare faSets for different values of & when varying €. a ZIPF-10-2.0 (§, = 5%), b ZIPF-10-2.0
& =10%),¢c ZIPF-10-2.0 (& = 20%), d AUTOS-7 (& = 5 %), e AUTOS-7 (& = 10 %), f AUTOS-7 (&, = 20 %)

(a) (b)
1000 1000
= =3 250 350
% Target b = 200 % Target b = 300 % Target b = 200 g Target b = 300
2 2 2 2
< <
‘% % & £ 300
> 500 o 500 2 200 S
2 2 3] 5]
5] £ —g Jé 250
= = = =}
Z 0 Z o z. Z
) } 150 200+
AN ARG Y PO D PP 5 0 WP P P
NI G LS RN BN SNSRI W SIS L NN N NI AN NN
€ € e €
1000 1000 500 600
% Target b = 400 % Target b = 500 % Target b = 400 45 Target b = 500
72} 2] [72] wn
2 & < 400 &
3 B 3 B
> 500 o 500 N — 400
2 2 2 300 2
= [l R E
= = = =
Z 0 Z 0 ~ 200 < 200
ARRRAEREERESD e L SRR SRR P ® @S
SRR AR MRS m%’-\j’qf OHTERRIRXIRRS NN SN O SN Q‘;} MNSSNRSISISIS
€ € € €

Fig. 9 Automatically suggesting values for € given a storage limit b. a ZIPF-7-1.0 (§, = 10 %), b AUTOS-7 (& = 10 %)

of those €-CRFs is dominated by the time required for the
intermediate step of generating the RFs, and thus, € does not
affect the execution time considerably.

Next, we evaluate how the estimation accuracy is affected
by the number of random walks. We employ our two datasets
(ZIPF-10-2.0 and AUTOS-7) and generate ¢-CRFs for
both of them varying the number of random walks used.
We use a larger number of random walks for the AUTOS-7

dataset, since this dataset contains more RFs than the syn-
thetic one. Figure 14 reports the corresponding average esti-
mation error. We see that the estimation error remains low
even when fewer random walks are used (Fig. 15).

Exploiting subsumption. We also conduct an experiment

to evaluate the performance of our greedy heuristic (Algo-
rithm 1) for exploiting subsumption among faSets of the same

@ Springer

M. Drosou, E. Pitoura

(a) ZIPF-7-1.0 (b) AUTOS-7
1

6

RN

2
250 270 290b310 330 350

wos—
0
250 270 290,310 330 350

2.4 0.4

w 2‘2\\ worT——

2 0
350 370 390b410 430 450 350 370 390b410 430 450

2.1 0.2

w 2\\ w oI

1.9
450 470 490b510 530 550

0
450 470 490b510 530 550

Fig. 10 Suggested € values when varying b. a ZIPF-7-1.0 (§, =
10 %), b AUTOS-7 (& = 10 %)

size. To do this, we randomly generate 10,000 tuples with
|A| = 1 taking values uniformly distributed in [1, v] for var-
ious values of v. Then, we construct all 1-faSets of the form
(a; < A < v) where a; € [1,v], i.e., there are initially v
available faSets. We merge the available faSets using (1) the
greedy heuristic (GR) and (2) a random approach where, at
each round, we randomly select one of the available faSets
and check whether it can e-subsume any other faSets (RA).
Figure 16 shows the final number of faSets when varying €,
i.e., the size of the corresponding (1, €)-cover sets. We see
that merging faSets of the same size can greatly reduce the
size of maintained information and that GR produces sets
of considerably smaller sizes than those produced by RA.
This gain is larger as the number of initially available faSets
increases.

6.3.2 Top-k faSet discovery

Next, we compare the baseline and the two-phase algorithms
described in Sect. 4. The TPA is slightly modified to take
into consideration the special treatment of very rare faSets
that have been inserted into the Bloom filter.

To test our algorithms, we generate random queries for
the synthetic datasets, while for AUTOS and MOVIES, we
use the example queries shown in Fig. 17. These queries are

(@) (b)

1 1

o
o
o
o

o
o
=

o
=

Support (%)
o
=

Support (%)

=)
[N
o
)

)

Support (%

selected so that their result set includes various combinations
of rare and frequent faSets. Figure 15 shows the 1st and 20th
highest ranked interestingness score retrieved, i.e., for the
TPA, we set k = 20, and for the baseline approach, we
start with a high &y and gradually decrease it until we get at
least 20 results. We see that the TPA is able to retrieve more
interesting faSets, mainly due to the first phase where rare
faSets of Res(Q) are examined.

We set k = 20 and & = 5% and experimented with
various values of €. We saw that € does not affect the inter-
estingness scores of the top-k results considerably. For the
above-reported results, € was equal to 0.5. In all cases except
for g3 of the AUTOS database, the TPA located k results dur-
ing phase one, and thus, phase two was never executed. This
means that in all cases, there were some faSets present in
Res(Q) that were quite rare in the database, and thus, their
interestingness was high.

The efficiency of the TPA depends on the size of Res(Q),
since in phase one, the tuples of Res(Q) are examined for
locating supersets of faSets in the maintained summaries. The
TPA was very efficient for result sizes up to a few hundred
results, requiring from under a second to around 5s to run.

6.3.3 Comparison with other methods

We next discuss some alternative approaches for generating
database frequency statistics.

Maintaining faSets up to size £. Instead of maintaining a
representative subset of rare faSets, we consider maintaining
the frequencies of all faSets of up to some specific size £. As
an indication for the required space requirements, Table 4
reports the number of faSets up to size 3 for our datasets.
First, let us consider maintaining only 1-faSets and using
the independence assumption as described in Sect. 4.1. Fig-
ure 8 reports the estimation error when following this alter-
native approach (denoted “IND”). This approach performs
well for the synthetic dataset due to the construction of the
dataset, since the values of each attribute are drawn inde-
pendently from a different zipf distribution. However, this
is not the case for the real dataset, where the independence
assumption leads to a much larger estimation error than our

(CO)S (%l

)

0.4 0.2

Support (%

0.2 0.1

10 20 30 40 40 80 120 160 200 240

70 140 210 280 350 420 490 560 70 140 210 280 350 420 490 560 630

Fig. 11 Support of the faSets for the AUTOS dataset (x-axis is the number of faSet ordered by their support, e.g., x=50 means that this is the 50th
less frequent faSet. a FaSet size 1, b FaSet size 2, ¢ FaSet size 3, d FaSet size 4

