
RIPPLE: A Scalable Framework for Distributed Processing
of Rank Queries

George Tsatsanifos
National Technical University

of Athens
Athens, Greece

gtsat@dblab.ece.ntua.gr

Dimitris Sacharidis
Institute for the Management

of Information Systems
Athens, Greece

dsachar@imis.athena-
innovation.gr

Timos Sellis
RMIT University

Melbourne, Australia
timos.sellis@rmit.edu.au

ABSTRACT

We introduce a generic framework, termed RIPPLE, for processing

rank queries in decentralized systems. Rank queries are particularly

challenging, since the search area (i.e., which tuples qualify) can-

not be determined by any peer individually. While our proposed

framework is generic enough to apply to all decentralized struc-

tured systems, we show that when coupled with a particular dis-

tributed hash table (DHT) topology, it offers guaranteed worst-case

performance. Specifically, rank query processing in our framework

exhibits tunable polylogarithmic latency, in terms of the network

size. Additionally we provide a means to trade-off latency for com-

munication and processing cost. As a proof of concept, we apply

RIPPLE for top-k query processing. Then, we consider skyline

queries, and demonstrate that our framework results in a method

that has better latency and lower overall communication cost than

existing approaches over DHTs. Finally, we provide a RIPPLE-

based approach for constructing a k-diversified set, which, to the

best of our knowledge, is the first distributed solution for this prob-

lem. Extensive experiments with real and synthetic datasets vali-

date the effectiveness of our framework.

1. INTRODUCTION
The term rank queries refers to queries that enforce an order on

tuples and usually request a few of the highest ranked tuples. We

consider three types of rank queries. Top-k queries [9] is the sim-

plest, imposing a weak order on the domain via a monotonic func-

tion (a weak order is essentially ranking with ties). The answer of

a top-k query is a set of k tuples that have the highest score among

all other possible k-sets.

Skyline queries [3] impose a partial order on the domain defined

by the Pareto aggregation of (total or partial) orders specified on

each attribute individually (in a partial order, two domain values

may be incomparable). The answer of a skyline query is the set of

maximal tuples under this partial order, termed the skyline. Note

that while, in the weak order of top-k queries, there exists only

one domain value for which no tuple with better value exists, in

the partial order of skyline queries, there can be multiple domain

values for which no tuple with better value exists.

The k-diversification query [5] reconciles two conflicting no-

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0
EDBT 2014, March 24-28, 2014, Athens, Greece.

tions. The relevance of a tuple is defined by its distance to a given

query tuple. On the other hand, the diversity of a tuple with respect

to a set of tuples is determined by its aggregate distance to these

tuples. The answer of a k-diversification query is a set of k tuples

that takes the highest value in an objective function combining the

relevance and diversity of its tuples. Note that, in k-diversification,

sets of tuples, rather than individual tuples, are ranked; hence the

problem is NP-hard [7].

Our work deals with the distributed evaluation of rank queries in

structured decentralized systems. In these systems, e.g., [13, 15],

the individual servers, termed peers, are organized in a content-

aware manner, implementing a distributed hash table (DHT). Each

tuple and each participating peer is assigned a point (a key) from

the same domain. A peer becomes responsible for a range of the

domain, and stores all tuples falling in this range. Therefore, when

searching for a particular tuple, the responsible peer can be easily

identified, i.e., by means of looking up the DHT.

Rank queries, in general, are particularly challenging for dis-

tributed processing. The reason is that peers have only partial knowl-

edge of the data distribution, and thus no single peer alone can

know where qualifying tuples may reside beforehand, i.e., when

the query is posed. In other words, the search area is initially un-

bounded and becomes progressively refined while qualifying tuples

are being retrieved. Contrast this to range queries, which request

all objects within a particular range, say within distance r around a

given point. In the case of a range query, the search area is explic-

itly defined in the query.

Since the search area is unbounded, there exists a straightfor-

ward approach for distributed processing a rank query in any DHT:

broadcast the query to the entire network, collect all locally quali-

fying tuples, and finally derive the answer from them. This method

has only a single advantage, in that worst-case network latency is

optimal. In the worst case, when the initiating peer and a peer hold-

ing an answer tuple are as remote as possible, the latency equals the

network diameter, i.e., the maximum number of hops in the shortest

path between peers.

Of course, naïve processing has several drawbacks. First, all

peers are reached independently of the query and whether they pos-

sess contributing tuples to the answer. Second, the communication

overhead is very high as many tuples have to be transmitted over the

network since it is not possible to locally prune them. For example,

in the case of a top-k query, using only local knowledge, each peer

must transmit k tuples. Third, the processing cost at the initiating

peer is huge, exactly because a large number of tuples is retrieved,

and a large number of nodes is encountered which otherwise could

have been prevented.

This work proposes RIPPLE, a generic scalable framework with

tunable latency for processing rank queries in DHTs. The princi-

ple idea of RIPPLE is to exploit the local information within each

peer regarding the distribution of tuples and neighboring peers in

the domain. Each peer partitions the entire domain into regions

and assigns them to its neighbors. Then, it prioritizes the forward-

ing of requests to its neighbors by taking into account the current

state of query processing, as derived from its own request and from

answers collected from remote peers. A single parameter in RIP-

PLE trades off latency for communication overhead. We emphasize

that RIPPLE can be implemented on top of any DHT. However,

when paired with MIDAS [16], an inherently multidimensional in-

dex based on the k-d tree, RIPPLE exhibits polylogarithmic latency

in terms of the network size.

We first apply the RIPPLE framework for top-k queries. Then,

we turn our attention to distributed skyline processing using RIP-

PLE. For the case when RIPPLE is implemented over MIDAS, we

also propose an optimization of the index structure with significant

performance gains. The resulting approach is shown to have lower

latency and/or cause less congestion, depending on the tune param-

eter, compared to state-of-the-art methods for skyline processing

over DHTs. Finally, we instantiate RIPPLE for k-diversification

queries. To the best of our knowledge, ours is the first work to ad-

dress this type of query in a distributed setting. Initially, we use

RIPPLE to solve the simpler sub-problem of finding the best tuple

to append to a set of k− 1 tuples. Then, we propose a heuristic so-

lution for answering k-diversification queries. An extensive exper-

imental simulation using real and synthetic datasets demonstrates

the key features of RIPPLE: tunable latency and low communica-

tion overhead for processing rank queries.

The remainder of this paper is organized as follows. Section 2

discusses related work on distributed processing of rank queries.

Section 3 details the RIPPLE framework. Then, Sections 4, 5 and

6 present the application of RIPPLE for the case of top-k, skyline,

and k-diversification queries, respectively. Section 7 presents a

thorough experimental evaluation of our framework, and Section 8

concludes our work.

2. RELATED WORK
Sections 2.1 and 2.2 review related work on distributed top-k and

skyline processing, respectively. Section 2.3 overviews the MIDAS

distributed index.

2.1 Distributed Top-k Processing
Top-k processing involves finding the k tuples which are ranked

higher according to some ranking function. We distinguish two

variants of the distributed version of the problem. In the vertically

distributed setting, a peer maintains all tuples but stores the val-

ues on a single attribute. The seminal work of [6], was the first to

address this problem, and introduces the famous Threshold Algo-

rithm (TA) and Fagin’s Algorithm (FA). Subsequent works attempt

to improve this result. In [4], the Three-Phase Uniform Thresh-

old (TPUT) algorithm is proposed, which in substance improves

limitations of the TA. Later, TPUT was improved by KLEE [11],

which also supports approximate top-k retrieval, and comes in two

flavors, one that requires three phases, and another that needs two

round-trips.

The second variant is for horizontally distributed data, which is

the setting considered in our work. In this case, a peer maintains

only a subset of all tuples, but stores all their attributes. There

exists significant work for unstructured peer-to-peer networks. A

flooding-like algorithm followed by a merging phase is proposed in

[1]. In [2], super-peers are burdened with resolving top-k queries,

an approach which imposes high execution skew. In SPEERTO

[17] each node computes its k-skyband as a pre-processing step.

Then, each super-peer aggregates the k-skyband sets of its nodes

to answer incoming queries. BRANCA [21] and ARTO [14] cache

previous final and intermediate results to avoid recomputing parts

of new queries. To the best of our knowledge, no work considers

the case of horizontally distributed data over structured overlays,

which is the topic of our paper.

2.2 Distributed Skyline Computation
The skyline query retrieves the tuples for which there exists no

other tuple that is better on all dimensions. A complete survey on

distributed skyline computation can be found in [8], where methods

for structured and unstructured networks are thoroughly studied.

Regarding structured peer-to-peer networks, which is the setting

in our work, DSL [20] leverages CAN [13] for indexing multidi-

mensional data. During query processing, DSL builds a multicast

hierarchy in which the peer that is responsible for the region con-

taining the lower-left corner of the constraint is the root. The hierar-

chy is built in such a way that only peers whose data points cannot

dominate each other are queried in parallel. A peer that receives a

query along with the local result set, first waits to receive the lo-

cal skyline sets from all neighboring peers that precede it in the

hierarchy. Then, it computes the skyline set based on its local data

and the received data points. Thereafter, the local skyline points

are forwarded to the peers responsible for neighboring regions, in

such a way that only peers whose data points cannot dominate each

other are queried in parallel. Besides, neighboring peers that are

dominated by the local skyline points are not queried because they

cannot contribute to the global skyline set.

Wang et al. present in [18] SSP (Skyline Space Partitioning)

for distributed processing of skyline queries in BATON [10]. The

multi-dimensional data space is mapped to unidimensional keys us-

ing a Z-curve, due to BATON limitations. Query processing starts

only at the peer responsible for the region containing the origin of

the data space. It computes the local skyline points that are in the

global skyline set, and next, it selects the most dominating point

used to refine the search space and to prune dominated peers. The

querying peer forwards the query to the peers that are not pruned

and gathers their skyline sets. Skyframe [19] is applicable for BA-

TON and CAN networks. In Skyframe the querying peer forwards

the query to a set of peers called border peers. A peer that is respon-

sible for a region with minimum value in at least one dimension is

called border peer. Once the initiator receives the local skyline re-

sults, it determines if additional peers need to be queried. Then, the

querying peer queries additional peers, if necessary, and gathers the

local skyline results. When no further peers need to be queried, the

query initiator computes the global skyline set.

2.3 The MIDAS Overlay
The organization of peers in MIDAS is based on a virtual k-d

tree, indexing a d-dimensional domain [16]. The k-d tree is a binary

tree, in which each node corresponds to an axis parallel rectangle;

the root corresponds to the entire domain. Each internal node has

always two children, whose rectangles are derived by splitting the

parent rectangle at some value along some dimension, decided by

MIDAS.

Each node of the k-d tree is associated with a binary identifier

corresponding to its path from the root, which is defined recur-

sively. The root has the empty id ∅; the left (resp. right) child

of an internal node has the id of its parent augmented with 0 (resp.

1). Figure 1(a) shows a virtual k-d tree, and labels the ids of the

peers and the internal nodes.

A peer in MIDAS corresponds to a leaf of the k-d tree, and stores

all tuples, who fall in the leaf’s rectangle, which is called its zone.

Figure 1(b) shows the zones of the peers. Therefore, the size of

the overlay equals the number of leaves in the virtual k-d tree. A

MIDAS peer maintains a list of links to other peers. In particular

its i-th link points to some peer within the sibling subtree rooted at

depth i. Figure 1 shows the links of peer u. It is shown that the

expected depth of the MIDAS virtual k-d tree, which determines

the diameter of MIDAS, for an overlay of n peers is O(log n) [16].

#1

#2 #3

#4 w

u y

#5

v z

x

0 1

0100

001000 101100

1110

A E

C

F

D

B

(a) The virtual k-d tree

#2

#1

#3

#4 #5

u y

w

zv

x

(b) Peer zones

#1

#2

#4

u y

w

z

(c) Links of u

Figure 1: An example of a two-dimensional MIDAS overlay.

3. THE RIPPLE FRAMEWORK
Section 3.1 describes the generic RIPPLE framework, while Sec-

tion 3.2 focuses on the RIPPLE implementation over MIDAS.

3.1 Generic RIPPLE
We present the RIPPLE generic framework for distributed pro-

cessing rank queries. We make little assumptions on the underlying

DHT. For a peer w, we denote as w.link the set of its neighbors to

which w maintains links. The number of w’s neighbors is denoted

by |w.link|; the maximum number of neighbors in any peer is de-

noted as ∆.

A key notion in RIPPLE is that of the region. RIPPLE associates

with each neighbor of w a region, denoted as w.link[i].region. The

region of all w neighbors form a partition of the entire domain.

There is an important distinction between the notions of region and

zone. Recall that in DHTs, a peer is assigned a sub-area of the

domain, termed the zone and stores all tuples within its zone. On

the other hand, the region of a neighbor (a RIPPLE-only notion)

is generally a much larger area, which however encompasses the

zone. More importantly, a region depends on the viewpoint of a

specific peer, and thus a peer might be associated with different

regions. For example, consider peers w, v who both have peer

x as their neighbor. The region of x from w’s viewpoint can be

different from the region of x from u’s viewpoint; however both

regions contain the zone of x.

Depending on the underlying DHT, there is often a natural way

to assign regions to the neighbors of a peer w. A region should

satisfy two requirements: (i) a region should cover the peer’s zone,

and (ii) the union of the regions of a peer’s neighbors should form

a partition covering the domain. We next discuss how to define

regions for three conspicuous DHTs; the definition to other types

of overlays is straightforward.

In CAN, each peer w has at least two neighbors along each di-

mension. More specifically, in a d-dimensional domain, two nodes

are neighbors if their coordinate spans overlap along d− 1 dimen-

sions and abut along one. Hence, the lower (resp. upper) neighbor

along the i-th dimension represents a region that resembles a pyra-

midal frustum (a trapezoid in 2-d; a pyramid whose top has been

cut-off in higher dimensions) having as base the lower (resp. up-

per) boundary face of the domain that is also perpendicular to the

i-th dimension, and as top the lower (resp. upper) face of w’s zone,

which is perpendicular to the i-th dimension. Thereby, a peer will

forward a query that either receives or issues to the node(s) whose

region(s) overlap with the query.

In Chord, each peer w has neighbors whose zones cover do-

main points at exponentially increasing distances from w. Then,

the region of w’s i-th neighbor is defined as the area of the domain

stretching from the beginning of the i-th neighbor zone until the

beginning of the (i + 1) neighbor zone (or w’s zone if i-th is the

last neighbor).

In MIDAS, each peer w has a neighbor inside each sibling sub-

tree rooted at depth up to w.depth. Then, the region of w’s i-th
neighbor is defined as the area of the domain covered by the sibling

subtree rooted at depth i.
Regarding query processing, we use Q to abstractly refer to the

query. We denote as A the local answer, i.e., the local tuples that

satisfy the query. Query processing begins at the initiator peer,

which we denote as v. Each peer, including the initiator, that is

involved in query processing executes the same procedure and re-

turns its local qualifying tuples to the initiator. Depending on the

query, the initiator might have to perform additional operations in

order to extract the final answer.

A key concept in RIPPLE is that of the state, denoted as S,

which consists of a (partial) view of the distributed query process-

ing progress. For example, depending on the query and the dis-

tributed algorithm, S could be a set of local/remote records, or

bounds/guarantees for these tuples. We distinguish between two

types of state. The local state at peer w, denoted as SL
w , contains

only information collected at w, both from local tuples and from

remote states which w has explicitly requested. The global state at

peer w, denoted as SG
w , encompasses the local state SL

w and also in-

cludes information that was forwarded to w together with the query.

The basic idea of the RIPPLE framework is to exploit regions

and states, acquiring knowledge regarding the progress of query

processing, in order to meticulously guide the search to its neighbor

peers. Before presenting RIPPLE, we first describe two extreme

settings. The first is called fast and optimizes for latency.

Algorithm 1 shows fast query processing at each peer. A peer

w receives the query Q, a global state SG, the address of the ini-

tiator v, and the restriction area R within which query processing

should be confined. The restriction area ensures that no peer will

receive the same request twice. We emphasize that all algorithms

in this section are templates and contain calls to abstract functions,

whose operations depend on the exact query type, and which are

elaborated in the following sections.

Algorithm 1 w.fast(v,Q, SG, R) processes query Q, initiated by

v and with current global state SG, within area R.

1: SL
w ← w.computeLocalState(Q,SG)

2: SG
w ← w.computeGlobalState(Q,SG, SL

w)
3: for each link i do
4: if w.isLinkRelevant(i, Q, SG

w , R) then

5: w.link[i].fast(v,Q, SG
w , w.link[i].region∩R)

6: end if
7: end for
8: A← w.computeLocalAnswer(Q,SL

w)
9: w.sendLocalAnswerTo(v,A)

Based on the received global state SG and the local tuples, peer

w computes its local state by invoking computeLocalState. Also,

it computes its global state by invoking computeGlobalState (line

2). Then, w considers all its neighbors in turn (lines 3–7). Subse-

quently, peer w invokes isLinkRelevant (line 4) to check whether

the region of the i-th neighbor (1) overlaps with the restriction area

R, and (2) contains tuples that can contribute to the answer, given

the global state SG
w . If the i-th neighbor passes the check, the query

is forwarded to it, along with the global state and the restriction area

set to the intersection of R with the i-th region (line 5). After con-

sidering all neighbors, peer w computes the local answer based on

its local state, invoking computeLocalAnswer (line 8), and sends

only its local qualifying tuples to the initiator v (line 9).

If Algorithm 1 is initially invoked with restriction area equal to

the entire domain, then it correctly processes query Q, subject to

the abstract functions being correct. To understand this, observe

that if we ignore the second check of isLinkRelevant (whether a

neighbor contains local tuples based on the local state), then all

peers in the network will be reached exactly once. The maximum

latency of fast is equal to the diameter of the network, as all neigh-

bors are contacted at once.

Algorithm 1 optimizes latency, and tries to reduce the commu-

nication cost as much as possible. In the following, we present the

second extreme setting of RIPPLE, termed slow, which optimizes

the communication cost at the expense of latency. Algorithm 2

shows query processing at each peer. As before, the algorithm re-

stricts query processing in sub-areas of the domain and employs

local states. The difference is that query propagation is performed

iteratively, and local state is updated after each iteration. The ra-

tionale is that the communication cost depends on the information

derived locally in the peers (i.e., from the local states). Ideally, but

unfeasibly, the communication cost is minimized when each peer

has complete knowledge of all tuples stored in the network.

In slow, a peer w receives the query Q, the current global state

SG, the address of the initiator v, the address of the peer u that sent

this message, and the restriction area R. Initially, it computes its

local state based on the received global state (line 1), and then its

global state (line 2). The next steps differ from Algorithm 1. Peer

w prioritizes its neighbors according to their potential contribution

to the query. Function sortLinks sorts the links of w using the

function comp, which compares the priorities of the i-th and j-th

neighbors (line 3).

Then, slow considers each neighbor in decreasing significance

(lines 3–10). Let ℓ-th be the currently examined neighbor. Simi-

larly to fast peerw invokes isLinkRelevant (line 4) to check whether

the ℓ-th neighbor should be contacted. If the check returns true, the

query is forwarded to this neighbor, along with the global state and

the restriction area appropriately set (line 5). In contrast to Algo-

rithm 1 however, w waits for a response from its link. Upon receiv-

ing the response (line 6), which includes a remote local state, peer

w invokes updateLocalState to encorporate this state to its own

local state (line 7). Also, it re-computes the global state taking into

account the update local state, by invoking computeGlobalState
again (line 8). Then it continues to examine the next neighbor ac-

cording to the prioritization. As the iterations progress, the local

state is continuously enriched with information from neighbors.

After considering all its neighbors, peer w sends its local state to

peer u, who forwarded the query to w (line 11). Subsequently, w
computes the answer, invoking computeLocalAnswer (line 12),

and sends the local qualifying tuples to the initiator v (line 13).

Algorithm 2 w.slow(v, u,Q, SG, R) processes query Q initiated

by v and forwarded by u, with current global state SG, within area

R.

1: SL
w ← w.computeLocalState(Q,SG)

2: SG
w ← w.computeGlobalState(Q,SG, SL

w)
3: for ℓ ∈ w.sortLinks(w.comp(i, j, Q)) do
4: if w.isLinkRelevant(ℓ,Q, SG

w , R) then

5: w.link[ℓ].slow(v, w,Q, SG
w , w.link[ℓ].region∩R)

6: SL ← w.receiveRemoteLocalState()
7: SL

w ← w.updateLocalState(Q, {SL
w, SL})

8: SG
w ← w.computeGlobalState(Q,SG, SL

w)
9: end if

10: end for
11: w.sendLocalStateTo(u, SL

w)

12: A← w.computeLocalAnswer(Q,SL
w)

13: w.sendLocalAnswerTo(v,A)

It is easy to see that Algorithm 2 is correct if it is initially invoked

with a restriction area equal to the entire domain, and the abstract

functions are correct. As before, if we ignore the second check of

function isLinkRelevant, all peers in the network will be reached.

However, the maximum latency is different. Observe that each peer

contacts only one neighbor at a time, waiting for its response. The

response comes only after the message is forwarded to all the peers

within the restriction area. Since, each subsequent peer follows the

same strategy, the waiting time (in number of hops) equals the total

number of peers within the restriction area. Therefore, the maxi-

mum latency of slow is equal to the network size. Of course, in

practice due to the prioritization, slow query processing terminates

much sooner, without the need to contact all peers.

We are now ready to present the ripple distributed algorithm,

which constitutes the heart of our framework. This algorithm trade-

offs between latency and communication cost via the ripple param-

eter r. Aiming to minimize communication cost, the ripple algo-

rithm prioritizes the search, meticulously propagating the query to

peers that are expected to contribute to the answer, similar to slow.

Aiming to control the maximum latency, after the query reaches

peers more than r hops away from the initiator, the query begins to

propagate in ripples, similar to fast. Essentially, the ripple algo-

rithm believes that the first few (prioritized) hops are important in

order to construct a good local state as soon as possible, which will

then be used to better guide the search.

To enforce the previous reasoning, ripple on peer w mandates

each peer reached up to r hops away from w to execute slow, and

each peer farther than r hops fromw to execute fast. At the extreme

case when r = 0, ripple degenerates to fast. At the other extreme,

when r is sufficiently large (greater than the maximum number of

neighbors ∆), ripple degenerates to slow.

Algorithm 3 shows ripple query processing at each peer. A peer

w receives the query Q, the current state S, the address of the initia-

tor v, the address of the peer u that sent this message, the restriction

area R, and the value of the parameter r. Initially, ripple computes

the local state and the global based on the received global state

(lines 1–2). Then depending on the value of r, one of two loops is

executed. The first loop (lines 4–11) is essentially the main loop

of Algorithm 2, with the exception that multiple states might be

received (line 7) that need processing, i.e., updating the local state

and computing the global state (line 8–9). Also note that the value

of the r parameter in the forwarded query is decreased. On the

other hand, the second loop (lines 13–17) is essentially the main

loop of Algorithm 1; all subsequent peers receive an r value of 0.

At the end of both loops, the local state is sent to the parent

of w that forwarded this request, in the case the first loop is exe-

cuted, or the ancestor peer for r = 1 that forwarded this request,

in the case the second loop is executed (line 19); in any case, this

peer’s address u is included in the request. Finally, w computes the

answer, invoking computeLocalAnswer (line 18), and sends the

local qualifying tuples to the initiator v (line 19).

Algorithm 3 is correct if it is initially invoked with a restriction

area equal to the entire domain, and the abstract functions are cor-

rect. The worst-case latency of the algorithm depends on the r pa-

rameter and the underlying DHT; Section 3.2 analyzes worst-case

latency in MIDAS. For low r values the worst-case latency is closer

to the network diameter, while for large r values it is closer to the

network size.

3.2 Analysis of RIPPLE for MIDAS
This section assumes that the underlying DHT in RIPPLE is MI-

DAS. In this case the regions and the restriction areas in the algo-

rithms of the previous section are subtrees. Hence the parameter R
can be replaced with the depth δ of the subtree in which processing

is to be restricted. Then, the worst-case latency can be expressed in

terms of δ, as the next lemmas suggest.

Algorithm 3 w.ripple(v, u,Q, SG, R, r) processes query Q for-

warded by u and with current global state SG, within area R and

with ripple parameter value r.

1: SL
w ← w.computeLocalState(Q,SG)

2: SG
w ← w.computeGlobalState(Q,SG, SL

w)
3: if r > 0 then
4: for ℓ ∈ w.sortLinks(w.comp(i, j, Q)) do
5: if w.isLinkRelevant(ℓ,Q, SG

w) then

6: w.link[ℓ].ripple(v, w,Q, SG
w , w.link[ℓ].region∩R, r − 1)

7: {SL
i } ← w.receiveRemoteLocalState()

8: SL
w ← w.updateLocalState(Q, {SL

w, {SL
i }})

9: SG
w ← w.computeGlobalState(Q,SG, SL

w)
10: end if
11: end for
12: else
13: for each link i do
14: if w.isLinkRelevant(i, Q) then
15: w.link[i].ripple(v, u,Q, SG

w , w.link[ℓ].region∩R, 0)
16: end if
17: end for
18: end if
19: w.sendLocalStateTo(u, SL

w)

20: A← w.computeLocalAnswer(Q,SL
w)

21: w.sendLocalAnswerTo(v,A)

LEMMA 1. The worst-case latency of Algorithm 1 for MIDAS

is Lf (δ) = ∆− δ.

PROOF. First, observe that Lf (∆) = 0, as no message needs to

be transmitted. At iteration i, Algorithm 1 forwards the query to a

link and restricts it to the sibling subtree at depth i. Recursively,

this iteration causes worst-case latency of 1 + Lf (i). Since, all

iterations are executed at once, the worst-case latency is determined

by the largest worst-case latency at any sibling subtree. Thus:

Lf (δ) = 1 +
∆

max
i=δ+1

Lf (i).

Since Lf (i) > Lf (i+ 1), we obtain the recursion which solves

to:

Lf (δ) = 1 + Lf (δ + 1) = ∆− δ.

Setting δ = 0, we obtain that the worst-case latency for process-

ing a rank query according to Algorithm 1 is ∆, which is O(log n)
and equals the diameter of MIDAS.

LEMMA 2. The worst-case latency of Algorithm 2 for MIDAS

is Ls(δ) = 2∆−δ − 1.

PROOF. It holds that Ls(∆) = 0, and that each iteration at

depth ℓ introduces worst-case latency of 1 + Ls(ℓ). Since the al-

gorithm waits for a response in each iteration before continuing to

the next, the total worst-case latency is given by sum of the per-

iteration latencies, independently of the order in which sibling sub-

trees are considered. Therefore:

Ls(δ) =

∆∑

ℓ=δ+1

(1 + Ls(ℓ)).

From which we obtain the recursion which solves to:

Ls(δ) = 1 + 2 · Ls(δ + 1) = 2∆−δ − 1.

Setting δ = 0, we obtain that the worst-case latency for process-

ing a rank query according to Algorithm 2 is 2∆, which is O(n).

However, note that as our experimental analysis shows, due to the

prioritization, the average latency of slow is much lower.

Finally, regarding the worst-case latency of the ripple algorithm,

the following result holds.

LEMMA 3. The worst-case latency of Algorithm 3 for MIDAS is

given by the recurrence Lr(δ, r) = 1+Lr(δ+1, r)+Lr(δ+1, r−
1) with initial conditions Lr(δ, 0) = ∆− δ and Lr(∆, r) = 0.

PROOF. The first initial condition holds, because, for r = 0,

Algorithm 3 executes the second loop which is identical to Algo-

rithm 1. The second initial condition holds, because, for δ = ∆,

both loops execute no iteration.

Next consider the case of r > 0, when the first loop is exe-

cuted. Each iteration at depth ℓ introduces worst-case latency of

1 + Lr(ℓ, r − 1). The total worst-case latency is given by sum of

the per-iteration latencies:

Lr(δ, r) =

∆∑

ℓ=δ+1

(1 + Lr(ℓ, r − 1)).

Taking the difference Lr(δ, r) − Lr(δ + 1, r), we obtain the

given recurrence.

While we could not derive a closed-form formula for the partial

recurrence equation of the lemma, we have analytically computed

Lr(δ, r) for various values of r:

Lr(δ, 1) =
1

2
(∆− δ)2 +

1

2
(∆− δ)

Lr(δ, 2) =
1

6
(∆− δ)3 − 1

2
(∆− δ)2 +

4

3
(∆− δ)− 1

Lr(δ, 3) =
1

24
(∆− δ)4 − 1

4
(∆− δ)3 +

23

24
(∆− δ)2 − 3

4
(∆− δ),

and we conjecture that Lr(δ, r) = O((∆ − δ)r+1). Note that for

r > ∆, it is easy to see that Lr(δ, r) = 2∆−δ − 1, as only the first

loop is executed and Algorithm 3 degenerates to Algorithm 2.

Setting δ = 0, we conjecture that the worst-case latency for pro-

cessing a rank query according to Algorithm 3 is O(∆r), which is

O(logr n). The experimental results on the latency of RIPPLE in

various queries and settings verify our conjecture.

4. TOP-K QUERIES
We first demonstrate the RIPPLE framework on top-k queries.

Given a parameter k and a unimodal scoring function f , the top-

k query retrieves a set of tuples A such that |A| = k and ∀t ∈
A, ∀t′ 6∈ A : f(t) ≥ f(t′). A multivariate function f is unimodal

if it has a unique local maximum.

In top-k processing, the abstract query Q comprises the scoring

function f and the parameter k. The abstract state S is defined

as m, τ , which indicates that m tuples with score above τ have

already been retrieved.

With reference to the algorithms presented in Section 3, we next

describe how the abstract functions of RIPPLE are materialized for

top-k queries. The first function is computeLocalState, shown

in Algorithm 4, which is used to construct an updated local state,

given a forwarded global state. The function, executed on peer w,

takes as input the query (f, k) and the global state (mG, τG) and

returns the local state (mL
w, τ

L
w).

The main idea of computeLocalState is to identify as many

high scoring local tuples as necessary to reach the goal of (glob-

ally) obtaining k tuples. Therefore, initially, peer w retrieves and

stores in A up to k local tuples with score higher than τG (line

1). If the number of retrieved tuples plus those in the global state

received is less than k (line 2), peer w additionally retrieves tu-

ples with lower than τG score (line 3). Upon completion of the

computeLocalState algorithm, the local state mL
w, τ

L
w is set to the

number of local tuples retrieved and the lowest score among them,

respectively.

Algorithm 4 w.top-computeLocalState(f, k,mG, τG)

1: insert in A up to k local tuples with score better than τG

2: if mG + |A| < k then

3: insert in A up to k−mG−|A| highest ranking local tuples
4: end if
5: return (mL

w, τLw)← (|A|, f(A))

The computeGlobalState function, shown in Algorithm 5, de-

rives the global state at w taking into account the forwarded global

state (mG, τG) and the current local state at w (mL
w, τ

L
w). It just

aggregates the number of tuples, and sets as threshold the lowest of

the two thresholds.

Algorithm 5 w.top-computeGlobalState(f, k,mG, τG,mL
w, τ

L
w)

1: return (mG
w , τGw)← (mG +mL

w,min{τG, τLw})

The computeLocalAnswer function, shown in Algorithm 6, ex-

tracts the local qualifying tuples using the local state. In the case of

top-k processing, this means that all local tuples with score higher

than the local threshold are retrieved.

Algorithm 6 w.top-computeLocalAnswer(f, k,mL
w, τ

L
w)

1: insert in A all local tuples with score better than τLw
2: return A

The next function we consider is updateLocalState, shown in

Algorithm 7, which updates a local state given a set of local states.

The function executed on peer w, takes as input the query (f, k)

and a set of local states ({mL
i , τ

L
i }), and returns the local updated

state (mL
w, τ

L
w). Intuitively, updateLocalState attempts to find the

highest possible threshold τ which guarantees the existence of k
tuples.

Algorithm 7 w.top-updateLocalState(f, k, {mL
i , τ

L
i })

1: sort {mL
i , τ

L
i } entries descending in their τLi values

2: mL
w ← 0

3: for each entry (mL
i , τ

L
i) do

4: mL
w ← mL

w +mL
i

5: τLw ← τLi
6: if mL

w ≥ k then break
7: end for
8: return (mL

w, τLw)

Initially, w sorts the states descending based on their threshold

values (line 1), and initializes the count of its local state counter

mL
w to zero (line 2). Then, it considers each local state in turn

(lines 3–7), incrementing mL
w (line 4) and setting the threshold to

the currently considered local state’s threshold (line 5). The ex-

amination of the states ends either when all local states have been

considered, or when the number of tuples mL
w reaches k (line 6).

Algorithm 8 decides if the region of a particular link of w con-

tains qualifying tuples given the global state. A link should be con-

sidered if the number of tuples globally retrieved (to the best of w’s

knowledge) is less than k or if the region associated with the link

has better ranked tuples than those globally retrieved. For the last

check we use function f+, which returns an upper bound on the

score of any tuple within the given region.

Finally, Algorithm 9 compares two links based on how promis-

ing tuples their regions might contain. For this purpose, function

f+ is again used.

Algorithm 8 w.top-isLinkRelevant(i, f, k,mG
w , τ

G
w)

1: return mG
w < k or f+(w.link[i].region) ≥ τGw

Algorithm 9 w.top-comp(i, j, f, k)

1: return f+(w.link[i].region) > f+(w.link[j].region)

5. SKYLINE QUERIES
First, in Section 5.1, we discuss the instantiation of the RIPPLE

framework for distributed processing of skyline queries. Then, in

Section 5.2 we consider the case of the MIDAS overlay and propose

an optimization.

5.1 Retrieving the Skyline
We describe distributed skyline query processing according to

RIPPLE. We say that a tuple t dominates another t′, denoted as

t ≻ t′, if t has better or as good values on all dimensions and

strictly better on at least one dimension. Without loss of generality,

we assume that in each dimension lower values are better. The sky-

line query retrieves all tuples that are not dominated by any other.

In skyline query processing, the abstract query Q is empty. The

abstract state S is defined as a set of not dominated tuples (partial

skyline).

We first describe the computeLocalState method, depicted in

Algorithm 10. Initially, peer w retrieves its local skyline, which

serves as the local state (line 1). Then, it merges the tuples in the

received global state and the local skyline, discarding the domi-

nated ones, to construct the global state at w SG
w (line 2). The final

local state is computed as the intersection of the local skyline and

the global state (line 3).

Algorithm 10 w.sky-computeLocalState(SG)

1: SL
w ← the local skyline

2: SG
w ← computeSkyline(SG ∪ SL

w)

3: return SL
w ← SL

w ∩ SG
w

The computeGlobalState method, shown in Algorithm 11, sets

the global state at w. As described before, SG
w is the skyline com-

puted over the received global state and the local skyline. More-

over, computeLocalAnswer, shown in Algorithm 12, returns the

local tuples among those in the local state SL
w .

Algorithm 11 w.sky-computeGlobalState(SG, SL
w)

1: return SG
w ← computeSkyline(SG ∪ SL

w)

The updateLocalState method, depicted in Algorithm 13 takes

as input a set of local states {SL
i } and combines them to produce

an updated local state. In particular, peer w merges all local states

and computes their skyline, which becomes the updated local state

at w.

Then, we detail the isLinkRelevant method. Algorithm 14 iter-

ates the tuples in the global state (lines 1–5). If any of them dom-

inates the entire region of the link (i.e., it dominates any possible

tuple within the region), then this link certainly contains no skyline

tuple, and the method returns false (line 3). Otherwise the link’s

region should be considered (line 6).

Finally, the comp function, shown in Algorithm 15, compares

the regions of two links. The link whose region is closer to the

origin of the axes 0 is better. Note that function d− computes the

minimum distance of any tuple in a region from 0.

5.2 An Optimization for MIDAS
In this section, we present an optimization for improving the ef-

ficiency of the distributed skyline computation when RIPPLE is

used on top of the MIDAS DHT. The main intuition behind this

Algorithm 12 w.sky-computeLocalAnswer(SL
w)

1: return A← local tuples of SL
w

Algorithm 13 w.sky-updateLocalState({SL
i })

1: return SL
w ← computeSkyline(

⋃

i S
L
i)

approach is that we want the peer that receives a request to be part

of the skyline more often than not. Therefore, message overhead

would be reduced if we could target requests towards peers that are

located as close as possible to the borders of the keyspace, since it

may contain not dominated tuples.

To understand this, observe that if the RIPPLE algorithm run in

a peer located in the middle of the domain, it would return no or in-

significant tuples consisting of false positives (i.e., they most proba-

bly will be dominated by tuples of another peer). On the downside,

not necessarily all nodes located by the borderlines contain tuples

belonging to the skyline, even though some definitely contain.

So, the question is how to locate the peers at the boundaries.

Recall from Section 2.3 that the MIDAS overlay resembles a vir-

tual distributed k-d tree. Each peer w has links to peers that re-

side within its sibling subtrees. Note that MIDAS does not specify

which specific peer w should have as its neighbor. Therefore, there

is some freedom in the structure of MIDAS, which we try to take

advantage of for the benefit of the distributed skyline computation.

