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ABSTRACT

The ubiquity of mobile location aware devices and the prolifera-
tion of social networks have given rise to Location-Aware Social
Networks (LASN), where users form social connections and make
geo-referenced posts. The goal of this paper is to identify users
that can influence a large number of important other users, within
a given spatial region. Returning a ranked list of regionally influen-
tial LASN users is useful in viral marketing and in other per-region
analytical scenarios. We show that under a general influence prop-
agation model, the problem is #P-hard, while it becomes solvable
in polynomial time in a more restricted model. Under the more re-
strictive model, we then show that the problem can be translated to
computing a variant of the so-called closeness centrality of users in
the social network, and devise an evaluation method.

Categories and Subject Descriptors

H.2 [Database Management]: Database Applications

General Terms

Algorithms

Keywords
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1. INTRODUCTION
The proliferation of mobile location-aware devices (e.g., smart-

phones, tablets, GPS devices) and the current trend for services
based upon the social interactions of their users have given rise to
the so-called Location-aware Social Networks (LASN). In the most
predominant LASNs, such as Foursquare or Twitter (geo-tagged
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tweets), a user can become friend with another, forming thus a so-
cial network, and more importantly can check-in at various places,
i.e., share in public (or to her friends/followers) her current location
and activity, for example eating at a restaurant, attending a concert.
In LASNs it is often useful to find users that are highly influ-

ential within a specific geographical region. Consider for example
the organizer of a city-wide festival looking to attract people across
city districts. The organizer could utilize an LASN to determine
the most influential user within each district, and then, recruit her
to locally advertise the festival. Contrary to recruiting a group of
globally influential users, targeting regionally influential users has
increased chances to draw attendance from all districts. As another
example, consider a natural disaster, where affected people often
turn to LASNs as a source of prompt information as well as a means
for self-organizing community-driven help and support. The gov-
ernment seeking to reward the most active and helpful civilians in
the aftermath, would locate the most influential LASN users within
the affected area. In such scenarios, the common theme is ranking
LASN users according to their computed geo-social influence.
In this work, we introduce the top-k Regionally Influential LASN

users (k-RIL) problem. A user checks-in at a location ℓ when she
makes a geo-tagged post from ℓ. Thus, given a spatial region R,
we say that a user is regional if she has checked-in at least once
at a location within R. Moreover, the locality of a regional user u
models the probability that u will check-in at a location within R,
and, in a sense, generalizes for regions the concept of “mayorship”
in Foursquare. Assuming an information propagation model for
social networks [7], the regional influence of a user is defined as
the (expected) total locality of users she influences. Under these, k-
RIL returns the k regional users with the highest regional influence.
The k-RIL problem is related to the problems of Influence Max-

imization (IM) in social networks, and Graph Closeness Centrality

(GCC). In IM, given an information propagation model, e.g., the
Independent Cascade (IC) described in [7], the goal is to select a
group of users, termed seeds, that collectively influence the largest
number of other users. The most computationally challenging (#P-
hard) task in IM problems is computing the probability of a user
being influenced. Note that even though the k-RIL problem defini-
tion is similar to the case of a single seed in IM, the #P-hardness
still holds. Therefore, a common strategy in IM problems is to
simplify the underlying model. In this spirit, the Maximum Influ-

ence Arborescence (MIA) model [9] restricts IC with respect to
the following two assumptions: (i) a user may influence another
only through third users which lie on the path that maximizes the
aggregate propagation probability, and (ii) only such paths with ag-
gregate propagation probability above a pre-defined threshold are
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Figure 1: Running example of 9 users and 6 locations

considered. In our work, we adopt a similar strategy introducing
a restricted version of the IC model, termed MIAwoT, which is
however significantly less restrictive than MIA. Finally, a very re-
cent work [8] solves an IM problem in a similar context to ours,
However, this work targets the fundamentally different problem of
selecting a group of k users that collectively maximize influence
within a region R, whereas k-RIL seeks to rank users. In addition,
it makes some unrealistic assumption, e.g., each LASN user has a
known fixed location, and the proposed solution relies on extensive
pre-computations, which makes it unsuitable for k-RIL.
Under the MIAwoT model, we show that it is possible to com-

pute the regional influence of a user deterministically, by carefully
assigning weights to edges of the social graph and computing net-
work distances between users. As a result, k-RIL becomes similar
to the Graph Closeness Centrality (GCC) problem [1], i.e., find
the node that minimizes the sum of distances to all other nodes.
However, the state-of-the-art method for GCC [6] optimizes only
the case of directed graphs and thus cannot be applied in our set-
ting. Therefore, we present a preliminary solution to k-RIL termed
DRIC, that calculates all pairwise network distances (after com-
puting the appropriate weights) and, then determines the regional
influence of users. Our experiments show that DRIC can be effi-
cient when both the size of the social network and the number of
regional users are small, as it essentially computes the influence of
all regional users.

2. PROBLEM DEFINITION
Before formally introducing the k-RIL problem, we present some

necessary definitions.