@ Springer

YMALDB: exploring relational databases

Fig. 12 Number of generated (b)
MRFs and number of faSets (@ ZIPF-7-2.0 AUTOS-12
inserted into the Bloom filter for 70 180
different values of &y when 60
& =10%.a ZIPF-7-2.0, 160
i} 3
_ =050 —%¥— MRFs .
b AUTOS-12 ‘Z? 4BF é 140
:g 40 = —%— MRF:
Yy S
_a.‘; 30 g 120 —O— #BF
=) S
3 g 100
Z 2 =
0 z
10 80
0 ; : : 60
1 2 3 4 5 1 2 3 4 5
&, (%) & (%)
Fig. 13 Number of produced
$ b i () ZIPF-10-2.0 (b) AUTOS-7
faSets (top row) and execution 4000 : 450
time (bottom row) when using P
different numbers of random 3500 X 8 ;Zgﬁiz 400 —6—0.3-CRFs
walks for generating faSets for £ 3000 0.5-CRFs 2 350 0.5-CRFs
& =5%.aZIPF-10-2.0, 2 2500 —+—0.7-CRFs A
b AUTOS-7, ¢ ZIPF-10-2.0, b 0.9-CRFs £ 300
d AUTOS-7 5 2000 °
) 2 250
E 1500 =
=
Z 1000 Z 200
k.
500 4 150
1]
o 100
10 20 30 40 50 10 20 30 40 50
Number of random walks Number of random walks
(V] 10 ZIPF-10-2.0 (d)8 x 10° AUTOS-7
2 —%—0.1-CRFs ® —%—0.1-CRFs ®
—©—0.3-CRFs 7 —6—0.3-CRFs
10 0.5-CRFs . = 0.5-CRFs
— —+—0.7-CRFs . a 6 —+—0.7-CRFs R
g 3 0.9-CRFs < 0.9-CRFs P
o P E
£ s - = 4 J
5 E
2 B 2 3
5 4 : 3 _
Q < i/
o o2 -
o
24] 1 &r
0 0
10 20 30 40 50 10 20 30 40 50
Number of random walks Number of random walks
approach, even for small values of €. Therefore, this approach ~ comeis (0, O, ..., 1) andsoon. Thatis, p; is the probability

cannot be employed in real applications.

Considering that we are willing to afford some extra space
to maintain the support of faSets up to size £, £ > 1, a more
sophisticated approach is Iterative Proportional Fitting (IPF)
[7]. Let f ={c1, ..., cn} be a faSet with size m,m > £. f
can be viewed as the result of a probabilistic experiment: We
associate with each selection condition ¢; € f a binary vari-
able. This binary variable denotes whether the corresponding
selection condition is satisfied or not. The experiment has
v=2" possible outcomes. Let p; be the probability that the
outcomeis (0, 0, ..., 0), p be the probability that the out-

of f being satisfied by exactly the conditions corresponding
to the variables equal to 1 as specified by the i™ possible
outcome, 1 <i <v (see Fig. 18 for an example with m = 3
and ¢ = 2). Having pre-computed the support of faSets up
to size £, we have some knowledge (or constraints) for the
values of the discrete distribution p = (py, ..., py)?. First,
all p;s for which a faSet f of size m with m < ¢ is satisfied
must sum up to p(f|D), i.e., the pre-computed support. Sec-
ond, all p;s must sum up to 1. For example, for £ =2, we
have m constraints due to the pre-computed support values
of all 1-faSets and m (m—1) /2 constraints due to the 2-faSets.

@ Springer

M. Drosou, E. Pitoura

(a) ZIPF-10-2.0 (10 random walks) (b) ZIPF-10-2.0 (20 random walks) (c) ZIPF-10-2.0 (30 random walks) (d) ZIPF~10-2.0 (40 random walks) (e) ZIPF-10-2.0 (50 random walks)
0.4 ——0.1-CRFs /i 0.4F ——0.1-CRFs 0.4p ——0.1-CRFs 0.4f ——0.1-CRFs 0.4p ——0.1-CRFs
5 ~©-0.3-CRFs / 5 ~&-0.3-CRFs 5 ~&-0.3-CRFs 5 ~6-0.3-CRFs 5 ~©-0.3-CRFs
=1 0.5-CRFs =1 0.5-CRFs =1 0.5-CRFs = 0.5-CRFs. = 0.5-CRFs
| 03f ——0.7-CRFs /M 03f ——0.7-CRFs /M 03f ——0.7-CRFs L 03f ——0.7-CRFs /M 03f ——0.7-CRFs
= s = s = CRFs = —CRF: = _CRFs
g 0.9-CRFs g 0.9-CRFs g 0.9-CRFs £ 0.9-CRFs g 0.9-CRFs
= 09 = 09 = 02 5 02 = 02
E E E P E
Z o1 Z o1 Z ol Z 01 Z ol
= = = / &3] 1 53]
—1 T L —% i
—g i o — F - S e i H —— — 3
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Faset Size Faset Size Faset Size Faset Size Faset Size
() (8) (h) @) @
AUTOS-7 (40 random walks) g AUTOS-7 (50 random walks) AUTOS-7 (60 random walks) AUTOS-7 (70 random walks) AUTOS-7 (80 random walks)
0.25, 0.25, 0.25, 0.25, 0.25,

—#=0.1-CRFs —#=0.1-CRFs —#=0.1-CRFs —#—0.1-CRFs —#—0.1-CRFs
= T —-0.3-CRFs = —6-0.3-CRFs = —6-0.3-CRFs 1] —©-0.3-CRFs = —©-0.3-CRFs
g 0.5-CRFs g 02 i 0.5-CRFs g o 0.5-CRFs g %2 0.5-CRFs g 02 0.5-CRFs
is] i3] ——0.7-CRFs o ——0.7-CRFs 3 ——0.7-CRFs is] ——0.7-CRFs
= = 0.9-CRFs = 0.15) 0.9-CRFs o 015 0.9-CRFs = 0.15) 0.9-CRFs
2 2 2 2 5]

] E S o1 S o1 S o
E E E £ AT T4 & ‘
2 2 & 005 TG oos w & 005 %‘é
! ,&/jj?\?/‘f j/ N | |
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Faset Size Faset Size Faset Size Faset Size Faset Size
Fig. 14 Estimation error for 100 random rare faSets and &, = 5% walks), d ZIPF-10-2.0 (40 random walks), e ZIPF-10-2.0 (50

for different number of random walks employed during the generation
of e-CRFs when varying €. a ZIPF-10-2.0 (10 random walks), b
ZIPF-10-2.0 (20 random walks), ¢ ZIPF-10-2.0 (30 random

random walks), f AUTOS-7 (40 random walks), g AUTOS-7 (50 ran-
dom walks), h AUTOS-7 (60 random walks), i AUTOS-7 (70 random
walks), j AUTOS-7 (80 random walks)

(a) (b) (©
200 807) - 2000 -
I Baseline — 1st score -Baselfne - lst score [Baseline — 1st score
[Baseline — 20th score 70 I Bascline — 20th scorqy [Baseline — 20th score]
I TPA - Ist score 0 TPA - Ist score [TPA - Ist score
1501 CJTPA - 20th score ,, 60 I TPA - 20th score 1500 F C__JTPA — 20th score
17 M 7 @
g S s50f g
)) £
E £ z
g 100 g 4or 2 1000
g 2 g
E 5 30r £
50 20r 500
Ll Ll . 0 ! 0 m o1
ql q2 q3 g4 g5 g6 q7 @8 q9 qlo ql q2 q3 q4 q5 ql q2 q3 q4 q5
Query Query Query

Fig. 15 Interestingness scores of the top 20 most interesting faSets retrieved by the TPA and the baseline approach. a ZIPF-10-2.0,

b AUTOS-12, ¢ MOVIES

Therefore, we have m+m(m —1)/2-+1 constraints in total.
However, there are more variables than constraints; there-
fore, we cannot determine all values of p. IPF is based on the
principle of maximum entropy, which states that, since there
is no reason to bias the estimated distribution of p toward
any specific form, then the estimation should be as close to
the uniform distribution as possible. IPF initializes the ele-
ments of p randomly and then iteratively checks each avail-
able constraint and scales by an equal amount the elements
of p participating in the constraint so that the constraint is
satisfied. It can be proved that this process converges to the
maximum entropy distribution.