MIDAS allows us to identify the identifiers of peers that are

positioned on the lower borders of the domain. Figure 2 illus-

trates the two- dimensional case where the dimension that the split

takes place changes at each level. The peers whose identifiers sat-

isfy either one of the regular expressions ph = (X0)∗X? and

pv = (0X)∗0? are shaded, where X denotes either 1 or 0 (X ←
(0|1)). Note that the peers that have a 0 at every other digit are

responsible for the lower parts of the domain along the horizon-

tal and the vertical bounds, respectively. Likewise, for D dimen-

sions where the split dimension alternates sequentially, we have

D patterns in total with p0 = (X0 · · · 0)∗X0{0, D − 1}, p1 =
(0X0 · · · 0)∗0X0{0, D − 2}, p2 = (00X0 · · · 0)∗00X0{0, D −
3}, and so on. It is not hard to show that if a peer has an id that

does not accord with any of the patterns, then naturally, none of its

derived peers will, regardless of the number and type of splits. This

is due to the fact that its id will be the prefix of all its derived peers.

(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Figure 2: Overlay nodes with identifiers of the form ph =
(X0)∗X? and pv = (0X)∗0? for the two-dimensional case.

Now, we will force the links of a peer to have an identifier ac-

cording to some pattern p0, · · · , pD−1, if possible. This recursive

procedure is now incorporated in the join protocol and is run as the

Algorithm 14 w.sky-isLinkRelevant(i, SG
w)

1: for each s ∈ SG
w do

2: if s ≻ w.link[i].region then
3: return false
4: end if
5: end for
6: return true

Algorithm 15 w.sky-comp(i, j)

1: return d−(w.link[i].region,0) < d−(w.link[j].region,0)

overlay inflates. This means, in practice, that the j-th link of any

peer is established so as to have an identifier that complies with

one of the aforementioned patterns, if there is at least one such peer

within the sibling subtree at level j. The original MIDAS policy

suggests examining only the j first bits of the links’ identifiers. We

now impose the following policy when forming the structure of the

overlay as new peers join. When a new peer joins and an existing

peer splits its zone into two. Then the two peers, the new and the

one who split its zone, become siblings. The following procedure

takes place.

1. No one or both peers are associated with ids that obey the

pattern. Then, the peers that were linked to the original peers

are now associated with any of the two new peers.

2. Only one of the two peers has an id that obeys the pattern.

Then, all back-links of the original peer are now assigned to

the peer that satisfies the pattern. Now, only its sibling is

directly connected to the peer with the indifferent pattern.

(a) start (b) 1st hop (c) 2nd hop (d) 3rd hop (e) 4th hop

Figure 3: Processing skyline queries with RIPPLE’s fast algo-

rithm for the two-dimensional case.

Figures 3 illustrate the effect of the MIDAS structural optimiza-

tion, when processing skyline queries based on RIPPLE’s fast ex-

treme case. With gray color are drawn the peers whose ids obey

the two patterns. In each hop, light green indicates which peer is

processing the query, while dark green indicates the peers that have

processed the query so far. Notice how RIPPLE over MIDAS ef-

ficiently targets the gray peers, which potentially contain answer

tuples.

6. DIVERSIFICATION
Section 6.1 establishes the necessary background. Section 6.2 in-

troduces a RIPPLE-based algorithm for an important sub-problem.

Then Section 6.3 details our solution to the diversification problem.

6.1 Preliminaries
Given a query point q, the k-diversification query is to find a set

Ok of k tuples that maximizes the following objective function:

f(O,q) = λmax
x∈O

dr(x,q)− (1− λ) min
y,z∈O

dv(y, z). (1)

The first part of the objective function is defined by the maximum

distance of any tuple in O from the query q. A low value of this

part indicates that the set O contains relevance tuples. The second

part of the objective function is defined by the minimum distance

between any two tuples in O. A high value of this part indicates that

the set O contains diverse tuples. The distances in Equation 1 are

computed by user-defined functions dr , dv . The λ user parameter

takes value in [0, 1] and controls the relative weights of relevance

and diversity. Overall, the goal of the k-diversification query is

to find a set Ok which strikes the desirable balance between the

relevance and diversity of its tuples.

An important sub-problem, which is encountered in most algo-

rithms that greedily solve the k-diversification query, is the follow-

ing. Given a query point q and a set of objects O, the single tuple

diversification query is to find a tuple t∗ 6∈ O which minimizes the

objective function for the set O ∪ {t∗}, i.e.,

t
∗ = argmin

t 6∈O

f(O ∪ {t},q). (2)

Looking into the effect of adding a new tuple t into O, we dis-

cern four distinct cases. According to the first, tuple t is within

range of the least relevant object in O, and also farther from any

object in O than the distance between the closest pair of tuples in

O. Therefore, the value of f for the augmented set does not change

as the least relevant tuple and the least distant pair in O ∪ {t} re-

main the same.

Next, according to the second case, the new tuple t is farther

from q than any object in O, and farther from any object in O than

the distance between the closest pair of tuples in O. Therefore, the

objective value of the augmented set is increased by the relevance

difference between p and the former farthest tuple from q.

The third case is when even though t is closer to q than the least

relevant tuple in O, its closest distance from any tuple in O is less

than the distance between the closest pair of tuples in O. Hence, the

objective value of the augmented set increases by this difference.

Last, if t is less relevant than any tuple in O, and its distance

from any tuple in O is less than the distance between any pair of

tuples in O, then f(O ∪ {t}) increases by both the relevance and

diversity loss caused by the inclusion of t in O.

Taking these observations into account, given a set of objects O
and the query q, we define a scoring function φ(t,q, O) for tuples,

shown in Equation 3. The four cases discussed before, correspond

to the four clauses of the objective score. It is easy to verify that

the tuple which minimizes Equation 3 also solves the single tuple

diversification query. Furthermore, note that it is possible to con-

struct φ functions for objective functions other than Equation 1; we

omit details in the interest of space.

6.2 Single Tuple Insertion
This section describes how to apply the RIPPLE framework to

solve the single tuple diversification query. As before, we instan-

tiate the abstract functions used in the ripple algorithm. For the

specific problem at hand, the query Q contains the query point q,

the set of objects O, and the scoring function φ (derived from the

objective function f). The state S corresponds to a threshold score

τ . The answer A is the tuple t∗ 6∈ O that minimizes the scoring

function.

We first describe the computeLocalState function, shown in

Algorithm 16, which derives the local state given a transmitted

global state. Initially, peer w retrieves the local tuple t that min-

imizes function φ (line 2). Then if its score is less than the global

state/threshold τG (line 2) the local state is initialized to its score

(line 3). Otherwise, the local state becomes equal to the global

state (line 5), meaning that no local tuple is better than one already

found. In any case, function computeGlobalState, shown in Al-

gorithm 17, sets the global state at peer w to the local state.

Algorithm 16 w.div-computeLocalState(q, O, φ, τG)

1: t← w.getMostDiverseLocalObject(q, O, φ)
2: if φ(t,q, O) < τG then

3: return τLw ← φ(t,q, O)
4: else
5: return τLw ← τG

6: end if

Algorithm 17 w.div-computeGlobalState(q, O, φ, τG, τL
w)

1: return τGw ← τLw

Function computeLocalAnswer, depicted in Algorithm 18, ex-

tracts the local tuple, which is currently the best answer if it exists.

Initially, peer w retrieves the local tuple t that has the lowest score

(line 1). Subsequently, if its score is equal to the local state (line

2), tuple t becomes the local answer (line 3). Otherwise, the local

answer is empty (line 5).

Algorithm 18 w.div-computeLocalAnswer(q, O, φ, τL
w)

1: t← w.getMostDiverseLocalObject(q, O, φ)
2: if φ(t,q, O) = τLw then
3: return A← t

4: else
5: return A← null
6: end if

Updating the local state upon receiving a set of local states is

shown in Algorithm 19. Peer w simply sets its local state to the

minimum among those received. Algorithm 20 decides whether the

region assigned to the i-th link of peer w is worth visiting. The de-

cision is based on whether a lower bound on the score of any tuple

in the region is lower than the global state. Function φ− computes

this lower bound. Finally, Algorithm 21 compares the priority of

w’s links. The one whose region has the lowest lower bound on

score, given by φ−, has the highest priority.

Algorithm 19 w.div-updateLocalState(q, O, φ, {τL
i })

1: return τLw ← mini{τ
L
i }

Algorithm 20 w.div-isLinkRelevant(i,q, O, φ, τG
w)

1: return φ−(w.link[i].region,q, O) < τGw

Algorithm 21 w.div-comp(i, j,q, O, φ)

1: return φ−(w.link[i].region,q, O) < φ−(w.link[j].region,q, O)

6.3 Solving the Diversification Problem
Building upon the RIPPLE-based solution to the single tuple di-

versification query, described in the previous section, we propose a

greedy algorithm for solving the k-diversification query.

Algorithm 22 shows the pseudocode of our solution, executed on

the initiator peer v. Initially, a set of k tuples is retrieved from the

network by invoking the initialize function (line 2). This function

can be as simple as retrieving k random tuples, or more elaborate

solving k times the single tuple diversification query, by invoking

algorithm div-ripple, discussed in the previous section.

Then given an initial set O of k tuples, the algorithm attempts

to improve on the objective value of the set by performing a series

of iterations (lines 2–9). Each pass consists of a call to the div-
improve algorithm, which we explain later, to obtain a new set of

tuples (line 3). The iterations terminate prematurely if div-improve
cannot construct a better set (line 7).

We now discuss the div-improve method, shown in Algorithm 23.

Its goal is to determine a single tuple tout ∈ O to replace with tu-

ple tin 6∈ O, so that the objective value of O improves. Initially,

these tuples are set to null (lines 1–2).

Then, div-improve obtains an ordering on the tuples of O (line

3). Each tuple ti ∈ O is given a score computed by the φ function

as φ(ti, q, O r {ti}), i.e., tuple ti is excluded from O when com-

puting its score. The ordering is descending on the tuples’ scores.

Observe that if we consider the sets O r {ti}, the ordering im-

plies that they are ordered ascending on their objective values. As

a result, the first tuple has the worst score, but the set obtained

by removing it has the best objective value. To understand this,

assume tuple ti is ordered before tj , i.e., φ(ti,q, O r {ti}) ≥

φ(t,q, O) =



















0, if dr(t,q) ≤ maxx∈O dr(x,q) and minx∈O dv(t,x) ≥ miny,z∈O dv(y, z),

λ(dr(t,q)−maxx∈O dr(x,q)), if dr(t,q) > maxx∈O dr(x,q) and minx∈O dv(t,x) ≥ miny,z∈O dv(y, z),

(1− λ)(minx,y∈O dv(x,y)−minz∈O dv(t, z)), if dr(t,q) ≤ maxx∈O dr(x,q) and minx∈O dv(t,x) < miny,z∈O dv(y, z),

λ(dr(t,q)−maxx∈O dr(x,q)) + (1− λ)(miny,z∈O dv(y, z)−minx∈O dv(t,x)), otherwise.

(3)

Algorithm 22 v.diversify(q, k)

1: O ← v.initialize(q, k)
2: for i← 1 to MAX_ITERS do
3: O′ ← v.div-improve(q, O)
4: if O′ 6= O then
5: O ← O′

6: else
7: break
8: end if
9: end for

Algorithm 23 v.div-improve(q, O)

1: tin ← null
2: tout ← null
3: sort tuples in O descending on their φ scores
4: for each ti ∈ O do
5: if tin = null then
6: τ ← φ(ti,q, O)
7: else
8: τ ← f(O r {tout} ∪ {tin},q)− f(O,q)
9: end if

10: v.div-ripple(v, v,q, O r ti, τ, R, r)
11: tin ← v.receive()
12: if tin 6= null then
13: tout ← ti
14: end if
15: end for
16: return O r {tout} ∪ {tin}

φ(tj ,q, O r {tj}), and consider the following equation:

f(O,q) = f(O,q) ⇔
f(O r {ti} ∪ {ti},q) = f(O \ {tj} ∪ {tj},q) ⇔

f(O r {ti},q) + φ(ti,q, O r {ti}) =
f(O r {tj},q) + φ(tj ,q, O r {tj}) ⇔
f(O r {ti},q) ≤ f(O r {tj},q).

Therefore, O r {ti} has better objective value. Overall, the ratio-

nale is that by considering good sets first, it becomes more likely to

find a good replacement early.

Algorithm div-improve examines each tuple in turn (lines 4–

15). Briefly, each turn considers the case of removing the tuple

under examination from O, and searches for the best tuple outside

O to include. The algorithm requires this replacement to result in a

set with better objective value than that of the original set and any

previously considered set.

To find the best replacement tuple when tuple ti is considered,

div-improve invokes the div-ripple algorithm of the previous sec-

tion, using the set Or{ti} as input (line 10). Contrary to a regular

initial invokation of div-ripple, the initiator includes a global state

τ in its call. Note that regularly the initial global state would be set

to a neutral value like∞. However, in this case we explicitly set τ
to enforce the requirement that the replacement tuple should result

in a set with better objective value.

When no suitable replacement tuple is found yet (line 5), the

global state is set to the φ score of tuple ti (line 6). This makes

div-ripple search for a tuple which when added would result in set

with better objective value than the original set. If the algorithm

has already found a tuple tout to replace with tin, the global state

Table 1: Experimental Configuration

Parameter Range Default

overlay size 210, 211, 212, 213, 214, 215, 216, 217 214

dimensions 2, 3, 4, 5, 6, 7, 8, 9, 10 5, 6
result-size 10,20,30,40,50,60,70,80,90,100 10

rel/div tradeoff 0, 0.2, 0.3, 0.5, 0.7, 0.8, 1 0.5

is set to the objective value of this improved set minus the objective

value of the original set (line 8). The intuition is to look for a tuple

which can improve the objective value even more.

Initializing a global state in this manner, expedite the search as

it prunes large parts of the space. As a result, no replacement tu-

ple may be found. Otherwise, the current best tuple to insert and

remove are set (lines 11, 13, respectively). At the end of the algo-

rithm the improved set is returned.

7. EXPERIMENTAL EVALUATION
To assess our methods and validate our analytical claims, we

simulate a dynamic network environment and study query perfor-

mance.

7.1 Setting

Methods. In order to evaluate the performance of our framework

in different queries, we implemented various methods from the lit-

erature. Note that RIPPLE is showcased over the MIDAS index.

Regarding skyline queries, we implement DSL [20], which relies

on CAN [13], and SSP [18], which exploits a Z-curve over BA-

TON [10]. For k-diversification queries, we adapt the algorithm

of [12], termed baseline, for a distributed setting based on CAN.

For fairness, we force both heuristic diversification algorithms to

produce the same result at each step. Hence our metrics capture

directly the cost/performance of methods and are not affected by

the quality of the result.

Overlay. We simulate a dynamic topology that captures arbitrary

physical peer joins and departures, in two distinct stages. In the in-

creasing stage, physical peers continuously join the network while

no physical peer departs. It starts from a network of 1,024 physi-

cal peers and ends at 131,072 physical peers. On the other hand, in

the decreasing stage, physical peers continuously leave the network

while no new physical peer joins. This stage starts from a network

of 131,072 physical peers and ends when only 1,024 physical peers

are left. When we vary the network size, the figures show the re-

sults during the increasing stage; the results during the decreasing

stage are analogous and omitted.

Parameters. Our experimental evaluation examines four parame-

ters. The network size is varied from 1,024 up to 131,072 physi-

cal peers. The number of dimensions considered varies from 2 up

to 10. We also investigate the effect of the result-size k in top-k
and diversification queries, i.e., the number of expected items in

a result, varying it from 10 up to 100. For diversification, we also

study the trade-off between relevance and diversity by tweaking the

weight λ in Equation 3 from 0 up to 1. The tested ranges and de-

fault values for these parameters are summarized in Table 1. When

we vary one parameter, all others are set at their default values.

Metrics. Regarding query processing performance, we employ

two main metrics. First, latency measures the number of hops

required during processing, where lower values suggest faster re-

sponse. Moreover, distributed query processing imposes a load on

multiple physical peers, including ones that may not contribute to

the answer. Therefore, we study another metric. Specifically, con-

gestion is defined as the average number of queries processed at

any peer when n uniformly queries are issued (n is the network

size), as lower values suggest lower load. This actually resembles

the average traffic a peer intakes when n queries are issued.

Data and Queries. In top-k and skyline queries, we use a dataset,

denoted as NBA, consisting of 22,000 six-dimensional tuples with

NBA players statistics∗ covering seasons from 1946 until 2009.

In particular, we used the points, rebounds, assists and blocks per

game attributes. A top-k query on this dataset retrieves the best all-

around players, as individual statistics are aggregated by the scor-

ing function. A skyline query on this dataset retrieves the players

who excel in particular or combinations of statistics.

In k-diversification queries, we use a collection, denoted as MIR-

FLICKR, of 1,000,000 images widely used in the evaluation of

content-based image retrieval methods†. We extracted the five-

bucket edge histogram descriptors, of the MPEG-7 specification,

as the feature vector. The L1 distance norm is used for the rele-

vance and diversity scores.

In order to study the impact of dimensionality on all types of

queries we construct clustered, synthetic, multi-dimensional datasets

in [0, 1]D , denoted as SYNTH. Specifically, they consist of 1,000,000

records of varied dimensionality from 2 up to 10, generated around

50,000 cluster centers according to a zipfian distribution with skew-

ness factor equal to σ = 0.1.

Note that every reported value in the figures is the average of

executing 65,536 queries over 16 distinct networks.

7.2 Experimental Results

7.2.1 Top-k Queries

Since there is no competitor method for top-k queries, this sec-

tion serves as a benchmark for the effect of the ripple parameter r.

In particular, we consider four r values: the two extreme values, 0,

where RIPPLE executes the fast algorithm, and ∆, where RIPPLE

corresponds to slow, and two intermediate values, ∆/3, 2∆/3.

In our experiments, we use the NBA dataset in Figures 4 and

6, and SYNTH in Figure 5. As expected, low r-values (close to 0)

are translated into fast responsiveness, though, at a relatively higher

communication cost, whilst at high r-values (close to the maximum

number of neighbors ∆) message overhead is minimized as only

highly relevant peers are burdened.

Figure 4(a) shows that latency scales very well as the overlay

grows. Even for high r values and the extreme setting of ∆, due

to prioritization in RIPPLE, latency is much lower than the worst-

case linear cost and scales polylogarithmically. Conversely, the in-

creased congestion for low r values, shown in Figure 4(b), is ex-

plained by the parallel transmission to the neighbors of each en-

countered peer.

Dimensionality affects performance only slightly, as shown in

Figure 5. The reason is that the core structure (number of neigh-

bors per peer, overlay size) of the underlying index (MIDAS) de-

termining performance is not affected; only the dimensionality of

the zones changes. Finally, Figure 6 shows that increasing the re-

quested number or results has negative effect on both latency and

congestion, as the total number of accessed and relevant peer in-

∗Available at http://www.basketball-reference.com
†Available at http://press.liacs.nl/mirflickr/

creases. In particular, note that the value of k = 100 is quite high

corresponding to approximately 0.5% of the NBA dataset size.

7.2.2 Skyline Queries

For the remainder of the experimental evaluation, we only con-

sider the extreme values for the ripple parameter. In particular, we

denote as ripple-fast the case of r = 0, and as riple-slow the case

of r = ∆. The latency and congestion for other values of r lies in

between the two extremes, as demonstrated in the previous section.

The evaluation of RIPPLE on skyline queries is shown in Fig-

ures 7 and 8 using the NBA and SYNTH datasets, respectively. In

Figure 7(a) latency shows a logarithmic behavior for ripple-slow
and SSP, due to the exploited properties of their indexing infras-

tructures. Nevertheless, SSP is not as efficient because it does not

rely on a pure multi-dimensional index, unlike MIDAS, and maps

multi-dimensional keys to a unidimensional space-filling curve in-

stead. Therefore, more false positive skyline tuples are considered

and network routing becomes less effective with increased dimen-

sionality, taking its toll on latency and message overhead.

In Figure 7(a), DSL appears to be slower as messages are for-

warded strictly to adjacent peers whose zone abuts in all but one

dimension. Nevertheless, DSL is in position of exploiting the in-

creased number of dimensions in Figure 8. In particular, the diam-

eter of the overlay decreases dramatically as each peer has signif-

icantly more neighbors due to the increased number of established

links. In other words, larger neighborhoods is translated in practice

into better and more efficient routing, as queries are forwarded to

more highly relevant peers, selected from a wider range of links

as dimensionality increases. However, this comes at an increased

 0

 10

 20

 30

 40

 50

 60

10K 40K 70K 100K

la
te

n
c
y
 (

h
o

p
s
)

network size

r=∆

r=2∆/3
r=∆/3

r=0

(a) latency

 0

 20

 40

 60

 80

 100

 120

10K 40K 70K 100K
c
o

n
g

e
s
ti
o

n
network size

r=0
r=2∆/3
r=∆/3

r=∆

(b) congestion

Figure 4: Top-k query performance in terms of overlay size.

 0

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8 9 10

la
te

n
c
y
 (

h
o

p
s
)

dimensionality degree

r=∆

r=2∆/3
r=∆/3

r=0

(a) latency

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8 9 10

c
o

n
g

e
s
ti
o

n

dimensionality degree

r=0
r=2∆/3
r=∆/3

r=∆

(b) congestion

Figure 5: Top-k query performance in terms of dimensionality.

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

la
te

n
c
y
 (

h
o

p
s
)

result size

r=∆

r=2∆/3
r=∆/3

r=0

(a) latency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

c
o

n
g

e
s
ti
o

n

result size

r=0
r=2∆/3
r=∆/3

r=∆

(b) congestion

Figure 6: Top-k query performance in terms of result size.

maintainance cost for DSL, which increases linearly with dimen-

sionality. This cost corresponds to network information, mainte-

nance and links each peer has to preserve up-to-date. In any case,

this method is clearly inept for low dimensionality datasets as both

latency and congestion deteriorate in Figure 8.

Alhough the slowest, ripple-slow consumes the least resources

in Figures 7(b) and 8(b). However, it does not perform well for

low dimensionality spaces in terms of latency due to the sequential

access of peers and the large number of relevant peers (network size

is fixed in Figure 8). Nevertheless, it performs better than what

the worst case analysis predicts. In practice, due to prioritizing

the peers that process the query according to their possibility of

participating in the skyline set, we expect queries to resolve much

faster than in linear time.

In general, congestion appears to be relatively high for all meth-

ods, in a sense that these operations appear to be expensive, but

this is only due to the large number of relevant peers. For in-

 0

 10

 20

 30

 40

 50

 60

10K 40K 70K 100K

la
te

n
c
y
 (

h
o

p
s
)

network size

ripple-slow (midas)
dsl (can)

ssp (baton)
ripple-fast (midas)

(a) latency

 0

 20

 40

 60

 80

 100

 120

 140

 160

10K 40K 70K 100K

c
o

n
g

e
s
ti
o

n

network size

ssp (baton)
dsl (can)

ripple-fast (midas)
ripple-slow (midas)

(b) congestion

Figure 7: Skyline computation in terms of overlay size.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 3 4 5 6 7 8 9 10

la
te

n
c
y
 (

h
o

p
s
)

dimensionality degree

dsl (can)
ripple-slow (midas)

ssp (baton)
ripple-fast (midas)

(a) latency

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 3 4 5 6 7 8 9 10

c
o

n
g

e
s
ti
o

n

dimensionality degree

ssp (baton)
dsl (can)

ripple-fast (midas)
ripple-slow (midas)

(b) congestion

Figure 8: Skyline computation in terms of dimensionality.

 0

1K

2K

3K

4K

5K

6K

10K 40K 70K 100K

la
te

n
c
y
 (

h
o

p
s
)

network size

ripple-slow (midas)
baseline (can)

ripple-fast (midas)

(a) latency

 0

5K

10K

15K

20K

25K

30K

10K 40K 70K 100K

c
o

n
g

e
s
ti
o

n

network size

baseline (can)
ripple-fast (midas)

ripple-slow (midas)

(b) congestion

Figure 9: Diversification performance in terms of overlay size.

.1K

.25K

.5K

1K

2.5K

5K

10K

25K

50K

100K

 2 3 4 5 6 7 8 9 10

la
te

n
c
y
 (

h
o

p
s
)

dimensionality degree

ripple-slow (midas)
baseline (can)

ripple-fast (midas)

(a) latency

.5K

1K

2.5K

5K

10K

25K

50K

100K

250K

500K

 2 3 4 5 6 7 8 9 10

c
o

n
g

e
s
ti
o

n

dimensionality degree

baseline (can)
ripple-fast (midas)

ripple-slow (midas)

(b) congestion

Figure 10: Diversification performance in terms of dimensions.

stance, approximately d d
√
n + m peers are relevant, and hence,

even more will have to be accessed, where n stands for the over-

lay size, d for the dimensionality degree of the problem, and m
the number of encountered peers that are not located by the border-

lines of the keyspace, either due to false positives, e.g. during the

early steps of the algorithm, or because they were not dominated by

any other peer accessed at the time. Therewith, the main challenge

in distributed skyline processing is how should all these peers be

accessed, and more importantly at what cost, in terms of latency,

congestion, message overheads. In essence, we propose a toolset

for skyline computation with tunable performance, ranging from

ripple-fast, which is very fast, up to ripple-slow which although

slower, consumes very little network resources.

7.2.3 k-Diversification Queries

We next compare our RIPPLE-based diversification algorithm

to the baseline method, in terms of network latency and conges-

tion. As before, we consider the extreme cases of our framework,

labelled ripple-slow and ripple-fast. Figure 9 presents results on

the MIRFLICKR dataset with respect to the overlay size, Figure 10

shows results on SYNTH while varying the dimensionality, Fig-

ure 11 varies the result size for the MIRFLICKR dataset, and Fig-

ure 12 studies the relative weight λ using the MIRFLICKR dataset.

Apparently, ripple-fast is much faster than baseline for any

number of overlay peers and dimensions, as shown in Figures 9(a)

and 10(a). Additionally, the benefits of RIPPLE become evident in

Figure 9(b) where network congestion for our paradigm diminishes

substantially.

Moreover, the required number of iterations for the RIPPLE-

based diversification algorithm to converge plays a prevalent role

in the performance of the methods. Nevertheless, we note that per-

formance is affected by both the effectiveness of the diversified

search methods and the indexing infrastructure used. This is ev-

ident in Figure 10 where the baseline’s performance ameliorates

with dimensionality, as the number of links established in each peer

increases analogously and routing becomes more effective.

Also note that the number of relevant peers with each iteration

diminishes for the RIPPLE-based methods. In Figures 9(b) and

10(b), which illustrate network congestion, limiting our search only

to the regions that contain tuples with improved scores with ripple-

 0

2.5K

5K

7.5K

10K

12.5K

15K

 10 20 30 40 50 60 70 80 90 100

la
te

n
c
y
 (

h
o

p
s
)

result size

ripple-slow (midas)
baseline (can)

ripple-fast (midas)

(a) latency

 0

5K

10K

15K

20K

25K

30K

35K

40K

45K

50K

 10 20 30 40 50 60 70 80 90 100

c
o

n
g

e
s
ti
o

n

result size

baseline (can)
ripple-fast (midas)

ripple-slow (midas)

(b) congestion

Figure 11: Diversification performance in terms of result size.

 0

.5K

1K

1.5K

2K

2.5K

3K

3.5K

4K

4.5K

5K

 0 0.2 0.4 0.6 0.8 1

la
te

n
c
y
 (

h
o

p
s
)

rel/div tradeoff

ripple-slow (midas)
baseline (can)

ripple-fast (midas)

(a) latency

 0

2.5K

5K

7.5K

10K

12.5K

15K

17.5K

20K

 0 0.2 0.4 0.6 0.8 1

c
o

n
g

e
s
ti
o

n

rel/div tradeoff

baseline (can)
ripple-fast (midas)

ripple-slow (midas)

(b) congestion

Figure 12: Diversification performance for rel/div tradeoff.

slow is significantly better. Specifically, RIPPLE requires only a

small portion of the messages the competitor needs.

Figure 11 exhibits the impact of the cardinality of the answer-set

on performance. Apparently, the increase of the result-size has a bi-

lateral impact on performance. Specifically, as more items need to

be examined in the result-set and whether they should be replaced,

we would expect a linear increase in latency and congestion with

k that would impair performance due to the additional consecutive

operations for computing all possible replacements. However, this

is not the case for ripple-fast in Figure 11(a), where the combined

impact of two contradicting phenomena is revealed. To elaborate,

since we examine only one item from the result at a time, there are

k − 1 other items restricting the searched area of the domain. We

note, that only the overlay peers that overlap with the intersection

of all k− 1 restricted search areas are accessed. Therefore, as k in-

creases, there are more restrictions imposed which effectively make

the search area shrink, and therefore, less peers are encountered. As

a result, performance seems to be unaffected for ripple-fast in the

more selective search operations. However, these beneficial effects

cease to help when k takes very high values, and hence, the pro-

cessing cost was the dominant performance factor. Which of the

two phenomena will prevail each time depends on the effectiveness

of our pruning policy. Besides, congestion increases slowly with k
for our methods in Figure 11(b) for the same reasons.

Figure 12 shows an interesting pattern. When λ takes very low

or very high values the number of encountered overlay peers dimin-

ishes dramatically, and therewith, the number of hops required to

access them. In substance, diversified search becomes very limited,

as the proper areas of the domain that contain highly ranked items

are either close to the query tuple for λ → 1, where very relevant

items are promoted (enclosed search area around the query point),

or are located along the borders of the domain for λ→ 0, as tuples

that are distant to each other are promoted mostly. Therefore, when

λ takes values close to 0 or 1, the performed search is pretty much

automatically directed towards these areas. In other words, diver-

sified search qualifies small parts of the domain for either very low

or high values of λ, and thereby, query processing is limited to cer-

tain overlay peers responsible for these specific areas. This effect

is illustrated in Figure 12, where both response time and bandwidth

consumption decrease as we move further away from λ = 0.5.

8. CONCLUSIONS
This work has addressed the problems of efficient distributed

processing of top-k, skyline, and k-diversification queries, in the

context of large-scale decentralized networks, by introducing a uni-

fied framework, called RIPPLE. Our methods investigate the trade-

off between optimal latency and congestion through a single pa-

rameter. The key ideas of RIPPLE is to take advantage of local

information regarding query processing so as to better guide the

search. The instantiation of our framework for skyline queries has

resulted in an efficient distributed algorithm, while for the case of

diversification queries, it constitutes the first work on the subject.

9. ACKNOWLEDGMENTS
This research has been co-financed by the European Union (Eu-

ropean Social Fund - ESF) and Greek national funds through the

Operational Program “Education and Lifelong Learning” of the

National Strategic Reference Framework (NSRF) - Research Fund-

ing Program: Thales. Investing in knowledge society through the

European Social Fund.

10. REFERENCES
[1] R. Akbarinia, E. Pacitti, and P. Valduriez. Reducing network

traffic in unstructured p2p systems using top-k queries.

Distributed and Parallel Databases, 19(2-3):67–86, 2006.

[2] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden.

Progressive distributed top k retrieval in peer-to-peer

networks. In ICDE, 2005.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, 2001.

[4] P. Cao and Z. Wang. Efficient top-k query calculation in
distributed networks. In PODC, 2004.

[5] J. G. Carbonell and J. Goldstein. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In SIGIR, 1998.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. Journal of Computer and System

Sciences, 66(4):614–656, 2003.

[7] S. Gollapudi and A. Sharma. An axiomatic framework for
result diversification. IEEE Da. Eng. Bul., 32(4):7–14, 2009.

[8] K. Hose and A. Vlachou. A survey of skyline processing in
highly distributed environments. VLDB J., 21(3).

[9] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4), 2008.

[10] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: A balanced
tree structure for peer-to-peer networks. In VLDB, 2005.

[11] S. Michel, P. Triantafillou, and G. Weikum. Klee: A
framework for distributed top-k query algorithms. In VLDB,
2005.

[12] E. Minack, W. Siberski, and W. Nejdl. Incremental
diversification for very large sets: a streaming-based
approach. In SIGIR, 2011.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
SIGCOMM, 2001.

[14] N. H. Ryeng, A. Vlachou, C. Doulkeridis, and K. Nørvåg.
Efficient distributed top-k query processing with caching. In
DASFAA, 2011.

[15] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scalable
peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[16] G. Tsatsanifos, D. Sacharidis, and T. Sellis. Index-based
query processing on distributed multidimensional data.
GeoInformatica, 17(3):489–519, 2013.

[17] A. Vlachou, C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis.
On efficient top-k query processing in highly distributed
environments. In SIGMOD, 2008.

[18] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu. Efficient
skyline query processing on peer-to-peer networks. In ICDE,
2007.

[19] S. Wang, Q. H. Vu, B. C. Ooi, A. K. H. Tung, and L. Xu.
Skyframe: a framework for skyline query processing in
peer-to-peer systems. VLDB J., 18(1):345–362, 2009.

[20] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. El
Abbadi. Parallelizing skyline queries for scalable
distribution. In EDBT, 2006.

[21] K. Zhao, Y. Tao, and S. Zhou. Efficient top-k processing in
large-scaled distributed environments. Data Knowl. Eng.,
63(2):315–335, 2007.

Efficient Influence-Based Processing of
Market Research Queries

Anastasios Arvanitis
∗

National Technical University
of Athens, Greece

anarv@dblab.ntua.gr

Antonios Deligiannakis
Technical University of Crete,

Greece
adeli@softnet.tuc.gr

Yannis Vassiliou
National Technical University

of Athens, Greece
yv@cs.ntua.gr

ABSTRACT

The rapid growth of social web has contributed vast amounts of
user preference data. Analyzing this data and its relationships with
products could have several practical applications, such as person-
alized advertising, market segmentation, product feature promo-
tion etc. In this work we develop novel algorithms for efficiently
processing two important classes of queries involving user prefer-
ences, i.e. potential customers identification and product position-
ing. With regards to the first problem, we formulate product attrac-
tiveness based on the notion of reverse skyline queries. We then
present a new algorithm, termed as RSA, that significantly reduces
the I/O cost, as well as the computation cost, when compared to the
state-of-the-art reverse skyline algorithm, while at the same time
being able to quickly report the first results. Several real-world ap-
plications require processing of a large number of queries, in order
to identify the product characteristics that maximize the number of
potential customers. Motivated by this problem, we also develop
a batched extension of our RSA algorithm that significantly im-
proves upon processing multiple queries individually, by grouping
contiguous candidates, exploiting I/O commonalities and enabling
shared processing. Our experimental study using both real and syn-
thetic data sets demonstrates the superiority of our proposed algo-
rithms for the studied classes of queries.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Spatial

databases and GIS

Keywords

reverse skylines, preferences, market research

1. INTRODUCTION
Analyzing user data (e.g., query logs, purchases) has seen con-

siderable attention due to its importance in providing insights re-
garding users’ intentions and helping enterprises in the process of

∗Anastasios Arvanitis is currently affiliated with the University of Califor-
nia, Riverside.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

decision making. Recently, the rapidly growing social web has
been a source of vast amounts of data concerning user preferences
in the form of ratings, shares, likes, etc. Previous efforts (e.g., in
preference learning and recommender systems) mainly focus on
helping users discover the most interesting, according to their pref-
erences, among a pool of available products.

Highlighting the manufacturer’s perspective, the need for tools to
analyze user preferences for improving business decisions has been
well recognized. Preference analysis has various important applica-
tions such as personalized advertising, market segmentation, prod-
uct positioning etc. For example, a laptop manufacturer might be
interested in finding those users that would be more interested in
purchasing a laptop model. Thereby, manufacturers can benefit by
targeting their advertising strategy to those users. Or they might
search for laptop feature configurations that are the most popular
among customers. Similarly, a mobile carrier operator that is about
to launch a new set of phone plans may want to discover those plans
that would collectively attract the largest number of subscribers.

In this work we develop novel algorithms for two classes of
queries involving customer preferences, with practical applications
in market research. In the first query type that we consider, we
seek to identify customers that may find a product as attractive. We
formulate this problem as a bichromatic reverse skyline query, and
we present a new algorithm, termed as RSA, that outperforms the
state-of-the-art algorithm BRS [25] in terms of both I/O and com-
putational cost. Compared to BRS, our RSA algorithm is based
on a different processing order, which allows for significant im-
provements with respect to the performance, the scalability and the
progressiveness of returned results when compared to BRS.

Real world applications usually require processing multiple queries
efficiently. For example, assume that a mobile carrier operator
maintains a database of existing phone plans, customer statistics
(i.e., voice usage duration, number of text messages sent, data vol-
ume consumed per month) and a list of new phone plans under con-
sideration. We formulate this problem as a new query type, namely
the k-Most Attractive Candidates (k-MAC) queries. Given a set of
existing product specifications P, a set of customer preferences C

and a set of new candidate products Q, the k-MAC query returns
the set of k candidate products from Q that jointly maximizes the
total number of expected buyers, measured as the cardinality of the
union of individual reverse skyline sets (i.e., influence sets).