Location-Aware Social Network (LASN). Let U denote the set
of users, L the set of locations, and C the set of check-ins, where
a check-in (u, ℓ) means that user u has checked-in at location ℓ;
C(u) denotes the set of locations user u has checked-in. The so-
cial graph G(U,E) contains an (undirected) edge (ui, uj) ∈ E
indicating that ui and uj are friends.

Propagation Model. Each edge (ui, uj) ∈ E is associated with
a propagation probability pij > 0, which quantifies the degree of
influence between the two users. This value is calculated directly

from the users’ check-ins, e.g., using the Jaccard similarity:

pij =
|C(ui) ∩ C(uj)|

|C(ui) ∪ C(uj)|
,

or it can also be determined by external parameters, such as the
users’ profiles and their friendship duration.
The propagation model we adopt differs from the maximum in-

fluence arborescence (MIA) model in that it does not enforce an
influence threshold (i.e., we do not require the second assumption
discussed in Section 1). This model, which we refer to as MIAwoT,
is a restricted version of the Independent Cascade (IC) model but is
significantly less restrictive than MIA.
The concept of maximum influence paths is principle in MIA-

woT. Let πst denote a simple path uπ[1] · · ·uπ[m] on the social
graph from user uπ[1] ≡ us to uπ[m] ≡ ut, and define the path
propagation probability of πst as

p(πst) =

m−1
∏

i=1

pπ[i]π[i+1] (1)

A path from us to ut is called the maximum influence path (mip),
and denoted by π∗st, if it has the highest path propagation probabil-
ity among all other paths from us to ut. As there can be multiple
paths that maximize the path propagation probability, the maximum
influence path is selected as one of them subject to the restriction
that all its subpaths are also mips (as in MIA [9]).
Users in MIAwoT, as in IC, can be in two possible states, in-

fluenced and not influenced; once a node becomes influenced it
remains so. Propagation onG under MIAwoT proceeds as follows.
Let St represent the set of users influenced at step t. At step t = 0,
the influenced users S0 are also called the seeds. Then at step t+1,
each user ui that was influenced at step t, i.e., ui ∈ St \ St−1,
may influenced her neighbor uj with probability pij , only if edge
(ui, uj) lies on some maximum influence path starting from a seed.
This last clause is what differentiates MIAwoT from IC. Note that
each user is given only one chance to influence her neighbors, at the
step right after she became influenced. Propagation ends at the step
when no new user is influenced. We denote the set of eventually
influenced users as Φ(S0); when S0 is a single user u we simply
denote it as Φ(u).

Problem Statement. Given a spatial regionR, we define the set of
regional users UR ⊆ U as the users who have checked-in at least
once at a location inside R, i.e, UR = {u|u ∈ U, ∃ℓ ∈ C(u) : ℓ ∈
R}. Moreover, for an LASN user u we define the ratio γR(u) of
u’s local check-ins in R over the total as the locality of the user:

γR(u) =
|C(u) inside R|

|C(u)|
(2)

Intuitively, the locality captures the prior probability of a user check-
ing in at some location inside a given region R.
Given a region R, the regional influence of a user u is defined as

the expected sum of localities of users influenced by u (expectance
E is on the random set Φ(u) over the propagation probabilities):

IR(u) = E





∑

u′∈Φ(u)

γR(u
′)



 . (3)

Note that non-regional users have localities equal to zero, and
thus they do not contribute to the regional influence. This means
that equivalently, the summation in Equation 3 could be restricted
over users in Φ(u) ∩ UR.
We next state the top-k Regionally Influential LASN users (k-

RIL) problem.



Problem k-RIL. Given a spatial region R, return a set Uk
R of k

regional users that have the highest regional influence, i.e., |Uk
R| =

k and ∀u ∈ Uk
R, ∀u

′ ∈ UR \ U
k
R it holds that IR(u) ≥ IR(u

′).

Example 1. Figure 1 presents an example LASN of 9 users and
6 locations. Consider an 1-RIL instance with a spatial region R.
Figure 1a depicts the locations as diamonds, draws the region R,
and also shows the check-ins grouped by location. The locations
inside R are drawn with filled diamonds, and their corresponding
check-ins are enclosed in a box. From the check-in lists, we de-
rive that u1, u4, u5, u6 are the regional users. Without loss of
generality, we simplify formulas setting γR = 1 for all regional
users. Figure 1b depicts the social graph, where regional users are
shown as filled circles. The bottom right part of the figure contains
the propagation probabilities pij between users ui and uj . For the
sake of the example, we assume that these probabilities are given
and thus do not correspond to Jaccard similarities computed from
the check-ins. �

3. METHODOLOGY
First, in Section 3.1, we present an efficient method for com-

puting the regional influence. Next, in Section 3.2 we outline an
algorithm for solving k-RIL.

3.1 Computing the Regional Influence
We first prove the #P-hardness of k-RIL under the general Inde-

pendent Cascade (IC) propagation model.