The performance of IPF for £ = 2 and £ = 3 is shown in
Fig. 8, denoted “IPF-2” and “IPF-3”, respectively. We see that
for our synthetic dataset, IPF cannot outperform the indepen-
dence assumption approach. This is not the case for our real
dataset, where IPF performs better. Using IPF with £ = 2
results in much higher estimation errors than our e-CRFs
approach. Increasing ¢ to 3 improves the performance of
IPE. However, this requires maintaining over 6,000 faSets in

@ Springer

total for the AUTOS-7 dataset, while the e-CRFs approach
requires up to at most around 500 faSets, depending on the
value of € and &,.

In general, our e-CRFs approach provides a tunable
method to retrieve frequency estimations of bounded error
for rare faSets of any size, without relying on an indepen-
dence approach. Also, the estimation error does not increase
for larger faSets, since we maintain a representative set of not
only small faSets, as in the case of IPF, but also larger ones.
Non-derivable faSets. In the case of frequent itemsets, an
alternative approach for creating compact representations
is proposed in [10], where non-derivable frequent itemsets
are introduced. Non-derivable itemsets can be viewed as
an extension of closed frequent itemsets. In particular, a
non-derivable frequent itemset / is an itemset whose sup-
port cannot be derived based on the supports of its sub-
itemsets. For each sub-itemset, a deduction rule is formed,
based on the inclusion/exclusion principle. For example, con-
sider three items a, b and ¢ and let supp (1) (resp. supp(f))
be the number of tuples containing (resp. not containing) 7.

YMALDB: exploring relational databases

801
I :-0.1 (GR)
| I :-=0.1(RA)
707 - 03 GR)
[e=03(RA)
60F [CJe=05(GR)
[Je=05(RA)
2 5ol EJe=07@R)
% =07 (RA)
o] [< - 09 (GR)
g 407 I :-0.9(RA)
3
O 301
201
10

50 100 150 200 250 500
v

Fig. 16 Size of the produced cover sets by the greedy heuristic (GR)
and the random approach (RA) when varying the number of initial
faSets v

Table 4 Number of faSets up to size 3

Dataset # 1-faSets # 2-faSets # 3-faSets
ZIPF-7-2.0 70 1901 13681
ZIPF-10-2.0 100 4048 46293
ZIPF-7-1.0 70 2100 31004
ZIPF-10-1.0 100 4500 106497
AUTOS-7 79 1022 4925
AUTOS-12 117 2844 28704
MOVIES 66726 380603 743152

The inclusion/exclusion principle for the itemset abc states
that supp(abc) = supp(a) — supp(ab) — supp(ac) +
supp(abc). Since supp(abc) must be greater than or equal
to zero, we can deduce that supp(abc) > supp(ab) +
supp(ac) — supp(a). Generally, for every subset X of I,
it is shown that:

supp() < > (=D Wlsupp()), if |1\X[is odd
XcJcl

supp(l) > Z (—1)|I\J|+1supp(./), if |I\X]is even
xcJcl

Therefore, for each itemset /, there are a number of rules pro-
viding upper and lower bounds for /. Let u; and /; be these
bounds, respectively. If u; = [;, then we can deduce that
supp(I) = uy and I is a derivable itemset. The monotonic-
ity property holds for derivable itemsets, i.e., if / is derivable,
then every superset of / is derivable as well. Thus, an Apriori-
like algorithm is employed to generate all non-derivable fre-
quent itemsets.

There are two non-trivial extensions that need to be
addressed for applying non-derivability in our case. First, a
method is required for generating non-derivable rare faSets,

q1: select make, name

from autos

where navigation_system = "Yes’;
g2: select make, air_condition, alarm

from autos

where state = 'FL’;
q3: select make, name, sunroof

from autos

where state = 'MD’ and make = ’Lexus’;
qa: select make, state, spoiler

from autos

where air_condition = ’Yes’ and power_steering = "Yes’;

g5: select make, state, side_air_bag
from autos
where child_safety = "Yes’ and cruise_control = "Yes’;

(a) AUTOS.

q1: select D.name, G.genre, M.year
from C, M, D, M2D, G
where join and C.country='France’;
q2: select C.country, G.genre, M.year
from C, M, D, M2D, G
where join and D.name='Coppola, Francis Ford’;
qs3: select C.country, M.year
from C, M, D, M2D, G
where join and M2D.notes="Uncredited’;
qa: select D.name, G.genre
from C, M, D, M2D, G
where join and D.name='Coppola, Francis Ford’ and
M2D.notes="Uncredited’;
gs: select D.name, C.country
from D, M2D, M, C
where join and M.year=2000;

(b) MOVIES.

Fig. 17 Dataset queries used for evaluating TPA and the baseline
approach. a AUTOS, b MOVIES.

D.name = “M. Scorsese” | M.year = 2010 | G.genre = “Action” | probability
0 0 0 p.
0 0 1 D,
0 1 0 D,
0 1 1 D,
1 0 0 P,
1 0 1 Pe
1 1 0 D,
1 1 1 s

Ps+ pg+ 0, T Dy = p({D.name = “M. Scorsese”’})

Pyt py+p, + pg = p({M.year = 2010})

P, +py+ s+ py = p({G.genre = “Action™})

p, + p, = p({D.name = “M. Scorsese”, M.year = 2010})

ps + Dy = p({D.name = “M. Scorsese”, G.genre = “Action”’})
p, + 0y =p({M.year = 2010, G.genre = “Action”’})
Dttt pstpotp, +pe

Fig. 18 Example of IPF constraints for £ = 2 when estimating
the support of the faSet {D.name="“M. Scorsese”, M.year="2010",
G.genre="Action’}

instead of frequent ones. Second, frequency bounding must
be extended to allow approximations of the frequencies of
the various faSets.