Recent works [12, 15] have independently studied similar prob-
lems over ’objective’ attributes, i.e. those that have a globally pre-
ferred value, such as (zero) price, (infinite) battery life, etc. In such
a scenario, the dominance relationships among customer prefer-
ences, existing products and candidates can be extracted by execut-
ing a single skyline query over the data set. Thereby, these works
focus on providing greedy algorithms that determine the most prof-

itable solution by combining customer sets. In this work we gen-
eralize their definition of user preferences, such that we can also
handle ’subjective’ attributes i.e., those not having a strict order
for all users, e.g., as screen size, processor type, operating system
etc. For example, for customer A that prefers a portable laptop, a
11" laptop would be more preferable than a 15" one. On the other
hand, for a customer B searching for a desktop replacement laptop,
the latter model would be more appropriate.

For such attributes, applying methods such as those proposed in
[12, 15] requires having extracted the product dominance relation-
ships for all users, since these relations are user-dependent. Thus,
we have to execute a dynamic skyline query [14] for each customer,
which is prohibitively expensive. Further, applying single point re-
verse skyline approaches to solve a k-MAC query would require
calculating the influence set for each candidate product individ-
ually, which is also a very expensive task, especially when han-
dling large data sets. We, thus, propose a batched extension of our
RSA algorithm for the k-MAC problem that improves upon pro-
cessing candidates sequentially by grouping contiguous candidates,
exploiting I/O commonalities and enabling shared processing. Af-
ter extracting the influence set of each candidate product, we also
propose an algorithm that greedily calculates the final solution for
the k-MAC problem by combining the influence sets of individual
candidate products. In brief, the contributions of this paper are:
• We present a novel progressive algorithm, termed as RSA, for

(single) reverse skyline query evaluation. Our RSA algorithm
scales better in data sets that contain a large number of skyline
points (e.g., high-dimensional data), while reporting the first re-
sults significantly faster than the state-of-the-art algorithm BRS.

• We develop a batched variant of our RSA algorithm that im-
proves upon processing multiple queries individually, by group-
ing contiguous candidates, exploiting I/O commonalities and
enabling shared processing among similar candidates. We then
apply our batched algorithm to solve the k-MAC query. k-MAC
generalizes the "k-most demanding products query" of [12] and
the "top-k popular products query" of [15] to problems where
customer preferences also include subjective attributes.

• We perform an extensive experimental study using both syn-
thetic and real data sets. Our study demonstrates that (i) our
RSA algorithm outperforms BRS for the reverse skyline query,
in terms of I/Os, CPU cost and progressiveness of the output, es-
pecially for real data, higher dimensional data, or when the size
of the product data set is relatively larger than that of customers,
and (ii) that our proposed batched algorithm outperforms base-
line approaches that process each candidate individually.

2. PRELIMINARIES

2.1 Single Point Reverse Skylines
Consider two sets of points, denoted as P and C, in the same D-

dimensional space. We will refer to each point p ∈ P as a prod-

uct. Each product is a multi-dimensional point, with pi denot-
ing the product’s attribute value Ai. For example, assuming that
products are notebooks, the dimensions1 of pi may correspond to
the notebook’s price, weight, screen size, etc. Further, each point
c∈C represents a customer’s preferred notebook specifications that
she would be interested in; we will refer to each point c as a cus-

tomer. Clearly, customers are more interested to the products that
are closer to their preferences. In order to capture the preferences of
a customer c, we formally define the notion of dynamic dominance.

DEFINITION 1. (Dynamic Dominance) (from [5]): Let c ∈ C,

p, p′ ∈ P. A product p dynamically dominates p′ with respect to c,

1In the following we will use the terms dimension and attribute interchangeably

denoted as p ≺c p′, iff for each dimension |pi− ci| ≤ |p
′
i− ci| and

there exists at least one dimension such that |pi−ci|< |p
′
i−ci|.

Note that this definition can accommodate dimensions with uni-
versally optimal values where smaller (larger) values are preferred
by simply setting ci to the minimum (resp. maximum) value of
dimension Ai. For example, assuming that lighter notebooks are
preferred, we can simply set for all customers cweight = 0.

DEFINITION 2. (Dynamic Skyline) (from [5]): The dynamic sky-

line with respect to a customer c ∈C, denoted as SKY (c), contains

all products p∈ P that are not dynamically dominated with respect

to c by any other p′ ∈ P.

Consider a set of existing products P = {p1, p2, p3, p4} and cus-
tomers C = {c1,c2,c3}. Figure 1(a) illustrates the dynamic skyline
of c1 that includes notebooks p2 and p4 in a sample scenario with 2
dimensions corresponding to the CPU speed and the screen size of
a notebook. Points in the shaded areas are dynamically dominated
by points belonging to the dynamic skyline of c1. Since we are in-
terested in the absolute distance between products, a product might
dominate other products that belong to different quadrants with re-
spect to a customer. For example, p1 and p3 in the upper right
quadrant are dynamically dominated by p2 in the lower right quad-
rant because p2 has a CPU speed and a screen size that are both
closer to c1 than the corresponding characteristics of p1 and of p3.
Figures 1(b) and 1(c) illustrate the dynamic skylines of customers
c2 and c3 respectively. We now highlight the product’s perspective
by introducing the definition of bichromatic reverse skylines.

DEFINITION 3. (Bichromatic Reverse Skyline) (from [11]): Let

P be a set of products and C be a set of customers. The bichromatic

reverse skyline of p, denoted as RSKY (p) contains all customers

c ∈C such that p ∈ SKY (c).

Thus, the bichromatic reverse skyline of a product p contains
all customers c that find p as ‘attractive’. Henceforth, we refer
to the bichromatic reverse skyline of p as the influence set of p.
Figure 1(d) illustrates the influence sets of products p1, p2, p3 and
p4.

The cardinality of RSKY(p) is a useful metric of the product’s
impact in the market. We refer to |RSKY (p)| as the influence score

IS(p). In our example, IS(p1)=IS(p2)=2 and IS(p3)=IS(p4)=1.

2.2 Influence Region
Consider a new product q. The new product partitions the D-

dimensional space into 2D orthants Ωi, each identified by a number
in the range [0,2D−1]. Since all orthants are symmetric and we are
interested in the absolute distance between products, we can map
all products to Ω0 as illustrated in Figure 2(a). For simplicity, we
hereafter concentrate on Ω0 with respect to a query point q.

For every dynamic skyline point pi, let mi(q) be the midpoint
of the segment connecting a query point q with pi. In Figure 2(b)
black points m1, m2 and m4 represent the midpoints of p1, p2 and
p4 with respect to q. Henceforth, in order to alleviate the compli-
cation of maintaining both points and midpoint skylines, whenever
we refer to a product pi we imply the corresponding mi(q) with re-
spect to q. We also assume that each dynamic skyline point pi with
respect to q is mapped to its midpoint skyline mi(q) on the fly.

The influence region of a query point q, denoted as IR(q), is the
union of all areas not dynamically dominated with respect to q by
the midpoint skylines of q. The area in Ω0 that is not shaded in Fig-
ure 2(b) draws the influence region for q. Note that the midpoints
themselves belong to the IR, since a tuple cannot dominate itself.

LEMMA 1. (from [11]) A customer c belongs to the influence

set RSKY(q) of q iff c lies inside the influence region of q i.e., c ∈
IR(q)⇔ c ∈ RSKY (q).

p2

c1

S
cr

e
e
n
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

(a) Dynamic Skyline of c1

p2

c1

S
cr

e
e
n
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

(b) Dynamic Skyline of c2

p2

c1

S
cr

e
e
n
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

(c) Dynamic Skyline of c3

Products pi

Customers ci

SKY(c1): {p2, p4}

SKY(c2): {p1, p3}

SKY(c3): {p1, p2}

RSKY(p1): {c2, c3}

RSKY(p2): {c1,c3}

RSKY(p3): {c2}

RSKY(p4): {c1}

(d) Skylines and
Influence Sets

Figure 1: Dynamic Skylines example

p2

c1

S
c
re

e
n
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

q

p4'

p2'

c1'

c2'

c3'

(a) Transformed space to Ω0
with respect to q

p2

c1

S
c
re

e
n
 s

iz
e

p3

p1

c2

c3

CPU speed

p4

q

p4'

p2'

c1'

c2'

c3'

m2 m4

m1

(b) Midpoints w.r.t. q

Figure 2: Influence region of q

q

minmax

corners

min corner

MBB

e
-

(a) Example MBB

q

ep1

ep2

ep3

IR
-

ep4

(b) Lower bound for IR(q)

q

ep3

ep2

ep1

IR
+

ep4

(c) Upper bound for IR(q)

ep3

ep2

ep1

q

ec1

ec4

ec2

ec3

(d) Pruning example

Figure 3: Influence Regions

Returning to the example of Figure 2(b), notice that only c2 lies
inside IR(q). Therefore, RSKY (q) = {c2}.

Hereafter, we assume that all points (either products or customer
preferences) are indexed using a multidimensional index (e.g., R-
trees, kd-trees etc.); for our presentation we will consider R-trees.
Figure 3(a) shows an example minimum bounding box (MBB) e.
Inside each MBB e, let min-corner e−(q) denote the point in e

having the minimum distance from a query point q. The min-corner
dominates the largest possible space. The points that reside in each
of the d faces closest to q and are the farthest from the origin q

are denoted as minmax-corners. Each MBB contains D minmax-
corners. Independently of how products within e are distributed,
any point in e certainly dominates the area that the minmax-corners
do, while at best it dominates the area that the min-corner does.

Given a set of MBBs, we can derive two sets: the set of all min-
corners denoted as L and the set of all minmax-corners w.r.t. q

denoted as U . Figure 3(b) presents an example, assuming EP =
{ep1,ep2,ep3,ep4}, where epi

denotes a product entry. In Fig-
ures 3(b), 3(c) black and hollow circles represent the min-corners
and minmax-corners respectively and rectangles represent midpoints.

Continuing the example of Figure 3(b), the grey area represents a
lower bound of the actual influence region IR−(q) and it is defined
as the space not dominated w.r.t. q by any min-corner l ∈ L. Re-
spectively, the grey area in Figure 3(c) represents an upper bound
of the actual influence region IR+(q), defined as the space not dom-
inated w.r.t. q by any minmax-corner u ∈U . It follows [25]:

LEMMA 2. If an entry ec is dominated by any u ∈U, i.e. ec is

completely outside IR+(q), ec cannot contain any customer inside

IR(q). Hence, according to Lemma 1, ec can be pruned.

For example, ec1 in Figure 3(d) can be pruned because it is com-
pletely outside IR+(q).

2.3 The BRS Algorithm
In the following we detail the state-of-the-art Bichromatic Re-

verse Skyline (BRS) algorithm [25] that efficiently calculates the
influence set of a single query point q. BRS aims at minimizing the
I/O cost (i) by progressively refining the influence region of q until
the influence set of q has been retrieved, (ii) by applying Lemma 2
to prune ec entries that do not contribute to RSKY (q).

BRS uses two indexes, an R-tree TP on the set of products P and
another TC on the set of customers C. Initially, the algorithm inserts

all root entries of TP (resp. TC) in a priority queue EP (resp. EC)
sorted with the minimum Euclidean distance of each entry from q.
BRS extracts a set L of all min-corners and a set U of all minmax-
corners of ep ∈ EP. Further, in order to reduce the number of sub-
sequent dominance checks, BRS calculates the skylines of L and
U , denoted as SKY (L) and SKY (U) respectively.

In each iteration BRS expands the entry in EP with the minimum
Euclidean distance from q and updates the current L and U and
their skylines SKY (L) and SKY (U). Then, all ec ∈ EC are checked
for dominance with SKY (L) and SKY (U). If ec is not dominated
by SKY (L) (i.e. it intersects IR−(q)), BRS expands ec as it may
contain customers inside IR(q). Returning to Figure 3(d), ec3 inter-
sects IR−(q); therefore ec3 is expanded. In contrast, if a customer
entry ec (such as ec1 in Figure 3(d)) is dominated by SKY (U), then
ec can be safely pruned according to Lemma 2. BRS terminates
when EC becomes empty, i.e. the position of all customers either
inside or outside IR(q) has been determined.

3. EFFICIENT COMPUTATION OF

REVERSE SKYLINES
In this section, we detail the drawbacks of BRS and then present

a more efficient reverse skyline algorithm, termed RSA.

3.1 BRS Shortcomings
Complexity Analysis. Let pk, ck denote the sizes of the currently
active entries in EP and EC, respectively, after the k-th iteration
of the BRS algorithm. The worst-case cardinality of pk and ck

are |P| and |C| respectively. In each iteration, the BRS algorithm
maintains both SKY (L) and SKY (U), two sets with O(|P|) and
O(D|P|) entries respectively, where D is the dimensionality of the
data set. BRS then checks for dominance each entry in EP and
EC with both SKY (L) and SKY (U). Thus, each iteration entails
O(D|P| × (|P|+ |C|)) dominance checks, which require a total of
O(D2|P| × (|P|+ |C|)) comparisons, since each dominance check
requires O(D) comparisons.

Clearly, the processing cost of BRS depends on the size of the
intermediate upper and lower skyline sets. [2] shows that for uni-

formly distributed data the size of the skyline set is Θ(
(ln|P|)D−1

D!).
Thus, for larger data sets or higher dimensional data the processing
cost of maintaining SKY (L) and SKY (U) becomes prohibitively
expensive. Our experimental evaluation (Section 6) confirms that

q

p1

ep2

ec1

p5

ep3

ep4

ec2

ec3

(a) BRS will expand ep2 en-
tailing an unnecessary I/O

q

p1

ep2

ec1

p5

ep3

ep4

ec2

ec3

c5

c4

(b) RSA will avoid accessing ep2

by pruning c4 with p1

Figure 4: Processing order and I/O accesses

BRS is impractical for |P| ≥ 106 or D≥ 4. Motivated by the above
analysis, we introduce a more efficient and scalable reverse skyline
algorithm, which eliminates the dependency on the SKY (L) and
SKY (U) sets, thus being able to handle high dimensional data, or,
in general, data where the size of skyline points is large.
Processing Order. BRS performs a synchronous traversal on the
TP and TC indexes, which are built on product and customer points,
respectively, following a monotonic order based on the Euclidean
distance of ep entries from q. This processing order ensures that the
number of I/Os on TP is minimized. However, in terms of the total
I/Os, BRS might perform some unnecessary I/Os. Figure 4(a) illus-
trates one such scenario, where the nodes ep2 and ec1 have not been
yet expanded.2 BRS would proceed by expanding ep2 , revealing
ep3 and ep4 . Unfortunately, ec1 is not affected by this refinement
and it still has to be accessed. On the other hand, if we first expand
ec1 , this operation would reveal ec2 and ec3 , which can be pruned by
p1 and p5 respectively, eliminating the need to access ep2 . Clearly,
in this scenario the I/O access on ep2 was redundant. In order to
avoid such redundant I/Os, our RSA follows a visiting strategy that
is primarily based on the tree level of customer entries, which, as
confirmed in our experiments, results in fewer total I/Os.
Progressiveness. BRS iteratively refines IR−(q) and reports the
customer points that lie inside IR(q). In order to retrieve the first
reverse skyline point, several iterations of BRS may be required,
which is undesirable for applications that require a quick response
containing only a fraction of the output, or if the complete output
is not useful (e.g., if it contains too many results). We, thus, seek to
develop an algorithm that reports the first results faster than BRS.

3.2 The RSA Algorithm
We now present our Reverse Skyline Algorithm (RSA), which

aims to address the shortcomings outlined above.
Data Structures Used and Basic Intuition. The RSA algorithm:

• Does not require the maintenance of the SKY (L) and SKY (U)
sets and is, thus, less expensive in terms of processing cost.

• Checks one customer entry per iteration following a visiting
strategy based on the entry’s tree level (primary sort criterion)
and Euclidean distance from q (secondary sort criterion).

• Accesses a product entry only if it is absolutely necessary in
order to determine if a customer point belongs to RSKY(q).

RSA maintains the following data structures for its operation:
• A priority queue EP on the set of product entries
• A priority queue EC on the set of customer entries
• A set SKY (q) with the currently found midpoint skylines

The two priority queues are sorted based on a dual sorting cri-
terion: primarily, based on the tree level of the stored entries and,
subsequently, using the Euclidean distance of each entry from q.

2Note that with ep we actually represent the respective midpoints w.r.t q.

Algorithm 1: RSA

Input: q a query point, TP R-tree on products, TC R-tree on customers, EP(q)
priority queue on products, EC(q) priority queue on customers

Output: RSKY(q) reverse skylines of q

Variables: SKY(q) currently found midpoint skylines of products w.r.t. q

1 begin

2 SKY (q) :=∅;RSKY(q) :=∅;
3 while EC 6=∅ do

4 dominated := false;
5 EC(q).pop()→ ec;
6 if dominated(ec , SKY(q)) then

7 dominated := true; continue;

8 if ec is a non-leaf entry then

9 Expand ec , insert children entries in EC(q);

10 else

11 foreach ep ∈ EP(q) do

12 midpoint(ep,q)→ m;
13 if ec is dominated by m then

14 if ep is a leaf entry then

15 if (dominated(m, SKY (q)) == false) then

16 SKY(q).push(m);

17 dominated := true; break;

18 else

19 Expand ep, insert children entries in EP(q);

20 EP(q).remove(ep);

21 if (dominated == false) then

22 RSKY(q).push(ec);

23 return RSKY(q);

Thus, leaf entries are given higher priority and are processed first,
while the examination of non-leaf entries is postponed as much as
possible. By first processing all leaf ec entries, the algorithm may
reveal a midpoint skyline, which will be subsequently used to prune
a non-leaf ec based on Lemma 2, thus avoiding an access on TC.
The same intuition holds for ep entries as well; an already found
midpoint skyline can be used to prune dominated non-leaf product
entries, since these entries will not contribute to the skyline. Fur-
ther, whenever an ec entry is checked for dominance with EP, first
all leaf ep entries will be examined. As long as no leaf ep dom-
inates ec, only then will RSA proceed to expand the nearest to q

non-leaf ep entry. This change in the visiting order of EP reduces
the number of accesses on TP as well. For instance, in Figure 4(b)
BRS would access ep2 that has the minimum Euclidean distance
from q. In contrast, RSA will use p1 to determine that c4 does not
belong to RSKY (q), hence avoiding the access of ep2 .
Algorithm Description. The RSA algorithm is presented in Al-
gorithm 1. Initially, RSA inserts all root entries of TP (resp. TC)
in the priority queue EP (resp. EC). Further, RSA maintains a set
SKY (q) of the currently found midpoint skylines which are used for
pruning based on Lemma 1. RSA proceeds in iterations. In each it-
eration RSA extracts the entry in EC having the minimum key from
q (Line 5) and checks the following pruning conditions:

1. If ec is dominated by any point that belongs to the currently
found midpoint skylines SKY (q), ec can be removed from EC based
on Lemma 1 (Lines 6-8).

2. Otherwise, if ec is a non-leaf entry (Line 9), ec is expanded and
child nodes are inserted into EC (Line 10).

3. Else, for all ep entries in EP (Lines 12-22):
• If ec is dominated by the midpoint of a leaf entry ep ∈EP (Line 15),

then ec can be removed from EC, based on Lemma 1, and the
midpoint of ep is inserted into SKY (q) (Line 17)).

• Else if ec is dominated by the midpoint of the min-corner e−p of
a non-leaf ep ∈ EP (Line 20), ep is expanded and its children
entries are inserted into EP (Line 21).

q

p5

ep1

ec1

p8

ep2

ep3

c2

ec3

c5

c6

p6 ec4

p9

ep7

ep4

(a) Step 1

q

p5

ep1

p8

ep2

ep3

c2

ec3

c5

c6

p6 ec4

p9

ep7

ep4

(b) Step 2

q

p5

ep1

p8

ep2

ep3

c2

ec3

c5

c6

p6 ec4

p9

ep4

(c) Step 3

q

p5

ep1

p8

ep2

ep3

c2

ec3

c5

c6

p6

p9

ep4

(d) Step 4

Figure 5: Running example of the RSA algorithm

Finally, if ec has not been pruned by any of the above conditions
(Line 23), then ec is a reverse skyline point and can be at that stage
reported as a result (Line 24). The RSA algorithm terminates when
EC becomes empty and then RSKY (q) is returned (Line 25).
Example. We illustrate the execution of RSA using the running
example depicted in Figure 5. At the beginning, EP(q) = {ep7 ,ep1 ,
ep4} and EC(q) = {ec1 ,ec4} (sorted by their distance from q). In the
first iteration, RSA will examine ec1 that has the minimum distance
from q. Since it is a non-leaf entry, RSA will expand ec1 (Line 10)
and it will insert child nodes c2 and ec3 into EC(q) (see Figure 5(b)).
Now EC(q) = {c2,ec4 ,ec3} and RSA selects to examine c2. Since
the current skyline is empty, c2 is not dominated by any product
entry; hence RSA will proceed by checking if c2 is dominated by
any product entry contained in EP(q). c2 is dominated by the min-
corner of the first entry in EP(q), i.e. ep7 (Line 14). In order to
determine if there actually exists a point inside ep7 that dominates
c2 w.r.t. q, RSA will expand ep7 (Line 21), pushing its child nodes
p8 and p9 inside EP(q), thus EP(q) = {p8, p9,ep1 ,ep4} (see Fig-
ure 5(c)). Now, RSA discovers that c2 is dominated by p8, which
is marked as a skyline point (Line 17) and c2 is discarded. In the
next iteration, RSA selects to examine ec4 , which has the minimum
distance from q. ec4 is not dominated by any currently found sky-
line point and since it is a non-leaf entry, it is expanded and child
nodes c5 and c6 are inserted into EC(q) (Line 10) (see Figure 5(d)).
Now we have EC(q) = {c5,c6,ec3}. Next, RSA will examine c5.
Since c5 is not dominated by any product entry, c5 is reported as a
reverse skyline result (Line 24). Now RSA examines c6 which is
already dominated by a currently found skyline point, i.e. p8, (Line
6), hence it is discarded. Finally, ec3 is examined. Similarly, ec3 is
dominated by p8 and it is also pruned. Since EC(q) is now empty,
RSA terminates and outputs c5 as the final answer.
Complexity and Progressiveness Analysis. RSA requires at most
|C| iterations (one for each customer), although in fact several ec

entries will be pruned by SKY (q) (Line 6). Each iteration en-
tails a dominance check with (i) the currently found midpoint sky-
line SKY (q), and (ii) all product entries currently in EP, both hav-
ing O(|P|) worst-case cardinality. Overall RSA requires O(|P||C|)
dominance checks, or O(D|P||C|) comparisons.

With respect to progressiveness, recall that RSA will first ex-
amine leaf customer entries that have the minimum Euclidean dis-
tance from the query point q (based on the dual sorting scheme on

EC). In other words, the very first iterations of RSA concern cus-
tomer entries that are very close to q. Intuitively, the closer to q a
customer is, the more likely that q will not be dominated by any
product w.r.t. the examined customer. Hence, customers that will
be examined in the first iterations tend to have a higher probabil-
ity of belonging to RSKY (q). Further, since the first entries to be
examined are actual points (not MBBs), the first iterations will not
involve ec expansions (Line 10), which are expensive in terms of
processing cost. Thus, the first iterations will be faster than subse-
quent ones. Overall, RSA typically reports the first results in just
a few iterations. In contrast, recall that BRS requires several itera-
tions in order to adequately refine the influence regions, such that
the first reverse skylines have been determined. Our experimental
study (Section 6) verifies the superiority of RSA in terms of pro-
gressiveness compared to the BRS algorithm.

4. K-MAC QUERIES
We now present the k-Most Attractive Candidates (k-MAC) query,

which serves as a motivating example that demonstrates the need
to develop a batch processing algorithm for computing several re-
verse skyline queries. The k-MAC query is a slight generalization
of the problems studied in [15, 12] for the case when the customer
preferences also include subjective dimensions. We first present
a motivating scenario, which highlights the usefulness of k-MAC
queries. We then present the definition of the k-MAC query.
Motivating Scenario. A laptop manufacturer wants to produce k

new notebooks, among a set of feasible alternative configurations Q

proposed by the engineering department. The manufacturer needs
to consider three sets: (i) the existing competitor products P, (ii) the
set of customers’ preferred specifications C, and (iii) a set of can-
didate products Q. We will refer to each q ∈ Q as a candidate. The
goal of the manufacturer is to identify the specifications that are ex-
pected to jointly attract the largest number of potential buyers. Note
that this is different than simply selecting the k products that are the
most attractive individually, since it does not make much sense to
select products that seem attractive to the same set of customers.
Problem Definition. We first define the joint influence set for a
set of candidates Q. We then define the notion of the joint influence

score and introduce the k-Most Attractive Candidates (k-MAC) query.

DEFINITION 4. (Joint Influence Set): Given a set of products P,

a set of customers C and a set of candidates Q, the joint influence

set of Q, denoted as RSKY(Q), is defined as the union of individual

influence sets of any qi ∈ Q: RSKY (Q) =
⋃

qi∈Q

RSKY (qi)

Following the above definition, the joint influence score IS(Q)
for a set of candidates Q is equal to the size of the joint influence
set of Q, |RSKY(Q)|. We now introduce the k-Most Attractive Can-

didates (k-MAC) query as follows:

DEFINITION 5. (k-Most Attractive Candidates (k-MAC) query):

Given a set of products P, a set of customers C, a set of candidates

Q and an integer k > 1, determine the subset Q′ ⊆ Q, such that

|Q′|= k and the joint influence score of Q′, IS(Q′), is maximized.

Note that several candidates might be interesting for the same
customer. Additionally, we emphasize that for evaluating a k-MAC
query each candidate q∈Q is considered separately from other can-
didates and only with respect to existing products. In other words,
intra-candidate dominance relations are not taken into account for
k-MAC queries. This is consistent with a real-world setting where
a manufacturer is interested to compare their product portfolio only
with respect to the competition. We discuss how we resolve ties at
the end of this section where we present a greedy algorithm that
computes an approximate solution for the k-MAC problem.

Unlike recent works [15, 12] that targeted similar problems as-
suming only ’objective’ attributes, i.e. those having a globally pre-
ferred value (such as zero price, infinite battery life, etc.), k-MAC
can handle cases where customer preferences are expressed over
’subjective’ dimensions (e.g., screen size, processor type). This
generalisation is possible because the attractiveness of each candi-
date products is computed based on the size of their bichromatic
influence set. Moreover, while our focus is on efficiently comput-
ing the influence sets of multiple candidate products, the emphasis
of [15, 12] is on the selection of the proper candidates after the
dominance relationships among products have been determined.
A Greedy Algorithm. Unfortunately, processing k-MAC queries
is non-trivial. This problem can be reduced to the more general
maximum k-coverage problem. Thus, even if we consider the much
simpler problem where all the influence sets of all candidates have
been computed, an exhaustive search over all possible k-cardinality
subsets of Q is NP-hard. Based on the complexity of computing
the subset of k products, we now seek an efficient, greedy algo-
rithm for this problem. Our solution is based on the generic k-stage
covering algorithm provided in [8], developed for finding efficient
approximate solutions to the maximum k-coverage problem.

LEMMA 3. (from [8]) k-stage covering algorithm returns an

approximate solution to the maximum k-coverage problem that is

guaranteed to be within a factor 1−1/e from the optimal solution.

We now show how we can adapt the k-stage covering algorithm
for the k-MAC problem. kGSA (k-stage Greedy Selection Algo-
rithm) takes as input a set of candidate products Q and their associ-
ated influence sets and returns a set Q′ ⊆ Q, |Q′|= k that contains
the candidates which formulate a (1− 1/e)-approximate solution
to the k-MAC query. kGSA proceeds in iterations, by adding one
candidate into Q′ during each iteration. All candidates are exam-
ined at each iteration, and kGSA selects the one that, if added in
Q′, results in the largest increase of the joint influence score of
Q′. In case multiple candidates contribute equally to the increase
of IS(Q′), kGSA applies a second criterion; it selects the candidate
with the minimum sum of distances from its respective reverse sky-
lines (customers). The intuition is that a candidate product that is
closer to a user’s preferences would more likely increase user sat-
isfaction. kGSA terminates after k iterations and returns Q′.

5. REVERSE SKYLINE PROCESSING FOR

MULTIPLE QUERY POINTS
Solving the k-MAC problem requires processing all candidates,

in order to first determine their influence sets. The kGSA algorithm
can then be used to solve the k-MAC problem.

A straightforward way to process multiple candidates would be
to apply either BRS or RSA for each candidate individually. How-
ever this approach is very inefficient in terms of I/O accesses, be-
cause it requires accessing each entry ep (ec) several times, if ep

(ec) appears in the priority queues of more than one candidate.
Our bRSA algorithm. We now introduce our bRSA algorithm,
which aims at eliminating the drawbacks of the baseline approach
by exploiting I/O commonalities and by offering shared processing
among candidates. bRSA utilizes in its core the RSA algorithm that
we presented in Section 3. Note that, apart from k-MAC queries,
bRSA can be applied for any query type that requires joint process-
ing of multiple reverse skyline queries.

bRSA efficiently processes candidates in parallel, by grouping
them in batches, in such a way that grouped candidates benefit by
the processing of other group members. A primary goal of bRSA is
to save duplicate I/O accesses, by using entries that have been ex-
panded during an iteration of the RSA subcomponent for one group

member, in order to prune entries that appear in the local priority
queues of other group members as well. In particular, whenever
an entry ex is expanded, all local priority queues in which ex ap-
pears are appropriately updated. Hence, each disk page is accessed
only once per batch. Additionally, in order to further optimize the
processing of group members, bRSA maintains a list of currently
found product points, that will expectedly have large pruning po-
tential for other group members, based on Lemma 1. We will refer
to these points as vantage points and we will explain their use in
the following where we discuss bRSA execution in detail.

Note that we cannot safely assume that all the necessary data
structures that bRSA utilizes (local priority queues, skyline sets for
each candidate, list of vantage points etc.) will actually fit in main
memory. Based on the memory capabilities of the hardware and
worst case estimates of the amount of customer and product entries
in EP and EC, let us assume that G candidates (where G≪ |Q|) fit
in main memory and can be simultaneously processed. Using worst
case estimates does not have a severe impact in the performance of
bRSA; in fact, as we demonstrate experimentally, it is better to keep
G to fairly modest values (i.e., up to 10 candidates). Larger batch
sizes may result in increasing processing cost for the maintenance
of local priority queues and significantly more dominance checks
which gradually eliminates the benefit from shared processing.

Candidates in proximity in the multidimensional space are more
likely to benefit from shared processing. Hence, as a preprocess-
ing step, bRSA partitions the candidate set into ⌈|Q|/G⌉ batches
based on a locality preserving hashing method, such as the Hilbert
space filling curve.3 Then, bRSA picks one candidate at a time in
a round robin fashion (Line 5), and executes a single iteration of a
modified version of the RSA algorithm for that candidate, termed
Batch-RSA. Batch-RSA extends RSA to be efficiently used on a
batch setting. We now present the differences of Batch-RSA com-
pared to its single point counterpart. First, whenever an entry ex

is expanded, all local priority queues in which ex appears are ap-
propriately updated. Further, when a leaf product entry, say pi, is
discovered (Line 12), the algorithm decides whether pi should be
inserted to a buffer HP that contains vantage points, i.e. those that
will be used for pruning by other candidates (Line 17). Intuitively,
product points that reside closer to a candidate, will dominate the
largest possible space and their pruning power will be maximized.
Thus, we implemented HP as a priority queue on the minimum Eu-
clidean distance, among the candidates inside the batch. If HP is
full, the most distant point in HP, is replaced with pi. Vantage
points (essentially their respective midpoints) are used addition-
ally to skyline points when checking each customer entry for dom-
inance (second condition in OR clause of Line 5), hence avoiding
some of the subsequent I/Os.

6. EXPERIMENTAL EVALUATION
All algorithms examined in our experiments were implemented

in C++ and executed on a 2.0 GHz Intel Xeon CPU with 4 GB
RAM running Debian Linux. The code for the BRS algorithm was
thankfully provided to us by the authors of [25].

6.1 Experimental Setup
We used a publicly available generator [1] in order to construct

different classes of synthetic data sets, based on the distribution
of the attributes’ values; i.e., uniform (UN), anti-correlated (AC)
and correlated (CO). Due to space limitations, in the following we
plot the results primarily for uniform (UN) data sets. Experiments
involving AC and CO data, as well as combinations among them
(e.g., uniformly distributed products and anti-correlated customers)

3Other clustering techniques might also be applicable

Algorithm 2: bRSA
Input: Q a set of candidates, TP R-tree on products, TC R-tree on customers
Variables: EP(qi) priority queue on products for qi , EC(qi) priority queue on

customers for qi , RSKY(qi) reverse skylines for qi , SKY (qi) midpoint
skylines of qi , G j batches with |G j |= G

1 begin

2 partition Q into ⌈|Q|/G⌉ batches→ G j;
3 foreach G j do

4 while (RSKY(qi) for all qi ∈ G j have not been found) do

5 selectCandidate→ qi;
/* Process qi until IS(qi) has been

completely determined */

6 if EC(qi) 6=∅ then

7 Batch-RSA (qi , G j , TP , TC , EP(qi), EC(qi), RSKY(qi),
SKY(qi), HP);

Function Batch-RSA
Input: G a group of candidates, TP R-tree on products, TC R-tree on customers,

EP(qi) priority queue on products for qi , EC(qi) priority queue on
customers for qi, RSKY(qi) reverse skylines of qi, SKY (qi) midpoint
skylines of qi , HP priority queue on product leaf entries (vantage points)

Output: RSKY(qi) reverse skylines of qi

1 begin

2 while EC(qi) 6=∅ do

3 dominated := false;
4 EC(qi).pop()→ ec;
5 if dominated(ec , SKY(qi)) OR dominated(ec , HP) then

6 dominated := true; continue;

7 if ec is a non-leaf entry then

8 Expand ec for all relevant qi , insert children into EC(qi);

9 else

10 foreach ep ∈ EP(qi) do

11 midpoint(ep,qi)→ m;
12 if ec is dominated by m then

13 if ep is a leaf entry then

14 if (dominated(m, SKY(qi)) == false) then

15 SKY(qi).push(m);

16 HP.push(ep);
17 dominated := true; break;

18 else

19 Expand ep for all relevant qi , insert children into
EP(qi);

20 EP(qi).remove(ep);

21 if (dominated == false) then

22 RSKY(qi).push(ec);

23 return RSKY(qi);

generally follow similar trends. We also evaluated our algorithms
on two real world data sets. The NBA data set (NBA) consists of
17,265 5-dimensional points, representing the average values of a
player’s annual performance with respect to the number of points
scored, rebounds, assists, steals and blocks. The household data set
(HOUSE), consists of 127,930 6-dimensional points, representing
the percentage of an American family’s annual income spent on 6
types of expenditure: gas, electricity, water, heating, insurance, and
property tax. In order to generate customer and candidate sets, we
added Gaussian noise to actual points. For both synthetic and real
data sets we normalized all attribute values to [0,10000] and for
each data set, we built an R-tree with a page size equal to 4KB.

We compared the performance of our RSA and bRSA algorithms
with the state-of-the-art BRS algorithm for evaluating both reverse
skyline and k-MAC queries. For BRS and RSA, we measured the
total CPU time and I/O operations required for processing (i) a
workload of |Q| reverse skyline queries, and (ii) a k-MAC query
given an input of |Q| candidate products. The bRSA algorithm ap-
plies only for the k-MAC query. In particular, we measured:
• The number of I/Os (separately on product and customer en-

tries). For each data set, one memory buffer equivalent to 100
pages (12.5% of the data set size) was allocated for caching, fol-
lowing a Least Recently Used (LRU) cache replacement policy.

• The time spent on CPU.
• The total query processing time, consisting of the time spent

on CPU plus the I/O cost, where each random page access was
penalized with 1 millisecond.

Recall that for the reverse skyline query type, both BRS and RSA
process query points sequentially. For evaluating k-MAC queries,
we modified both algorithms by adding (i) a preprocessing step that
presorts candidates based on their Hilbert hash value, and (ii) a final
step that greedily outputs the best candidates using our kGSA algo-
rithm. In our experiments the measured processing time required
for both steps was negligible compared to the time required for the
algorithm execution. Further, it is important to emphasize that none
of the algorithms is affected by the value of k, since they first have
to determine the influence sets of all candidates, and then greedily
select the optimal k-subset based on kGSA.

In each experiment we vary a single parameter while setting the
remaining to their default values. The default values for both prod-
uct and customer data set cardinalities were set to 100,000, the de-
fault data dimensionality was set to 3, the default domain range of
each attribute was [0, 10000], the default batch size was set to 10,
and the default buffer size was set to 12.5% of the data set size.