Theorem 1. The k-RIL problem under the IC propagation model
is #P-hard.

Proof. The problem of computing the influence spread of a single
user, which we call SIS, under the IC model is shown to be #P-hard
in [9]. We reduce SIS to the k-RIL problem. Given an SIS instance,
we create a k-RIL instance where the social graph is identical, the
region R is equal to the entire space, k is equal to |U |, and the lo-
cality γR is equal to 1 for all users. Then, it is easy to determine the
answer to the SIS instance by solving the k-RIL instance. Essen-
tially, in order to rank the users, you need to compute the regional
influence of all users, which in turn means that you have solved
the SIS instance, as the influence spread of a user in SIS equals its
regional influence in the particular k-RIL instance.

This result justifies our adoption of a model more restricted than
IC, namely the MIAwoT propagation model. Under MIAwoT, it
is possible to solve k-RIL in polynomial time. To reach this con-
clusion, we first show that the regional influence of a user can be
computed exactly using a closed form deterministic formula.

Lemma 1. The regional influence of a user us under MIAwoT is:

IR(us) =
∑

ui∈UR

p(π∗si) · γR(ui)

where π∗si is the maximum influence path from us to ui.

Proof. For any user ui, let X(ui) be an indicator random variable
such thatX(ui) = 1when ui ∈ Φ(us), andX(ui) = 0 otherwise.
Then, Equation 3 can be rewritten as:

IR(us) = E





∑

ui∈Φ(us)∩UR

γR(ui)



 = E





∑

ui∈UR

X(ui) · γR(ui)





=
∑

ui∈UR

E (X(ui)) · γR(ui)

Under MIAwoT, a user ui can be influenced by us only via the
maximum influence path π∗si from us to ui. This means that ui is

influenced with probability equal to this path’s propagation proba-
bility p(πsi). Therefore, E(X(ui)) = 1·p(π∗si)+0·(1−p(π∗si)) =
p(π∗si), and the theorem follows.

Lemma 1 shows that the regional influence of a user us can
be directly computed from the path propagation probabilities of
the maximum influence paths from us to any other regional user.
Therefore, the challenge is how to efficiently compute the propaga-
tion probabilities. Towards this goal, inspired by [9], we define a
setW of edge weights for the social graph such that weight

wij = − ln pij (4)

is assigned to edge (ui, uj). Moreover, let d(us, ut) denote the
social distance, i.e., the sum of weights of the shortest path on G
from user us to ut. We emphasize that the social distance of two
users is not related to the spatial locations of their check-ins and is
only based on their proximity on the social graph.

Example 2. Returning to our running example of Figure 1, we note
that the top right part of the figure shows the value of the edge
weights for all propagation probability values, as computed using
Equation 4. The numbers along the graph edges correspond to the
weights. For illustration purposes and easy distance computations
the weight values are rounded to one decimal place; we remark that
this rounding does not affect the correctness of the 1-RIL result in
all evaluation methods. �

The following lemma shows an alternative way for computing
path propagation probabilities using the edge weights.

Lemma 2. The path propagation probability of the maximum in-
fluence path from us to ui can be computed from the social distance
of us and ui as:

p(π∗si) = e−d(us,ui)

Proof. Let π∗si = uπ∗[1] · · ·uπ∗[m] denote the maximum influ-
ence path from us to ui. Since p(π∗si) =

∏m−1
k=1 pπ∗[k]π∗[k+1] =

exp(ln(
∏m−1

k=1 pπ∗[k]π∗[k+1])) = exp(−
∑m−1

k=1 wπ∗[k]π∗[k+1]) =
exp(−d(us, ui)), the lemma follows.

Combining the results of Lemmas 1 and 2, we obtain the follow-
ing formula for the regional influence of a user us.

IR(us) =
∑

ui∈UR

e−d(us,ui) · γR(ui) (5)

Moreover, it is easy to show the tractability of the k-RIL problem
under MIAwoT.

Theorem 2. The k-RIL problem under the MIAwoT propagation
model is solvable in polynomial in |U | time.

Proof. Computing Equation 5 for each user us ∈UR, i.e., at most
|U | times, clearly solves k-RIL. Moreover, computing Equation 5
requires finding all shortest path from us according to the edge
weights on the social graph. This task is accomplished in O(|E|+
|U | log |U |) amortized time using Dijkstra’s algorithm, where |E| =
O(|U |2) is the number of edges in the graph. Hence, there exists
an algorithm that solves k-RIL in time at most cubic in |U |.

3.2 The Algorithm
The discussion in the previous section implies the following eval-

uation method to solve k-RIL, called Dijkstra-based Regional In-
fluence Computation and denoted as DRIC. The basic idea is to
compute the shortest path between any pair of regional users on
the social graph. Then, for each regional user, DRIC computes her
regional influence and finally, sorts the regional users according to
their influence and returns the k most influential.