@ Springer

M. Drosou, E. Pitoura

(a) ZIPF-7-1.0 (b) AUTOS-7 (C) Mushroom
12007 12007 1601
-~ FFs - - FFs | ~~ FFs
h —e— CFFs 1400% —o—CFFs
1000, —— NDFFs . —— NDEFFs
@ o 1200 MFFs
) > A [%"-5 \
3 2 800 2 1ol |
& 5 ks \
s o 600f o sof .
5] 2 S \
£ : :
g 2 400 2
Z
200+
— o o o . ‘ i
1 2 3 4 5 6 7 8 9 10 1 2 3 4 6 7 8 9 10 50 60 70 80 90

£, (%)

£ (%)

£ (%)

Fig. 19 Frequent, closed frequent, non-derivable frequent and minimal frequent faSets for various datasets. a ZIPF-7-1.0, b AUTOS-7,

¢ Mushroom

(a) (b) (©
1800 25005 3000
—¥— M. Scorsese —¥— Q. Tarantino —¥—IRes(Q)l = 100
16007 —©— . Spielberg —©—1J. Cameron —©—IRes(Q)l =51
140 R. Scott 2000 S. Mendes 2500 IRes(Q)l = 20
—+—F.F. Coppola 4 —+—IRes(Q)l =3
g 120 Z 2 2000
= £ 15007 £
o0 1000 2 2
2 2 2 1500
s 800 5 51
§ § 1000 §
2 600 = 21000
= = =
400 M@
y w > 9666 o o
200 L
0 0 0 £ el e
1 2 3 4 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Top—kIh faSet Top—k[h faSet Top—k[h faSet

Fig. 20 Interestingness of the top-10 faSets for queries with different number of results. a Different queries (| Res(Q)| =~ 100), b Different queries

(|Res(Q)| ~ 30), ¢ Different (| Res(Q)])

The first issue seems to not be easily solvable. When con-
structing deduction rules for a faSet 7, it is assumed that
the frequencies of all its sub-faSets are either stored or can
be derived from the frequencies of the stored faSets. This is
not the case for a rare faSet /, since many of the sub-faSets
of I may be frequent, and thus, their frequency may not be
known. We considered following a reverse approach of form-
ing deduction rules based on super-faSets. However, we saw
that only lower bounds can be derived from such rules. The
second issue could be addressed by relaxing the notion of
derivability and allow the upper and lower bounds of a faSet
to differ by a factor 5. However, such an extension is not
clear, even for frequent faSets, since it is not clear how the
estimation error is bounded. The reason for this is that bounds
are computed based on multiple deduction rules where many
different sub-itemsets participate.

Nevertheless, to get some intuition about the prospects
of employing non-derivable faSets, we conducted an exper-
iment for frequent faSets. Figure 19 reports the number of
FFs, MFFs, CFFs and non-derivable frequent faSets (NDFFs)
for our ZIPF-7-1.0 and AUTOS-7 datasets. The number
of CFFs and NDFFs is almost identical to that of FFs for
our datasets, even for small values of & s down to 1 %, where
almost all faSets are considered frequent. This is due to the
fact that most faSets in our datasets have distinct frequen-

@ Springer

cies, and thus, the upper and lower bounds derived for the
various itemsets are not equal. Figure 19 also reports results
for Mushroom [2], a dataset widely used in the literature
of frequent itemset mining which does not have the same
property. Employing CFFs and NDFFs performs better for
this dataset. However, we see that the numbers of CFFs and
NDFFs are comparable.

6.3.4 Impact of result size

Next, we study the impact of the query result size on the
usefulness of our method. In general, the interestingness of
a faSet does not depend on the result size per se but rather on
the specific query. To illustrate this, we report the interest-
ingness score of the top-10 faSets of different queries with
roughly the same result size, in particular of queries retriev-
ing the country, year and genre of movies by a number of
different directors that have directed around 100 (Fig. 20a)
and 30 (Fig. 20b) movies each. We see that, even though
these queries have the same result size, the interestingness
of their faSets depends on the specific selection conditions,
i.e., director, of the query.

We also consider queries about movies of the same direc-
tor, namely F.F. Coppola, each retrieving a different num-
ber of results (Fig. 20c). These queries produce many com-

YMALDB: exploring relational databases

q1: select G.genre, M.year
from G, M, M2D, D
where join and D.name = ...

)

q2: select M.year, G.genre, D.name

from G, M, D, M2D, C

where join and C.country = ...
gs3: select C.country, D.name

from G, M, D, M2D, C

where join and G.genre = ...
qa4: select G.genre

from G, M, A, M2A

where join and A.name = "...’
gs: select M.year, C.country

from G, M, C

where join and G.genre = ...

s s

and C.country = ...

[}

and M.year = ...

Fig. 21 Query templates for the MOVIES database used for the user
evaluation

mon faSets which (especially the top 1-3 ones) get a higher
interestingness scores for smaller result sizes, since in this
case, their support in |Res(Q)| is larger. However, the rela-
tive ranking of these common faSets is the same in all queries.
Thus, the output of our approach is not affected by the result
size of the query (Fig. 17).

6.4 User evaluation

To evaluate the usefulness of YMALDB and its various
aspects, we conducted an empirical evaluation using the
MOVIES dataset, with 20 people having a moderate inter-
est in movies, 12 of which were computer science graduate
students, while the rest of them had no related background.
Although this may be considered a relatively small group of
users, it provides an indication of the potential impact of our
approach.

Users were first introduced to the system and were given
some time to familiarize themselves with the interface. Then,
each user was allowed to submit a number of queries to the
system. A set of template queries was available (Fig. 21)
which users could adjust by filling in their preferred direc-
tors, actors, genres and so on. Users could also submit non-
template queries. All users started by submitting template
queries. As they became more comfortable with the system,
many of our computer science users started experimenting
with their own (non-template) queries. The result size of the
various queries was between 20 and 6,700 tuples. User feed-
back seemed to be independent of the size of the retrieved
result set.

We evaluated the effectiveness of the system in two ways:
first, by asking users to explicitly comment on the usefulness
of the various aspects of the system and, second, by monitor-
ing their interactions with the system. More specifically, users
were asked to evaluate the following aspects: (1) the presen-
tation of interesting faSets as an intermediate step before
presenting recommendations, (2) the quality of the recom-
mendations, (3) the usefulness of explanations, (4) the use-

fulness of attribute expansion and (5) the depth of exploration
which can also be seen as an indication of the user engage-
ment with the system. Concerning system interaction, we
monitored: (1) how many template and non-template queries
the users submitted, (2) how many and which interesting
faSets the users clicked on for each query, (3) how many and
which recommendations users were interested, and (4) how
many exploration steps the users followed, i.e., how many
exploratory queries initiated at the originally submitted user
query were submitted. Table 5 summarizes our findings. We
also report the variation in these values. These variations
are relatively small and seems to be attributed to behavioral
habits whose analysis is beyond the scope of this paper. We
present some related comments along with the results.
Interesting faSets. All users preferred being presented first
with interesting faSets instead of being presented directly
with recommendations. Almost all users preferred seeing
interesting faSets grouped in categories according to the
attributes they contain. They felt that this made it easier
for them to focus on the attributes that they found to be
more interesting, which were different for each submitted
query. In particular, one user found this grouping interesting
in itself, in the sense that it provided a summary of the most
important aspects of the result of the original query. Only two
computer science users stated that, even though they gener-
ally preferred being presented with grouped faSets, they also
liked being presented with the top-5 most interesting faSets
independently of their categories. All of our non—computer
science users found this global top-k confusing and preferred
seeing only faSets grouped into categories. For this reason,
we decided to let users enable or disable this feature. Also,
most users, independently of their background, were more
interested in categories corresponding to large faSets because
they felt that these faSets were more informative.