6.2 Experimental Results
Sensitivity Analysis vs. Data Dimensionality. We first vary the
dimensionality of the data sets from 2 to 5 and examine the perfor-
mance of all algorithms. Figures 6(a)-6(b) show the results for the
number of I/Os and the total processing time, respectively, in loga-
rithmic scale. The corresponding numbers for the BRS and RSA al-
gorithms are also presented, for clarity, in Figure 6(c). As expected
(refer to the complexity analysis in Section 3), BRS becomes pro-
hibitively expensive for data with more than 3 dimensions. In par-
ticular, BRS requires 3.35 times more CPU time than RSA even in
2 dimensions, and is about 46 times slower in terms of CPU time,
and 13.5 times slower in terms of total processing time in the 5-
dimensional data set. Figure 6(k) shows an analogous behaviour of
the algorithms in anti-correlated data. We also experimented with
higher dimensionalities, e.g., for D = 6, BRS took ∼15 hours to
finish, whereas RSA terminated in 20.2 minutes. However, we did
not include these results in the plots due to space limitations. Our
experiments with real data sets show that BRS is impractical for
higher dimensions, which justifies our motivation for a more ef-
ficient reverse skyline algorithm. It is important to notice that in
higher dimensionalities the I/O cost of BRS is dominated by the
CPU cost (note that Figures 6(a)-6(b) are in logarithmic scale). To
understand why BRS escalates poorly with D recall that the sizes
of SKY (L) and SKY (U), which are maintained by BRS, increase
rapidly with the data dimensionality [2]. Finally, our bRSA algo-
rithm achieves significant performance gains with respect to both
BRS and RSA in all settings. Note that our remaining sensitivity
analysis using synthetic data sets, utilizes a modest value (D = 3),
which is a favorable setting for BRS. Obviously, the benefits of our
algorithms over BRS were significantly more in higher dimensions.
Sensitivity Analysis vs. Data Set Size. We then perform a sen-
sitivity analysis with respect to the size of the product data set.
Notice the different behavior of the two algorithms with respect to
the type of I/Os (Figure 6(d)), due to the different visiting orders
followed; generally BRS entails more accesses on the products in-
dex, whereas RSA requires more customer I/Os. In terms of I/Os,
RSA exhibits similar performance with BRS in the case where the
product and customer data have the same size (100K both). How-
ever, as the number of products increases, the strategy followed

 1K

 10K

 100K

 1M

 10M

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

N
u

m
b

e
r

o
f

I/
O

s

of Dimensions

2 3 4 5

Product I/Os

Customer I/Os

(a) I/Os vs. Dimensionality (UN)

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
AP
ro

ce
ss

in
g

 t
im

e
 (

se
c)

of Dimensions
2 3 4 5

CPU cost
I/O cost

 1

 10

 100

 1K

 10K

 100K

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

(b) CPU cost vs. Dimensionality (UN)

2-D data 3-D data 4-D data 5-D data

BRS RSA BRS RSA BRS RSA BRS RSA

I/O cost (sec) 20.7 23.3 179.9 156.0 687.6 555.0 1404 1161

CPU cost (sec) 18.4 5.5 76.9 23.2 1222.6 106.2 20042 428

Total cost (sec) 39.1 28.8 256.8 179.2 1910.2 661.2 21446 1589

2-D data 3-D data 4-D data 5-D data

BRS / RSA BRS / RSA BRS / RSA BRS / RSA

I/O cost ratio 0.89 1.15 1.24 1.21

CPU cost ratio 3.35 3.32 11.51 46.81

Total cost ratio 1.36 1.43 2.89 13.50

(c) RSA & BRS costs vs. Dimensionality (UN)

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

N
u

m
b

e
r

o
f

I/
O

s

of Products

10K 100K 500K 1M

Product I/Os

Customer I/Os

 0

 50K

 100K

 150K

 200K

 250K

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

(d) I/Os vs. |P| (UN)

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
AP
ro

ce
ss

in
g

 t
im

e
 (

se
c)

of Products

10K 100K 500K 1M

CPU cost
I/O cost

 0
 50

 100
 150
 200
 250
 300
 350

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

(e) CPU cost vs. |P| (UN)

10K 100K 500K 1M

BRS RSA BRS RSA BRS RSA BRS RSA

I/O cost (sec) 223.6 226.5 179.9 156.0 198.9 125.0 235.5 118.5

CPU cost (sec) 62.7 28.6 76.9 23.2 87.9 22.0 98.8 22.9

Total cost (sec) 286.3 255.1 256.8 179.2 286.8 147.0 334.3 141.4

10K 100K 500K 1M

BRS / RSA BRS / RSA BRS / RSA BRS / RSA

I/O cost ratio 0.99 1.15 1.59 1.99

CPU cost ratio 2.19 3.32 3.99 4.32

Total cost ratio 1.12 1.43 1.95 2.36

(f) RSA & BRS costs vs. |P| (UN)

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

N
u

m
b

e
r

o
f

I/
O

s

of Customers

10K 100K 500K 1M

Product I/Os

Customer I/Os

 0

 100K

 200K

 300K

 400K

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

(g) I/Os vs. |C| (UN)

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
AP
ro

ce
ss

in
g

 t
im

e
 (

se
c)

of Customers
10K 100K 500K 1M

CPU cost
I/O cost

 0
 100
 200
 300
 400
 500
 600

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

(h) CPU cost vs. |C| (UN)

10K 100K 500K 1M

BRS RSA BRS RSA BRS RSA BRS RSA

I/O cost (sec) 122.4 60.6 179.9 156.0 291.0 284.1 405.8 402.4

CPU cost (sec) 41.6 8.5 76.9 23.2 98.1 48.1 121.5 77.0

Total cost (sec) 164.0 69.1 256.8 179.2 389.1 332.2 527.3 479.4

10K 100K 500K 1M

BRS / RSA BRS / RSA BRS / RSA BRS / RSA

I/O cost ratio 2.02 1.15 1.02 1.01

CPU cost ratio 4.91 3.32 2.04 1.58

Total cost ratio 2.37 1.43 1.17 1.10

(i) RSA & BRS costs vs. |C| (UN)

B
R

S
−

K
M

A
C

/P
1

R
S

A
−

K
M

A
C

/P
1

B
R

S
A

/P
1

B
R

S
−

K
M

A
C

/P
2

R
S

A
−

K
M

A
C

/P
2

B
R

S
A

/P
2

B
R

S
−

K
M

A
C

/P
1

R
S

A
−

K
M

A
C

/P
1

B
R

S
A

/P
1

B
R

S
−

K
M

A
C

/P
2

R
S

A
−

K
M

A
C

/P
2

B
R

S
A

/P
2N

u
m

b
e

r
o

f
I/

O
s

Bu�er Size/Dataset Size

6.25% 12.5% 25%

Product I/Os

Customer I/Os

 0

 40K

 80K

 120K

 160K

B
R

S
−

K
M

A
C

/P
1

R
S

A
−

K
M

A
C

/P
1

B
R

S
A

/P
1

B
R

S
−

K
M

A
C

/P
2

R
S

A
−

K
M

A
C

/P
2

B
R

S
A

/P
2

(j) I/Os vs. Cache Size (UN)

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
AP
ro

ce
ss

in
g

 t
im

e
 (

se
c)

of Dimensions

2 3 4 5

CPU cost
I/O cost

 1

 10

 100

 1K

 10K

 100K

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

(k) CPU cost vs. D (AC)

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
AP
ro

ce
ss

in
g

 t
im

e
 (

se
c)

of Products

10K 100K 500K 1M

CPU cost
I/O cost

 0

 50

 100

 150

 200

 250

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

B
R

S
−

K
M

A
C

R
S

A
−

K
M

A
C

B
R

S
A

B
R

S
−

R
S

K
Y

R
S

A
−

R
S

K
Y

(l) CPU cost vs. |P| (AC)

Figure 6: Experiments with Synthetic Data

by RSA proves to be more efficient in terms of the total I/O ac-
cesses required. Moreover, w.r.t. the processing cost (Figure 6(e)),
RSA is significantly faster than BRS, and scales better as |P| grows
larger. Again, the corresponding numbers for the BRS and RSA
algorithms are also presented, for clarity, in Figure 6(f). Finally,
our bRSA algorithm is the most efficient algorithm for the case
of k-MAC queries remaining essentially unaffected by the size of
the product data set. Figure 6(l) shows an analogous behaviour of
the algorithms in anti-correlated data, with the times being slightly
smaller, as shown by the scale of the y-axis. In Figures 6(g)-6(h)
we then plot the I/O and CPU costs when varying the size of the
customer data set. As illustrated, RSA and BRS require roughly
the same number of I/Os for large numbers of customers. This is
predictable since RSA processes one customer entry per iteration,
i.e., the number of iterations required by RSA is O(|C|). Therefore,
in the case when |C| is much larger than |P|, the visiting strategy
followed by BRS would be a more reasonable choice. However,
even in this worst case scenario, RSA exhibits better overall per-
formance than BRS algorithm, due to the significant lower process-
ing cost (Figures 6(h)-6(i)). Again, our bRSA algorithm is notably
faster than both single point algorithms.

Sensitivity Analysis vs. Memory Size. For this experiment we
compare the number of page accesses required by each algorithm
with respect to the memory size allocated for caching. We varied
cache (buffer) size from 50 pages (corresponding to 6.25% of the
data set size) up to 200 pages (25% of available memory). We also
experimented with two different cache replacement policies. For
the first policy, namely P1, we followed a LRU strategy. Addi-
tionally, motivated by the intuition that entries with higher levels in
the R-tree will be accessed more frequently, we also used a buffer
that maintains pages in descending order of their tree level (P2).
Figure 6(j) plots the number of I/Os required for different cache
sizes and cache replacement policies. As depicted, regardless of the
memory size and strategy used, both RSA and bRSA algorithms are
more efficient in terms of disk accesses. Further, notice that LRU
was slightly more efficient for the cache size that we used in our
default scenario (12.5% of the data set size).
Sensitivity Analysis vs. Batch Size. We then investigate the per-
formance of our bRSA algorithm with respect to the batch size G.
We set each batch to contain from 5 to 100 candidates and plotted
the results in Figures 7(a)-7(b). As expected, larger batch sizes
result to fewer total I/O operations, since more pruning can be

 30K

 40K

 50K

5 10 20 50 100

N
u
m

b
e
r

o
f

I/
O

s

Batch Size

Product I/Os

Customer I/Os

 0

 10K

 20K

(a) I/Os vs. Batch Size (UN)

 60

 80

 100

 120

 140

 160

5 10 20 50 100

P
ro

ce
ss

in
g
 t

im
e

(s
ec

)

Batch Size

CPU cost
I/O cost

 0

 20

 40

(b) CPU cost vs. Batch Size (UN)

 1

 10

 100

 1000

 10000

5% 20% 40% 60% 80% 100%

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Output Percentage (%)

BRS
RSA

(c) CPU cost vs. number of reported
results (UN)

 0

 20

 40

 60

 80

 100

1% 20% 40% 60% 80% 100%E
x
e
c
u
ti
o
n
 T

im
e
 P

e
rc

e
n
ta

g
e
 (

%
)

Output Percentage (%)

BRS
RSA

(d) CPU cost/Total cost (%) vs.
number of reported results (UN)

Figure 7: Varying the Batch Size (left), Progressiveness of Reported Results (right)

 0

 100

 200

 300

 400

!
"
#
!
"
$
%

!
"
&
#
!
"
$
%

!
"
#
$
'
&
(

!
"
&
#
$
'
&
(

B
R

S
A

!
"
#
!
"
$
%

!
"
&
#
!
"
$
%

!
"
#
$
'
&
(

!
"
&
#
$
'
&
(

B
R

S
AP

ro
ce

ss
in

g
 t

im
e

(s
ec

)

of Products
$01$1

()*+,-./

I/O cost

(a) CPU cost vs. |P| (NBA)

 0

 100

 200

 300

 400

!
"
#
!
"
$
%

!
"
&
#
!
"
$
%

!
"
#
$
'
&
(

!
"
&
#
$
'
&
(

B
R

S
A

!
"
#
!
"
$
%

!
"
&
#
!
"
$
%

!
"
#
$
'
&
(

!
"
&
#
$
'
&
(

B
R

S
AP

ro
ce

ss
in

g
 t

im
e

(s
ec

)

)*+,*(-./+012.

$01$1

(34*5+./

I/O cost

(b) CPU cost vs. |C| (NBA)

!
"
#
$
%
&
'
()
*

!
"
&
#
$
%
&
'
()
*

!
"
&
()
*

!
"
#
$
%
&
'
()
+

!
"
&
#
$
%
&
'
()
+

!
"
&
()
+

!
"
#
$
%
&
'
()
*

!
"
&
#
$
%
&
'
()
*

!
"
&
()
*,
-
.
/
0
12
3
42
5(
6
7

 -44012"890(:;<;70<2"890

=>*?% +*>?% *?@

)13A-B<25(67

'-7<3.0125(67

 0

2222222+CC$

2222222*CC$

2222222DCC$

!
"
#
$
%
&
'
()
+

!
"
&
#
$
%
&
'
()
+

!
"
&
()
+

!
"
#
$
%
&
'
()
*

!
"
&
#
$
%
&
'
()
*

!
"
&
()
*

!
"
#
$
%
&
'
()
+

!
"
&
#
$
%
&
'
()
+

!
"
&
()
+

(c) I/O cost vs. Cache Size (NBA)

!
"
#

!
$
%

&

!
#
$
'
"
(

!
"
#
$
'
"
(

B
R

S
A

&

!
#

!
$
%

!
"
#

!
$
%

&

!
#
$
'
"
(

!
"
#
$
'
"
(

B
R

S
AP
ro

ce
ss

in
g
 t

im
e

(s
ec

)

of Products
1$ 10$)**$

(+,-./01

I/O cost

 0

 4,000

 8,000

 12,000

&

!
#

!
$
%

!
"
#

!
$
%

&

!
#
$
'
"
(

!
"
#
$
'
"
(

B
R

S
A

&

!
#

!
$
%

(d) CPU cost vs. |P| (HOUSE)

B
R

S
A

!
"
#
!
"
$
%

!
"
&
#
!
"
$
%

!
"
#
$
'
&
(

!
"
&
#
$
'
&
(

B
R

S
A

!
"
#
!
"
$
%

!
"
&
#
!
"
$
%

!
"
#
$
'
&
(

!
"
&
#
$
'
&
(

B
R

S
AP
ro

ce
ss

in
g
 t

im
e

(s
ec

)

)*+,*(-./+012.

1$ 10$ 344$

(56*7+./

I/O cost

 0

 4,000

 8,000

 12,000

 16,000

!
"
#
!
"
$
%

!
"
&
#
!
"
$
%

!
"
#
$
'
&
(

!
"
&
#
$
'
&
(

(e) CPU cost vs. |C| (HOUSE)

!
"
#
$
%
&
'
()
*

!
"
&
#
$
%
&
'
()
*

!
"
&
()
*

!
"
#
$
%
&
'
()
+

!
"
&
#
$
%
&
'
()
+

!
"
&
()
+

!
"
#
$
%
&
'
()
*

!
"
&
#
$
%
&
'
()
*

!
"
&
()
*,
-
.
/
0
12
3
42
5(
6
7

 -44012"890(:;<;70<2"890

=>*?% +*>?% *?@

)13A-B<25(67

'-7<3.0125(67

 0

222222+%

222222*%

222222C%

!
"
#
$
%
&
'
()
+

!
"
&
#
$
%
&
'
()
+

!
"
&
()
+

!
"
#
$
%
&
'
()
*

!
"
&
#
$
%
&
'
()
*

!
"
&
()
*

!
"
#
$
%
&
'
()
+

!
"
&
#
$
%
&
'
()
+

!
"
&
()
+

(f) I/O cost vs. Cache Size (HOUSE)

Figure 8: Experiments with Real Data

shared among candidates, whereas the processing cost increases.
Interestingly, when the batch size becomes larger than a thresh-
old, the total processing cost (cost of disk accesses plus CPU time)
increases, due to the growing cost of maintaining all local prior-
ity queues and the significantly more dominance checks required
thereof. As showcased by the experiments, keeping fairly small
batch sizes (∼10 candidates) maximizes the efficiency of bRSA.
Progressiveness. Finally, we compare the progressiveness of RSA
and BRS algorithms on a workload consisting of |Q| reverse skyline
queries. x-axis represents the percentage of reverse skyline results
found so far compared to the total influence score. y-axis plots
the time required to report the corresponding percentage of results,
both in absolute time (Figure 7(c)) and as a percentage of the total
time spent (Figure 7(d)). Both figures demonstrate that RSA is
notably more progressive than BRS, especially for reporting the
first query results. In particular, RSA outputs the first 5% of the
reverse skylines in 1/10th of the time needed by BRS, which can be
particularly important for applications that require a quick response
or when the complete output is not useful.
Experiments with Real Data. Figures 8(a)-8(c) and 8(d)-8(f) re-
port our experimental findings on the NBA and HOUSE data sets
respectively. The results are in accordance with our experiments on
synthetic data sets. Moreover, the performance gains achieved by
RSA are higher in real data sets (especially vs. |C|), partly due to
the higher data dimensionality (5 and 6 dimensions respectively),
which results to more points belonging to the influence set (on av-
erage 196 points in HOUSE data set vs 11 points in UN data set).

7. RELATED WORK
Market research is a systematic, objective collection and anal-

ysis of data about a particular target market by taking into ac-
count factors such as products, competition and customers behav-
ior. The work of [9] proposed formulating several economically
incentivised applications (e.g., potential customers identification,
product feature promotion, product positioning) as optimization
problems taking a data mining perspective. In the context of database
research, DADA [10] was the first of a series of works in the field
proposing various queries by capitalizing on the dominance rela-
tionships among products and customer preferences.

Several works [5, 11, 25, 18, 6, 3] focus on identifying the po-
tential customers of a product. In order to provide an insight on the
product against the competition, [13, 24, 23] address the problem
of discovering and promoting the best product features. Another
practical application is how to design new products, such that they
will maximize the expected utility, a problem known as product po-
sitioning [20, 19, 21, 12, 15]. The utility function may incorporate
various factors such as the number of expected product buyers [19,
21, 12, 15], the actual profit (price minus production cost) [10, 20,
21, 15] or the number and features of other competitive products
[10, 12]. Other works [20, 21] seek profitable packages formed by
combining individual products, e.g., a flight and a hotel room, such
that the profit gain of the package is maximized.

With regards to the number of expected customers, one problem
is how to best model user preferences. One way is to assume that
a weight vector capturing the importance of different product fea-
tures (attributes) has been determined for each customer, through a

preference learning process. Based on this assumption, each prod-
uct is assigned a score by applying the weight vector known for the
user. Then, the products that score higher are those that would be
more attractive to the respective user. This is the approach taken in
top-k queries [7]. [18] tackled the reverse problem of discovering
the most attractive products by introducing reverse top-k queries.

However, the weight vector formulation is often too difficult to
come up with in real life [17]. A more natural way to model prefer-
ences is by allowing users to directly specify their preferred product
attribute values. Taking this approach, both products and user pref-
erences can be represented as points in a multidimensional space.
In such a scenario, different notions of user satisfaction have been
proposed. One option is to allow users to specify the worst accept-
able value for each dimension [15]; all products having better val-
ues from the specified ones are considered as satisfactory. An im-
portant limitation of such a formulation is that it cannot be used for
’subjective’ types of attributes. Further, there is no metric of how
relevant each product is w.r.t. the actual user preferences. Thus,
another option is to measure product attractiveness based on how
close the product attribute values are to the user-preferred ones. In
order to find the k most attractive products for a customer c ∈C we
can issue a kNN(c) query [16] on the product data set. However, in
several real applications it could be hard to find an appropriate dis-
tance function, because different dimensions might have different
weights which depend on the preferences of each user.

With the goal to overcome the limitations of top-k and kNN
queries, skylines have been widely used for multi-criteria decision
analysis and for preference queries. The skyline query returns the
set of not dominated objects, corresponding to the Pareto optimal
set, which will always include the top-1 result for any monotone
preference function. [4] introduces skyline queries in databases,
also presenting various external memory algorithms. In order to
capture subjective attributes, the dynamic skyline [14] returns all
products that are ‘attractive’ according to a user’s preferences.

Viewing the problem from a manufacturer’s perspective, [5] in-
troduces the reverse skyline query, which returns all customers that
would find a product as ‘attractive’, and proposes a branch-and-
bound extension of the BBS algorithm [14] that reduces the search
space. [11] improves upon [5] by providing tighter pruning rules
based on midpoint skylines (Section 2.2) and presents algorithms
for calculating reverse skylines on uncertain data. [25] proposes the
BRS algorithm (Section 2.3), which exploits additional optimiza-
tions for precise data. [6] considers non-metric attribute domains
and proposes non-indexed algorithms to efficiently calculate the in-
fluence set in that case, whereas [22] studies how to process reverse
skylines energy-efficiently in a wireless sensor network.

In this work, we formulate customers identification by follow-
ing a reverse skyline approach, where we consider both subjective
dimensions and competition. We focus on providing a more effi-
cient and progressive algorithm for single-point reverse skylines.
Further, we extend our methods for multiple query points, with ap-
plications to the k-MAC query. The methods proposed in [12, 15]
cannot be applied onto our setting, because they assume the same
product dominance relationships holding for all users and that they
can be calculated by executing only one skyline query. However,
this is not true when each user has his preferred attribute values.

8. CONCLUSIONS
In this work, we studied two classes of queries involving cus-

tomer preferences with important applications in market research.
We first proposed the RSA algorithm for reverse skyline query eval-
uation. We then developed a batched extension of our RSA algo-
rithm that significantly improves upon processing multiple queries
individually, by grouping contiguous candidates, exploiting I/O com-

monalities and enabling shared processing, and applied this batched
extension to solve the k-MAC query. Our experimental study on
both real and synthetic data sets demonstrates that (i) RSA is sig-
nificantly more efficient, scalable and progressive than the BRS al-
gorithm for the reverse skyline problem, and (ii) that our proposed
batched algorithm is the best choice for the k-MAC query.
Acknowledgments This research has been co-financed by the Eu-
ropean Union (European Social Fund - ESF) and Greek national
funds through the Operational Program "Education and Lifelong
Learning" of the National Strategic Reference Framework (NSRF)
- Research Funding Program: Thales. Investing in knowledge soci-
ety through the European Social Fund. The authors would also like
to thank Prof. Dimitris Papadias and Prof. Timos Sellis for their
guidance and support.

9. REFERENCES
[1] http://randdataset.projects.postgresql.org.
[2] J. Bentley, K. Clarkson, and D. Levine. Fast linear expected-time

algorithms for computing maxima and convex hulls. In SODA, 1990.
[3] T. Bernecker, T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz,

S. Zhang, and A. Züfle. Inverse queries for multidimensional spaces.
In SSTD, 2011.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE, 2001.

[5] E. Dellis and B. Seeger. Efficient computation of reverse skyline
queries. In VLDB, 2007.

[6] P. Deshpande and D. P. Efficient reverse skyline retrieval with
arbitrary non-metric similarity measures. In EDBT, 2011.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In PODS, 2001.

[8] D. Hochbaum and A. Pathria. Analysis of the greedy approach in
problems of maximum k-coverage. NRL, 45, 1998.

[9] J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. A
microeconomic view of data mining. Journal of Data Mining and

Knowledge Discovery, 2(4), 1998.
[10] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. Dada: a data cube for

dominant relationship analysis. In SIGMOD, 2006.
[11] X. Lian and L. Chen. Monochromatic and bichromatic reverse

skyline search over uncertain databases. In SIGMOD, 2008.
[12] C.-Y. Lin, J.-L. Koh, and A. L. Chen. Determining k-most

demanding products with maximum expected number of total
customers. TKDE, 2012.

[13] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out in a
crowd: Selecting attributes for maximum visibility. In ICDE, 2008.

[14] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems. TODS, 30(1), 2005.

[15] Y. Peng, R. C.-W. Wong, and Q. Wan. Finding top-k preferable
products. TKDE, 2012.

[16] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD, 1995.

[17] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative
skyline. In ICDE, 2009.

[18] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg. Reverse
top-k queries. In ICDE, 2010.

[19] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis. Identifying
the most influential data objects with reverse top-k queries. PVLDB,
3(1), 2010.

[20] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng.
Creating competitive products. PVLDB, 2(1), 2009.

[21] Q. Wan, R. C.-W. Wong, and Y. Peng. Finding top-k profitable
products. In ICDE, 2011.

[22] G. Wang, J. Xin, L. Chen, and Y. Liu. Energy-efficient reverse skyline
query processing over wireless sensor networks. TKDE, 24(7), 2011.

[23] T. Wu, Y. Sun, C. Li, and J. Han. Region-based online promotion
analysis. In EDBT, 2010.

[24] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in
multi-dimensional space. PVLDB, 2(1), 2009.

[25] X. Wu, Y. Tao, R. C.-W. Wong, L. Ding, and J. X. Yu. Finding the
influence set through skylines. In EDBT, 2009.

Scaling Out Big Data Missing Value Imputations

(Pythia vs. Godzilla)

Christos Anagnostopoulos
School of Computing Science

University of Glasgow, G12 8QQ, Glasgow, UK

christos.anagnostopoulos@glasgow.ac.uk

Peter Triantafillou
School of Computing Science

University of Glasgow, G12 8QQ, Glasgow, UK

peter.triantafillou@glasgow.ac.uk

ABSTRACT

Solving the missing-value (MV) problem with small estima-
tion errors in big data environments is a notoriously resource-
demanding task. As datasets and their user community con-
tinuously grow, the problem can only be exacerbated. As-
sume that it is possible to have a single machine (‘Godzilla’),
which can store the massive dataset and support an ever-
growing community submitting MV imputation requests. Is
it possible to replace Godzilla by employing a large number
of cohort machines so that imputations can be performed
much faster, engaging cohorts in parallel, each of which ac-
cesses much smaller partitions of the original dataset? If so,
it would be preferable for obvious performance reasons to ac-
cess only a subset of all cohorts per imputation. In this case,
can we decide swiftly which is the desired subset of cohorts
to engage per imputation? But efficiency and scalability is
just one key concern! Is it possible to do the above while
ensuring comparable or even better than Godzilla’s imputa-
tion estimation errors? In this paper we derive answers to
these fundamentals questions and develop principled meth-
ods and a framework which offer large performance speed-
ups and better, or comparable, errors to that of Godzilla,
independently of which missing-value imputation algorithm
is used. Our contributions involve Pythia, a framework and
algorithms for providing the answers to the above questions
and for engaging the appropriate subset of cohorts per MV
imputation request. Pythia functionality rests on two pil-
lars: (i) dataset (partition) signatures, one per cohort, and
(ii) similarity notions and algorithms, which can identify the
appropriate subset of cohorts to engage. Comprehensive ex-
perimentation with real and synthetic datasets showcase our
efficiency, scalability, and accuracy claims.
Categories and Subject Descriptors: H. Information
Systems; I.5.3 Clustering.
Keywords: Big data; Missing value; Clustering.

1. INTRODUCTION
Data quality is a major concern in big data processing and

knowledge management systems. One relevant problem in

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’14, August 24–27, 2014, New York, NY, USA.

Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.

http://dx.doi.org/10.1145/2623330.2623615.

data quality is the presence of missing values (MVs). The
MV problem should be carefully addressed, otherwise bias
might be introduced into the induced knowledge. Common
solutions to the MV problem either fill-in the MVs (impu-
tation) or ignore / exclude them. Imputation entails a MV
substitution algorithm (MVA) that replaces MVs in a dataset
with some plausible values. Imputed data can be treated as
reliable as the observed data, but they are as good estima-
tions as the assumptions used to create them.
On the one hand, most computational intelligence and ma-

chine learning (ML) techniques (such as neural networks and
support vector machines) fail if one or more inputs contains
MVs and thus cannot be used for decision-making purposes
[1]. Furthermore, the choice of different MVAs affects the
performance of ML techniques that are subsequently used
with imputed data [2]. On the other hand, the MV problem
abounds: it can be found, for instance, in results from medi-
cal experimentation and chemical analysis, in datasets from
domains such as meteorology and microarray gene monitor-
ing technology [4], and in survey databases [5]. MVs can
occur e.g., due to wireless sensor faults, not reacting experi-
ments, or participants skipping survey questions. Industrial
and research databases include MVs [6], e.g., maintenance
databases have up to 50% of their entries missing [7]. Pa-
tient records in medical databases lack some values; inter-
estingly, a database of patients with cystic fibrosis missing
more than 60% of its entries was analyzed in [8]. Moreover,
gene expression microarray data sets contain MVs, making
the need for robust MVAs apparent, since algorithms for
gene expression analysis require complete gene array data
[9].
Motivations. Given the significance of MVAs, three

notes are in order: Firstly, MVAs which can ensure low
estimation errors are computationally expensive and typi-
cally their performance is largely dependent on dataset sizes.
Secondly, nowadays, datasets can be massive. Even worse,
existing datasets grow significantly with time; it is not sur-
prising that most MVAs in the literature are typically tested
over small-to medium sized datasets. Lastly, as if the scala-
bility limitations imposed by dataset sizes were not enough,
in many applications the user community (e.g., in shared sci-
entific datasets in data centers accessed by scientists from
all over the world) can be very large and thus the MV im-
putation input arrival rates can become high as well. These
facts pose a scalability nightmare.
The scalability gospel (as established by the seminal work

from Google researchers producing the Map-Reduce (MR)
[10] data-access paradigm and systems such as the Google

651

File System [11]) rests on the notion of scaling out: that is,
(i) employ a large number of commodity (off-the-shelf and
thus inexpensive) machines, each storing a much smaller par-
tition of the original dataset, and (ii) access them in parallel.
However, MR is not a panacea, for two reasons. First,

not all complex problems are ‘embarrassingly parallelizable’
and amenable to MR techniques. In particular, there ex-
ist sophisticated MVAs ensuring small errors, which are not
MR-able [12]. Second, in the context of MVAs, even if they
were ‘embarrassingly parallelizable’, not all partitions may
be relevant. It may very well be the case that a number
of the machines hold data that cannot help (or even hurt)
in the MV imputation process. And, obviously, engaging
only a fraction of all machines will introduce large benefits:
First with respect to performance. MV imputation will be
shorter, as these times typically depend on the worst per-
forming machine and with increasing machine numbers the
probability of a mall-performing machine increases. Fur-
ther, overall MV imputation throughput will be higher, as
each imputation will be taxing fewer overall system resources
(processors, communication bandwidth and disks). Second,
with respect to MV estimation errors. In fact, as we shall
formally show later, engaging all machines and their dataset
partitions may actually introduce large additional MV esti-
mation errors.
Goals. In this work, we will consider a stream of MV

inputs (or inputs), i.e., multi-dimensional vectors with some
MVs in certain dimensions, arriving at a data system. Typi-
cally, the system is presented with a batch of data items with
MVs, which must be added to the system after MVs have
been estimated. There are two system alternatives. The
first is based on employing a single machine which stores
the whole of the dataset. We affectionately call this ma-
chine Godzilla. Godzilla can employ any MVA to perform
the MV imputations. As motivated earlier, this approach
suffers from several disadvantages. The second alternative
employs a (potentially large) number of machines, referred
to as cohorts, each storing a partition of Godzilla’s dataset.
Imputation execution engages cohorts in parallel, whereby
each cohort runs an MVA on a much smaller local dataset.
This can introduce dramatic performance improvements. As
an illustration, assuming, say, 50 cohorts and an MVA op-
erating on a dataset of size n with asymptotic complexity
O(n2) (or O(n3); [3], [4]) a scale-out execution is expected
to speedup input processing by a factor of 502 = 2, 500 (or
503 = 125, 000) as such MVA runs in parallel on a dataset of
size 1

50
n. Moreover, this alternative affords the possibility

of accessing only a subset of all cohorts for a given input.
We will not make any restricting assumptions as to specific
characteristics of this system or the method for partitioning
the dataset.
The formidable challenges here entail: (i) for data accu-

racy (estimation-error) reasons, we should ensure that the
subset of cohorts contacted achieve similar, if not smaller es-
timation errors, compared to the errors that Godzilla would
yield; (ii) swiftly determine the subset of cohorts to engage
per imputation, achieving large efficiency/scalability gains.
Contributions. To our knowledge, this is the first study

on scaling out MV imputations. We shall derive fundamen-
tal knowledge regarding meeting the estimation error and
performance goals outlined above. Armed with this knowl-
edge, we shall propose a novel, principally derived frame-
work, Pythia, which offers large performance speed-ups and

better, or comparable, errors to that of Godzilla given a
stream of MV inputs. Pythia’s salient contribution is that,
given an input (of imputation requests), Pythia is able to
predict and engage the appropriate subset of cohorts to em-
ploy per imputation. Pythia’s prediction process relies on
(i) the concept of per cohort-dataset signature, which derives
from the (local) dataset of a cohort and (ii) novel similarity
notions and algorithms which, based on each imputation re-
quest and cohort signatures, can determine the best subset
of cohorts to engage. Finally, we will provide comprehen-
sive experimental evidence substantiating and showcasing
Pythia’s accuracy and performance, using a variety of met-
rics and real and synthetic datasets.
The paper is structured as follows: Section 2 reports on

background and discusses related work, while Section 3 in-
troduces the problem fundamentals of scaling out the MV
imputations. In Section 4 and Section 5 we introduce the
Pythia framework and propose two schemes. In Section 6 we
evaluate our framework and Section 7 concludes the paper.

2. BACKGROUND & RELATEDWORK
2.1 Missing data
Assume a data set X of d-dimensional data points with

some MVs on a certain dimension Xi. Data on Xi are said
to be missing completely at random (MCAR) if the proba-
bility of MV on Xi, q, is unrelated to the value of Xi itself
or to the values of any other dimensions. If data are MCAR,
a reduced sample of X will be a random sub-sample of X ;
MCAR assumes that the distributions of MVs and complete
data are the same. Data on Xi are said to be missing at
random (MAR) if q depends on the observed data, but does
not depend on the MV itself. In MAR, the dimension as-
sociated with MVs has a relation to other dimensions, i.e.,
MVs can be estimated by using the complete data of other
dimensions. It is impossible to test whether the MAR con-
dition is satisfied for X because, since the (actual) values of
missing data are not known, we cannot compare the values
of those with and without missing data to see if they differ
systematically on that Xi. Data on Xi are missing not at
random (MNAR) if q depends on the MVs and, thus, missing
data cannot be estimated by using the existing dimensions;
MNAR is rarely applicable in practice.

2.2 Related work
Missing data hinder the application of many statistical

analysis and ML techniques available in off-the-shelf soft-
ware. To analyze X with MVs, certain MVAs have been
proposed [13]. The simplest method is discarding the data
points with MVs or removing the corresponding dimensions.
Both removals of such points and dimensions result in de-
creasing the information content of X and are applicable
only when (i) X contains a small amount of MVs, and (ii)
the analysis of the remaining complete points will not be
biased by the removal. There are many MVAs varying from
näıve methods, e.g., mean imputation, to some more robust
methods based on relationships among dimensions. In the
dummy variable adjustment, MVs are set to some arbitrary
value. The mean / mode imputation replaces MVs of a di-
mension by the sample mean / mode of all observed values
of that dimension. In hot deck MVA [14], a MV is filled in
with a value from an estimated distribution w.r.t. X . In
the K-nearest neighbors MVA [15], the MVs of a point are
imputed considering the K most similar (observed) points

652

from X . The regression- and likelihood-based MVAs are in-
troduced in [16]. In regression-based imputation [17], the
MVs of a point are estimated by regression of the dimen-
sions corresponding to MVs on the dimensions associated to
the observed values of that point. This approach argues that
dimensions have relationships among themselves; if no rela-
tionships exist among dimensions in X and the dimensions
corresponding to MVs, such MVA will not be precise for im-
putation. Likelihood-based imputation [16] is based on pa-
rameter estimation in the presence of MVs, i.e., X ’s param-
eters are estimated by maximum likelihood or maximum a
posteriori procedures relying on variants of the Expectation-
Maximization algorithm. The multiple imputation MVA
[18], instead of filling in a single value for each MV, re-
places each MV with a set of plausible values that represent
the uncertainty about the actual value to impute. These
multiply-imputed datasets are then analyzed by using stan-
dard procedures for complete data and combining the re-
sults from these analyses. In case of MVs in time series, the
models in [19] (using dynamic Bayesian networks), [20] (us-
ing matrix completion), and [21] (using Gaussian mixtures
clustering) recover MVs in motion capture sequences, vital
signs, and micro-array gene expression streams, respectively.
Furthermore, ML-based MVAs, e.g., decision-trees and rule-
based methods, generate a model from X that contain MVs,
which is used to perform classification that imputes the MVs
(see [2] and the references therein). Finally, the imputation
framework [6] applies most existing MVAs (base methods)
to improve their accuracy of imputation while preserving
the asymptotic computational complexity of the base meth-
ods. The interested reader could also refer to [6], [9] and
[22] (and the references therein) for a comprehensive survey
of the most recent MVAs.