Algorithm 1: DRIC
Input: social graphG(U,E); set of weightsW ; set of locations L; set of

check-ins C; spatial regionR; value k
Output: top-k list T
Variables: set of regional users UR, social distance matrixD

1 UR ← GetRegionalUsers(U,L,C,R);
2 foreach ui ∈ UR do

3 D ← Dijkstra(ui, G,W,UR);
4 IR(ui)← ComputeRegionalInfluence(ui, UR, D);
5 push ui to T ;

6 return T ;

u1 u4 u5 u6
u1 0 1 0.4 1.1
u4 1 0 0.7 1.4
u5 0.4 0.7 0 0.7
u6 1.1 1.4 0.7 0

(a) Distance matrixD

IR(u1) = 1 + 3/8 + 2/3 + 1/3 = 2.375
IR(u4) = 3/8 + 1 + 1/2 + 1/4 = 2.125
IR(u5) = 2/3 + 1/2 + 1 + 1/2 = 2.666
IR(u6) = 1/3 + 1/4 + 1/2 + 1 = 2.083

(b) Regional influence

Figure 2: DRIC computations

Algorithm 1 illustrates the pseudocode of the method. DRIC re-
ceives as inputs an LASN, i.e., a social graph G(U,E) with a set
of weights W , a set of spatial locations L and a set of check-ins
C, and a k-RIL query, i.e., a spatial region R and an integer k. It
returns the list T of the top-k most influential regional users. DRIC
utilizes two data structures: (i) the set of regional users UR and (ii),
the social distance matrixD which is a |UR|×|UR| symmetric ma-
trix that stores inside every cellD[ui][uj ] the length of the shortest
path on the social graph G(U,E) between regional users ui and
uj , i.e.,D[ui][uj ] = d(ui, uj).
In the beginning, DRIC invokes the GetRegionalUsers func-

tion to define the set of regional users UR (Line 1). For every
user ui of UR the total number of her check-ins inside R is also
calculated to determine her locality γR(ui). The implementation
details of GetRegionalUsers are outside the scope of this pa-
per; any index for spatial range queries, e.g., the R-tree [5], can
be employed. Then, in Lines 2–5, the algorithm examines every re-
gional user ui inUR to calculate her regional influence IR(ui) call-
ing functions Dijkstra and ComputeRegionalInfluence,
and inserts ui into list T . Dijkstra computes the shortest path
from ui to all regional users in UR and stores its length inside the
social distance matrixD, while ComputeRegionalInfluence
computes IR(ui) using Equation 5 and matrixD.

Example 3. In the 1-RIL example of Figure 1b, there exist 4 re-
gional users, u1, u4, u5, u6. DRIC calls Dijkstra once for each
regional user to compute entries of the social distance matrix D,
one row at a time. The resulting matrix is shown in Figure 2a. Af-
ter each Dijkstra invocation, DRIC computes the regional influ-
ence of the examined user from Equation 5. Consider user u1 for
example. Her influence is IR(u1) = e0 + e−1 + e−0.4 + e−1.1 =
1+3/8+2/3+1/3 = 2.375. Finally, after all regional influences
are computed, depicted in Figure 2b, DRIC returns u5, having the
highest regional influence, as the answer to 1-RIL. �

Complexity. The DRIC algorithm performs exactly UR iterations.
Each iteration invokes Dijkstra’s algorithm, which performs |E|
edge relaxations and |U | deheap operations. Assumming a Fi-
bonacci heap, each of these operations requireO(1), andO(log |U |)
amortized time. Note that an iteration also computes the regional
influence, which however takes O(|U |) time and is thus dominated
by Dijkstra’s running time. Therefore, the total (amortized) running
time of DRIC is O(|UR||E|+ |UR||U | log |U |).

4. EXPERIMENTS AND CONCLUSIONS
We finally present a preliminary experimental evaluation of our

methodology for identifying the top-k regionally influential users.

Table 1: Datasets characteristics

Characteristic
Datasets

Gowalla [2] Brightkite [2] Foursquare1 [3] Foursquare2 [4]

Users |U | 197K 58K 18K 11K
Edges |E| 950K 214K 116K 47K

Locations |L| 1.3M 773K 43K 187K
Check-ins |C| 6.4M 4.5M 2M 1.4M

Table 2: Response time (sec) varying query selectivity, k = 5
|UR|/|U | (%) Gowalla Brightkite Foursquare1 Foursquare2

0.1 140.6 9.6 0.9 0.2
0.2 262.1 17.9 2.3 0.4
0.3 432.5 26.8 3.2 0.6
0.5 590.6 42.1 5.8 0.9
1 1148.6 71.5 11.2 1.9