Our monitoring concerning which faSets users eventually
clicked on showed that there were two types of users, those
that clicked on the first one or two faSets from each category
and those that chose one or two categories that seemed the
most interesting to them and then proceeded with clicking
all faSets in these categories, often using the “More” button
to retrieve more faSets in these categories. Around 75 % of
our users belonged to the former type.

Recommendations. Concerning recommendations, we
observed that the exploratory queries that users decided to
proceed with depended on the specific attributes for which
recommendations were being made. For example, when rec-
ommending movie years or genres, around 80 % of the users
decided to click on the first couple of available recommen-
dations. However, when recommending actors or directors,
the same users clicked on the names they were more familiar
with. This supports our decision to rank our recommenda-
tions based on the popularity of values in the dataset.

@ Springer

M. Drosou, E. Pitoura

Table 5 Summary of the results

User comments

Clicks

of the user study
Query submission

Computer science students preferred

5 template queries for all users

non-template queries/others felt more
comfortable with template queries

Interesting faSets

Recommendations

Explanations Brief

Optional
80 % liked it

Attribute expansion

Liked the attribute grouping preferred
faSets with more attributes

Choice depends on attributes

2-3 non-template queries on average
in addition for computer science users
(min=1, max=5)

75% 1-2 faSets of all groups (breadth
exploration) (min=1, max=4)

25 % all faSets of 1-2 groups (depth
exploration) (min=1, max =3)

80% on the first 1-2 recommen-
dations (genre, year, etc.) and on

all recommendations known to them
(actors, directors)

20 % on many recommendations (up to 8)

Over 90 % clicked first on expanded faSets

20 % found it arbitrary

Exploration depth -

70% a “close” neighborhood of the original
query (1-2 steps)
30 % navigate away (67 steps)

Explanations. Contrary to what we expected, user feelings
toward using explanations were mixed. Generally, the more
users became familiarized with using the system, the less
useful they found explanations. Explanations were better
received by our non-computer science users, since our com-
puter science users were more interested in understanding
how our ranking algorithm works rather than reading the
explanations. Nevertheless, all users agreed that explanations
should be brief, as they felt that detailed explanations would
only clutter the page. Following user feedback, we added an
option to allow users to turn explanations off.

Attribute expansions. Around 70 % of our computer sci-
ence users and all others found query expansion very use-
ful, as they received more recommendations. This behavior
seems to be linked with the fact that users preferred seeing
larger interesting faSets, since more such faSets appear when
expanding queries. Some of our users felt that query expan-
sion was able to retrieve more “hidden” information from the
database, which was something they liked.

Exploration depth. Finally, concerning the amount of explo-
ration steps followed by the users, again, there were two types
of users. Almost 70 % of the users decided to explore a close
“neighborhood” around their original query (1-2 exploration
steps), by following a recommendation and then navigating
back to the previous page to select a different recommenda-
tion for their original query. The remaining users, after fol-
lowing a recommendation and seeing the results and the new
interesting recommendations of the corresponding explor-
ing query, would most often find something interesting in
the new recommendations and navigate further away from
their original query (67 exploration steps on average), most

@ Springer

often never returning back to the initial page from which their
exploration originated. As an example of such an exploration,
upon asking for thriller movies in 2006, one of our users fol-
lowed an interesting faSet about Germany and a consequent
recommendation about war movies in 2009. The interest-
ing faSets of the corresponding exploratory query included
the countries Serbia and Bosnia and Herzegovina as well as
Pantelis Voulgaris, which is a director of civil war movies in
Greece.

7 Related work

In this paper, we have proposed a novel database exploration
model based on exploring the results of user queries. Another
exploration technique is faceted search (e.g., [16,20,30]),
where results of a query are classified into different multi-
ple categories, or facets, and the user refines these results by
selecting one or more facet condition. Our approach is differ-
ent in that we do not tackle refinement. Our goal is to identify
faSets, possibly expand them and then use them to discover
other interesting results that are not part of the original query
results.

There is also some relation with query reformulation. In
this case, a query is relaxed or restricted when the number of
results of the original query is too few or too many, respec-
tively, using term rewriting or query expansion to increase
the recall and precision of the original query (e.g., [32]).
Again, our aim is not to increase or decrease the number of
retrieved query results but to locate and present interesting
results that, although not part of the original query, are highly
related to it. Besides reformulating the query, another com-
mon method of addressing the too many answers problem is

YMALDB: exploring relational databases

ranking the results of a query and presenting only the top-k
most highly ranked ones to the user. This line of research is
extensive; the work most related to ours is research based on
automatically ranking the results [5, 12]. Besides addressing
a different problem, our approach is also different in that the
granularity of ranking in our approach is in the level of faSets
as opposed to whole tuples. We also propose a novel method
for frequency estimation that does not rely on an indepen-
dence assumption.

Yet another method of exploring results relies on why
queries that consider the presence of unexpected tuples in
the result and why not queries that consider the absence of
expected tuples in the result. For example, ConQueR [41]
proposes posing follow-up queries for why not by relaxing
the original query. In our approach, we find interesting faSets
in the result based on their frequency and other faSets highly
correlated with them. Another related problem is construct-
ing a query whose execution will yield results equivalent to a
givenresult set [33,42]. Our work differs in that we do not aim
at constructing queries but rather guiding the users toward
related items in the database that they may be unaware of.

Other approaches toward making database queries more
user-friendly include query auto-completion (e.g., [21]) and
free-form queries (e.g., [34]). Khoussainova et al. [21] con-
sider the auto-completion of SQL user queries while they are
being submitted to the database. In our work, we consider the
expansion of user queries to retrieve more interesting infor-
mation from the database. The focus of our work is not on
assisting users in query formulation but rather on exploring
query results for locating interesting pieces of information.
[34] considers exploiting database relations that are not part
of user queries to locate information that may be useful to the
users. The focus of this work, however, is on allowing users
to submit free-form, or unstructured, queries and provide
answers that are close to a natural language representation.

In some respect, exploratory queries may be seen as
recommendations. Traditional recommendation methods are
generally categorized into content-based that recommend
items similar to those the user has preferred in the past (e.g.
[26,29]) and collaborative that recommend items that similar
users have liked in the past (e.g. [9,22]). Adomavicius and
Tuzhilin [4] provide a comprehensive survey of the current
generation of recommendation systems. Several extensions
have been proposed, such as extending the typical recom-
menders beyond the two dimensions of users and items to
include further contextual information [28]. Here, we do not
exploit such information but rather rely solely on the query
result and database frequency statistics.