3. PROBLEM ANALYSIS & FUNDAMEN-

TALS
3.1 Definitions & Notations
Definition 1. Given a set X of d-dimensional data points,

X = {x1, . . . ,x|X|}, for each xi we define wi = [wik]
⊤ with

wik = 0 whenever xi’s k-th dimensional value is missing;
otherwise wik = 1. We express xi as (zi, z

m

i), where zi ∈ R
n

denotes observed values and zmi ∈ R
(d−n) denotes MVs, with

n =
∑d

k=1 wik.

Definition 2. Given a finite integer m > 0, Xi is a parti-
tion of X such that X ≡ ∪m

i=1Xi and Xi 6= Xj , i 6= j. Si de-
notes the machine (cohort), which maintains Xi, performs a
MVA over Xi, and is indexed by i, i = 1, . . . ,m. S = {Si}

m
i=1

is the set of all cohorts. The (imaginary) Godzilla S0 assem-
bles all Xi and is capable of performing a MVA over X .

Definition 3. A single MV input on MVA is i = (x,w)
and output is x̂ expressed by (z, ẑm). x̂ ∈ R

d is referred

to as estimate containing ẑm ∈ R
(d−n) of imputed MVs by

MVA. If xa is the actual vector, the absolute reconstruction
error is e =‖ x̂− xa ‖; ‖ x ‖ denotes the Euclidean norm.

3.2 MVAs in our framework
As our contributions are independent of any particular

MVA, we overview two popular and representative MVAs as
would be used in our framework. To exemplify our frame-
work and methods, we employ the weighted K-nearest neigh-
bors (KNN) [15] and sequential multivariate regression im-

putation method (REG) [17]. These MVAs are widely used
for multivariate imputation in many scientific areas.

3.2.1 Weighted K-nearest neighbors imputation

KNN is widely used [22] since it has many attractive char-
acteristics: it is a non-parametric method, which does not
require the creation of a predictive model for each dimension
with MV and takes into account the correlation structure of
the data. KNN is based on the assumption that points close
in distance are potentially similar. For given input (xi,wi)
with xi = (zi, z

m

i), KNN calculates a weighted Euclidean
distance Dij between xi and xj ∈ X such that

Dij =

(

∑d
k=1 wikwjk(xik − xjk)

2

∑d
k=1 wikwjk

)1/2

.

The MV of the k-th dimension of xi (i.e., zm

ik of zmi) is
estimated by the weighted average of non-MVs of the K

most similar xj to xi, i.e., ẑ
m

ik =
∑K

j=1

D−1
ij

∑

K
v=1D

−1
iv

xjk. KNN

is typically used with K=10,15,20; theses values have been
favored in previous studies [22], [23]. (In our experiments
we will use K=10).

3.2.2 Sequential multivariate regression imputation

REG estimates the MVs by fitting a sequence of regression
models and drawing values from the corresponding predic-
tive distributions. Let Y1, . . . , Yd−n denote d−n (dependent)
variables with MVs, sorted in ascending order to the num-
ber of MVs and X = [X1, . . . , Xn]

⊤ denote n (predictor)
variables with no MVs. REG consists of c rounds. In round
1, step 1, we regress the variable with the fewest number
of MVs, Y1, on X imputing the MVs under the appropri-
ate regression model; e.g., if Y1 is continuous, categorical,
or binary then ordinary least squares, generalized logit, or
logistic linear regression is applied, respectively. In step 2,
after estimating the regression coefficients β of the model
from step 1, we use the estimated β̂ to impute the MVs of
Y1. In step 3, we update X by appending Y1 and continue to
variable, say Y2, with the next fewest MVs and repeat the
process using updated X as predictors until all the variables
have been imputed. That is, Y1 is regressed on U = X; Y2
is regressed on U = (X, Y1), where Y1 has imputed MVs;
Y3 is regressed on U = (X, Y1, Y2), where Y1 and Y2 have
imputed MVs, and so on. Steps 1 to 3 are then repeated
in rounds 2 through c, modifying the predictors set to in-
clude all Y s except the one used as the dependent variable.
Hence, regress Y1 on X and Y2, . . . , Yd−n; regress Y2 on X
and Y1, Y3, . . . , Yd−n, and so on. Repeated cycles continue
for c rounds, or until stable imputed MVs occur.

3.3 On Cohort vs. Godzilla errors
We consider a discrete time domain t ∈ T and at instance

t = 1, 2, . . ., we are given input i[t]. Assume that Godzilla S0
exists and is capable of invoking a certain MVA for i[t]. At
first thought, one could claim that, since Godzilla has global
knowledge (i.e., the union of all Xi), the corresponding esti-
mate x̂G[t] would be better (in terms of reconstruction error
eG[t]) than x̂i[t] of each Si (with error ei[t]). However, this
does not always hold true. It depends on the probability
density function (pdf) of {Xi} and the (possibly unknown)
pdf of z[t], zm[t], and w[t].

653

Theorem 1. Let eG and ei denote the estimate error of
Godzilla S0 and cohort Si. It is not always true that eG <
ei, ∀Si ∈ S.

Proof. To prove Theorem 1, suppose its converse were
true. Then it suffices to show counterexamples. Consider
the mean imputation (MEAN) and the KNN. Consider that
points in Xi are normally distributed, N (µi, σ

2
i), with mean

µi and variance σ
2
i and |µi−µj | >> 0, i 6= j. Evidently, S0’s

data set X = ∪m
i=1Xi follows the mixture N (µ, σ

2) with µ =
∑m

i=1 aiµi, σ
2 =

∑m
i=1 ai((µi − µ)2 + σ2i); ai > 0,

∑m
i=1 ai =

1. If we were told that all (both observed z and unobserved
zm) inputs followed N (µj , σ

2
j) for some j, 1 ≤ j ≤ m then we

should have engaged only Sj thus yielding ej < eG in case
of MEAN, and ej = eG in case of KNN (for K << |Xj |) and
avoiding engaging all Si.

Furthermore, consider that all Xi follow exactly the same
distribution; consequently, S0’s X follows the same distri-
bution. Then, regardless of any knowledge on the pdfs of
inputs, we could randomly select one cohort from S, thus,
yielding ei = eG, ∀Si ∈ S, and avoiding engaging all cohorts.
Example 1: Consider m = 3 cohorts S1, S2, S3 with

2D datasets Xi, corresponding joint pdfs f1, f2, f3 and a
Godzilla S0 with X = ∪3i=1Xi whose joint pdf fG is shown in
Fig. 1(a). Assume REG, KNN, and MEAN MVAs. We are
given a stream of 104 inputs i[1], . . . , i[t] and assume that
we know the pdf of each i[t], i.e., its observed and MVs are
known to be produced either by f1, f2, or f3. For each i[t],
we invoke a MVA (a) on S0 and obtain eG[t], (b) only on
the cohort Sj with the same pdf fj as that of the input and
obtain ej [t], and (c) on all cohorts, aggregate their estimates
by taking their average and obtain eall[t]. Fig. 1(b) shows
the root-mean-square error (RMSE) eG, ej , and eall for all
MVAs. We observe that the knowledge of the pdf of each
input results to a significantly lower error ej , because we
engage only the cohort Sj corresponding to the same pdf as
that of the input. Godzilla produces a relatively high eG (for
all MVAs) with high computational cost due to processing
high volumes of data. Moreover, the parallel execution of
MVAs over all cohorts for each input produces a high eall.
Unfortunately, the pdf of an incoming input is not known,
especially, the pdf of the MVs is unknown since they are
never observed. Moreover, we can achieve high parallelism
with concurrently engaging all cohorts but, we also obtain
high error, because there might be a subset of cohorts that
adversely contribute to the aggregated estimate, e.g., due to
the fact that the corresponding pdfs of their data sets are
different from those of the inputs (see Example 2). Note,
however, that in the case of MEAN, eG = eall.

3.4 On computing good cohort subsets
Here we show: (i) that computing the best cohorts subset

is computationally hard, (ii) that even if an efficient heuristic
can be found, it would not be desirable for our purpose since
it would require communication with all cohorts, hence, an-
other approach is needed, like our signature-based prediction
approach and (iii) that as exemplified using our reference
popular MVAs, it is highly beneficial to engage only a good
cohort subset per imputation. The above showcases thus
the traits and benefits of our approach.
In our framework, we utilize a node called Pythia that at-

tempts to predict the best cohorts subset per input. Pythia
receives input i[t] = (x[t],w[t]) with 0 < n[t] =

∑d
k=1 wk[t] <

d. In the remainder, the time index t is omitted for the
sake of readability. Of course, Pythia can, trivially, en-
gage all cohorts in parallel. Each cohort Si locally pro-
duces an estimate x̂i (through MVA invocation) and pro-
vides it to Pythia. Then, Pythia takes their average value
x̂ = 1

m

∑m
i=1 x̂i. Let us denote such method as the All Co-

horts Method, notated by ACM, so to differentiate it from
Pythia’s sophisticated methods. ACM implies that all co-
horts are equal candidates and available for providing an
estimate. It would have been preferable if Pythia could en-
gage a subset S ′ ⊂ S of cohorts whose average estimate
x̂′ = 1

|S′|

∑

Si∈S′ x̂i would be equal to x̂, or more interest-

ingly, if Pythia could engage the minimum subset of cohorts
whose average estimate is close to x̂ for each input.
Determining the minimum cohorts subset whose aggregate

estimate is close to x̂ calls to mind the Subset Sum Problem
(SSP) [24]: Consider a pair (I, s), where I is a set of m > 0
positive integers and s is a positive integer. SSP asks for a
subset of I whose sum is closest to, but not greater than, s.
SSP is NP-hard [24]. Consider now the following problem,
referred to as Minimum Subset Average Problem (MSAP).

Problem 1. (MSAP) Given (I, s), find the minimum sub-
set I′ with average s′ subject to ⌊s′⌋ = s or ⌈s′⌉ = s (C1).

Theorem 2. MSAP is NP-hard.

Proof. If there is a polynomial-time algorithm for MSAP,
then a polynomial-time algorithm can be developed for SSP.
Assume there exists a polynomial algorithm A(I, s) that
solves MSAP, i.e., A(I, s) finds in polynomial time the mini-
mum subset I′ subject to constraint C1 in Problem 1. Then,
A(I, s) can be used to solve SSP with (I,ms), m = |I|.
In general, any solution B(I, s) of SSP with (I, s) can be
formulated as Algorithm 1. If the complexity of A(I, s)
is a polynomial Q(m) then the complexity of B(I, s) is
O(mQ(m)). But, this implies that there is a polynomial-
time algorithm for SSP. Hence, no polynomial-time algo-
rithm exists for MSAP.

ALGORITHM 1: B(I, s)

Input: I, s
Output: I′

for 1 ≤ k ≤ |I| do
call A(I, s

k
);

If a subset I′ of I with k elements is found, whose
elements have an average k′ such that ⌊k′⌋ = s/k or
⌈k′⌉ = s/k Then return I′

end

Theorem 3. Given input i, the problem of finding the
minimum subset S ′ ⊂ S of cohorts, whose average estimate
x̂′ gives the same reconstruction error as x̂ is NP-hard.

Proof. Let e =‖ x̂− xa ‖ and e′ =‖ x̂′ − xa ‖. In order
to show that the problem of finding the minimum subset
S ′ with e′ = e is NP-hard, it suffices to show that finding
the minimum subset S ′ ⊂ S of cohorts such that ‖ x̂′ ‖=‖
x̂ ‖ subject to C1 is NP-hard. Consider the set I0 = {⌊‖
x̂i ‖⌋}mi=1, and I1 = {⌈‖ x̂i ‖⌉}mi=1, ‖ x̂i ‖> 0, ∀i. Since
MSAP, which deals with integers is NP-hard from Theorem
2, MSAP with (I0, ⌊‖ x̂ ‖⌋) and (I1, ⌈‖ x̂ ‖⌉) is also NP-
hard.

SSP and MSAP are NP-hard, however, one is often satis-
fied with an approximate, sub-optimal solution, i.e., in poly-
nomial time; see [25] for SSP. Nevertheless, even if Pythia

654

(a) Joint pdf
fG(X1, X2)

0

1

2

3

4

5

6

7

8

R
M
S
E

eG
ej
eall

MEAN KNN REG

(b) RMSE using
MEAN, KNN, REG

0 5 10 15 20 25 30
0

10

20

30

40

50

60

order statistic index

R
M
S
E

{Qi}
eG

(c) RMSE using KNN

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

order statistic index

R
M
S
E

{Qi}
eG

(d) RMSE using REG

Figure 1: (a) Joint pdf; (b) RMSE eG, ej, eall using MEAN, KNN and REG for m = 3 in Example 1; (c-d)
RMSE of Godzilla and order statistics Qi of ACM using KNN and REG for m = 30 in Example 2.

were able to use such heuristic to find the minimum set S ′

for given input (let m be small) then this would still not
be preferable given our goals. That is because, in order to
obtain S ′ for a given input, Pythia would firstly have to en-
gage all cohorts and consequently, based on their estimates,
produce S ′. What we want is for Pythia to guess/predict
the most appropriate S ′, which gives the same or, hopefully,
smaller reconstruction error than that of S without having
to access all cohorts! For instance, this guess can be in-
terpreted as follows: cohort Si ∈ S might consider z (of
input i) as an observation which is deemed unlikely w.r.t.
Xi. Based on the fact that a MVA highly depends on Xi, Si
will probably provide a bad estimate for i (w.r.t. ei). Were
Pythia capable of predicting the unsuitability of Si provid-
ing a good estimate before engaging Si then Pythia could
have excluded Si from S ′.
The task of predicting S ′ per input involves the following

issues: (a) the joint pdf of the MVs is evidently unknown
since the actual values of zm are not observed; (b) it is not
feasible to identify the joint pdf that generates z, since we
have only one sample from this at a time; (c) it is not suitable
to assume that z is produced by a certain pdf at time t,
which remains also the same for subsequent z[τ], τ > t. This
is getting more difficult when dealing with non-stationary
distributions of z and w, which is not a rare situation.
Example 2: Consider m = 30 cohorts. We are given a

stream of 104 inputs where the joint pdf of each input is un-
known. For each input, we invoke a MVA (KNN and REG)
on Godzilla and on all cohorts in parallel, and aggregate
their estimates (ACM). For each input, we obtain the order
statistics Q1 = mini{ei}, . . . , Q30 = maxi{ei} of the corre-
sponding errors of all cohorts and plot their average values
in Fig. 1(c-d); the eG is shown for comparison. We can ob-
serve that more than 40% of cohorts provide lower error to
that of Godzilla for KNN and REG. This indicates that it is
of high importance to predict such subset of cohorts for each
input while knowing neither the pdfs of the cohorts’ sets nor
the pdf of each input. Note that ACM in this case produces
a higher average error than even Godzilla. Furthermore, we
observe that for each input there is an ideal cohort that gives
the minimum error; note that Q̄1 is 93% / 95% smaller than
eG for KNN / REG. An ideal Pythia has to predict S

′ hope-
fully including the ideal cohort and/or those Si with ei < eG
for each input. We now formulate our problems.

Problem 2. Determine what information each Si ∈ S a-
priori must convey to Pythia in order to predict whether
Si is suitable for providing a (local) good estimate x̂i given

an input, i.e., whether Si should be a member of S
′. This

information is referred to as the signature Pi of Xi.
Problem 3. Determine how signatures {Pi}

m
i=1 are updated

for each input.

4. THE PYTHIA FRAMEWORK
Pythia aims to solve the above problems. Predicting S ′

for each input, based on per-cohort signatures, avoids the
fundamental problems of NP-hardness of exact solutions and
of the need to on-the-fly engage all cohorts for approximate
heuristic solutions.
Each cohort Si constructs a signature Pi from Xi. Pi

reflects the current structure of data points in Xi. The idea
behind a signature is that Si is engaged for a given i once
x can be ‘explained’ through Pi. Si provides its (locally)
created Pi to Pythia, which stores all signatures forming
P = {Pi}

m
i=1. Figure 2(a) pictorially depicts the framework’s

operation. The operation of the framework is as follows:
Given i,

1. Pythia predicts S ′ ⊆ S w.r.t. P
2. Pythia then engages only the cohorts from S′ sending

i to them.
3. Each Si ∈ S ′

(a) invokes a MVA and
(b) provides its estimate x̂i to Pythia.

4. Pythia constructs the aggregate estimate x̂ that is sent
to cohorts from S ′.

5. Each Si ∈ S ′ can exploit x̂ for updating its Pi.
6. Pythia uses x̂ for updating P.

4.1 Signatures
In this work, Pi refers to a clustering structure over Xi pro-

viding a set of representative points (clusters) Ci. Each co-
hort Si ∈ S employs the Adaptive Resonance Theory (ART)
[26], an unsupervised learning model from the competitive
learning paradigm, in order to locally construct Pi over Xi.
In ART, whose algorithm is shown as Algorithm 2, each
xk ∈ Xi is processed by finding the nearest cluster c

∗ ∈ R
d

to xk, i.e., c
∗ = argminc∈Ci ‖ c − xk ‖, where Ci is the set

of clusters. Then, it is allowed xk to modify/update c
∗ only

if c∗ is sufficiently close to xk (c
∗ is said to ‘resonate’ with

xk) i.e., if ‖ c
∗ − xk ‖≤ ρi for some vigilance ρi > 0. In this

case, c∗ is updated through the rule c∗ ← c∗ + ηi(xk − c∗),
where ηi ∈ (0, 1) is a learning rate, which gradually de-
creases. Otherwise, i.e., ‖ c∗ − xk ‖> ρi, a new cluster c is
formed handling xk such that c = xk and Ci ← Ci ∪ {c}.

Definition 4. Cohort Si’s signature Pi over Xi is the triple

Pi = 〈Ci, ρi, ηi〉. (1)

655

ALGORITHM 2: ART algorithm at cohort Si

Input: Xi, ηi, ρi
Output: Ci
Ci = {x1};
for 1 < k ≤ |Xi| do

b∗ =‖ c∗ − xk ‖= minc∈Ci ‖ c− xk ‖;
if b∗ > ρi then

Ci ← Ci ∪ {xk};
else

c∗ ← c∗ + ηi(xk − c∗);
end

end

Definition 5. We say that x is a member of Pi, notated
x ∈ Pi, iff minc∈Ci ‖ c− x ‖≤ ρi; otherwise, x 6∈ Pi.

The statement ‘x ∈ Pi’ denotes that there is at least one
c ∈ Ci such that x is placed close to c with distance less
than ρi, for instance, the closest cluster c

∗ to x. The more
clusters c ∈ Ci satisfy the criterion ‖ c− x ‖≤ ρi, the more
appropriate Ci is for x. In this sense, if x ∈ Pi then x can
be represented by at least one cluster from Xi. Based on
this intuition, if x ∈ Pi, cohort Si provides a rather good
estimate for some missing parts of x compared to a cohort
Sj associated with a Pj for which it holds true that x 6∈ Pj .
The latter case indicates that no cluster from Cj can be a
representative point for x.
Since ρi represents a threshold of similarity between points

and clusters, thus, guiding ART in determining when a new
cluster should be formed, it should depend on Xi. In order
to give a physical meaning to ρi, it is expressed through a set
of percentages αk ∈ (0, 1) of the ranges between the lowest
xmink and highest xmaxk values of each dimension k of points in
Xi, k = 1, . . . , d. Let ri = [(x

max
1 −xmin1), . . . , (xmaxd −xmind)]⊤

and the diagonal d × d matrix A with A[k, k] = αk. Then
ρi =‖ Ari ‖. High αk values result to a low number of
clusters and vice versa. Each Si determines a ρi over Xi,
creates Pi through Algorithm 2, and sends Pi to Pythia.
Note: when dealing with mixed-type data points, e.g.,

consisting of categorical, binary, and continuous attributes,
we can adopt appropriate distance metrics [27] for the dis-
tance between xk and xl instead of using the Euclidean
distance ‖ xk − xl ‖; this does not spoil the generality of
signature creation.

������

!"##"$%&&'()*+

������

x,
x-x.

/0��"(1$2*�
+$%(%+3&4�����#

(a) Pythia

0 20 40 60 80 100
0

5

10

15

20

25

30

35

m

en
g
a
g
ed

co
h
o
rt
s

DS
D1
D2

(b) Number of en-
gaged cohorts

Figure 2: (a) Inputs with MVs, Pythia and engaged
cohorts; (b) Engaged cohorts against m (COE).

4.2 Cohort prediction schemes
Up to this point, we have shown how to use signatures as

a guiding light to select appropriate cohorts for MV impu-

tations. Now, our concern is twofold: MV imputations must
be (i) low cost and (ii) high accuracy. Low cost (once signa-
ture processing is performed) refers to the communication
cost between Pythia and cohorts and to the cost of run-
ning MVAs at cohorts. High accuracy refers to low RMSE.
Therefore, we present algorithms with these in mind.

4.2.1 Cost-aware algorithm: Top-K Cohort scheme

For simplicity we present the top-1 (Best) Cohort (BC)
scheme, i.e., K = 1. Pythia is not involved in producing the
(final) estimate x̂, instead, only one cohort (best cohort) is
engaged for doing this locally. Pythia communicates only
with the best cohort, which runs the MVA, thus, this opti-
mizes our cost metric. Given i, Pythia determines the best
cohort S∗ ∈ S with P ∗ = 〈C∗, ρ∗, η∗〉 such that (A1) c∗ =
argminc∈∪m

i=1Ci
‖ c−z ‖ and c∗ = argminc∈C∗ ‖ c−z ‖, i.e.,

c∗ ∈ C∗ is the closest cluster to z among all clusters from
all signatures, and (A2) z ∈ P ∗. Note that z ∈ R

n with

0 < n =
∑d

k=1 wk < d provided that x contains d− n MVs.

In order to evaluate ‘z ∈ P ∗’ Pythia calculates ρ∗(n) ≤ ρ∗

associated with the n dimensions of r∗ corresponding to the
n non-MVs. Then, it checks if ‖ c∗ − z ‖≤ ρ∗(n) dealing
only with the n dimensions of c∗. Pythia engages only S∗,
which produces the final x̂. If there is no cohort that satis-
fies criteria A1 and A2, BC engages the cohort that satisfies
only criterion A1. If K > 1 one can repeat the above criteria
for the top K cohorts ranked with the distance between the
corresponding c∗j and z, 1 ≤ j ≤ K < m. In this case the
final x̂ is produced by aggregating all x̂j .

4.2.2 Accuracy-aware algorithm: Cohorts Outlier
Elimination scheme

Cohorts Outlier Elimination (COE) trades off additional
cost for improving our other metric, accuracy. Given i,
Pythia checks whether z ∈ Pi. This is achieved once Pythia,

for each cohort Si, calculates ρ
(n)
i ≤ ρi associated with the

n dimensions of ri corresponding to the n non-MVs. If

‖ c∗i − z ‖≤ ρ
(n)
i (dealing only with the n dimensions of c∗)

with c∗i = argminc∈Ci ‖ c− z ‖ then S ′ ← S ′ ∪ {Si}. Once
S ′ is determined with ℓ = |S ′| ≤ |S| = m, Pythia engages
only cohorts from S ′ and obtains their corresponding esti-
mates x̂i, i = 1, . . . , ℓ. The aggregate estimate x̂ determined
by Pythia is

x̂ =
∑

Si∈S′′

x̂ibi , bi =
‖ z− c∗i ‖−1

∑

Sj∈S′′

‖ z− c∗j ‖−1
, (2)

where bi is the weight for estimate x̂i normalized by the
sum of inverse distance from the closest cluster c∗i to z from
cohort Si ∈ S ′′. The set S ′′ ⊆ S ′ contains cohorts Si ∈ S ′

whose estimates are not considered outliers in E = {‖ x̂1 ‖
, . . . , ‖ x̂ℓ ‖}. This is achieved by computing the statistic

ui,E =
| ‖ x̂i ‖ −median(E)|

mad(E)
(3)

for each ‖ x̂i ‖∈ E and then considering x̂i as outlier if
ui,E exceeds a certain cutoff, usually 2.5 or 3.0 [28]. The
median(E) and mad(E) is the sample median and median
absolute deviation about the median of E , respectively. Pythia
provides x̂ to each Si ∈ S ′′ for updating their signatures; see
Section 5.1. If S ′ = ∅, Pythia engages all cohorts; if S ′′ = ∅,
Pythia engages all cohorts from S ′.

656

4.3 Pythia asymptotic complexity
In COE, given i Pythia evaluates ‘z ∈ Pi’, ∀Pi ∈ P, i.e.,

it performs one nearest neighbor (1NN) search for each Pi

over Ci. We adopt a d-dimensional tree structure [31] for
each Pi over the clusters of Ci. Let ξ = 1

m

∑m
i=1 |Ci| be the

average number of clusters in signature Pi. The correspond-
ing time complexity per input i in COE is O(md log(ξ)). In
BC, we also adopt a d-dimensional tree structure over all
clusters from all signatures in P. Given i, Pythia performs
a 1NN search with O(d log(mξ)) time since it searches over
all clusters from all signatures ∪m

i=1Ci. COE and BC require
O(mdξ) space. Pythia requires O(ℓ) and O(1) communica-
tion with cohorts from S ′ and the best cohort in COE and
BC schemes, respectively.

5. PYTHIA SIGNATURE UPDATE

5.1 COE signature update
Once Pythia has produced x̂ given an input, it updates

P. Only Pi ∈ P, which correspond to cohorts Si ∈ S ′′,
need to be updated. The update of Pi is based on the rule
c∗i ← c∗i + ηi(z− c∗i) where c

∗
i = argminc∈Ci ‖ z− c ‖, i.e.,

only the dimensions of c∗i are modified, which correspond to
the n dimensions of the non-MVs of x. This denotes that
no new clusters at Pi are formed after the update w.r.t. x̂,
since z ∈ Pi. The exact update can be locally reflected by
Si ∈ S ′′ to its signature in order to be secured against a
Pythia break-down situation. The magnitude of change in
Pi w.r.t. x̂ is δi = ηi ‖ z− c∗i ‖.
Let the sum involving the y moments of the reciprocals of

binomial coefficients F
(y)
x =

∑x
k=0 k

y
(

x
k

)−1
for non-negative

integers x, y. From [29] we obtain that F
(0)
x = x+1

2x+1

∑x+1
k=1

2k

k

and F
(1)
x = x

2
F
(0)
x .

Theorem 4. The expected magnitude of change in Pi,

E[δi|Si ∈ S ′′], in COE is bounded above by δmaxi = ηiρi(F
(0)
d −

2) and δmaxi ∼ (2
d−1

− 1
2d−1

)ηiρi for very large d.

Proof. Consider input i with 1 ≤ n ≤ d − 1 non-MVs
and Si ∈ S

′′. The probability of choosing a subset of n out

of d dimensions corresponding to non-MVs is
(

d
n

)−1
. The ex-

pected magnitude of change of Pi is E[δi] =
∑d−1

n=1

(

d
n

)−1
ηi ‖

z − c∗i ‖≤
∑d−1

n=1

(

d
n

)−1
ηiρ

(n)
i ≤

∑d−1
n=1

(

d
n

)−1
ηiρi = (F

(0)
d −

2)ηiρi. The asymptotic expansion of F
(0)
d ∼ 2 + 2

d−1
−

1
2d−1

as d → ∞ (proved in [30]). Hence, δmaxi ∼ (2
d−1

−
1

2d−1
)ηiρi.

Theorem 5. The expected magnitude of change in P,

E[δ], in COE is bounded above by δmax = ηmaxρmax(F
(1)
m −

1)(F
(0)
d − 2) and δmax ∼ (m − 1)(2

d−1
− 1
2d−1

)ηmaxρmax for

very large m and d, where ηmax = max{ηi}
m
i=1, ρmax =

{ρi}
m
i=1.

Proof. The probability that a subset S ′′ of ℓ cohorts is

determined by Pythia is
(

m
ℓ

)−1
. Hence (from Theorem 4),

E[δ] ≤
m
∑

ℓ=1

(

m

ℓ

)−1 ℓ
∑

i=1

d−1
∑

n=1

(

d

n

)−1

ηiρi

≤ η
max

ρ
max

m
∑

ℓ=1

ℓ

(

m

ℓ

)−1

(F
(0)
d − 2)

= η
max

ρ
max(F (1)m − 1)(F (0)d − 2)

Since limm→∞
F
(1)
m

m
→ 1 (Theorem 11; [29]) and from Theo-

rem 4, we obtain δmax ∼ (m− 1)(2
d−1

− 1
2d−1

)ηmaxρmax.

5.2 BC signature update
The best cohort S∗ updates its signature w.r.t. x̂ as de-

scribed in Section 5.1, with magnitude of change bounded
by δ∗max (Theorem 4). Note that the change in S∗’s sig-
nature is not reflected at Pythia’s P and specifically at the
corresponding P ∗ ∈ P.

Theorem 6. The expected magnitude of change in P,

E[δ], in BC is bounded above by (F
(0)
d − 2)ηmaxρmax.

Proof. Each Si ∈ S is equally probable to be selected
by Pythia as the best cohort given an input. Hence, from

Theorem 5 we obtain E[δ] ≤
∑m

i=1
1
m
(F
(0)
d −2)ηiρi ≤ (F

(0)
d −

2)ηmaxρmax.

Pythia determines a frequency ∝ (F (0)d − 1)ηmaxρmax for
a batch update of P by asking from all (previously engaged
as best) cohorts to send their updated signatures changes
(referring only to modified clusters), provided that they have
not changed from the previous batch update. However, a
batch update can be avoided once the best cohort sends the
final estimate to Pythia for updating P.

6. PERFORMANCE EVALUATION

6.1 Experiments
Setup. We conducted an extensive series of experiments

to assess the performance of Godzilla, ACM and Pythia’s
schemes COE and BC on two real datasets (D1 and D2)
and a synthetic dataset (DS). Real datasets are adopted
from the UCI Machine Learning Repository [32]. D1 con-
tains |X | = 5 · 105 real valued vectors of d = 90 correspond-
ing to audio features. D2 contains |X | = 5 · 104 real val-
ued vectors of d = 384 corresponding to features extracted
from Computed Tomography images. Each vector of DS
is a 20-dimensional point with the first fifteen dimensions
randomly sampled from a Gaussian mixture of five compo-
nent Gaussian pdfs with equal mixture weights and mean
values of each component randomly selected from the uni-
form distribution U(0, 15). The other five dimensions are
drawn, independently, from the univariate Gaussian dis-
tribution N (0, 1). The first fifteen dimensions are infor-
mative dimensions, while the rest dimensions are random
noises artificially added to test Pythia’s capability of pre-
dicting S′. For each dataset, we synthetically produce MVs
from each xt for t = 1, . . . , T as follows: each dimension
k = 1, . . . , d from xt is randomly and independently marked
as missing with MV probability q. In this case, we expect
|X |

∑d−1
k=1

(

d
k

)

qk(1− q)d−k points with MVs; we exclude the
cases of missing all dimensions or none. We set q = 0.3,
which is a relatively high probability of MVs per dimen-
sion, thus, being able to test Pythia’s robustness in terms
of accuracy. On average, a signature Pi contains 0.32% of
points of cohort’s set Xi (this amount refers to the number
of clusters stored in Pythia) using ART with initial learning
rate η = 0.2, which gradually decreases. Moreover, we set
the range percentage αk = α = 0.1 for all dimensions in
order to construct ρ. We run all experiments 100 times and
took their average values for all performance metrics, with
a stream of T = 1000 inputs. Pythia’s schemes and MVAs

657

(Section 3.2) were written in Matlab. Table 1 summarizes
the parameter values used in our experiments.

Parameter Notation Value/Range
d dimensions {20,90,384}
α vigilance range pct. 0.1
η init. learning rate 0.2
q MV probability 0.3
m number of cohorts {5, 10, 20, 50, 100}
T number of inputs 1000

Table 1: Experiment parameters.
Performance metrics. Our metrics include efficiency

metrics and accuracy metrics. A scale-out system consist-
ing of m cohorts affords two types of parallelism: intra-
imputation and inter-imputation parallelism. The former
refers to the capability of processing any single imputa-
tion using a number of cohorts in parallel, each accessing
a dataset partition. The latter refers to the systems’ capa-
bility of running in parallel a number of imputations, each of
which engages a subset of cohorts. It is crucial to note that
Godzilla affords neither of these parallelism types and that
ACM affords only intra-imputation parallelism. This latter
scenario is particularly important as typically a system is
presented with a (large) batch of (vector-) inputs, each with
missing values and the goal is to impute all input vectors in
the batch as quickly/scalably as possible. Given this, our
efficiency metrics embody various efficiency aspects impact-
ing scalability. First, we report on imputation latency, de-
fined as the time (in seconds) a system (i.e., Godzilla, ACM,
Pythia-COE, or Pythia-BC) requires to impute a single in-
put (vector) using a MVA. The rate of latency increase as
dataset sizes grow is a strong aspect of scalability. In ACM,
latency refers to the time a single cohort requires to im-
pute a single input on its local dataset partition, assuming
m cohorts run in parallel. In Pythia, latency refers to the
time for COE / BC to predict best cohort(s) S ′′/S∗, plus
the latency to run MVA in parallel at cohort(s). Imputa-
tion speedup is defined as the ratio of Godzilla latency over
ACM / COE / BC latency; it indicates how much a system
is faster than Godzilla for a single imputation. Imputation
throughput is defined as the rate of imputations delivered by
a system (number of imputations per second) given a finite
stream (batch) of T inputs: with this we capture the inter-
imputation parallelism, in addition to the intra-imputation
parallelism.
We measure imputation accuracy using the RMSE metric

(root-mean squared difference) between xa and x̂:

RMSE =

(

1

T

T
∑

t=1

∑d
k=1 wtk(x(a)tk − x̂tk)

2

∑d
k=1 wtk

)1/2

. (4)

6.2 Performance results

6.2.1 Imputation efficiency

Fig. 3(a-b) shows the imputation speedup against m for
all systems using KNN and REG over D2. Similar results
are obtained for D1 which are omitted due to space limita-
tions. Overall ACM, COE and BC achieve an almost linear
speedup using both REG and KNN. The speedup of COE
and BC drops slightly as m increases since higher m implies
more signatures to be processed at Pyhtia.

Fig. 3(c-d) shows the latency of Godzilla and Pythia-
COE (Pythia-BC curves are very close to Pythia-COE) us-
ing REG when m = {10, 50, 100} and the size of D1 and D2
varies from 5000 to 300,000 points; (similar results exist for
KNN, but are omitted for space reasons). Godzilla struggles
with increasing dataset sizes: with over 200,000 and 100,000
points, a high latency over 20s and 35s per input for D1 and
D2, respectively, is observed. Pythia scales nicely with its
latency per input increasing linearly. Moreover, when the
number of cohorts increases, we obtain a sublinear increase
in latency. Pythia can easily handle large datasets if more
cohorts are available to scale to big data missing values.
Fig. 4(a-b) shows the throughput of each system indicat-

ing the capability of handling a stream of T inputs. COE
engages S′ for an input (or S∗ in case of BC) thus the other
cohorts (∈ S \ S′) are available to be potentially engaged
for other inputs in the stream. Now, recall Fig. 2(b) which
shows the average number of cohorts engaged by COE per
input for all data sets. For m = 100, about 26% of cohorts
(average for all data sets) are engaged per input. Obviously,
the distribution of the engaged cohorts plays an important
role. That is, for a stream of inputs heading for imputation,
we achieve very high throughput when (i) |S′| is relatively
small (in case of COE) and (ii) different imputations en-
gage different subsets of cohorts. On the other hand, in
ACM, all cohorts are concurrently occupied by the same in-
put. The impact of the cohort engagement policy of Pythia’s
schemes on the throughput is illustrated in Fig. 4(a-b) us-
ing REG, where the y-axis is plotted in logarithmic scale
for readability. (Similar results exist with KNN). Pythia
can handle up to tens of thousands of inputs per second,
compared to ACM and Godzilla, which deal with tens of
inputs and a few inputs, respectively. As expected, Pythia
achieves higher throughput as m increases, as the possibili-
ties for intra-imputation parallelism increase. However, note
that in Fig. 4(a) as m increases, we do not achieve further
significant increase in throughput, because Pythia’s process-
ing over signatures becomes significant. The latter is higher
for higher dimensions. In Fig. 4(b), as m increases, Pythia
achieves high throughput. We can observe the impact of
the number of dimensions d on throughput. D2 contains
points with 326% more dimensions than those in D1. Pythia
achieves a throughput over 104 (inputs/sec) with m = 20 in
D1, while it achieves the same throughput with m = 100 in
D2 (five times more cohorts).
Our results up to now clearly make a strong case for the

scale-out advantages of the Pythia framework.