Our analysis involves 4 datasets from real-world LASNs. Table 1
summarizes the characteristics of these datasets. The evaluation is
carried out on an 2.67Ghz Intel Xeon CPU E5640 with 32GB of
RAM running Debian Linux and DRIC was written in C++.
To assess the performance of DRIC algorithm, we measure its

average response time over 500 k-RIL queries, varying query se-
lectivity |UR|/|U |, i.e., the number of regional users over the total
number of LASN users. Note that we choose to directly vary the
selectivity of a query instead of the size of its spatial regionR as the
most time consuming step of the method (the Dijkstra algorithm)
is related to the number of users checked-in at a location inside R
and not to how large this region is.
Table 2 reports the response time of DRIC while varying query

selectivity |UR|/|U |. The results verify the complexity analysis of
Section 3.2. The response time increases linearly to the number of
regional users |UR|. Naturally, DRIC slows down with the increase
of the size of the social graph. Note that the performance of DRIC
is not affected by the number of returned users, so k is set to 5.
DRIC can efficiently solve k-RIL in case of small size social

networks or small number of regional users. Motivated by this, in
the future we plan to devise more efficient methods that will avoid
computing the influence for all regional users by examining them
in descending order of their expected influence.
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ABSTRACT

Given a set of attractors and repellers, the cohesion query re-
turns the point in database that is as close to the attractors
and as far from the repellers as possible. Cohesion queries
find applications in various settings, such as facility location
problems, location-based services. For example, when at-
tractors represent favorable plases, e.g., tourist attractions,
and repellers denote undesirable locations, e.g., competitor
stores, the cohesion query would return the ideal location,
among a database of possible options, to open a new store.
These queries are not trivial to process as the best loca-
tion, unlike aggregate nearest or farthest neighbor queries,
may be far from the optimal point in space. Therefore, to
achieve sub-linear performance in practice, we employ novel
best-first search and branch and bound paradigms that take
advantage of the geometrical interpretation of the problem.
Our methods are up to orders of magnitude faster than linear
scan and adaptations of existing aggregate nearest/farthest
neighbor algorithms.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

Keywords

nearest neighbor, farthest neighbor

1. INTRODUCTION
This paper introduces the spatial cohesion query. Assume

a database D of point objects, a setA of attractors, and a set
R of repellers, all located within some area; attractors and
repellers need not be points, but could also be arbitrarily
shaped regions. Then, the attraction of an object o ∈ D is
the opposite of its minimum distance to any attractor among
A, while the repulsion of o is the opposite of its minimum
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distance to any repeller in R. The spatial cohesion query
returns the object o∗ ∈ D that has maximum cohesion, i.e.,
maximizes the weighted difference of its attraction and re-
pulsion. Intuitively, the result is an object that is both close
to the attractors and far from the repellers.
The motivation for cohesion queries comes from various

spatial optimization problems that seek to balance opposing
forces. For example, consider a scenario where the goal is to
determine a profitable location, among a list of vacancies,
for opening a new tourist shop. The cohesion query models
this as follows: vacancies constitute the database of objects;
touristic attractions, popular intersections, city landmarks,
etc., act as attractors; while existing competitor shops and
bad neighborhoods act as repellers.
Moreover, cohesion queries appear as submodules in some

common but computationally hard analytic methods. For
instance, in k-means clustering, the goal is to partition the
data into k clusters so as to minimize the sum of each ob-
ject’s distance to its closest cluster mean. A standard heuris-
tic [12] for this NP-hard problem is to perform multiple
passes over the objects, and determine at each pass, the
best object to relocate from its cluster to another. This
sub-problem can be stated as a cohesion query, where the
cluster objects are the database, the cluster mean acts as the
single repeller, and the other cluster means act as attractors.
As another analytic tool, consider the spatial diversifica-

tion problem, where the goal is to determine a set of k ob-
jects that are relevant, i.e., close, to some given query loca-
tion, and dissimilar, i.e., far, from each other. The standard
approach for this NP-hard problem is to progressively con-
struct the result set, where at each step, choose for inclusion
in the result set the object that minimizes a weighted com-
bination of two components. The first component is the rel-
evance to the query location, i.e., the single attractor, while
the second is the aggregate distance to objects already in
the result set, i.e., the repellers.
Cohesion queries are reminiscent of nearest neighbor (NN)

variants, such as the aggregate NN (ANN) query, which re-
trieves the object that is closest to a group of attractors,
and the aggregate farthest neighbor (AFN) query, which re-
trieves the object that is farthest from a group of repellers.
In contrast, the cohesion query seeks for the object that
strikes the perfect balance between attraction and repulsion
forces, an object that can significantly differ from the ANN
or AFN answers.
To illustrate this, consider Figure 1 that depicts an attrac-

tor a, two repellers r1, r2, and four objects, o1 through o4.
We assume that distances are measured by the Euclidean