Extending database queries with recommendations has
been suggested in some recent works, namely [24] and
[6,11]. Koutrika et al. [24] propose a general framework
and a related engine for the declarative specification of the
recommendation process. Our recommendations here are of

a very specific form. Recommendations in [6,11] have the
form of queries and are based on the relations they involve
and the similarity of their structure to that of the original user
query. Given past behavor of other users, the goal is to pre-
dict which tuples in the database the user is interested in and
recommend suitable queries to retrieve them. Those recom-
mendations are based on the past behavior of similar users,
whereas we consider only the content of the database and the
query result.

A somewhat related problem is finding interesting or
exceptional cells in an OLAP cube [31]. These are cells
whose actual value differs substantially from the anticipated
one. The anticipated value for a cell is estimated based on
the values of its adjacent cells at all levels of group-bys. The
techniques used in that area are different though, and no addi-
tional items are presented to the users. Giacometti et al. [17]
consider recommending to the users of OLAP cubes queries
that may lead to the discovery of useful information. This is
a form of database exploration. However, such recommenda-
tions are computed based on the analysis of former querying
sessions by other users. Here, we do not exploit any history
or query logs but, instead, we use only the result of the user
query and database information.

Finally, note that we base the computation of interesting-
ness for our results on the interestingness score. There is a
large number of possible alternatives none of which is con-
sistently better than the others in all application domains (see
[38] for a collection of such measures). In this paper, we use
an intuitive definition of interestingness that depends on the
relative frequency of each piece of information in the query
result and the database. Nevertheless, our exploration frame-
work could be employed along with some different inter-
estingness measure as well by adapting the estimation of
interestingness scores accordingly.

This paper is an extended version of [14] including gener-
alized faSets with range conditions, a prototype system and
a user evaluation. Some of our initial ideas on this line of
research appeared in [36].

8 Conclusions and future work

In this paper, we presented a novel database exploration
framework based on presenting to the users additional items
which may be of interest to them although not part of the
results of their original query. The computation of such
results is based on identifying the most interesting sets of
(attribute, value) pairs, or faSets, that appear in the result of
the original user query. The computation of interestingness
is based on the frequency of the faSet in the user query result
and in the database instance. Besides proposing a novel mode
of exploration, other contributions of this work include a fre-
quency estimation method based on storing an e-tolerance

@ Springer

M. Drosou, E. Pitoura

CREFs representation and a two-phase algorithm for comput-
ing the top-k most interesting faSets.

There are many directions for future work. One such direc-
tion is to explore those faSets that appear in the result set less
frequently than expected, that is, the faSets that have the
smallest interestingness value. Such faSets seem to be the
ones most loosely correlated with the query and they could
be used to construct exploratory queries of a different nature.
Another interesting line for future research is to apply our
faSet-based approach in the case in which a history of pre-
vious database queries and results is available. In this case,
the definition of interestingness should be extended to take
into consideration the frequency of faSets in the history of
results.

Acknowledgments The research of the first author has been co-
financed by the European Union (ESF) and Greek national funds
through the Operational Program “Education and Lifelong Learning” of
the NSRF - Research Funding Program: Heracleitus II. The research of
the second author has been co-financed by the European Union (ESF)
and Greek national funds through the Operational Program “Educa-
tion and Lifelong Learning” of the NSRF - Research Funding Program:
Thales. Investing in knowledge society through the European Social
Fund EICOS project.

References

IMDb. http://www.imdb.com

Mushroom. http://archive.ics.uci.edu/ml/datasets/Mushroom

Yahoo!Auto. http://autos.yahoo.com

Adomavicius, G., Tuzhilin, A.: Toward the next generation of rec-

ommender systems: a survey of the state-of-the-art and possible

extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734-749 (2005)

5. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated ranking
of database query results. In: CIDR (2003)

6. Akbarnejad, J., Chatzopoulou, G., Eirinaki, M., Koshy, S., Mittal,
S., On, D., Polyzotis, N., Varman, J.S.V.: Sql querie recommenda-
tions. PVLDB 3(2), 1597-1600 (2010)

7. Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate
Analysis: Theory and Practice. Springer, New York (2007)

8. Bloom, B.H.: Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13(7), 422426 (1970)

9. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of pre-
dictive algorithms for collaborative filtering. In: UAI (1998)

10. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Min.
Knowl. Discov. 14(1), 171-206 (2007)

11. Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query recommen-
dations for interactive database exploration. In: SSDBM (2009)

12. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilis-
tic information retrieval approach for ranking of database query
results. ACM Trans. Database Syst. 31(3), 1134—-1168 (2006)

13. Cheng,J., Ke, Y., Ng, W.: Delta-tolerance closed frequent itemsets.
In: ICDM (2006)

14. Drosou, M., Pitoura, E.: Redrive: result-driven database explo-
ration through recommendations. In: CIKM (2011)

15. Garcia-Molina, H., Koutrika, G., Parameswaran, A.G.: Information
seeking: convergence of search, recommendations, and advertising.
Commun. ACM 54(11), 121-130 (2011)

16. Garg, S., Ramamritham, K., Chakrabarti, S.: Web-cam: monitoring

the dynamic web to respond to continual queries. In: SIGMOD

(2004)

Rl M

@ Springer

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query recom-
mendations for olap discovery-driven analysis. JIDWM 7(2), 1-25
(2011)

Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H.,
Sharm, R.S.: Discovering all most specific sentences. ACM Trans.
Database Syst. 28(2), 140-174 (2003)

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Mor-
gan Kaufmann, San Francisco (2000)

Kashyap, A., Hristidis, V., Petropoulos, M.: Facetor: cost-driven
exploration of faceted query results. In: CIKM (2010)
Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: Snipsug-
gest: context-aware autocompletion for sql. PVLDB 4(1), 22-33
(2010)

Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon,
L.R.,Riedl, J.: Grouplens: applying collaborative filtering to usenet
news. Commun. ACM 40(3), 77-87 (1997)

Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing join and
selection queries. In: VLDB (2006)

Koutrika, G., Bercovitz, B., Garcia-Molina, H.: Flexrecs: express-
ing and combining flexible recommendations. In: SIGMOD
(2009)

Lee, Y.K., Kim, W.Y,, Cai, Y.D., Han, J.: Comine: efficient mining
of correlated patterns. In: ICDM (2003)

Mooney, R.J., Roy, L.: Content-based book recommending using
learning for text categorization. CoRR ¢s.DL/9902011 (1999)
Omiecinski, E.: Alternative interest measures for mining associ-
ations in databases. IEEE Trans. Knowl. Data Eng. 15(1), 57-69
(2003)

Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to
improve predictive modeling of customers in personalization appli-
cations. IEEE Trans. Knowl. Data Eng. 20(11), 1535-1549 (2008)
Pazzani, M.J., Billsus, D.: Learning and revising user profiles: the
identification of interesting web sites. Mach. Learn. 27(3), 313-331
(1997)

Roy, S.B., Wang, H., Das, G., Nambiar, U., Mohania, M.K.:
Minimum-effort driven dynamic faceted search in structured data-
bases. In: CIKM (2008)

Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-driven explo-
ration of olap data cubes. In: EDBT (1998)

Sarkas, N., Bansal, N., Das, G., Koudas, N.: Measure-driven
keyword-query expansion. PVLDB 2(1), 121-132 (2009)

Sarma, A.D., Parameswaran, A.G., Garcia-Molina, H., Widom, J.:
Synthesizing view definitions from data. In: ICDT (2010)
Simitsis, A., Koutrika, G., Ioannidis, Y.E.: Précis: from unstruc-
tured keywords as queries to structured databases as answers.
VLDB J. 17(1), 117-149 (2008)

Srikant, R., Agrawal, R.: Mining quantitative association rules in
large relational tables. In: SIGMOD (1996)

Stefanidis, K., Drosou, M., Pitoura, E.: “you may also like” results
in relational databases. In: PersDB (2009)

Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset min-
ing. In: ICTAI (1) (2007)

Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interesting-
ness measure for association patterns. In: KDD (2002)

Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining.
Addison Wesley, Boston (2005)

Tintarev, N., Masthoff, J.: Designing and evaluating explanations
for recommender systems. In: Recommender Systems Handbook
(2011)

Tran, Q.T., Chan, C.Y.: How to conquer why-not questions. In:
SIGMOD (2010)

Tran, Q.T., Chan, C.Y., Parthasarathy, S.: Query by output. In: SIG-
MOD (2009)

Information Systems 53 (2015) 60-86

=

Information
~ Systems

: ey

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/infosys

CineCubes: Aiding data workers gain insights
from OLAP queries

@ CrossMark

Dimitrios Gkesoulis *', Panos Vassiliadis >*, Petros Manousis ”

2 UTC Creative Lab, loannina, Hellas
b University of loannina, loannina, Hellas

ARTICLE INFO

ABSTRACT

Article history:

Received 10 March 2014
Received in revised form

22 October 2014

Accepted 17 December 2014
Available online 3 January 2015

Keywords:

CineCubes

Data narration

Data movies

Insight generation

OLAP

Management of query results
Query recommendation

In this paper we demonstrate that it is possible to enrich query answering with a short
data movie that gives insights to the original results of an OLAP query. Our method,
implemented in an actual system, CineCubes, includes the following steps. The user
submits a query over an underlying star schema. Taking this query as input, the system
comes up with a set of queries complementing the information content of the original
query, and executes them. For each of the query results, we execute a set of highlight
extraction algorithms that identify interesting patterns and values in the data of the
results. Then, the system visualizes the query results and accompanies this presentation
with a text commenting on the result highlights. Moreover, via a text-to-speech
conversion the system automatically produces audio for the constructed text. Each
combination of visualization, text and audio practically constitutes a movie, which is
wrapped as a PowerPoint presentation and returned to the user.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

automatically extracted text that comments on the result,
(c) vocally enriched, i.e., enriched with audio that allows

Can we answer user queries with data movies? Why should
query results be treated simply as sets of tuples returned by the
DBMS as if they would be visualized in an orange CRT of the
70s? So far, database systems assume their work is done once
results are produced, effectively prohibiting even well-educated
end-users to work with them. Can we do something better?

In this paper, we revise the traditional assumptions of
query answering in order to raise the issue of insight gaining.
We serve the purpose of insight gaining in two ways, by
demonstrating that

® it is possible to produce query results that are (a) properly
visualized, (b) textually exploitable, i.e., enriched with an

* Corresponding author.
E-mail address: pvassil@cs.uoi.gr (P. Vassiliadis).
1 Work conducted while in the Univ. of Ioannina.

http://dx.doi.org/10.1016/j.i5.2014.12.006
0306-4379/© 2014 Elsevier Ltd. All rights reserved.

the user not only to see, but also hear, and,

® it is possible to come up with a working, extensible method
that accompanies a query result with the results of com-
plementary queries which allow the user to contextualize
and analyze the information content of the original query.

Interestingly, an insightful sequence of related queries that
provide context and depth to the original query, “dressed”
with the appropriate visualization and sound, ends up to be
nothing else but a data movie where cubes star.

Motivation: Yet, what does insight mean? In a recent
approach, Dove and Jones [1] combine the definitions from
the communities of Information Visualization and Cognitive

Psychology: whereas the InfoVis community defines insight
as “something that is gained” (after the observation of data by
a participant), psychologists define it as an “Aha!” moment
which is experienced. Interestingly, the two definitions can be

wm
i

il

A
__.wwwm___

nw

“E_.
il
Hinli m
m,_: w
il

a.._x.
::.

i

il
i

i
_MQWM

i é__.
m _x
:. 3 _

mm “_._hzm

m

n:.

B
._..E__
i1 5. iH

m i z.n__
i il
F:

it

D. Gkesoulis et al. / Information Systems 53 (2015) 60-86 63

Assoc Postgrad Some-college University Post-Secondary Without In this graphic, we put the original request in
PR context by comparing the value 'Post-
GOURRS 078 43.58 38.38 4214 Gov 4112 38.97 Secondary’ for education at level 3 with its
. sibling values. We calculate the Avg of Hrs
Privat 41.06 45.19 38.73 43.06 .
e Rivate LELD LY > while fixing education at level 4 to be equal to
Self-emp 46.68 47.24 45.70 46.61 Self-emp 46.39 4484 "AL.L”, and workfzt Ie.veI 2 to be equal to
Original ""With-Pay" We highlight the reference cells
Jgindaquery \l/ Summary for education with bold, the highest value with red and the
Here, you can see the answer of the original lowest value with blue.
i i Actl Sy -
query. You have specified education to be equal Compared to its sibling we observe thatin 3
to 'Post-Secondary', and work to be equal to (sl. 2:3) out of 3 cases Post-Secondary has higher value
'With-Pay'". We report on Avg of Hrs grouped by than Without-Post-Secondary.
education at level 2, and work at level 1. We In this slide, we drill-down one level for all values
highlight the largest values with red and the of dimension work at level 0. For each cell we T g
lowest values with blue. show both the Avg of Hrs and the number of
2 tuples that correspond to it in parentheses. ... With-Pay 4162 4491 39.41 43.44
Row Self-emp has 3 of the 3 highest values. 3 { v
Row Gov has 2 of the 3 lowest values. = v \Withoutpay e 5000 = 30:33
Drilling down education
Summary for work
i If-
e Assoc Gov Private Self-emp ACt l’
Assoc-acdm 39.91(182) 4087(720) 45.49(105) | (SL 3,4) Drilling down work
Assoc-voc 41.61(169) 41.20(993) 47.55(145) -°
Gov Assoc Post-grad Some-college University
Post-grad Gov Private Self-emp Federal-gov 41.15(93) 43.86(80) 40.31(251) 43.38(233)
Doctorate 46.53(124) 49.05(172) 47.22(79) Local-gov 41.33(171) 43.96(362) 40.14(385) 42.34(499)
Masters ~ 42.93(567) 44.42(863) 47.25(197) State-gov 39.09(87) 42.93(249) 34.73 (319) 40.82(297)
Some-college Gov Private Self-emp Private Assoc Post-grad Some-college University
Some-college 38.38(955) 38.73(5016) 45.70(704) Private 41.06(1713) 45.19(1035) 38.73 (5016) 43.06 (3702)
University Gov Private Self-emp Self-emp Assoc Post-grad Some-college University
Bachelors ~ 41.56(943) 42.71(3455) 46.23(646) Self-emp-inc 48.68(72) 53.05 (110) 49.31(223) 49.91(338)
Prof-school 48.40 (86) 47.96 (247) 47.78(209) Self-emp-not-inc 45.88 (178) 43.39(166) 44.03 (481) 44.44(517)