6.2.2 Imputation accuracy

Fig. 4(c-d) shows the RMSE against m using KNN and
REG on synthetic data. COE and BC, as anticipated based
on discussions of Example 1 and 2, obtain significant lower
RMSE than Godzilla and ACM. However, this occurs with
decreasing benefits as the number of cohorts increases; for
m > 50 no further decrease in RMSE is achieved. Specifi-
cally, COE predicts a subset of cohorts, out of m cohorts,
which achieves quite similar RMSE as that obtained by a
subset of cohorts out of m′ with m′ > m > 50. In addition,
BC engages the best cohort whose estimate is very close to
the aggregate estimate of the subset of cohorts engaged by
COE. Please note that ACM may yield a higher RMSE de-
pending on the MVA used, even compared to Godzilla. For
instance, using KNN, Godzilla would provide the global best

658

0 20 40 60 80 100
0

20

40

60

80

100

120

m

sp
ee

du
p

ACM

BC (Pythia)

COE (Pythia)

(a) Speedup; (KNN)

0 20 40 60 80 100
0

20

40

60

80

100

120

m

sp
ee

d
u
p

ACM
BC (Pythia)
COE (Pythia)

(b) Speedup; (REG)

0 50 100 150 200 250 300
0

5

10

15

20

25

size ×1000

la
te

n
cy

(s
)

Godzilla

Pythia (m = 10)

Pythia (m = 50)

Pythia (m = 100)

(c) Latency; (REG)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

size ×1000

la
te

n
cy

(s
)

Godzilla
Pythia (m = 10)
Pythia (m = 50)
Pythia (m = 100)

(d) Latency; (REG)
Figure 3: (a-b) Imputation speedup against m of ACM, COE and BC in dataset D2 using KNN and REG;
(c-d) Imputation scalability against m of Godzilla and Pythia (COE) in datasets D1 & D2 using REG.

K points, whereas in ACM each cohort, even when storing
irrelevant data, will be contributing its best K points. The
latter necessarily implies that ACM’s imputation involves
points which adversely affect imputation errors.
Fig. 5 shows the RMSE against m using KNN and REG

on real datasets. Pythia’s schemes achieve comparable RMSE
with Godzilla, with COE assuming relatively the lowest RMSE
for both MVAs and datasets. In addition, the RMSE of
COE remains at its lowest value from a certain m value
(e.g., m = 50 in D2) thus there is no need to involve more
cohorts. BC performs slightly better than Godzilla for both
MVAs and datasets. Moreover, BC assumes higher RMSE
than COE. This denotes the robustness of COE compared
to BC in terms of accuracy due to the aggregate estimate
from multiple engaged cohorts. ACM has higher RMSE than
Godzilla in both datasets since it aggregates the estimates
of all cohorts possibly incorporating estimates that spoil the
final result.

6.3 Discussion

The central conclusions of our study are the following:

• Godzilla suffers from obvious severe scalability / effi-
ciency limitations. Furthermore, it can have a poor
performance even in terms of imputation accuracy.

• ACM offers efficiency performance comparable to what
Map-Reduce solutions to scalability would offer, in that
it requires all cohorts to be engaged for MV imputa-
tion. As such, it can only improve per-imputation effi-
ciency. Our results show that ACM performs poorly in
terms of both MV imputation throughput (compared
to Pythia) and accuracy (compared to Pythia and even
Godzilla).

• Pythia is a great all-around performer, significantly
outperforming both ACM and Godzilla in terms of
both overall efficiency and accuracy. Note that, even
though ACM enjoys a smaller per-imputation latency
than Pythia, this is achieved at a significant cost for
overall imputation throughput and accuracy.

• Finally, the two Pythia schemes BC and COE, as ex-
pected can trade-off efficiency for accuracy with BC
offering higher throughput but at lower accuracy.

7. CONCLUSIONS

We have tackled the problem of scaling out MV imputa-
tions, a common problem in many big data applications. We
studied and developed some of the fundamentals of the prob-
lem, based on which we developed Pythia, a framework and
algorithms designed for this aim. The Pythia framework is

drastically different, as it on the one hand avoids the need to
access all cohorts (and all associated costs for communica-
tion and for running MVAs at all cohorts), while on the other
can achieve better or comparable MV imputation accuracy,
compared to centralized solutions. Specifically, our compre-
hensive experiments showed that it can provide drastically
better efficiency/scalability and accuracy compared to a cen-
tralized approach (Godzilla) and a massively parallel, a la
Map-Reduce, solution (ACM). Future work plans entail the
study of additional cohort prediction schemes, straddling the
line between efficiency and accuracy.

8. ACKNOWLEDGEMENTS

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program ‘Education and Lifelong
Learning’ of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

9. REFERENCES

[1] X. Su, et al, ‘Using Classifier-Based Nominal
Imputation to Improve Machine Learning’, Proc. 15th
PAKDD, Part I, LNAI 6634, pp. 124–135, 2011.

[2] A. Farhangfar, et al, ‘Impact of imputation of missing
values on classification error for discrete data’, Pattern
Recognition, 41(12): 3692–3705, Dec 2008.

[3] M.T. Asif, et al, ‘Low–Dimensional Models for Missing
Data Imputation in Road Networks’, Proc. 38th IEEE
ICASSP, pp.3527–3531, 2013.

[4] E.C. Chi, et al, ‘Genotype imputation via matrix
completion’, Genome Research, 23(3):509–18, Mar
2013.

[5] I.B. Aydilek, et al, ‘A novel hybrid appoach to
estimating missing values in databases using k–nearest
neighbors and neural networks’, Innovative
Computing, Information and Control, 8(7A):
1349–4198, Jul 2012.

[6] A. Farhangfar, et al, ‘A Novel Framework for
Imputation of Missing Values in Databases’, IEEE
Trans. Sys. Man Cyber. (A), 37(5): 692–709, Sep 2007.

[7] K. Lakshminarayan, et al, ‘Imputation of missing data
in industrial databases’, Appl. Intell., 11(3): 259–275,
Nov / Dec 1999.

[8] L. A. Kurgan, et al, ‘Mining the cystic fibrosis data’,
J. Zurada & M. Kantardzic (Eds.), Next Generation of
Data–Mining Applications, IEEE Press, 415–444, 2005.

[9] A.W. Liew, et al, ‘Missing value imputation for gene
expression data: computational techniques to recover
missing data from available information’, Brief.
Bioinform., 12(5): 498–513, Sep 2011.

659

0 20 40 60 80 100
10

−2

10
0

10
2

10
4

10
6

m

th
ro

u
g
h
p
u
t

BC

COE

ACM

Godzilla

(a) Throughput; REG

0 20 40 60 80 100
10

−2

10
0

10
2

10
4

m

th
ro

u
g
h
p
u
t

BC

COE

ACM

Godzilla

(b) Throughput; REG

0 20 40 60 80 100
4

6

8

10

12

14

m

R
M

S
E

ACM

Godzilla

BC

COE

(c) RMSE; KNN

0 20 40 60 80 100
5

10

15

20

25

30

m

R
M

S
E ACM

Godzilla
BC
COE

(d) RMSE; REG
Figure 4: (a-b) System throughput against m of Godzilla, ACM, COE and BC in dataset D1 & D2 using
REG; (c-d) RMSE against m of Godzilla, ACM, COE and BC in dataset DS using KNN and REG.

0 20 40 60 80 100
0.35

0.4

0.45

0.5

m

R
M

S
E

ACM

Godzilla

BC

COE

(a) RMSE; D1 (KNN)

0 20 40 60 80 100
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

m

R
M

S
E

ACM

Godzilla

BC

COE

(b) RMSE; D1 (REG)

0 20 40 60 80 100
0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

m

R
M

S
E

ACM

Godzilla

BC

COE

(c) RMSE; D2 (KNN)

0 20 40 60 80 100
0.11

0.12

0.13

0.14

0.15

0.16

0.17

m

R
M

S
E

ACM

Godzilla

BC

COE

(d) RMSE; D2 (REG)
Figure 5: RMSE against m of Godzilla, ACM, COE and BC in dataset D1 (a-b) and D2 (c-d) using KNN
and REG.

[10] J. Dean, et al, ’MapReduce: Simplified Data
Processing on Large Clusters’, Proc. USENIX OSDI,
2004.

[11] S. Ghemawat, et al, ‘The Google File System’, Proc.
ACM SOSP, 2003.

[12] C-T. Chu, et al, ‘Map-Reduce for Machine Learning
on Multicore’, NIPS 19, MIT press, 281–288, 2006.

[13] C. K. Enders, ‘Applied Missing Data Analysis’,
Guilford Press, NY, 2010.

[14] D. W. Joenssen, et al, ‘Hot Deck Methods for
Imputing Missing Data’, Proc. 8th MLDM , LNCS
7376, pp.63–75, 2012.

[15] O. Troyanskaya, et al, ‘Missing value estimation
methods for DNA microarrays’, Bioinformatics,
17(6):520–525, 2001.

[16] R.J. Little, et al, ‘Statistical Analysis with Missing
Data’, Wiley, NY, 1987.

[17] T.E. Raghunathan, et al, ‘A multivariate technique for
multiply imputing missing values using a sequence of
regression models’, Survey Methodology, 27(1):85–95,
2001.

[18] D.B. Rubin, ‘Multiple Imputation After 18+ Years’, J.
of the American Statistical Association,
91(434):473–489, 1996.

[19] L. Li, et al, ‘DynaMMo: mining and summarization of
coevolving sequences with missing values’, Proc. 15th
KDD, 527–534, 2009.

[20] S. Yang, et al, ‘Online recovery of missing values in
vital signs data streams using low–rank matrix
completion’, Proc. 11th IEEE ICMLA, 281–287, 2012.

[21] M. Ouyang, et al, ‘Gaussian mixture clustering and
imputation of microarray data’, Bioinformatics, 20(6):
917–923, Apr 2004.

[22] T. Aittokallio, et al, ‘Dealing with missing values in
large-scale studies: microarray data imputation and
beyond’ Brief. Bioinform. 11(2):253–264, 2010.

[23] D-W. Kim, et al, ‘Iterative Clustering Analysis for
Grouping Missing Data in Gene Expression Profiles’,
Proc. PAKDD 2006, LNAI 3918, pp.129–138, 2006.

[24] M.R. Garey, et al, ‘Computers and Intractability; A
Guide to the Theory of NP–Completeness’, W. H.
Freeman & Co., NY, 1990.

[25] B. Przydatek, ‘A fast approximation algorithm for the
subset–sum problem’, Intl. Trans. in Op. Res., 9(4):
437–459, Jul 2002.

[26] G. A. Carpenter, et al, ‘The ART of adaptive pattern
recognition by a self–organizing neural network’, IEEE
Computer, 21(3): 77–88, Mar 1988.

[27] A. Ahmad, et al, ‘A k–mean clustering algorithm for
mixed numeric and categorical data’ Data &
Knowledge Engineering, 63(2):503–527, 2007.

[28] P. J. Rousseeuw, et al, ‘Alternatives to the median
absolute deviation’, J. American Statistical
Association, 88(424): 1273–1283, Dec 1993.

[29] H. Belbachir, et al, ‘Sums involving moments of
reciprocals of binomial coefficients’, J. Integer
Sequences, 14(6), Article 11.6.6, 16p, 2011.

[30] J-H. Yang, et al, ‘The asymptotic expansions of
certain sums involving inverse of binomial coefficient’,
Intl. Mathematical Forum, 5(16): 761–768, 2010.

[31] J.L. Bentley, ‘Multidimensional binary search trees
used for associative searching’, Communications of the
ACM, 18(9):509–517, 1975.

[32] K. Bache, et al, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml] Irvine, Uni. of
California, School of Inform. and Comp. Sci., 2013.

660

Rank Join Queries in NoSQL Databases

Nikos Ntarmos
School of Computing Science

University of Glasgow, UK

nikos.ntarmos@
glasgow.ac.uk

Ioannis Patlakas
Max-Planck-Institut für
Informatik, Germany

patlakas@mpi-inf.mpg.de

Peter Triantafillou
School of Computing Science

University of Glasgow, UK

peter.triantafillou@
glasgow.ac.uk

ABSTRACT

Rank (i.e., top-k) join queries play a key role in modern an-
alytics tasks. However, despite their importance and unlike
centralized settings, they have been completely overlooked
in cloud NoSQL settings. We attempt to fill this gap: We
contribute a suite of solutions and study their performance
comprehensively. Baseline solutions are offered using SQL-
like languages (like Hive and Pig), based on MapReduce
jobs. We first provide solutions that are based on special-
ized indices, which may themselves be accessed using ei-
ther MapReduce or coordinator-based strategies. The first
index-based solution is based on inverted indices, which are
accessed with MapReduce jobs. The second index-based
solution adapts a popular centralized rank-join algorithm.
We further contribute a novel statistical structure compris-
ing histograms and Bloom filters, which forms the basis for
the third index-based solution. We provide (i) MapReduce
algorithms showing how to build these indices and statisti-
cal structures, (ii) algorithms to allow for online updates to
these indices, and (iii) query processing algorithms utilizing
them. We implemented all algorithms in Hadoop (HDFS)
and HBase and tested them on TPC-H datasets of various
scales, utilizing different queries on tables of various sizes
and different score-attribute distributions. We ported our
implementations to Amazon EC2 and ”in-house” lab clus-
ters of various scales. We provide performance results for
three metrics: query execution time, network bandwidth
consumption, and dollar-cost for query execution.

1. INTRODUCTION
Cloud stores have become the storage of choice for a large

variety of big data producers, consumers, and managers
(e.g., Twitter, Facebook, Google, Amazon, etc.) For many
modern Big Data applications, RDBMSs were found lacking,
particularly with respect to scalability (in terms of num-
ber of data items, users, operations per second, etc.), de-
spite valiant efforts (e.g., sharding, memory caches, par-
tial denormalization, etc.). To fill this gap, two comple-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 7
Copyright 2014 VLDB Endowment 2150-8097/14/03.

mentary technologies emerged: NoSQL databases and the
MapReduce framework. Interestingly, even traditional key
RDBMS players, such as Oracle, are now focusing on NoSQL
products coupled with MapReduce platforms. There is an
impressive list of NoSQL cloud databases; e.g., BigTable,
DynamoDB, Riak, HBase, Cassandra, etc. All these are
purpose-built to scale across a large number of servers (by
sharding/horizontal partitioning of data items), to be fault
tolerant (through replication, write-ahead logging, and data
repair mechanisms), to achieve high write throughput (by
employing memory caches and append-only storage seman-
tics) and low read latencies (through caching and smart stor-
age data models), flexibility (with schema-less design and
denormalization), and development friendliness (Object Re-
lational Mappings are typically avoided, etc.). Further, dif-
ferent systems offer different approaches to issues such as
consistency, replication strategies, data types, and models.
The data model employed by NoSQL DBs can be viewed

as a key-value model, built around four core abstractions:
(a) the “key-value pair”: a quadruplet {key, column name,
column value, (and perhaps a timestamp)}, uniquely iden-
tified by the combination of key, column name (and times-
tamp, where applicable); (b) the “table”: an ordered collec-
tion of key-value pairs; and (c) the “row”: a collection of all
key-value pairs in a given table, sharing the same key. Some
systems further employ the notion of “column families”, in
essence partitioning the table data vertically so that each
such family includes key-value pairs with specific column
names. All such systems support efficient point queries and
sequential scans on key-value pairs and rows based on their
key, as well as efficient insertion/deletion of key-value pairs.
However, queries on other parts of the data (e.g., column
names/values, timestamps, etc.) are costly, often requiring
a scan of all key-value pairs even for simple equality queries.
Despite original intents, NoSQL is now ”re-baptized” to

spell ”Not Only SQL”. As more data poured into these
systems, the need for complex queries – particularly for an-
alytics – emerged, leading to the rise of data warehousing
systems, such as Hive[24] and Pig[21], offering SQL-like in-
terfaces. This went hand-in-hand with the realization of the
shortcomings of denormalization for several real-world an-
alytic workloads; carrying denormalization to the extreme
implies a huge amount of data being repeated across very
large numbers of rows in a ”universal” table, creating an up-
date/maintenance nightmare and utterly negating several of
the key performance advantages of NoSQL systems in the
long run. Although NoSQL guarantees fast keyed-row re-
trievals, these rows now contain typically lots of data use-

less to most queries, resulting in poor query performance
as many more disk IOs are needed to get the desired data
(e.g., in typical queries involving large scans of rows), and
more useless data are shipped across the NoSQL cloudstore
substrate. Hence, inevitably NoSQL systems transformed to
contain several tables, linked through foreign-key-like con-
structs (although without the consistency semantics inher-
ent in classic RDBMSs) and joined at query time. The issue
is that the burden to do this lies on the applications. This is
currently the conventional wisdom, especially when model-
ing many-to-many relationships and storing them in NoSQL
systems. Orthogonally, emerging analytic tasks often rely on
data dispersed across different files or tables.

Motivations. As joins are very resource hungry, several re-
cent research efforts have attempted to expedite them in
cloud stores. So far, ranked (top-k) equi-joins have been
completely overlooked in this setting, despite the fact that
these queries arise naturally in a variety of situations, as
joining and ranking are fundamental to many analytics tasks.
Take for example a collection of per-day search engine logs,
consisting of phrases and their frequency of appearance in
user inputs, with a separate table or file per day. Now imag-
ine we wish to find the k most popular phrases appearing in
several of these days. This would be formulated as a rank-
join query, where the phrase text is the join attribute, and
the total popularity of each phrase is computed as an aggre-
gate over the per-day frequencies. Rank equi-joins also arise
in full-text search scenarios. Imagine a collection of posting
lists over a large text corpus consisting of several documents.
Each posting list would include information for documents
containing the related keyword, with each list entry consist-
ing of (at least) the document identifier and the document’s
relevance score with regard to the keyword. With the size of
many of these lists being in the gigabytes even for relatively
small collections such as Wikipedia dumps (and much larger
when scaling to web archives and/or the actual World-Wide-
Web), and given the need to scan through them efficiently,
it is only reasonable to assume that each list is stored in a
separate table in a key-value store. Then, finding the most
relevant documents for two (or more) keywords, consists of
a rank-join over the corresponding posting lists, where the
document ID is the join attribute and the relevance of each
document to the search phrase is computed using a function
over the individual relevance scores.

1.1 Problem Formulation
We assume operation in a distributed shared-nothing cloud

store. Please note that the raw table data can be stored ei-
ther at the filesystem level (e.g., HDFS) or at any NoSQL
store. Our algorithms are impervious to this!

Formally, a top-k join query can be written as:
SELECT select-list FROM R1, R2, . . . , Rn

WHERE equi-join-expression(R1, R2, . . . , Rn)
ORDER BY f(R1, R2, . . . , Rn) STOP AFTER k

Scoring of individual rows is typically based on either a
(predefined) function on attribute values, or some explicit
“score” attribute (e.g., movie rating, PageRank score, etc.).
The solutions we discuss make no distinction between these
two cases and work equally well for both; however, for ease
of presentation and without loss of generality, we assume
there is a scoring attribute in each row. Furthermore, for
ease of presentation, we assume that score attributes take

values in [0, 1]; it should be obvious that our algorithms per-
form the same with arbitrary score values as well, provided
that there is a total ordering on these values. Last, as is
common in rank-join works, the score of tuples in the join
result set is computed using a monotonic aggregate function
f(·) on their individual scores.

A naive approach would first compute the join result, then
rank and select the top-k tuples; this is the approach of Hive
and (with minor optimizations) of Pig. This is obviously
extremely costly, even in centralized settings, let alone when
data have to be shipped across the network. Our challenge
is to compute the result set without producing the full join
result, ensuring that the amount of data that is transferred
is as little as possible and the query latency is small.

1.2 Contributions
A study of how to efficiently process top-k join queries

in NoSQL cloudstores is very much lacking, given the rapid
popularity increase of such environments and their unique
characteristics. We will use as a reference point the base-
line techniques of using Hive or Pig to formulate and exe-
cute such queries in a massively parallel manner. However,
acknowledging their disadvantages we will contribute and
study the performance of a number of different approaches.
First, we contribute a MapReduce solution that is based on
specialized indices. Second, in the no-MapReduce realm,
we contribute an algorithm coined Inverse Score List Rank
Join (ISL), which is based on the popular HRJN[13] cen-
tralized rank join algorithm. Our third contribution is an
algorithm based on a novel rank-join statistical access struc-
ture, coined the Bloom Filter Histogram Matrix (BFHM).
We prove that the BFHM algorithm can achieve 100% recall
(despite its probabilistic nature). We have chosen to store
all our access structures in a NoSQL DB. Although not a
hard requirement, this choice was dictated by the need to
handle possible large volumes of new item insertions/dele-
tions, for which NoSQL DBs are much better suited than
DFSs. Further, we also provide algorithms for efficiently
maintaining indexes in the face of updates. Our solutions of-
fer trade-offs with regard to various metrics. We thus further
contribute an in-depth performance evaluation in real-world
systems (Amazon’s EC2 and in-house clusters, using TPC-
H datasets), against the baseline approaches. The metrics
are: query processing time, network bandwidth consump-
tion, and query processing dollar cost (e.g., when executed
on charge-per- item infrastructures, such as DynamoDB).

2. RELATED WORK

Rank Queries. Well-known ranking operators include the
top-k and kNN operators. Top-k (selection) operators typ-
ically accept as input a set of records each of the type
< ID, score1, . . . , scoren >, a monotone score aggregation
function, f(score1, . . . , scoren)→ [0, 1] and a threshold num-
ber k, and produce the IDs of records whose aggregate score
(from all n score attributes) is in the top-k among the score
of all records. kNN operators are different; they accept as
input a specific record, r, a table of records T = {t1, . . . , tn}
and a notion of similarity among records sim(s, t), and pro-
duce the result set R = {tR1

, tR2
, ..., tRk

} with tRi
∈ T and

|R| = k, so that sim(r, tRi
) > sim(r, tj), ∀tj ∈ T

∧
tj 6∈ R.

Our paper focuses on ranking a la top-k queries defined
above. A survey of top-k query processing algorithms for

this setting is presented in [14]. In [10] instance-optimal al-
gorithms are presented, i.e., the Threshold Algorithm (TA)
and variants, using sorted and/or random accesses. The first
notable distributed variant of TA is the Three-Phase Uni-
form Threshold (TPUT) algorithm[5]. KLEE[16] improved
TPUT by employing histograms and Bloom filters for each
node to limit the tuple search space and bandwidth con-
sumption. Last, the Threshold Join Algorithm (TJA) [28]
is a top-k selection query processing algorithm, using an
outer join step to maintain partial top-k results as these are
aggregated at parent nodes. TJA is developed for a hierar-
chical (sensor) topology – a setting drastically different than
that of NoSQL clusters.

Rank and Join Queries. kNN joins[26], as well as similar-
ity joins[4] include both rank and join operators. Similarity
joins accept as input two collections of sets, R and S, a
notion of set similarity and a threshold similarity value t,
and return all pairs (r, s) with {r ∈ R} and {s ∈ S}, such
that sim(r, s) > t. This is equivalent to returning, for each
record r fromR, all records s from S, such that sim(r, s) > t.
kNN join operators are similar to the above, generalizing
the kNN operator to perform kNN operations not for just
a given record but for a set of records. Finally, top-k simi-
larity joins[27], like similarity and kNN joins, use a notion
of distance to define similarity among records from R with
those from S. A top-k similarity join returns those joined
record pairs having the highest k similarities. The top-k join
operators considered in this paper extend top-k selection
queries by aggregating score attributes from two (or more)
relations and by returning the top-k scores only of records
which are in the result of a join operation (based on some
other common attribute of the two relations). As such, top-
k join queries are substantially different than kNN join and
(top-k) similarity join queries. Joining is performed on sep-
arate explicit join attributes (introducing challenges/oppor-
tunities for extra indexing and optimisations) and ranking
is based on a monotone aggregate function of the relations’
score attributes (as opposed to a distance between records).
Ilyas et al. presented NRA-RJ [12] to support such rank

joins. A pipelined operator, J*, was presented in [19], pro-
viding a join operator with a general non-equi-join condition.
In [13], Ilyas et al. present an influential algorithm for ranked
join (HRJN) (to be discussed at more length later). More
recently, [22] presented the Pull/Bound Rank Join (PBRJ)
algorithm, a generalization of HRJN-style algorithms. [25]
proposes a join graph in which joining attributes are rep-
resented by nodes and relations among attributes by edges.
This approach provides support for top-k join queries (other
than inner-join ones) over web databases.

Join Queries on Clouds. Recently join queries in the cloud
received considerable attention. Hive [24] and Pig [21] sup-
port joins over very large datasets using MapReduce. Ha-
doopDB[1] replaces local data stores with DBMS instances
and supports the execution of MapReduce jobs over them;
in essence, it is a parallel DBMS enriched with MapReduce
capabilities, and is unlike NoSQL systems. Hadoop++[7]
proposes ”Trojan indices”, created at data load time on join
attributes and collocated with the data read by each map-
per, allowing mappers to avoid expensive disk scans to sort
data. Then, ”Trojan Joins” co-partition the splits of the
relations to be joined, yielding map-only jobs and saving

considerable overhead. Results have also been produced for
other than equi-joins and 2-way joins [2, 15, 20].

Bloom Filters, Joins, and Top-k. A Bloom filter (BF)[3,
17] is a data structure that compactly represents a set of
items as a bit vector to expedite membership queries. [6,
18] use BFs to estimate the cardinality of a join result. Our
treatment of BFs differs in its statistical intuition from both
[18] and [6]. Finally, KLEE also uses BFs and histograms for
top-k queries; however, KLEE does not deal with joins, the
actual data structures and their use are different, it doesn’t
use counting filters, and cannot guarantee 100% recall.

Rank Joins in Distributed Settings. Although inspira-
tional, none of the above works have attempted to solve the
problem of top-k equi-join queries in cloud stores. [29] and
[8] tackled the problem of rank join processing in large dis-
tributed systems. They both attempt to compute a bound
on the scores of individual tuples from the base relation,
in order to prune tuples not participating in the top-k join
result, and both assume operation over a DHT network over-
lay. [29] uses a sampling stage in which the querying node
multicasts the query to a random set of peers. These peers
then perform a hash-join by rehashing their data onto the
DHT using the join value as the hash function input. The
querying node collects the result set and retains the k’th
highest score. It then broadcasts this score to all nodes,
which in turn perform a distributed hash-join again, only
now limiting the rehashed items to those that can produce
a join result with a score above the threshold (assuming they
join with a tuple with the maximum score value). [8] employ
2-D equi-width histograms; for each of the distinct join val-
ues in the input data, they build and store a histogram on
the corresponding score values. Query processing consists
of two stages – score bound estimation using the histogram
buckets, and pulling of data tuples with scores above the
bound – repeated in sequence until the final result is pro-
duced. As maintaining one bucket per distinct join value is
not feasuble in real scenarios, the authors generalize their
solution by grouping same-score buckets for adjacent join
values and combining them using the uniform frequency as-
sumption. Both of these approaches (much like our ISL and
BFHM), fall in the general family of PBRJ-style algorithms,
interchanging between bound computation and data pulling.
Both these and ISL produce bounds on the tuple scores, ig-
noring however their join attribute values, thus ending up
transferring more tuples than necessary (as several of them
may not contribute to the final result due to not joining with
any other tuple). Such approaches are at a disadvantage in
cloudstores, as their processing time is dominated by data
transfers. This situation is further aggravated by the fact
that sampling ([29]) and approximate statistics ([8]) often
lead to inaccurate estimations and either low recalls (e.g.,
as low as 0.2 for [8]) or extremely high query processing
costs (to be shown shortly). BFHM, however, combines his-
tograms with Bloom filters to locate tuples that will indeed
end up in the final result set, achieving further savings in
query processing time, bandwidth consumption, and dollar-
cost, while guaranteeing a perfect 100% recall.

3. BASELINE RANK JOINS
We focus on two-way equi-joins; extending the algorithms

R1 R2

row join score row join score
key value value key value value
r11 d 0.82 r21 a 0.51
r12 c 0.93 r22 b 0.91
r13 c 0.67 r23 c 0.64
r14 d 0.82 r24 d 0.53
r15 a 0.73 r25 d 0.41
r16 c 0.79 r26 d 0.50
r17 b 0.82 r27 a 0.35
r18 b 0.70 r28 a 0.38
r19 d 0.68 r29 a 0.37
r110 a 1.00 r210 c 0.31
r111 b 0.64 r211 b 0.92

Figure 1: Running example: Tuples of R1 and R2

to multi-way joins is straightforward. We first describe Hive’s
and Pig’s approaches, as the baseline solutions for rank-join
queries. Fig. 1 shows the input for our running example.

3.1 Rank Joins with Hive and Pig
In Hive, rank join processing consists of two MapReduce

jobs plus a final stage. The first job computes and materi-
alizes the join result set, while the second one computes the
score of the join result set tuples and stores them sorted on
their score; a third, non-MapReduce stage then fetches the
k highest-ranked results from the final list.

Pig takes a smarter approach. Its query plan optimizer
pushes projections and top-k (STOP AFTER) operators as
early in the physical plan as possible, and takes extra mea-
sures to better balance the load caused by the join result or-
dering (ORDER BY) operator. Specifically, 3 MapReduce
jobs are used. The first computes the join result: mappers
scan the table files, do early projections (stripping out un-
related columns), and emit rows with the join value as their
key; then, reducers group together rows with the same join
value, produce the join result set, and store it in an HDFS
file. The second MapReduce job is a by-product of the OR-
DER BY clause; it samples the records in the join result file
in the map phase, and appropriate quantiles are computed
at the reduce phase. These quantiles are then used to con-
struct a balanced partitioner for the third job, which orders
the temporary records on their score and produces the top-k
result set. First, the map phase emits the temporary records
with their join score as their key, and a combiners take over
producing a local top-k list. These lists are then assigned to
a sole reducer producing the final top-k result set.

4. INDEXED RANK JOINS
As BigTable/HBase were the archetypical key-value cloud-

stores, we borrow their terminology in the description of the
various algorithms and examples. It should be clear, though,
that our indices and algorithms apply (perhaps with slight,
obvious modifications) to all contemporary key-value stores.

4.1 Inverse Join List MapReduce Rank-Join
Our first algorithm – Inverse Join List MapReduce rank

join (IJLMR) – uses MapReduce, but utilizes an index to
reduce the required MapReduce jobs to one, and avoid extra
network transfers and inefficiencies.

4.1.1 IJLMR Index

In the above approaches, the first stage mappers actually
create an inverted list of input tuples keyed by their join
values; this is, in essence, a materialized view where each

Algorithm 1 IJLMR Index Creation

1 Input: Rows from a single column family (e.g., A), of
the form {row.rowKey: row.joinValue, row.score}

2 Output: IJLMR index rows for A
3 Map():
4 foreach(row ∈ s e qu en t i a l scan o f A)
5 emit(row.joinV alue: row.rowKey, row.score);

Row key Index tuples ({row key, score})
(join value) R1 R2

a
{r110 ,1.00}, {r15 ,0.73} {r21 ,0.51}, {r27 ,0.35},

{r28 ,0.38}, {r29 ,0.37}

b
{r17 ,0.82}, {r18 ,0.70}, {r22 ,0.91}, {r211 ,0.92}
{r111 ,0.64}

c
{r12 ,0.93}, {r13 ,0.67}, {r23 ,0.64}, {r210 ,0.31}
{r16 ,0.79}

d
{r11 ,0.82}, {r14 ,0.82}, {r24 ,0.53}, {r25 ,0.41},
{r19 ,0.68} {r26 ,0.50}

Figure 2: Running example: IJLMR index table

entry has a join value as its key, and the input rows with
that specific join value as its set of values. Our IJLMR
index consists of a space-optimized form of these inverted
lists, where index values consist of a list of tuples each being
a combination of the row key and score value of the indexed
row (Fig. 2). The IJLMR index for each indexed table is
stored as a separate column family in one big table. This
means that, if the table is split up/sharded and distributed
across the NoSQL store nodes, index entries for the same
join values across all indexed tables are stored next to each
other on the same node. The IJLMR index is built with a
map-only MapReduce job (Algorithm 1) – a special type of
MapReduce job where there are no reducers and the output
of mappers is written directly into the NoSQL store. We
also provide routines for online maintenance and updates to
this index, to be discussed shortly.

4.1.2 IJLMR Query Processing

The IJLMR query processing algorithm consists of a sin-
gle MapReduce job/stage, with several mappers and a sin-
gle reducer (Algorithm 2). In this job, each mapper scans
through its partition of the IJLMR index, reading columns
from the index column families for the joined tables, one row
at a time. For each row, it computes the Cartesian product
(i.e., the join result) and join score of index entries from the
different column families; e.g., the mapper responsible for
join value a (see Fig. 2) would produce 2× 4 key-values, the
mapper responsible for b would produce 3 × 2 tuples, etc.
The mappers store in-memory only the top-k ranking result
tuples, and emit their final top-k list when their input data is
exhausted. The single reducer then combines the individual
top-k lists and emits the global top-k result.

In addition to reducing the overall MapReduce jobs and
stages down to one, this design has the added benefit that
data transfers due to MapReduce shuffling/sorting are min-
imized; the Hadoop framework ensures that each mapper
is executed on the NoSQL store node storing its input re-
gion data (or as close to it as possible), and thus only the
individual top-k result sets are transferred across the net-
work and shuffled/sorted at the single reducer. As we shall
see in the performance evaluation section, this approach
achieves at least an order of magnitude faster query process-
ing times compared to Hive, and several orders of magnitude

Algorithm 2 IJLMR Rank-Join

1 Input: Rows from the IJLMR index for column families A
and B, of the form {row.joinValue: row.rowKey,
row.score}

2 Output: Top-k join result set
3 Map():
4 foreach(row ∈ input) {
5 HashTable tuplesA =∅, tuplesB =∅;
6 Sor t edL i s t r e s u l t s =∅;
7 foreach(kv ∈ row) {
8 i f (kv.columnFamily == A) {
9 myTuples = tuplesA . get (kv.joinV alue);

10 otherTuples = tuplesB . get (kv.joinV alue);
11 } else {
12 myTuples = tuplesB . get (kv.joinV alue);
13 otherTuples = tuplesA . get (kv.joinV alue);
14 }
15 foreach (kv′ ∈ otherTuples) {
16 r e s u l t s .add(i nne rJo in (kv, kv′));
17 r e s u l t s . tr im (k);
18 }
19 myTuples.append(kv.joinV alue, kv);
20 }
21 emit(r e s u l t s);
22 Reduce():
23 Sor t edL i s t r e s u l t s =∅;
24 foreach(kv ∈ input) {
25 r e s u l t s .add(kv);
26 r e s u l t s . tr im (k);
27 }
28 emit(r e s u l t s); // Final top -k result set

less bandwidth consumption. Unfortunately, note that the
mappers still have to scan through the entire input dataset,
weighing on the dollar-cost of query processing, which is
almost as high as that of the Hive approach.

4.2 Inverse Score List Rank-Join
Clearly, network and disk I/O bandwidth savings are tan-

tamount. Also, taking advantage of the intrinsics of the
query processing engine of the NoSQL store at hand can
provide further improvements. We note that MapReduce is
a poor match for such complex queries as top-k joins. Our
intuition is similar to that of Stonebraker, et al.[23], who
pointed out that MapReduce is suboptimal for several as-
pects of data management, including complex queries. Fol-
lowing this thread of thought, we first overview HRJN[13]
and then contribute Inverse Score List rank join (ISL).

4.2.1 HRJN Overview

Assume an n-way rank join between relations R1, R2, . . .,
Rn. In HRJN the tuples of each relation Ri are sorted in
lists, ranked according to a scoring attribute Ri.score, or
by using a scoring function on one or more attribute values.
For simplicity, we assume the former scenario, but our solu-
tions are equally applicable in the latter. The score of the
n-way join result tuples is then computed using a monotonic
ranking function f(R1.score, . . . , Rn.score) on the individ-
ual scores of joined tuples. Tuples from the n lists are itera-
tively retrieved in decreasing score order, and the algorithm
keeps the minimum (s̄i) and maximum (ŝi) tuple scores seen
thus far (for i ∈ [1, . . . , n]). Every retrieved tuple is joined
against previously retrieved ones and appended to the result
set, if the latter has less than k tuples or the score of the new
join tuple is higher than that of the kth tuple (resulting in

Algorithm 3 ISL Index Creation

1 Input: Rows from a single column family (e.g., A), of
the form {row.rowKey: row.joinValue, row.score}

2 Output: ISL index rows for A
3 Map():
4 foreach(row ∈ s e qu en t i a l scan o f A)
5 emit(row.score: row.rowKey, row.joinvalue);

Row key
(score)

Index tuples
({row key, join value})
R1 R2

-1.00 {r110 , a}
-0.93 {r12 , c}
-0.92 {r211 , b}
-0.91 {r22 , b}
-0.82 {r11 , d}, {r14 , d},

{r17 , b}
-0.79 {r16 , c}

· · ·
-0.35 {r27 , a}
-0.31 {r210 , c}

Figure 3: Running example: ISL index table

the latter’s elimination). Then, a threshold score S is com-
puted as: S = max{f(s̄1, ŝ2, . . . , ŝn), f(ŝ1, s̄2, . . . , ŝn), . . .
f(ŝ1, ŝ2, . . . , s̄n)}. In other words, the threshold score equals
the maximum attainable score by any subsequent join result
tuple. The algorithm terminates when the score of the kth

join result is greater than the threshold.