3.2

6.1

1.4

4.1

a

r1

r2

o1

o2

o3

o4

p
1

p
2

H1

H2

Figure 1: Cohesion query with one attractor a and
two repellers r1, r2; object o1 has the largest cohe-
sion of around 2.9

distance (we draw a grid for ease of reference), and seek
to maximize the difference between attraction and repulsion
(equal weights are assigned to the two forces). Observe that
object o2 is the ANN of the attractor, while o4 is the AFN
of {r1, r2}. The answer to the cohesion query is o1 with
a cohesion of around 2.9, as the distance to its closest re-
peller (6.1) minus the distance to the attractor (3.2) is the
largest; for example, o3 has a lower cohesion value of about
4.1− 1.4 = 2.7.
Moreover, the methodology used in processing NN vari-

ants does not apply for cohesion queries. These methods
operate on the premise that the result lies near the opti-
mal point in space under the corresponding objective func-
tion, and thus guide the search towards it. In ANN (resp.
AFN) the point that minimizes (resp. maximizes) the min-
aggregate distance to the attractors (resp. repellers) is an
attractor (resp. a vertex in the bounded Voronoi diagram of
the repellers; see [9]). For the cohesion query (under equal
attraction, repulsion weights), the optimal point in space is
also an attractor, but the actual result may not be close to
the optimal point, or to the optimal points for ANN, AFN.
Returning to Figure 1, the optimal point in space for the

cohesion query and ANN is the attractor a, while the op-
timal points for AFN are p1, p2. Observe that the closest
object to a is o2, while that closest to p1 or p2 is o4. How-
ever, neither object is the result (o1) to the cohesion query.
A simple method for processing a cohesion query is to

perform a linear scan on the database D and compute the
cohesion of each object. Another approach is to combine
the ANN and AFN search, progressively retrieving objects
from each until a common object is seen (or a threshold is
exceeded), similar to top-k processing algorithms [7].
We propose a best-first search algorithm, termed BFS,

suitable for tree-based space-partitioning indices, which, sim-
ilar to other methods in its class (i.e., the BF algorithm of
[13] for NN queries), defines an optimistic bound (admis-
sible heuristic) for the cohesion function (e.g., mindist for
NN queries), and uses it to guides the search. The efficiency
of such a method depends on the tightness of the derived
bounds. In fact, obtaining tight bounds on the cohesion of
objects within sub-trees, would result in an index IO-optimal
method, meaning that no other algorithm operating on the
same index can perform fewer index node accesses. Unlike
some NN variants though, it is computationally hard, if at all
generally possible, to derive a tight bound for the cohesion
function; it entails solving a non-smooth constrained op-
timization problem [8]. Nevertheless, our evaluation shows
that a simple non-tight bound is able to achieve up to orders

of magnitude better performance than existing methods.
Still, for some difficult settings, especially when the attrac-

tion and repulsion forces have equal weight, BFS performs
poorly and at times worse than a linear scan. To address
this issue, we take a branch and bound approach, termed
BB, which introduces pruning criteria to eliminate objects
that would be otherwise visited by BFS. As a result, BB is
more efficient than BFS, often by a factor between 2 to 4.
This is an interesting result, given than in other problems
branch and bound may not outperform best-first search; e.g.,
for NN queries, the pruning criteria of [21] offer little bene-
fit compared to the IO-optimal best-first search algorithm of
[13]. The reason for the performance increase of BB is that
the optimistic bounds we derive are not tight, and hence
leave the door open for further pruning. Had they been
tight, BB would not prune more objects than BFS, which is
exactly the case in NN queries.

For the intuition behind BB’s pruning, refer to Figure 1
and assume that object o3 has the best seen so far cohesion
of about 2.7. Considering only repeller r2, the locus of points
in space that have cohesion equal to that of o3’s defines the
hyperbola branch H2 (since the distance from r2 minus the
distance from a is constant, given equal attraction, repul-
sion weights). Hyperbola branch H1 is similarly defined for
repeller r1 setting the difference of distances equal to the
cohesion of o3. Based on these hyperbolas, it is possible to
characterize the space with respect to best seen cohesion so
far. In Figure 1, the shaded area, defined as the intersec-
tion of the interior of the two hyperbolas, contains points in
space that have cohesion greater than o3’s, and thus may
contain a better object, in our case o1. So, given any co-
hesion value (in our example 2.7), it is possible to define
pruning criteria that eliminate parts of the space containing
objects with lower cohesion. Then, the challenge is how to
apply this idea to prune index sub-trees.

The contributions of this work are the following:

• We introduce and study the spatial cohesion query.

• We introduce a tree-based space-partitioning method,
termed BFS, which follows the best-first search paradigm,
by deriving optimistic bounds on the cohesion of ob-
jects within index subtree.

• We further introduce a branch and bound algorithm
(BB) to further expedite cohesion query processing by
introducing geometry-based pruning criteria.

• We extend our methods for non-point attractors and
repellers, as well as for non-Euclidean distance metrics.

• We perform a detailed experimental study on real and
synthetic data, showing that BFS is up to orders of
magnitude faster than a simple linear scan and existing
techniques based on NN query processing. Further, BB
is shown to be about 2–4 times faster than BFS.