Fig. 1. An excerpt of a CineCubes story over the Adult data set. (For interpretation of the references to color in this figure caption, the reader is referred to

the web version of this paper.)

Clearly, this set of complementary queries that a story
comprises is extensible; existing and novel results in query
recommendation (see Section 6) can be progressively
plugged in our method in order to produce more informa-
tive CineCube movies.

2.2. Running example

To demonstrate our approach we use an example from
the well known Adult (a.k.a census income) data set
referring to data from 1994 USA census. There are 7
dimensions (Age, Native Country, Education, Occupation,
Marital status, Work class, and Race) in the data set and a
single measure, Hours per Week. We will use a uniform
terminology to refer to the dimensions' levels, (Lo, Ly, ..).
Also, the ragged dimensions are complemented with
values identical to their parent, to make them balanced
and fit to the model of [8].

We start with an original query where the user has fixed
Education to ‘Post-Secondary’ (at level L3), and Work to
‘With-Pay’ (at level L,) and requests the Avg of HrsPerWeek
grouped by Education at level 2, and Work at level 1. We

depict these two dimensions in Fig. 2. We arrange the
presentation of the result in columns (Education) and rows
(Work). In Fig. 1, in the slide with the indication , one
can also see the actual presentation as a 2D matrix, the
visualization interventions (highlighting high and low
values with color) and the text accompanying the visual
presentation. The text is (a) part of the slide's notes (so that
the user can reuse it) and (b) orally voiced as an audio file
accompanying the slide. The slide's text is delivered via a
set of highlight extraction methods that search the 2D matrix
for prominent features (high and low values, rows or
columns dominating some of these indicatory values, etc.).

Once the original query has been answered, we move on
to put it in context. Act I of the CineCube movie, including
slides @ and @ (dressed in blue color), performs the
following analysis: since there is a selection condition with
two atoms (Education.L3=‘Post-Secondary’ and Work.
[2="With-Pay’), we compare each of the defining values
with its sibling. So, slide @ presents a comparison
between the siblings of ‘Post-Secondary’ at level L3 of
Education (specifically, the single value ‘W/O post second-
ary’). The analysis shows that in 3 out of 3 cases people with

i
1

D. Gkesoulis et al. / Information Systems 53 (2015) 60-86 65

Actll: Explaining results

Actl: Puttingresultsin context

Fig. 3. A snapshot of the internal structure of the CineCube movie.

Story
Act Task
generateSubTasks()
Episode SubTask
pptxSlide Highlight Act-l_Task Act-ll_Task

Fig. 4. Extensibility mechanism for CineCubes.

structure, with a set of classes that actually get the job done
(right-hand side of Fig. 4). Specifically, the generation of
queries (and slides) within each Act is delegated to the
abstract class Task. For reasons of extensibility, Task is an
abstract class: therefore, we materialize it differently for each
kind of Act (in Fig. 4 we depict two such materializations, for
Act I and Act II). The crux of the approach is that each episode
comes with (typically one, but sometimes more) queries in its
background; therefore, each Act generates SubTasks, with each
Subtask carrying and being responsible for the execution of a
query that gathers the data (that are ultimately visualized in
the main part of the slide). An Episode can have several
SubTasks to compute its contents. Since each SubTask carries
its own query depending on the Act/Task, the above mechan-
ism is extensible by appropriately constructing the method
generateSubTasks() for each materialization of Act.

Moreover, the determination of key findings, or High-
lights within each Episode is performed by the homon-
ymous class. We fundamentally consider the presentation
of results as a 2D matrix on the screen?; to this end, we

2 Of course, other forms of visualization can accompany the result;
however, it is our conviction that the actual data should definitely be part
of the answer [10].

have structured several methods that scan a 2D matrix and
isolate interesting cells (top-k max or top-k min values,
domination of a class of values by a column or row, etc.).
The class Highlight is a point of extensibility where
methods for result extraction can be added to search for
more results within the answer of a query.

For more information on the internal structuring of
CineCubes, we refer the interested reader to Section 4, where
we discuss the software architecture as well as the two
aforementioned extensibility mechanisms in more detail.
Before that, however, our next step is to present the essence
of our method along with its formal foundations.

3. Foundations and method internals

In this section, we start with a short description of the
model for cubes and cube queries and then we move on to
describe (a) acts, as the means for collecting data via
complementary queries and (b) highlights as the means
for automatically detecting some important findings
within query results and the means for text construction.
We also provide the basic steps of our method for the
creation of CineCube movies.

3.1. Formal background

We base our approach on an OLAP model that involves (a)
dimensions defined as lattices of dimension levels, (b) ancestor
functions, mapping values between related levels of a dimen-
sion, (c) detailed data sets, practically modeling fact tables at
the lowest granule of information for all their dimensions, and
(d) cubes, defined as aggregations over detailed data sets. We
follow the logical cube model of [8], accurately summarized in
[11], which we customize here for the context of Cinecubes.
For the reader who is knowledgable of the OLAP terminology
but does not want to spend time on the formalities it is
sufficient to refer to Section 2.1 for the intuition of the basic
concepts; then, this subsection can be omitted.

Domains: We assume four countable pairwise disjoint
infinite sets exist: a set of level names (or simply levels) U,
a set of measure names (or simply measures) U 4, a set of
dimension names (or simply dimensions) Up and a set of
cube names (or simply cubes) Uc. The set of attributes U is
defined as U/ =U,; U Uy, For each Aeli,, we define a

SEEECER JoEmaEs

il
Ho

it
!
1
i
I
i
;
!

_A i

_. Z.... =. _m i)

m_ .___ i
e
__ :”m_ il __Wﬁ
!

ju __5

2
it}
?..

e
it
i

Hie
i

m__

1 s
il

;m“
il

(i

__

i
i
il _
i méw m
_,v__mm

1
%

I

it

f
if

L
s

1
i