4.2.2 The ISL Index

Like HRJN, ISL is based on the existence of inverted score
lists. These lists are part of the ISL index, created via a
map-only MapReduce job (Algorithm 3), just like in the
case of the IJLMR index above. More specifically, for each
input relation, we build and maintain an index, comprised
of a column family in a common index table, where each
row has a score value as its key, and the set of input tuples
with this value in their score attribute as the content of
the row. A kink of HBase is that it provides fast scans in
increasing rowkey order but has no support for scans in the
other direction; due to this, in our implementation we have
used the negated score values as the index keys (see Fig. 3).

4.2.3 ISL Query Processing

The query processing algorithm is outlined in Algorithm 4.
During query processing, the “coordinator” scans through
the index column families for the joined relations alternately.
Scanning is performed in increasing key (i.e., decreasing
score) order, and in batches of a user-defined size. As NoSQL
stores are in essence column stores, and key-value pairs with
subsequent keys are stored next to each-other on disk, batch-
ing reads results in a lower disk I/O overhead, as well as a
lower processing time due to the cost of IPC calls to the
NoSQL store being amortized over the batch size. As we
shall see in the performance evaluation section, such batched
scans (e.g., HBase scans with a non-zero rowcache size) can
result in significant gains in query processing times, trading
off bandwidth consumption and dollar-costs. The coordina-
tor stores (in-memory) all retrieved tuples in separate hash
tables, using the join value as the key; this allows for fast
joins whenever new tuples are fetched. The coordinator fur-
ther maintains a list of the current top-k results. With every
new tuple fetched and processed, the coordinator computes

Algorithm 4 ISL Rank-Join

1 Input: Rows from the ISL index for column families A
and B, of the form {row.score: row.rowKey,
row.joinvalue} (see Fig. 3), batch sizes CA, CB

2 Output: Top-k join result set
3 HashTable tuplesA =∅, tuplesB =∅;
4 Sor t edL i s t r e s u l t s =∅, batch=∅;
5 CurrentRelat ion cr = A;
6 while (true) {
7 i f (cr == A) {
8 myTuples = tuplesA . get (kv.joinV alue);
9 otherTuples = tuplesB . get (kv.joinV alue);

10 } else {
11 myTuples = tuplesB . get (kv.joinV alue);
12 otherTuples = tuplesA . get (kv.joinV alue);
13 }
14 batch. i n s e r t (next Ccr rows from CF "cr");
15 foreach(row ∈ batch) {
16 foreach(kv ∈ row) {
17 myTuples.append(kv.joinV alue, kv);
18 foreach (kv′ ∈ otherTuples) {
19 r e s u l t s .add(i nne rJo in (kv, kv′));
20 i f (HRJNTerminationTest(r e s u l t s ,

tuplesA , tuplesB) == true)
21 return (r e s u l t s);
22 }
23 }
24 }
25 batch. c l e a r ();
26 cr = (cr == A) ? B : A;
27 }
28 return (r e s u l t s);

the current threshold value, and terminates when it is below
the score of the k’th tuple in the result set.

5. STATISTICAL RANK-JOINS
Both of the previous algorithms, ship tuples even though

they may not participate in the top-k result set. Our next
contribution aims to avoid this. Note that we need not only
estimate which tuples will produce the join result, but also
to predict whether these tuples can have a top-k score.

5.1 The BFHM Data Structure
The BFHM index is a two-level statistical data structure,

encompassing histograms and Bloom filters. At the first
level, we have an equi-width histogram on the score axis;
that is, all histogram buckets have the same spread and
each such bucket stores information for tuples whose scores
lie within the boundaries of the bucket. At the second level,
instead of a simple counter per bucket (plus the actual min
and max scores of tuples recorded in the bucket), we choose
to maintain a Bloom filter-like data structure, recording the
join values of the tuples belonging to the bucket. This will
then be used to estimate the cardinality of the join result set
during query processing, to be discussed shortly. In brief,
the BFHM data structure has two main parameters: the
number of buckets in the BFHM (numBuckets), and the
number of bits in each BFHM bucket Bloom filter (m).

As false positives can inflate the join cardinality estima-
tion, we have opted for a fusion scheme, combining single-
hash-function Bloom filters with Counting Bloom filters and
compression. More specifically, in each BFHM bucket we
maintain: (i) the minimum and maximum score values of
tuples recorded in the bucket; (ii) a single-hash-function

Bitmap

...

0

1

0

0

1

0

1

0

Counters

(hash table)

1

2

1

r_1_8: b, 0.70

r_1_3: c, 0.67

r_1_9: d, 0.68

r_1_11: b, 0.64

Golomb compressed

h(b)

h(c)

h(b)

h(d)

Input data

Figure 4: BFHM bucket structure

Algorithm 5 BFHM Index Creation

1 Input: Rows from a single column family (e.g., A), of
the form {row.rowKey: row.joinValue, row.score},
number of buckets in BFHM (numBuckets)

2 Output: BFHM blob rows and reverse mappings for A
3 Map():
4 foreach(row ∈ s e qu en t i a l scan o f A) {
5 int bucketNo = scoreToBucket(row. score ,

numBuckets);
6 emit(bucketNo: {row.rowKey:

row.joinvalue, row.score});
7 }
8 Reduce():
9 HybridBloomFilter f i l t e r ; // see sec. 5.1

10 f loat minScore = ∞, maxScore = -∞;
11 foreach(kv ∈ input) {
12 int bitPos = f i l t e r . i n s e r t (row. j o inValue);
13 i f (row. s c o r e < minScore)
14 minScore = row. s c o r e ;
15 i f (row. s c o r e > maxScore)
16 maxScore = row. s c o r e ;
17 emit(bucketNo|bitPos : {row.rowKey:

row.joinvalue, row.score});
18 }
19 emit(bucketNo , {GolombCompress(f i l t e r),

minScore ,maxScore});

Bloom filter of sizem (bits); and (iii) a hash table of counters
for each non-zero bit of the Bloom filter. Both of the lat-
ter two constructs are then compressed using Golomb cod-
ing[11]. The resulting data structure is a hybrid between
Golomb Compressed Sets and Counting Bloom filters, al-
lowing us at the same time to (i) minimize the false posi-
tive probability for our treatment of Bloom filters for join
cardinality estimation (to be discussed shortly), (ii) greatly
reduce the amount of bytes stored in the NoSQL store and
transferred across the network, and (iii) achieve a reasonable
trade-off between compression ratio and processing costs.
Fig. 4 depicts a pictorial of how data are inserted to the
Bloom filter-related section of the BFHM bucket for the
score range (0.60, 0.70] for tuples of relation R1 in our run-
ning example. Please note that the compression of the bit
vector and counter hash table is an integral part of our data
structure, as single hash function Bloom filters can grow very
large in space and are thus impractical otherwise. Moreover,
to our knowledge, this is the first work to propose, imple-
ment, and evaluate such a fusion scheme.

Like with our indices, the BFHM data are stored in the

Row key
Index tuples

([blob],scoremin,scoremax or {row key: join value, score})
R1 R2

0 [blob],0.93,1.00 [blob],0.91,0.92
0|h(a) {r110 : a,1.00}
0|h(b) {r22 : b,0.91},{r211 : b,0.92}
0|h(c) {r12 : c,0.93}

1 [blob],0.82,0.82
1|h(b) {r17 : b,0.82}
1|h(d) {r11 : d,0.82}, {r14 : d,0.82}

2 [blob],0.70,0.79
2|h(a) {r15 : a,0.73}
2|h(b) {r18 : b,0.70}
2|h(c) {r16 : c,0.79}

3 [blob],0.64,0.68 [blob],0.64,0.64
3|h(b) {r111 : b,0.64}
3|h(c) {r13 : c,0.67} {r23 : c,0.64}
3|h(d) {r19 : d,0.68}

4 [blob],0.50,0.53
4|h(a) {r21 : a,0.51}
4|h(d) {r24 : d,0.53}, {r26 : d,0.50}

5 [blob],0.41,0.41
5|h(d) {r25 : d,0.41}

6 [blob],0.31,0.38
6|h(a) {r27 : a,0.35}, {r28 : a,0.38},

{r29 : a,0.37}
6|h(c) {r210 : c,0.31}

Figure 5: Running example: BFHM index table

NoSQL store. More specifically, for each input relation, the
BFHM index is stored in a separate column family or index
table. Each BFHM bucket is stored in a separate row with
the bucket number as its key (e.g., for scores in [0, 1] and 10
buckets, the first bucket – i.e., for score values in (0.9, 1.0]
– will be stored under key 0, the bucket for score values
in (0.8, 0.9] will use key 1, and so on); the row values then
include the min and max actual scores, plus the Golomb-
compressed bitmap and counters’ hashtable (coined BFHM
bucket “blob”). Moreover, as we shall see shortly, during
query processing we need to be able to map BFHM set bit
positions back to the corresponding join values. As this
is not possible with most quasi-random hash functions, we
need to further store these mappings. These are stored in the
same column family/table as the above data, in rows where
the key consists of the concatenation of the bucket number
and bit position, and where the row data includes tuples of
the form {rowkey : join value, score}. Assuming that h(x)
is the bit position indicated for item x by the hash function
used by our Bloom filter, Fig. 5 depicts the BFHM table
contents for our running example. This is created with a
MapReduce job (Algorithm 5). In the Map phase, the map-
pers partition incoming tuples into the various histogram
buckets. Each reducer operates on the mapped tuples for
one BFHM bucket at a time. Each incoming tuple is first
added to the BFHM hybrid filter based on its join value,
and its corresponding bit position is recorded. The reducer
emits a reverse mapping entry for each such tuple, and keeps
track of the min and max scores of all tuples in the bucket.
When the bucket tuples are exhausted, the reducer finally
emits the BFHM bucket blob row.

5.2 BFHM Query Processing
Query processing consists of two phases: (i) estimating

the result, and (ii) reverse mapping and computation of the
true result. Algorithm 6 shows the 1st phase. The “coordi-
nator” fetches BFHM bucket rows for the joined relations,
one at a time, with newly fetched buckets being “joined”
with older ones. The bucket join result – an estimation of

Algorithm 6 BFHM Rank-Join Estimation

1 Input: Rows from the BFHM index for A and B (Fig. 5)
2 Output: Estimated top-k join result set
3 L i s t bucketsA=∅, bucketsB=∅, myBuckets ,

otherBuckets ;
4 Sor t edL i s t r e s u l t s =∅; // Sorted on maxScore
5 int numEstimatedResults = 0;
6 CurrentRelat ion cr = A;
7 BFHM newBucket;
8 boolean done = fa l se ;
9 while (!done) {

10 i f (cr == A) {
11 myBuckets = bucketsA;
12 otherBuckets = bucketsB;
13 } else {
14 myBuckets = bucketsB;
15 otherBuckets = bucketsA;
16 }
17 newBucket = fetchNextBucketFrom(BFHM { cr });
18 myBuckets.add(newBucket);
19 foreach(bucket ∈ otherBuckets) {
20 EstimatedResult r e s = bucketJoin (newBucket ,

bucket); // See alg. 7
21 i f (r e s == nu l l)
22 continue;
23 r e s u l t s .add(r e s);
24 numEstimatedResults += r e s . c a r d i n a l i t y ;
25 i f (BFHMTerminationTest(bucketsA ,bucketsB ,

numEstimatedResults)) {
26 done = true;
27 break;
28 }
29 }
30 cr = (cr == A) ? B : A;
31 }
32 return (r e s u l t s);

the join result for tuples recorded in the joined buckets –
is then added to the list of estimated results. When the
estimated number of result tuples in this list (i.e., the sum
of cardinalities of added buckets) is above k, the algorithm
tests for the BFHM termination condition, to be discussed
shortly. If the latter is satisfied, processing continues with
the reverse mapping/final result set computation phase.

Algorithm 7 outlines the bucket join procedure. First, we
compute the bitwise-AND of the Bloom filter bitmaps from
the two buckets; if the resulting bitmap is empty (i.e., all
bits are 0), then there are no joining tuples recorded in these
two buckets. Otherwise, we compute an estimation of the
cardinality of the join, by summing up the products of the
counters corresponding to the non-zero bit positions in the
result filter. The factor α (line 9) is there to compensate for
false positives in the filters; for now, assume α = 1. Last, we
compute the min and max score of any join result tuple from
these buckets, by using the actual min and max scores of the
joined buckets as input to the aggregate score function.

Fig. 6(c) shows the estimated result set for our running
example, using sum as the aggregate scoring function; the
join attribute value is shown as h(·) to denote that we refer
to non-zero positions in the bitwise-AND of filter bitmaps
and not to actual join values, while the Bloom filter coun-
ters are given in consolidated form in Fig. 6(a) and 6(b) for
clarity. First, the algorithm would fetch the (0.9, 1.0] buck-
ets for R1 and R2; their bucket-join would return null as
they have no common non-zero bit position. The algorithm

Algorithm 7 BFHM bucket join

1 Input: BFHMR1
[i] (i’th bucket from R1’s

BFHM), BFHMR2
[j] (j’th bucket from R2’s BFHM)

2 Output: join result estimation for this bucket pair
3 EstimatedResult r e s ;
4 r e s .BF = BFHMR1

[i].BF & BFHMR2
[j].BF;

5 i f (r e s .BF == ∅)
6 return nu l l ;
7 foreach(b i t ∈ r e s .BF non- zero b i t s)
8 r e s . c a r d i n a l i t y += BFHMR1

[i]. counter s (b i t) *
BFHMR2

[j]. counter s (b i t) * α;
9 r e s .minScore = j o i nS co r e (BFHMR1

[i].minScore ,
BFHMR2

[j].minScore);
10 r e s .maxScore = j o i nS co r e (BFHMR1

[i].maxScore ,
BFHMR2

[j].maxScore);
11 return r e s ;

0.9 0.8 0.7 0.6
– – – –
1.0 0.9 0.8 0.7

min 0.93 0.82 0.70 0.64
max 1.00 0.82 0.79 0.68
h(a) 1 1
h(b) 1 1 1
h(c) 1 1 1
h(d) 2 1

(a) R1 BFHM

0.9 0.6 0.5 0.4 0.3
– – – – –
1.0 0.7 0.6 0.5 0.4

min 0.91 0.64 0.50 0.41 0.31
max 0.92 0.64 0.53 0.41 0.38
h(a) 1 3
h(b) 2
h(c) 1 1
h(d) 2 1

(b) R2 BFHM

Join Min Max # of est. R1 R2

Attr Score Score Results bucket bucket
1 h(b) 1.73 1.74 2 0.8–0.9 0.9–1.0
2 h(b) 1.61 1.71 2 0.7–0.8 0.9–1.0
3 h(c) 1.57 1.64 1 0.9–1.0 0.6–0.7
4 h(b) 1.55 1.60 2 0.6–0.7 0.9–1.0
5 h(a) 1.43 1.53 1 0.9–1.0 0.5–0.6
6 h(c) 1.34 1.43 1 0.7–0.8 0.6–0.7
7 h(d) 1.32 1.35 4 0.8–0.9 0.5–0.6
8 h(c) 1.28 1.32 1 0.6–0.7 0.6–0.7
9 h(a) 1.24 1.38 3 0.9–1.0 0.3–0.4
10 h(c) 1.24 1.38 1 0.9–1.0 0.3–0.4
11 h(d) 1.23 1.23 2 0.8–0.9 0.4–0.5
12 h(a) 1.20 1.32 1 0.7–0.8 0.5–0.6
13 h(d) 1.14 1.21 2 0.6–0.7 0.5–0.6
14 h(d) 1.05 1.09 1 0.6–0.7 0.4–0.5
15 h(a) 1.01 1.17 3 0.7–0.8 0.3–0.4
16 h(c) 1.01 1.17 1 0.7–0.8 0.3–0.4
17 h(c) 0.95 1.06 1 0.6–0.7 0.3–0.4

(c) Estimated BFHM join result (score function: sum)
Figure 6: Example: BFHM join result estimation

would then proceed by fetching bucket (0.8, 0.9] for R1 and
joining it to bucket (0.9, 1.0] for R2; the join would return
an estimated result containing two tuples (the product of
the counters for bit position h(b)), with a minimum score of
0.82+0.91 = 1.73 and a maximum score of 0.82+0.92 = 1.74.
Then it would be R2’s turn, fetching the (0.6, 0.7] bucket and
joining it to the two buckets already fetched for R1, etc.

To test for the termination of the estimation phase, we
examine the estimated results list and the buckets fetched
so far. First, we compute the minimum score of the k’th es-
timated result. The estimation phase terminates if there are
more than k estimated results and there is no combination
of buckets not examined so far that could have a maximum
score above that of the k’th estimated result.

Take for example the estimated result of Fig. 6(c) and
assume we requested the top-3 join results. After having
fetched the first two buckets for R1 (i.e., (0.9, 1.0], (0.8, 0.9])
and for R2 (i.e., (0.9, 1.0] and (0.6, 0.7]), we would have com-
puted rows 1 and 3 of the result set in Fig. 6(c). At this time,

the estimated result set consists of 2 + 1 = 3 estimated tu-
ples, and the minimum score of the third tuple would be
1.57. The maximum attainable score for the join of the next
bucket (i.e., bucket (0.7, 0.8]) of R1 and the highest-score
bucket of R2 (i.e., (0.9, 1.0]) would be 0.8 + 1.0 = 1.8 which
is higher than 1.57 so the estimation phase does not termi-
nate. After fetching and joining bucket (0.7, 0.8] of R1, the
result set would consist of rows 1, 2, 3, and 6 of Fig. 6(c).
Now the estimated score for the top-third result becomes
1.71. The maximum attainable score for the join of the next
bucket of R2 (bucket (0.5, 0.6]) against the highest-scoring
bucket of R1 would be 1.6; conversely, the maximum at-
tainable score for the next bucket of R1 (bucket (0.6, 0.7])
against bucket (0.9, 1.0] of R2 is 1.7; since both of these are
lower than 1.71, the estimation phase terminates.

The next phase examines the estimated results of the first
phase and purges all estimated results whose maximum score
is below that of the (estimated) k’th tuple. Then, the algo-
rithm fetches the reverse mapping rows corresponding to the
non-zero bit positions of the Bloom filters in the estimated
results, which are then used to compute the final result set.

5.3 Analysis of BFHM Rank-Join
Our BFHM-based algorithms deal with two sources of in-

accuracy when estimating the rank join result set: use of
histograms and use of Bloom Filters. The former introduces
errors in the estimation of the actual score of the join results,
while false positives in the latter may result in overestimat-
ing the join result size. For ease of presentation, assume
for now that our Bloom filters are false-positive free. This
allows us to know for sure when joining tuples from any
two given buckets of the BFHM will actually produce join
results. However, it gives us no way of knowing the exact
scores of the joined tuples and thus does not allow us to
compute the actual score of the join result tuple.

In order to accomplish this, we maintain the min and max
score achievable when joining two buckets; then, instead of
keeping the k highest scored estimated results, our algo-
rithms also keep all those tuples whose maximum possible
score is larger than the lowest possible score of the kth es-
timated result. This guarantees that no tuple is lost from
the final result set, at the expense of fetching/storing some
tuples that may not make it in the final result set.

In a false-positive-free world, this would suffice. Alas, false
positives in the Bloom filters of the BFHM may cause an
overestimation of the join result set size for any two joined
buckets. Surely one can tweak the Bloom filter parameters
so as to minimize the false positive probability; however, do-
ing this may lead to overly large Bloom filters, thus dimin-
ishing any bandwidth consumption returns expected from
their use. Moreover, even if very large BFs were practical,
one can not guarantee that no false positives arise, as a re-
sult for example of a BFHM bucket being overpopulated.
In order to deal with this, we incorporate the effective false
positive probabilities of the Bloom filters in the join result
size estimation (the α factor in algorithm 7). Given a single-
hash-function Bloom filter of size m, after having inserted n
distinct items, the probability that a given bit is set equals
PT = (1− (1− 1/m)kn) ≈ 1− e−m/kn. In the case of count-
ing Bloom filters, we can use this information to estimate a
“compensated” value of any given counter, as follows. When
joining two filters (say BFA and BFB), and JSize is the es-
timated join size as computed through BFA ·BFB (i.e., sum

of products of matching Bloom filter counter values), we
scale JSize by a factor of α = (1−PTA

) · (1−PTb
); that is:

JSizeA·B = BFA ·BFB · (1− PTA
) · (1− PTb

)
Our experimental evaluation showed that the combina-

tion of these two mechanisms results in a 100% recall for
all workloads and parameter values tested. Apart from the
above probabilistic scheme, we can further guarantee a 100%
recall, as follows. First, when we have k or more results in
the final result set, we examine the score of the kth actual
join result and compare it to the maximum scores of BFHM
buckets that didn’t make it to the fetch list. If there are
buckets whose maximum score is above the former, then we
should consider these additional buckets too. If no change
occurs in the result set after this step, the algorithm termi-
nates. Similarly, for the case were k′ < k results have been
produced in the second query processing phase, we resume
the query processing algorithm from the point it initially
stopped, only now looking for the top-k + (k − k′) results.
When k or more results have been produced, the algorithm
performs the checks outlined in the first case.

Lemma 1. The set of tuples represented by the BFHM re-
sulting by combining the BFHMs of multiple joined buckets,
is a superset of the actual join result set.

Proof. Remember that tuples are inserted to the BFHM
based on their join attribute value, and that when joining
two (or more) such structures, we first perform a bitwise-
AND of the Bloom filters. This means that, in the resulting
BFHM, bit positions that were unset in at least one of the
BFHMs, will also be 0, while all remaining positions (i.e.,
for which all BFHMs had a non-zero value) will be non zero,
and the product of the respective counters will give us an
estimation of their join result size. Being based on Bloom
filters, each individual BFHM cell can only introduce false
positives; that is, in our context, the individual counters in
every counter position of the original BFHMs will be equal
to or larger than the cardinality of the values they represent.
Hence, we can only overestimate the number of join results
corresponding to any position in the final BFHM.

In essence, this means that the recall of our BFHM-based
algorithm is not affected by the use of Bloom filters. It thus
suffices to prove that our treatment of BFHM cells/buckets
is such that if some item is missing from the output, then
our algorithms can detect and fetch it.

Theorem 1. The BFHM-based rank join algorithms can
achieve a 100% recall for any valid input.

Proof. We shall prove this by contradiction. Let t be
a join result tuple which should be in the top-k join result
set but is omitted by our algorithm; that is, t’s score is
among the actual top-k join result scores but t is not in
the final result set computed during phase 2 (and possible
repetitions, as discussed above). Given lemma 1, this may
happen only if the algorithm has stopped before examining
the join result BFHM bucket in which t belongs. This in
turn means that the result set consists of at least k results,
and that the maximum score of t’s bucket (being larger or
equal to t’s score) – and hence t’s score – is below the score
of the kth result; a contradiction.

6. UPDATES AND MAINTENANCE

Both the IJLMR and ISL indexes are in essence space-
optimized inverted lists of the base data. To maintain these
indexes up-to-date in the face of concurrent run-time up-
dates, we have overloaded the base data insertion and dele-
tion functions, intercepting these primitives so as to also
propagate changes to the index. More specifically, both
insertions and deletions are intercepted at the caller level;
then, the mutation is augmented so as to perform both a
base data and an index insertion/deletion in one operation,
using the original mutation timestamp for both operations.
This reduces the time between data and index updates, and
takes a step towards index consistency. We have opted for
eventual consistency, since this is the consistency level also
natively supported by most contemporary NoSQL stores;
failed mutations are retried until successful and key-value
timestamps are used to discern between fresh and stale tu-
ples.

For BFHM, the existence of the BFHM blobs makes con-
current updates more complicated. To this end, we have
taken a hybrid approach, where updates to the reverse map-
pings are performed just as above, while updates to the
blobs are handled through special insertion and tombstone
records. These are key-value pairs that are stored in the
bucket row, along with the blob and bucket score range.
Each tuple insertion in a specific BFHM bucket will result
in an “insertion” record being added to the bucket row (in
addition to an entry being added in the corresponding re-
verse mapping row); this key-value pair holds all BFHM-
related information (i.e., the tuple’s rowkey, join value, and
score), and bears the same timestamp as the newly inserted
tuple. Conversely, if a tuple is deleted from a BFHM bucket,
then a “tombstone” record is added to the bucket row, again
bearing all BFHM-related information and the same times-
tamp as the delete operation; reverse mappings are directly
deleted, using the NoSQL store’s vanilla delete operation.
This information allows anyone retrieving a bucket row to
replay all row mutations in timestamp order and reconstruct
the up-to-date blob from the original blob. The blob is
then written back to the NoSQL store using the timestamp
of the latest replayed mutation, and insertion/tombstone
records with an older or equal timestamp are purged, all in
a single operation. HBase (and most NoSQL stores) sup-
port row-level atomicity; coupled with the above treatment
of timestamps, this ensures that no updates are lost. The
blob write-back can be performed eagerly (at the beginning
of query processing), lazily (after the query results are re-
turned to the user), or off-line (by a thread periodically
probing bucket rows for mutation records). Moreover, one
can choose to perform the write-back only if the number of
replayed mutations is above some predefined threshold.

7. EXPERIMENTAL EVALUATION

7.1 Methodology
We implemented all of the above mentioned algorithms,

comprising approx. 6k lines of Java code. We further im-
plemented the DRJN algorithm from [8]. The DRJN index
is roughly a 2-d matrix, with join value partitions on its x-
axis and score value partitions on its y-axis. DRJN query
processing proceeds as follows: (i) the querying node fetches
complete DRJN matrix rows in decreasing score order; (ii)
the relevant buckets are “joined” so as to estimate the car-
dinality of their join; (iii) when the cumulative cardinality

surpasses k, contact all nodes and fetch and join all tuples
whose score is above the the lower score boundaries of the
last fetched buckets; (iv) terminate if the cardinality of the
actual result set is k and the score of the k’th tuple is larger
than the maximum attainable join score of the last fetched
buckets, otherwise loop to (i), incrementally fetching more
buckets and tuples. As [8] was designed for a P2P-like set-
ting, we had to revisit it so as to be useable in a NoSQL store
such as HBase. First, we opted to group DRJN buckets by
their scores and store all buckets for a given score range as
columns of a single row; thus, the querying node will retrieve
a complete batch of buckets, as required at step (i) above,
with a single HBase Get() operation. We further augmented
HBase with custom server-side filters to allow for efficient fil-
tering of tuples in step (iv). Last, we further expedited step
(iv) by implementing it as a lightweight Map-only Hadoop
job, storing its output data in a temporary HBase table for
the querying node to access and join.

We employed two different clusters: one in a controlled
lab environment and one ”in-the-wild”. For the latter, we
used Amazon’s Elastic Compute Cloud (EC2), with clusters
consisting of 3, 5, and 9 m1.large nodes. (each with 2 virtual
cores, 7.5 GB RAM, and 2x 420 GB of instance storage).
The lab cluster (LC) consisted of 5 nodes, each with 2 CPUs,
16 cores per CPU, 64GB RAM, and 10× 1TB disks.

We used the TPC-H generator, generating data for the
“Lineitem”, “Orders”, and ”Part” tables, for scale factors
from 10 to 500. The larger (smaller) data scale resulted in
tables with 3 billion (60M), 750 million (15M), and 100 mil-
lion (2M) rows, which occupied ≈1.7TB (34GB), ≈200GB
(4GB), and ≈25GB (0.5GB) of HBase disk space, respec-
tively. With the TPC-H generator we also computed up-
date sets, to be applied to the base data and indexes. All
Bloom filters were configured to contain the most heavily
populated of the buckets with a false positive probability of
5%. The number of BFHM buckets was set to 100 and 1000
on EC2 and to 100 and 500 on LC. ISL was configured with
batching sizes matching the number of BFHM buckets; 1%
and 0.1% on EC2, and 1% and 0.2% on LC. DRJN was also
configured with 100 and 500 buckets on LC.

We used the following queries:
Q1: SELECT * FROM Part P, Lineitem L

WHERE P.PartKey=L.PartKey
ORDER BY (P.RetailPrice * L.ExtendedPrice)
STOP AFTER k

Q2: SELECT * FROM Orders O, Lineitem L
WHERE O.OrderKey=L.OrderKey
ORDER BY (O.TotalPrice + L.ExtendedPrice)
STOP AFTER k

These queries were selected to showcase both the use of
different aggregate scoring functions and the effect of score
value distributions on the query processing time. Queries
were executed 20 times and we report on the average values
(the standard deviation was too small to show on the graphs
in all cases). Last, we applied the update sets one at a
time and executed 20 repetitions of the same queries. All
block-level/memory caches were purged between consecutive
update and query executions.

We evaluate all algorithms using the following metrics:
• Turnaround time: the wall-clock time required to com-

pute and return the top-k join result.
• Network bandwidth: the number of bytes transferred

through the network.

• Dollar cost: the number of tuples read from the cloud
store during query processing1.

Regarding query processing times, the BFHM and ISL al-
gorithms were similar across all EC2 cluster sizes. For the
PIG, HIVE, and IJLMR approaches, the increase in cluster
size resulted in a ≈30% decrease in processing time going
from 1+2 to 1+8 nodes, with the rest of the metrics be-
ing roughly the same across cluster sizes. Thus, to save
space, we present only the figures for the 1+8 EC2 cluster
and a scalefactor of 10 (denoted “EC2”), and for the 5-node
lab cluster and a scalefactor of 500 (“LC”). With respect
to query response time, IJLMR, PIG, and HIVE had sig-
nificantly reduced performance. Specifically, IJLMR, was
consistently worse than the next-best algorithm by up to an
order of magnitude, PIG was worse than IJMLR by about
an order of magnitude, and HIVE was worse than PIG by
about an order of magnitude. Thus, for presentation clar-
ity we omit specific results for these when showing the LC
results with the big scale factor.

7.2 Results

Query Processing Time. Figures 7(a), 7(d), 8(a), and 8(d)
depict the time required by each algorithm to process the
Q1 and Q2 top-k join queries, for various values of k. Please
note the logarithmic y-axis. Contrasting the results for Q1
and Q2 we can see how the different score distributions affect
the processing time. For Q2 there are fewer high-ranking
tuples, thus we need to reach deeper into each index to pro-
duce the top-k result set compared to Q1. On EC2, BFHM
is the clear winner across the board, with ISL following, and
IJLMR, PIG, and HIVE trailing by large margins. For LC,
ISL is shown to be best, with BFHM closing the gap and
occasionally beating ISL, as k increases. DRJN trails by
several orders of magnitude, primarily due to the cost of
the Map jobs needing to scan the whole dataset to send to
the coordinator those rows having a score greater that the
threshold calculated by it.

Query Processing Bandwidth Consumption. Figures 7(b),
7(e), 8(b), and 8(e) depict the bandwidth consumed to pro-
cess Q1 and Q2. IJLMR does in general very well, as it only
transfers the local top-k lists from the mappers to the sole
reducer. However, as k increases, BFHM closes the gap,
eventually even winning for large values of k. In general,
DRJN achieves its best performance for this metric. From
the LC results, DRJN is the clear winner for Q1 and for low-
k values for Q2. Note that in DRJN, although its mappers
need to scan the complete dataset, this is typically fetched
from each mapper’s local disk. Further, our optimization of
server-side filtering paid off, as the amount of data put on
the network is significantly reduced. For Q1, where the top-
k join is computed very early, DRJN shines, as very little
data need be fetched over the network. For the more de-
manding Q2 however, as k increases, its improvement over
BFHM becomes much smaller.

1Per DynamoDB’s pricing scheme[9], each key-value read
from the NoSQL store corresponds to 1 unit of Read Capac-
ity (as all of our key-value pairs are less than 1KB in size),
with Read Throughput being priced at $0.01 per hour for
every 50 units of Read Capacity.

(a) Q1: Query processing time (b) Q1: Network bandwidth (c) Q1: Dollar cost

(d) Q2: Query processing time (e) Q2: Network bandwidth (f) Q2: Dollar cost

Figure 7: Results for Q1 and Q2 on EC2

(a) Q1: Query processing time (b) Q1: Network bandwidth (c) Q1: Dollar cost

(d) Q2: Query processing time (e) Q2: Network bandwidth (f) Q2: Dollar cost

Figure 8: Results for Q1 and Q2 on LC

Query Processing Dollar-cost. Following the DynamoDB
pricing model, Figures 7(c), 7(f), 8(c), and 8(f) depict the
number of key-value pairs read from the NoSQL store. Nat-
urally, the MapReduce approaches are the worst, since they
need to scan all of the input data. BFHM, with its accuracy
in estimating the result set cardinality, and its “surgical”
accuracy in retrieving appropriate tuples from the input re-
lation, is the clear winner here with ≈1-3 orders of magni-
tude less cost than the next best contender (ISL) and up to
5 orders of magnitude better than DRJN.

Indexing Costs. Fig. 9 depicts the indexing times, showing
that our indexing algorithms scale well with the cluster and
dataset sizes. We stress that, across the board, the sum of
the index building time plus the relevant query processing
times shown earlier, is on par or lower than the time required
to execute the same query in PIG (and much faster than
executing it in HIVE). In essence, this means that we can
afford to build our indices just before executing a query,
and still be competitive against PIG or HIVE! Additionally,
we report on the storage space used by each index and the
maximum memory footprint of individual mappers/reducers
during the index building stages, on the Lab Cluster and for
the 500-scalefactor. More specifically, the disk space used
by each index (for Part, Orders, and Lineitem resp.) was:

• BFHM: 2.6, 22, and 110 GB (incl. reverse mappings)
• ISL: 1.2, 13.5, and 85 GB
• IJLMR: 1.2, 13.5, and 85 GB
• DRJN: ranging from 400 kB (100 buckets) to 8.5 MB

(500 buckets)
Keep in mind that the on-disk size of the base relations was
25 GB, 200 GB, and 1.7 TB respectively for Part, Orders,
and Lineitem. The memory footprint of reducers during the
index building phase was:
• BFHM/100 buckets: 4 GB worst case, 1 GB average.
• BFHM/500 buckets: 2 GB worst case, 0.5 GB average
• ISL/IJLMR: negligible
• DRJN: ranging from 3.5 MB (Part, 500 buckets) to

125 MB (Lineitem, 100 buckets)

Online Updates. Last, we studied the effect of online up-
dates for BFHM. We first used the TPC-H generator to gen-
erate a number of update sets, each consisting of ≈ s× 600
insertions and ≈ s×150 deletions for scale-factor s. We then
applied each of these sets in their entirety (i.e., ≈ 750 mu-
tations), followed by a single query for which we measured
the query processing time. Even with the “eager” update
scheme (i.e., the coordinator reconstructed and wrote back
the updated BFHM at the beginning of query processing),
fitting an update-heavy workload – a worst-case scenario

Figure 9: Indexing time (solid: EC2; pattern: LC)

with regard to the query processing time overhead – the
overall time overhead was less than 10% across the board
(figure omitted due to space reasons).

8. CONCLUSIONS
Top-k join queries arise naturally in many real-world set-

tings. We studied algorithms for rank joins in NoSQL stores.
This is, to our knowledge the first such endeavor. We con-
tributed novel algorithms, implemented them, and exten-
sively tested their performance over Amazon EC2 and in-
house clusters, using TPC-H data at various scales and dif-
ferent query types. The central conclusion is that for all met-
rics, data sets, and query types studied, the BFHM Rank
Join algorithm is very desirable. It typically manages to
outperform the others and even when it is not the best ap-
proach, it offers a performance that is in absolute terms
satisfactory and is less sensitive to the various query types,
data sets, k values, and their configuration parameters. Im-
mediate future plans include the adoption of dynamic Bloom
filters to further improve the time and bandwidth perfor-
mance of BFHM Rank Join, as well as an exploration of the
design space with regard to our various system parameters.

Acknowledgements. This research has been co-financed by
the European Union (European Social Fund - ESF) and
Greek national funds through the Operational Program ”Ed-
ucation and Lifelong Learning” of the National Strategic
Reference Framework (NSRF) - Research Funding Program:
Thales. Investing in knowledge society through the Euro-
pean Social Fund.

9. REFERENCES
[1] A. Abouzeid, et al. HadoopDB: an architectural

hybrid of MapReduce and DBMS technologies for
analytical workloads. PVLDB, 2(1):922–933, 2009.

[2] F. N. Afrati and J. D. Ullman. Optimizing joins in a
map-reduce environment. In Proc. EDBT, 2010.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426.

[4] C. Böhm and H.-P. Kriegel. A cost model and index
architecture for the similarity join. In Proc. ICDE,
2001.

[5] P. Cao and Z. Wang. Efficient top-k query calculation
in distributed networks. In Proc. ACM PODC, 2004.