Outline. Section 2 reviews related work. Section 3 defines
all concepts and formally states the cohesion query, while
Section 4 presents baseline approaches. Then Section 5 in-
troduces our best-first search algorithm, and Section 6 de-
tails our branch and bound approach. Section 7 discusses
some extensions. Section 8 presents our experimental study,
and Section 9 concludes this paper.



2. RELATED WORK

Nearest Neighbor Queries. There is an enormous body
of work on the nearest neighbor (NN) query, also known
as similarity search, which returns the object that has the
smallest distance to a given query point; kNN queries output
the k nearest objects in ascending distance. An overview
of index-based approaches to accelerate the search can be
found in [4]. Recently, more efficient approaches for metric
spaces, e.g., [14], and high-dimensional data, e.g., [23], have
been proposed.

For a set of query points, the aggregate nearest neighbor

(ANN) query [19] retrieves the object that minimizes an ag-
gregate distance to the query points. As an example, for
the MAX aggregate function and assuming that the set of
query points are users, and distances represent travel times,
ANN outputs the location that minimizes the time neces-
sary for all users to meet. In the case of the SUM function
and Euclidean distances, the optimal location is also known
as the Fermat-Weber point, for which no formula for the co-
ordinates exists. The k-medoid problem is a generalization,
which seeks a set of k objects that collectively minimizes
an aggregate distance to the query points. The problem is
NP-hard and has applications in clustering [17, 18].

A cohesion query, although also an optimization problem
involving distances from a set of points (the repellers and
the attractor), cannot be mapped to an ANN problem or its
variants, and cannot be solved by adapting existing ANN
algorithms. The reason is that the cohesion answer is an ob-
ject that maximizes an aggregate distance to repellers (and
minimizes the distance to the attractor), instead of minimiz-
ing an aggregate distance, as in ANN variants.

Cohesion queries are also related to aggregate farthest
neighbor queries. The farthest neighbor (FN) query returns
the object that has the largest distance to a given query
point, and can be used, for example, to determine the min-
imum radius required to cover a set of points from a given
location. Naturally, the aggregate farthest neighbor (AFN)
query seeks the object that maximizes an aggregate distance
to a set of query points. The work in [10] proposes an R-tree
based algorithm for processing AFN queries for the SUM,
MAX, MIN functions. Again, a cohesion query cannot be
mapped to an AFN query and, thus, cannot be solved by al-
gorithms for AFN queries, but an AFN algorithm together
with an NN algorithm, can be used as a module for pro-
cessing cohesion queries. This is the baseline approach de-
scribed in Section 4. We note that the cohesion query is not
related to reverse variants of the aforementioned problems,
e.g., where the goal is to determine the objects that have a
given query as their nearest neighbor [22, 16].

Diversification. The notion of (content-based) diversifi-
cation first appears in information retrieval systems. The
seminal work of [5] shows that a diversity-based reranking
of the results list, which combines relevance and diversity
similar to our formulation, achieves higher precision/recall
values. An interesting study on diversification objectives
is [11], which categorizes common diversification objectives
and proves NP-hardness.

Note that, in general, diversification problems seek a group
of documents that are relevant and diverse. Thus, they
are not directly related to cohesion queries. However, sub-
problems similar to cohesion queries appear in many heuris-
tic solutions to diversification problems. We emphasize that

Table 1: Notation
Symbol Definition

D,o database of objects, an object
A,a set of attractors, an attractor
R, r the set of repellers, a repeller
c(o) cohesion of o given A and R

τ a cohesion threshold

all referenced works in this section, unless stated otherwise,
process these sub-problems by performing an exhaustive lin-
ear scan.

There are other types of diversification, such as coverage
based approaches [1, 6], which however are not related to our
problem. A more relevant line of work combines diversifica-
tion and NN queries. [15] introduces the k-nearest diverse

neighbor (kNDN) query, whose goal is to return a set of k
objects that are as close as possible to a given query point,
and at the same time no two objects have diversity below
a given hard threshold. Similarly, [20] defines a variation of
top-k search, adding the restriction that the result set must
not contain any pair of objects having similarity above a
user-specified hard threshold. In both these problems the
hard threshold on diversity is fundamentally different than
our notion of repulsion; hence such methods do not apply
for cohesion queries.

A more related problem appears in [24], where relevance
is defined as the distance to a query point, and diversity is
defined either as the smallest distance (a formulation simi-
lar to cohesion queries) or the angle similarity to an object
in the result. The proposed algorithms, however, avoid an
exhaustive linear scan only for the angle-defined diversity.
Moreover, the function that combines relevance and diver-
sity is not a weighted combination, and thus their solutions
do not apply for cohesion.

The most related diversification problem appears in [9].
Their iterative approach solves a sub-problem identical to
a restricted version of the cohesion query, when we restrict
cohesion to Euclidean space and distance. Using cohesion
terminology, the key idea of [9] is to alternate between NN
retrievals from the attractor and from certain points com-
puted using the Voronoi diagram of the repellers. We note
that [9] is proposed for a more restrictive setting, where only
NN modules are available, and thus its application to cohe-
sion queries does not result in a strong competitor.