[6] S. Cohen and Y. Matias. Spectral Bloom filters. In
Proc. ACM SIGMOD, 2003.

[7] J. Dittrich, et al. Hadoop++: Making a yellow
elephant run like a cheetah (without it even noticing).
PVLDB, 3(1-2):515–529, 2010.

[8] C. Doulkeridis, et al. Processing of rank joins in highly
distributed systems. In IEEE ICDE, 2012.

[9] DynamoDB pricing scheme:
http://aws.amazon.com/dynamodb/#pricing.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In Proc. ACM
PODS, 2001.

[11] S. W. Golomb. Run-length encodings. IEEE
Transactions on Information Theory, 12(3):399, 1966.

[12] I. Ilyas, W. Aref, and A. Elmagarmid. Joining ranked
inputs in practice. In Proc. VLDB, 2002.

[13] I. Ilyas, W. Aref, and A. Elmagarmid. Supporting
top-k join queries in relational databases. In Proc.
VLDB, 2003.

[14] I. Ilyas, G. Beskales, and M. Soliman. A survey of
top-k query processing techniques in relational
database systems. ACM Computing Surveys,
40(4):1–58, 2008.

[15] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu.
Llama: leveraging columnar storage for scalable join
processing in the mapreduce framework. In Proc.
ACM SIGMOD, 2011.

[16] S. Michel, P. Triantafillou, and G. Weikum. KLEE: A
framework for distributed top-k query algorithms. In
Proc. VLDB, 2005.

[17] M. Mitzenmacher. Compressed Bloom filters.
IEEE/ACM Transactions on Networking,
10(5):604–612, 2002.

[18] J. Mullin. Estimating the size of a relational join.
Information Systems, 18(3):189–196, 1993.

[19] A. Natsev, Y.-C. Chang, J. Smith, C.-S. Li, and
J. Vitter. Supporting incremental join queries on
ranked inputs. In Proc. VLDB, 2001.

[20] A. Okcan and M. Riedewald. Processing theta-joins
using mapreduce. In Proc. ACM SIGMOD, 2011.

[21] C. Olston, et al. Pig Latin: A not-so-foreign language
for data processing. In Proc. ACM SIGMOD, 2008.

[22] K. Schnaitter and N. Polyzotis. Evaluating rank joins
with optimal cost. In Proc. ACM PODS, 2008.

[23] M. Stonebraker, et al. Mapreduce and parallel
DBMSs: Friends or foes? Comm. ACM, 53(1):64–71,
2010.

[24] A. Thusoo, et al. Hive: a warehousing solution over a
map-reduce framework. PVLDB, 2(2):1626–1629,
2009.

[25] M. Wu, L. Berti-Equille, A. Marian, C. Procopiuc,
and D. Srivastava. Processing top-k join queries.
PVLDB, 3(1-2):860–870, 2010.

[26] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An
efficient method for kNN join processing. In Proc.
VLDB, 2004.

[27] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set
similarity joins. In Proc. ICDE, 2009.

[28] D. Zeinalipour-Yazti, et al. The Threshold Join
Algorithm for top-k queries in distributed sensor
networks. In Proc. ACM DMSN, 2005.

[29] K. Zhao, S. Zhou, K.-L. Tan, and A. Zhou.
Supporting ranked join in peer-to-peer networks. In
Proc. DEXA, 2005.

Crowdsourcing Taxonomies⋆

Dimitris Karampinas and Peter Triantafillou

Computer Engineering & Informatics Department, University of Patras
{karampin,peter}@ceid.upatras.gr

Abstract. Taxonomies are great for organizing and searching web con-
tent. As such, many popular classes of web applications, utilize them.
However, their manual generation and maintenance by experts is a time-
costly procedure, resulting in static taxonomies. On the other hand, min-
ing and statistical approaches may produce low quality taxonomies. We
thus propose a drastically new approach, based on the proven, increased
human involvement and desire to tag/annotate web content. We define
the required input from humans in the form of explicit structural, e.g.,
supertype-subtype relationships between concepts. Hence we harvest, via
common annotation practices, the collective wisdom of users with respect
to the (categorization of) web content they share and access. We further
define the principles upon which crowdsourced taxonomy construction
algorithms should be based. The resulting problem is NP-Hard. We thus
provide and analyze heuristic algorithms that aggregate human input
and resolve conflicts. We evaluate our approach with synthetic and real-
world crowdsourcing experiments and on a real-world taxonomy.

Keywords: Collective Intelligence, Crowdsourcing, Taxonomy, Tagging

1 Introduction

Social media applications and research are increasingly receiving greater atten-
tion. A key defining characteristic is the increased human involvement. Even
before todays’ success of social media applications, many applications became
extremely successful due to the clever exploitation of implicit human inputs (e.g.,
Google’s ranking function), or explicit human input (e.g., Linux open source
contributions). Social media and the social web have taken this to the next
level. Humans contribute content and share, annotate, tag, rank, and evaluate
content. Specialized software aggregates such human input for various applica-
tions (from content searching engines to recommendation systems, etc). The next
wave in this thread comes from crowdsourcing systems in which key tasks are
performed by humans (either in isolation or in conjunction with automata) [7].
Lately, within the realm of data and information retrieval systems, crowdsourc-
ing is gaining momentum as a means to improve system performance/quality [3,

⋆ This research is partially funded by the EIKOS research project, within the THALES
framework, administered by the General Secretariat of Research and Technology,
Greece.

2 Crowdsourcing Taxonomies

13]. A recent contribution suggests to engage humans during the processing of
queries for which humans are better suited for the task (e.g., entity disambigua-
tion) [8]. Further, (anthropocentric) data systems are proposed whose function-
ing (including semantics enrichment and related indices) depends on the users’
contributions and their collective intelligence [20].

The central idea is to respect and exploit the fact that for some tasks humans
can provide excellent help. The challenge then rests on our ability to harness
and properly aggregate individual input to derive the community wisdom and
exploit it to solve the problem at hand. One particularly interesting problem is
that of constructing taxonomies. Taxonomies provide great help for structuring
and categorizing our data sets. As such, currently they are at the heart of many
web applications: Products are available that exploit taxonomic knowledge in
order to improve results in product search applications [1, 2]. In local search,
location taxonomies are used to improve results by utilizing a querying user’s
location and the known location of search result items to improve result quality.
Google’s search news, localized results, and product categories is a prime example
for these. As another example, domain-specific (a.k.a. vertical) search engines
utilize taxonomies (topic hierarchies) which are browsable and searchable using
complex queries and receiving ranked results.

Our work rests on the realization that social media users (contributing and
annotating content) have a good understanding of the fundamental (subtype-
supertype) relationships needed to define a taxonomy for their content. For
instance, biologists collectively can help define the taxonomy to be used, for
example in a vertical (biological) search engine. Users from different locations
can collectively define a locality taxonomy used in search engines with localiza-
tion services. Traders in e-shops can easily collectively come up with product
categorizations. These examples show that humans can offer great help! Fur-
ther, the vast success enjoyed by a great number of social web applications,
prove that humans are willing to provide such annotations. Hence, the hu-
man’s willingness and ability can help solve a problem that is close to the heart
of the semantic web community and which is addressed here: Crowdsourcing
taxonomies inherently promise to provide a way to come up with high-quality
taxonomies, based on the collective knowledge of its users, which will be dynamic
and reflect the user-community’s understanding of the data space.

2 Problem Statement, Rationale, and Challenges

Our model does not depend on any “experts”. We adopt an automated approach,
with the additional feature that users explicitly provide us with relations between
the keywords (so-called “tags”) they employ to annotate the content they share.
Humans have a good understanding of the supertype-subtype relations between
various thematic categories, since these naturally exist around them. So, we
aim to exploit extended tagging and a categorization capability in order to
develop high-quality taxonomies. We ask users to contribute with metadata in
this format: taga → tagd. Here, taga is a supertype topic and represents a higher

Crowdsourcing Taxonomies 3

node to a potential concept hierarchy whilst tagd is a subtype topic. The arrow
between them connotes an Ancestor → Descendant (A→ D) relation. In figure

����

�����

�����

���� 	
��

�	��

	
��

�����

	
��

�����

�����

�	�� �

	
�

�
�

	

Fig. 1: Example

1 we demonstrate the basic idea of our effort. A community of users, forming a
crowdsourcing environment, provides the system with tag relations. These can
either be different between each other or depict the same relationship (i.e. Music
→ Rock). We refer to these tag relations also with the term “votes”, since they
incorporate users’ personal opinions for parts of the taxonomy tree. Our goal
is to aggregate all given tag relations (votes) and produce a taxonomy that is
derived using our community’s knowledge/wisdom.

The problem is not easy! The following challenges arise:

– Individuals are prone to errors. Sometimes they specify incorrect tag re-
lations, e.g., because of constrained knowledge and highly complex datasets.
When building large scale taxonomies, the granularity level between nodes
in adjacent levels is “fine” (especially at the lower levels of the taxonomy)
and thus the frequency of such “false votes” may be high. So, contradicting
opinions arise. But, this happens not only directly, but also indirectly, as a
result of a combination of various relationships. Our goal is to resolve such
conflicts. Since we depend on the crowd’s wisdom, a natural discourse is to
have the majority opinion prevail.

– Incomplete (structural) information. Users’ knowledge might not be
wide enough to completely cover an ideal, “golden rule” taxonomy (e.g. as
constructed by experts). For example, in figure 1, suppose that a vote Arts
→ Jazz (which is valid) were given instead of the Arts → Music one. In this
scenario we have evidence that both Arts and Music nodes are ancestors
of node Jazz but we have no insight as far as their relative relationship is
concerned. In this case, the system must be able to implicitly utilize the users’
given input and fill in the missing structural information. This filling may be
done incorrectly. Our approach will be to make a best guess (according to
some metrics) and rely on future incoming votes to correct any such mistakes.

– Incremental, online taxonomy development. The problem is set in a
dynamic environment. Users provide us with relations in an online way. The
objective here is to introduce any newly incoming relations into the current
structure in a cumulative manner. For every new vote, we shall be able to

4 Crowdsourcing Taxonomies

modify and alter the current taxonomy state without having to destroy or
build it from scratch. Based on the above example, suppose that we eventu-
ally receive an Arts→Music vote. If previously we had made a mistake when
filling the lack of knowledge between Arts and Music, an efficient rectifica-
tion must take place based on the now completed information. To sum up,
dynamic, piece-wise, online taxonomy maintenance is is a key characteristic.

The “human-centric” approach we describe exploits users’ knowledge (which
is very difficult to correctly derive by automatic means) and produces taxonomies
that are in accordance to the beliefs of the system’s user base. In a sense, instead
of constraining user input to characterizing the content (as is typically done in
social media environments), we go one step further and allow users to provide
with input that will lead to the construction of taxonomized datasets.

2.1 The Model, Solution Invariants, and Assumptions

As mentioned, the shape and structure of the taxonomy emerge from the crowd’s
subjective will, as it evolves. As the number of participants increases, in general,
the higher the output quality becomes. When conflicts arise, several conflicting
taxonomy states emerge as alternatives. One of them will be associated with the
greatest number of votes. In this way, the new accepted state of the taxonomy will
emerge. At the end, this process will converge to a structure, entirely defined from
the community’s aggregated knowledge. At this point, we can claim that this
final product objectively depicts a complete taxonomy. But how do we evaluate
such a taxonomy? We wish we could compare it against a golden rule taxonomy
and see how they differ; but there is no standardized, “ideal” structure on which
everyone agrees. Even if we compare taxonomies created by experts there will
not be a 100% match, since both the rules for creating the taxonomy and the
input data are often contradictory and obscure.

Users are asked to provide us with Ancestor → Descendant relations but
any given vote has it’s own interpretation, depending of the current state of
the taxonomy. Any incoming tag relation will be classified to a category, based
on the relative positions of the nodes it touches. For example, in figure 1 the
following possible scenarios can arise as far as an incoming vote is concerned:

– Ancestor → Descendant (A-D): i.e. Arts → Jazz. These relations prac-
tically increase our confidence for the current state of the taxonomy and
generally leave it intact.

– Descendant → Ancestor (D-A): i.e. Rock → Arts. These votes form
what we call backedges and create cycles on the current structure. They
require special handling and may change the current state of the taxonomy.
They are not necessarily “false votes” according to a golden rule taxonomy
and they are usefull, since they can restore possible invalid relations which
were based on previous erroneous input or assumptions.

– Crosslinks: Relations like Jazz→ Rock, do not belong to any of the former
classes. This type of links interconnects nodes that have a common ances-
tor. If according to the golden rule taxonomy, there is a supertype-subtype

Crowdsourcing Taxonomies 5

relationship between these nodes, our algorithms for handling this situation
will be able to eventually yield the proper tree structure. If, however, there
is no such relation between the nodes of a crosslink, then our algorithms will
inescapably produce a supertype-subtype realtion between the two. When a
relation like this arises, special handling is required: our current idea for this
involves users supplying “negative” votes when they see incorrect crosslink
relationships established in the current taxonomy. We leave discussion of this
to future work.

Before we continue with the problem formulation we specify two solution
invariants our approach maintains and give some insight of the taxonomy build-
ing algorithm that follows.

Tree Properties: This is the primary invariant we maintain. A tree is an
undirected graph in which any two vertices are connected by exactly one path.
There are no cycles and this is a principle we carry on throughout the taxonomy
evolution. Starting with many shallow subtrees, as votes enter the system, we
detect relations between more and more tags. The independent trees gradually
form a forest and we use a common “Global Root” node to join them.

Maximum Votes Satisfiability: We also wish to preserve a quantitative

characteristic. Our purpose is to utilize every incoming Ancestor → Descendant

relation and embed it on the current structure. If this raises conflicts, our solution
to this is to derive a taxonomy structure which as a whole satisfies the maximum
number of users’ votes. At this point we need to mention that according to our
model, there is no constraint to the number of votes a user can submit to the
system (see “free-for-all tagging” at [15]). Satisfiability is measured not on per
individual basis but over all votes, overall.

Finally, we need to state that our solution does not take any measures to
face synonyms or polysemy issues. Although according to [12] these are not
major problems for social media, we admit that users tend to annotate their
content with idiosyncratic tags which in our case can lead to wrong keyword
interpretation and create links that users do not intent to recommend. This
issue is orthogonal to our work since we focus on structural development and
thus we can assume a controlled vocabulary without loss of generality.

3 Formal Formulation and Analysis

Leaving aside the added complexity due to the online nature of our venture, we
show that even an offline approach yields an NP-Hard problem.

Note, that at first thought, one could suggest the following solution to our
problem: First, create a directed graph G(V,E) where each vertex v ∈ V rep-
resents a given tag and each e ∈ E represents a relationship between the two
nodes. Edges bear weights w reflecting the number of votes from users for this
relation. Intuitively, this calls to mind minimum/maximum spanning tree algo-
rithms. Thus, second, run a “variation” of one of any well-known algorithms to
retrieve a Maximum Spanning Tree. Because, however, our graph is directed,
what we need here is a ‘maximum weight arborescence’ (which is defined as the

6 Crowdsourcing Taxonomies

directed counterpart of a maximum spanning tree). However, this simplistic idea
has a major flaw. If the graph is not strongly connected (something that regu-
larly happens especially during the early stages of the taxonomy development)
then a number of nodes has to be omitted from the final output.

Our problem is formalized as follows:
Input: Complete graph G = (V,E), weight w(e) ∈ Z+

0 for each e ∈ E.
Output: A spanning tree T for G such that, if W ({u, v}) denotes the sum of
weights of the edges on the path joining u and v in T, then find B where:

B = max(
∑

u,v∈V

W ({u, v})) (1)

This problem is a straightforward instance of the Optimum Communication
Spanning Tree problem in [9] and has been proven to be NP-Hard1. The key idea
here for the matching of the two problems, is that shortcuts (edges weighting 0)
are permitted. Obviously, as an algorithm proceeds online maintaining the tree
invariant, there will be cases when nodes are connected with their edge having
zero weights (as users may have not supplied yet any votes for this edge). B
represents the maximum number of votes that is satisfied and along with the
tree notion meets the standards set by the invariants in the previous section.

4 Crowdsourced Taxonomy Building Algorithm

As noted, our problem is NP-Hard. For n nodes, an optimal solution would
require an exhaustive search of all possible nn−2 spanning trees and the selection
of the one that maximizes value B in (1). So, we adopt a heuristic approach.
We relax the second invariant: we demand the maximum number of satisfied
votes, not overall, but only between consecutive algorithmic steps. Each vote
is embodied into the taxonomy via an algorithm that introduces a series of
transformations for every incoming vote (tag pair).

4.1 The Core Algorithm: CrowdTaxonomy

Algorithm 1 is called on every incoming vote. For every vote (u → v) we first
need to identify whether the named nodes are new to the system or if they
are already part of the tree. In case both nodes already exist (line: 9) we need
to specify their relative position and thus we call a Lowest Common Ancestor
(LCA) routine that returns the LCA node w. If w = null (line: 11), there is
no common ancestor and nodes u and v belong to different trees. If w coincides
with u (line: 14), then u is already an ancestor of v, which is something that
strengthens the evidence we have for the current state of the taxonomy. When
w equals v (line: 16) the v → u relation introduces a conflict and implies that a

1 We consider the requirements equal to the standard basis vector and refer to the
Optimization version

Crowdsourcing Taxonomies 7

modification may be needed. If we accept this edge, the structure’s constraints
are violated since a cycle is created.

Algorithm 1 Vote Processing

Require: A vote tagx → tagy

1: Node u ← hash(tagx)
2: Node v ← hash(tagy)
3: if ((u = null) and (v = null)) then
4: Create New Tree

5: else if ((u 6= null) and (v = null)) then
6: Attach New Child

7: else if ((u = null) and (v 6= null)) then
8: Merge

9: else

10: Node w ← LCA(u, v)
11: if (w = null) then
12: Merge

13: else if (w = u) then
14: Create Forward Edge

15: else if (w = v) then
16: Backedge Conflict Resolution

17: else

18: Expand Vertically

19: end if

20: end if

Lastly, in case w is a separate node on the tree (line: 18), the new relation
forms a crosslink and is handled appropriately. Hereafter, we describe every tree
transformation triggered by each of these cases.

TRSFM Create New Tree: In this simple scenario the taxonomy does not
yet include any of the two nodes of the new vote. So the ancestor node u is
attached to the global root via a shortcut (R→ u) and node v plays the role of
its child (see figure 2a.).

Definition 1 Shortcut: An “artificial” Parent → Child link that is not an

explicit user supplied vote,. Its weight is 0, and it is utilized to preserve structural

continuation.

This addition forms a new tree with only two nodes. In the future, it will be
expanded with more nodes or get merged to another expanding tree.

TRSFM Attach New Child: This is another straightforward case. Node u

pre-exists and the incoming relation can be easily assimilated by adding an extra
child to it.

8 Crowdsourcing Taxonomies

�

�

�

�

�

�

�

�

�

�

�

(a) Create New Tree

�

�

�

�

�

�

�

�

�

�

(b) Attach New Child

Fig. 2: Creating a new tree or attaching a new child

TRSFM Merge: Merge is used in two similar cases. In line 8 of the core
algorithm we ask to attach a new node u to our taxonomy but in a generic
scenario its descendant node v does already have a parent node. So does happen
in line 12 where we need to annex u’s participating tree to that one of v’s with
a link between them. In figure 3a we observe that both node C and u “compete
for the paternity” of v. In order to maintain the tree properties, only one of
the potential parents can be directly connected with v. We arbitrarily choose
node C to be the direct ancestor (parent) of v and set node u to be parent of
C which is in accordance with the Maximum Vote Satisfiability invariant since
an Ancestor → Descendant (u → v) relation takes place. The (temporary)
state formed in the middle of figure 3a suffers from the same “paternity conflict”
problem - now between A and u over C. Following the same reasoning, we finally
place node u on top of v’s tree being now the parent of v’s root. Since there is
no given relation yet between u and A we form a shortcut between them. We
also maintain a forward edge from u to v so not to lose the information we have
regarding the vote for the u→ v relationship.

Definition 2 Forward Edge: A latent relation between two nodes. The source

node is an ancestor in the taxonomy and the target is a descendant. Forward

edges do not refer to Parent→ Child links and remain hidden since they violate

tree’s properties.

The idea behind this transformation is that since we don’t have enough evidence
to decide on the partial order of v’s ancestors we temporarily send u node to the
root. Relations that will follow will illustrate the correct order.

If v is a root of a tree, an Attach New Child transformation is called.

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

(a) Merge

�

�

�

�

�

�

�

�

� 	

�

�

�

��

�

�

	

�

(b) Expand Vertically

Fig. 3: The Merge and Expand Vertically transformations

Crowdsourcing Taxonomies 9

TRSFM Expand Vertically: In this case the newly incoming vote is inter-
preted as a crosslink according to the current state of the taxonomy. As shown in
figure 3b the logic we follow resembles at some point the Merge transformation.
First, we locate the common ancestor A of u and v and break the link between it
and the immediate root E of the subtree that includes v. The independent sub-
tree is now linked with u via a shortcut formed between u and its root E. Two
forward edges are spawned to indicate latent Ancestor → Descendant relations.
For the sake of completeness we report here that in contrast to common edges
between nodes, shortcuts are not converted to forward edges when the link that
touches the two nodes brakes.

TRSFM Create Forward Edge: Straightforward scenario. A forward edge
is added from u to v unless their node distance is 1 (Parent → Child). In any
other case (distance = 1) no operation takes place.

TRSFM Backedge Conflict Resolution (BCR): At line 16 of the Vote

Processing algorithm we need to handle a vote whose interpretation is against
the relationship of the nodes it touches in the current taxonomy state and any
attempt to adjust it, leads to a backedge.

Definition 3 Backedge: A latent relation between two nodes. The source node

appears as a descendant in the current taxonomy whereas the target as an an-

cestor. Backedges remain hidden since they violate the tree’s properties.

Besides the cycle that it creates, a backedge might also violate the Maximum

Votes Satisfiability invariant. The idea to solve this problem is to isolate the
strongly connected component that the newly incoming backedge created and
resolve any vote conflict locally.

We will present the logic of this transformation with a specific example on
figure 4. For the sake of simplicity we assume that the incoming vote appears in
a “triple form” and will be processed as such. On the left we observe the initial
state of the isolated subgraph. We are asked to embody a u→ v relation whose
weight (number of votes) equals 3. We apply a what-if analysis. We instantiate
all possible states, which the subraph component can reach, every time we apply
a vertical rotation to its nodes. These are presented on the right part of the
figure. The state whose backedges add up to the minimum weight is picked as
a final state. In this example we arbitrary choose between state 3 or 4. Node A

and its in- or out- going edges does not take part into this computation and is
displayed here just to illustrate how it interfaces with the rest of the graph.

Formally, the aforementioned is an instance of the All-pairs Bottleneck Paths

problem [19] and aims to find out the state in which we displease (or dissatisfy)
the least number of votes. It’s dual equivalent problem is the All-pairs Maximum

Capacity and can be respectively interpreted as an effort to preserve our second
invariant (Maximum Votes Satisfiability).

10 Crowdsourcing Taxonomies

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

������
���
������
���
������
���
������
�����������
�����

Fig. 4: Backedge Conflict Resolution What-if Analysis. VATS: Votes
Against This State

Elimination of rising crosslinks

In fig. 5 we observe the big picture during a BCR. The change caused by the
appearance of (u→ v), practically decomposes the taxonomy into 3 components.
The one on top, T , right above v, remains put. The lower ones are being inverted
after we identify and break the weakest edge between them. This transforma-
tion has some corner cases. Former forward edges, such as b → d now appear
as crosslinks, violating the first invariant. A solution to this anomaly is offered
by algorithm 2, which simply certifies that all forward edges on path {v, ..., b}
adhere to the obvious ancestor-descendant relation.

�

�

�

� �

�

�

�

�

�

�

�

� � �

�

�

�

��	
��
�����

Fig. 5: The big picture of BCR
and the algorithm for crosslinks
elimination

Algorithm 2 Crosslink Elimination

1: for all Nodes bi ∈ {v...b} do

2: for all forward edges (bi, d) do

3: if (bi 6= LCA (bi, d)) then
4: Expand Vertically(bi, d)
5: end if

6: end for

7: end for

4.2 Asymptotic Complexity Analysis

The core Algorithm 1 is called once for every new vote. In turn, it calls at most
one of the transformations. Therefore, its worst-case asymptotic complexity is
equal to the worst of the worst-case complexities of each of the transformations.
Having computed all these partial complexities we state that the worst one,
is the one corresponding to Backedge Conflict Resolution. Every time
a backedge appears it interconnects two nodes and the path connecting them

Crowdsourcing Taxonomies 11

(coined BCR path) has a maximum length of n, where n denotes the number of
total nodes. This is an extreme scenario where all the tree nodes form a chain.
As we already stated, at this point, the BCR algorithm forms n possible tree
instances, with every one of them representing a unique cyclic rotation of the
nodes making up the BCR path. For every one of these n instances, we iterate
over the n nodes it consists of and explore their outgoing edges to verify whether
they form a backedge or not. The number of these outgoing edges is obviously
also at most n-1. Therefore, the overall asymptotic worst-case complexity of the
Backedge Conflict Resolution transformation is O(n3).

Theorem 1. If s denotes the number of votes, the worst-case asymptotic com-

plexity of CrowdTaxonomy Algorithm is O(s ∗ n3).

Proof. Vote Processing is called s times, once for each incoming vote. Every
time a single transformation is applied. The worst-case complexity of the latter
equals O(n3). Therefore the worst-case asymptotic complexity of the CrowdTax-
onomy algorithm is O(s ∗ n3).

This analysis depicts a worst-case scenario and is basically presented for the
sake of completeness, vis a vis the NP-Hard result presented earlier. As the
experiments showed, the algorithm’s behaviour in matters of absolute time is
approximately linear to the number of votes. This is because (i) BCR paths are
much smaller than n and (ii) outgoing links per node are also much smaller than
n. In future work we plan to present an analysis of the average complexity and
provide with better estimations than n which is a very relaxed upper-bound.

5 Experimentation

We evaluate the CrowdTaxonomy algorithm and demonstrate its quality un-
der: i) Lack of (structural) information and ii) the presence of conflicting votes.
Further, we perform a real world crowdsourcing experiment: we test our initial
assertion, that users are capable of providing valuable input when creating a
taxonomy. We also test the quality of the taxonomy produced by CrowdTaxon-
omy with real-world input. Our metrics for evaluating the resulting taxonomy are
based on the similarity between it and the golden rule one. Consider a taxonomy
To as the golden rule taxonomy, and T as the one derived from our algorithm.
Let Ro be the set of all Parent→ Child relations on the To and R the set of all
Parent→ Child relations on T . We define:

Recall =
|R0 ∩R|

|R0|
, P recision =

|R0 ∩R|

|R|
, FScore =

2 ·Recall · Precision

Recall + Precision

|S| denotes the cardinality of a set S.
Recall certifies the completeness of the taxonomy, whereas Precision measures
its correctness. FScore is a combination of the former into a harmonic mean.

We use the ACM Computing Classification System (version 1998) as the
golden rule taxonomy. It contains 1473 concepts, forming a four-level tree. We

12 Crowdsourcing Taxonomies

“break” this tree into distinct node (pair) relations, generate additional conflict-
ing pairs and feed (correct and incorrect pairs) to our algorithm.

Our algorithm was written in C and we used GLib. The interface of the crowd-
sourcing experiment was implemented in HTML/PHP and ran over Apache/MySQL.

5.1 Synthetic Experiments

A key challenge we face is to provide a high-quality taxonomy under incomplete
structural information. The votes are given ad-hocly and there is no guarantee
that they form a complete taxonomy. To examine this characteristic we form all
possible Ancestor → Descendant relations of the ACM tree and gradually feed
the algorithm with a fraction of them. The result is shown in figure 6.

� � � � � � � � 	 �

��

��

��

��

�

���

�
�����

��
������

��������	�
���������

��	���	��

�
�
�
�
��
��
��

�
�
��

��

Fig. 6: Recall and Precision using a per-
centage of Correct votes

� �� �� �� �� �� �� �� 	�
� ���

�

���

���

���

��	

�

���

�
����

���������	
��

�
�
�
	

�

Fig. 7: FScores having a mixture of Cor-
rect and False votes

We repeatedly increase by 10% the number of available votes and measure
the quality of our taxonomy. The absence of Descendant→ Ancestor relations
keeps the number of permanent backedges to zero. Any backedges that arise are
instantly resolved and one, and only one, tree instance (representing 0 conflicts)
is produced. The Recall value is linear to the size of input as expected. The Pre-
cision metric equals 0.4 at the begining and gradually increases. The taxonomy
edges consist of a set of correct edges and a number of additional shortcuts, with
a fraction of them playing a role of ‘noise’. As we reach 100% input completeness,
the assumptions (shortcuts) are gradually eliminated and both metrics end to
1.0 verifying a sanity-check, since the experiment configuration deals with only
correct votes. Next we ‘infect’ the input with additional false votes. The number
of correct Ancestor → Descendant votes remains 100% but on every iteration
we increase the number of false (Descendant→ Ancestor) votes. We form these
by reversing the direction of a relation between two nodes. In figure 7 we ob-
serve that even with a high number of bad input, the taxonomy quality is high.
For instance, even with 30% false votes, the F score remains above 60%. Under
normal circumstances, where users can provide a largely complete and correct
set of A-D relations, our algorithms produce a high quality taxonomy. Note that
in this configuration Recall = Precision = FScore.

Crowdsourcing Taxonomies 13

5.2 Crowdsourcing Experiment

We asked students of our department to voluntarily participate in crowdsourcing
a taxonomy. We pregenerated all the possible Ancestor → Descendant relations
and derived all the ‘false’ Descendant → Ancestor counterpart votes. We re-
moved all misleading concepts (e.g., with labels ‘General’ or ‘Miscellaneous’)
and attached their child nodes to their direct ancestors. As the total number
of possible A-D relations is very high we used a fraction of the tree with 245
nodes which led to 620 relations (A-D) plus their counterparts (D-A). The users
were presented with pairs of votes, the original correct vote, and the (inverted)
false one. They had to choose between the one that depicted a A→ D relation,
linking two concepts of the ACM tree nodes. The user task consisted of 25 pairs
of votes that were presented in groups of 5. Users could also select not to answer
a vote-question marking it as unspecified. We counted 102 distinct http-sessions
but the number of collected votes was smaller than the theoretical (2550), since
some users dropped out early. In contrast to commercial crowdsourcing hubs,
our user base had no financial or other type of gain. We collected input for a 3-
day period. Some statistics of the experiment are shown on Table 1. We observe
that the false/correct votes ratio is 0.283, which testifies that users are capable
of providing high-quality input. Overall, the input accounted for 94.7% of all
correct relations. With these statistics, we ran a synthetic experiment with con-
trolled input, which predicted an FScore (Predicted) whose value is close to the
one in the real-world experiment. Thus, we can conclude that (i) the real-world
experiment corroborated our conclusions based on the synthetic one; (ii) users
can indeed provide high-quality input en route to a crowdsourced taxonomy, and
(iii) despite the voluntary nature of user participation and the heuristic nature
of our algorithms, the end result is a taxonomy preserving the large majority of
the relationships found in expertly constructed taxonomies.

Total Votes 2155

Correct Votes 1501

False Votes 435

Unspecified 229

FScore 0.486

FScore (Predicted) 0.519

Table 1: Crowdsourcing Experiment Statistics

6 Related Work

[4], [5], [18] and [17] apply association mining rules to induce relations between
terms and use them to form taxonomies. For text corpora, Sanderson and Croft
automatically derive a hierarchy of concepts and develop a statistical model

14 Crowdsourcing Taxonomies

where term x subsumes term y if P (x|y) ≥ 0.8 and P (y|x) < 1 where P (a|b)
defines the probability of a document to include term a assuming that term b

is contained. Schmitz extended this and applied additional thresholds in order
to deal with problems caused by uncontrolled vocabulary. [6] and [14] underline
the importance of folksonomies and the need to extract hierarchies for searching,
categorization and navigation purposes. They present approaches that operate
based on agglomerative clustering. A similarity measure is used to compute the
proximity between all tags and then a bottom-up procedure takes place. Nodes
under a threshold are merged into clusters in a recursive way and eventually
compose a taxonomy. Heyman & Garcia-Molina in [11] present another technique
with good results. Given a space of resources and tags, they form a vector for
every tag and set to the i− th element the number of times it has been assigned
to object i. They also use cosine similarity to compute all vectors’ proximities
and represent them as nodes of a graph with weighted edges that correspond to
their similarity distance. To extract a taxonomy they iterate over the nodes in
descending centrality order and set every of its neighbours either as children or
to the root based on a threshold.

As Plangprasopchok et al. note in [16] all these approaches make the assump-
tion that frequent words represent general terms. This does not always hold and
any threshold tuning approach leads to a trade-off between accurate but shallow
taxonomies against large but noisy ones. Also, all above works assume a static
tag space, despite its dynamicity [10].

7 Conclusions

We have presented a drastically new approach to create taxonomies, exploiting
the wisdom of crowds and their proven desire and ability to provide rich seman-
tic metadata on several social web applications. Our contributions include the
definition and analysis of the problem of crowdsourcing taxonomies. We showed
how to model the problem and the required human input and the (meaningful
in a crowdsourcing environment) invariant of maximum vote satisfiability. Then
we proceeded to show that the resulting problem is NP-Hard. Next, we con-
tributed a novel heuristic algorithm to online aggregate human input and derive
taxonomies. We conducted both synthetic and real-world crowdsourcing exper-
iments. Our synthetic experiments showed that when the human input is ade-
quately complete and correct, our solution can derive high-quality taxonomies.
Conversely, even when the input is incomplete and incorrect to a significant
extent, still a good quality taxonomy can be constructed. Our real-world crowd-
sourcing experiment additionally showed that indeed humans can provide high
quality input in terms of completeness and correctness (at least for the taxonomy
examined). And as our synthetic results showed, when fed into our algorithms,
good quality taxonomies emerge. To the best of our knowledge this is the first
work to study this problem and provide a promising solution.

Future work includes optimizations, straddling the complexity-quality trade-
offs, and appropriate measures for crowdsourced taxonomy quality evaluation.

Crowdsourcing Taxonomies 15

References

1. Endeca. http://www.endeca.com/.
2. Facetmap. http://http://facetmap.com/.
3. O. Alonso and M. Lease. Crowdsourcing 101: Putting the wsdm of crowds to work

for you: A tutorial. In International Conference on WSDM, February, 2011.
4. C.-m. Au Yeung, N. Gibbins, and N. Shadbolt. User-induced links in collaborative

tagging systems. In Proceeding of the 18th ACM conference on Information and
knowledge management, CIKM ’09.

5. M. Barla and M. Bieliková. On deriving tagsonomies: Keyword relations coming
from crowd. Computational Collective Intelligence. Semantic Web, Social Networks
and Multiagent Systems, 2009.

6. C. H. Brooks and N. Montanez. Improved annotation of the blogosphere via au-
totagging and hierarchical clustering. In Proceedings of the 15th international
conference on World Wide Web, WWW ’06.

7. A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing systems on the
world-wide web. Commun. ACM, 2011.

8. M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb:
answering queries with crowdsourcing. In ACM SIGMOD Conference, 2011.

9. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness.

10. H. Halpin, V. Robu, and H. Shepherd. The complex dynamics of collaborative
tagging. In 16th WWW Conference, 2007.

11. P. Heymann and H. Garcia-Molina. Collaborative creation of communal hierarchi-
cal taxonomies in social tagging systems. Technical report, 2006.

12. P. Heymann, A. Paepcke, and H. Garcia-Molina. Tagging human knowl-
edge. In Third ACM International Conference on Web Search and Data Mining
(WSDM2010).

13. P. Ipeirotis. Managing crowdsourced human computation: A tutorial. In Interna-
tional Conference on WWW, March, 2011.

14. K. Liu, B. Fang, and W. Zhang. Ontology emergence from folksonomies. In 19th
ACM CIKM, 2010.

15. C. Marlow, M. Naaman, D. Boyd, and M. Davis. Position Paper, Tagging,
Taxonomy, Flickr, Article, ToRead. In Collaborative Web Tagging Workshop at
WWW2006.

16. A. Plangprasopchok, K. Lerman, and L. Getoor. Growing a tree in the forest: con-
structing folksonomies by integrating structured metadata. In 6th ACM SIGKDD
Conference, 2010.

17. M. Sanderson and B. Croft. Deriving concept hierarchies from text. In 22nd ACM
SIGIR Conference.

18. P. Schmitz. In WWW 2006.
19. A. Shapira, R. Yuster, and U. Zwick. All-pairs bottleneck paths in vertex weighted

graphs. In 18th ACM-SIAM SODA Symposium, 2007.
20. P. Triantafillou. Anthropocentric data systems. In 37th VLDB Conference, (Vi-

sions and Challenges)., 2011.