3. PROBLEM DEFINITION
We now present the necessary definitions and formally

introduce the cohesion query. Table 1 gathers the most im-
portant symbols used throughout this paper.

Consider a set D, termed the database, of point objects.
Given a set A of attractors, such that A ∩ D = ∅, the at-

traction of an object o ∈ D is defined as:

a(o) = −min
a∈A

d(o,a),

where d denotes the Euclidean distance. Note that in the
following, we assume that attractors and repellers are point
objects; the discussion about non-point objects as well as
the necessary changes to our methodology is deferred until
Section 7.1. Moreover, the discussion about other distance
metrics is in Section 7.2. The smaller the distance to the
closest attractor is, the greater the attraction. The object
that maximizes the attraction is the min-aggregate nearest



neighbor (ANN) of A.
Given a set R of repellers, such that R ∩ D = ∅, the

repulsion of object o ∈ D is defined as:

r(o) = −min
r∈R

d(o, r).

The smaller the distance to the closest repeller is, the greater
the repulsion. The object that minimizes the repulsion is the
min-aggregate farthest neighbor (AFN) of R.

Given a set of attractors A and a set of repellers R, we
define the cohesion of an object o to be equal to the weighted
difference of its attraction and repulsion:

c(o) = λ · a(o)− r(o) = min
r∈R

d(o, r)− λ ·min
a∈A

d(o,a), (1)

where the single weight λ controls the relative strength of
attraction and repulsion.

In this work we answer the cohesion query: how to effi-
ciently find the object that has the highest cohesion.

Problem 1. [Cohesion Query] Given attractors A
and repellers R, find an object o∗ ∈ D such that o∗ =
argmax

o∈D
c(o).

A final note concerns the extension of the previous defi-
nition to the corresponding top-k problem, i.e., determining
the k objects with the highest cohesion values. Adapting our
methods to process such a query in a progressive manner is
straightforward and it is not further discussed.

4. BASELINE METHODS
A simple baseline approach is to exhaustively scan all ob-

jects, compute their cohesion, and then determine the object
with the highest one. We refer to this method as LIN.

Another baseline processing technique is to decompose a
cohesion query into an aggregate nearest neighbor (ANN)
query on the set of attractors and an aggregate farthest
neighbor (AFN) query on the set of repellers. The basic
idea is to retrieve, in a round robin manner, objects from
the ANN and the AFN search until a termination condition
is met. Therefore, we require modules capable of progres-
sively processing ANN and AFN queries. For ANN queries,
we use the MBM algorithm [19], whereas for AFN queries
the algorithm of [10]. We now present this method, which
we term RR.

The algorithm maintains two threshold values, τa, τr,
which represent the smallest possible aggregate distance of
an object not yet retrieved by the ANN search, and the
largest possible aggregate distance of an object not yet seen
in the AFN search, initially set to 0 and ∞, respectively.
Also RR initializes the result o∗ to null and the next search
module to ANN. Then, RR begins a loop with progressive
object retrievals, until the largest attainable cohesion by re-
trieving additional objects, which is τr − λ · τa, drops below
the current best cohesion. At each iteration, a single object
is retrieved, the appropriate threshold is updated, and the
other search method is set for the next retrieval. Because
the search modules are progressive, the thresholds set are a
lower bound on the aggregate distance to A, and an upper
bound on the aggregate distance to R of any object not seen
in ANN and AFN search, respectively. The answer object is
updated if an object with better cohesion is retrieved.

As another baseline, we adapt the SPP algorithm from [9],
which was proposed for a top-k diversification setting. Simi-
lar to RR, our SPP implementation employs an ANN search

Algorithm 1: RR

Input: index T ; attractors A; repellers R
Output: o∗ the answer to the cohesion query
Variables: cohesion threshold τ

1 o∗ ← ∅; τa ← 0; τr ←∞; search← ANN
2 while o∗ = ∅ or τr − λ · τa > c(o∗) do

3 if search = ANN then

4 o← ANN.getNext()
5 τa ← d(o, a)
6 search← AFN

7 else

8 o← AFN.getNext()
9 τr ← minr∈R d(o, r)

10 search← ANN

11 if c(o) > c(o∗) then

12 o∗ ← o

module, but unlike RR it does not use an AFN module. In-
stead, SPP determines probing locations around which the
aggregate most farthest neighbor should lie and performs
NN search around them. These probing locations are the
vertices of the Voronoi diagram computed over the set of
repellers. SPP uses a NN search module for each probing
location and maintains a threshold for each. A round robin
strategy for selecting the next search module is also used
in SPP; the authors also examine more elaborate strategies,
but with no significant performance gains. Our experimen-
tal study has shown that SPP performs much worse than
RR, both in terms of I/O operations and CPU time, be-
cause the objects retrieved by the NN search around the
probing locations are not guaranteed to maximize the ag-
gregate distance from the repellers, and the thresholds used
are CPU intensive, requiring the computation of intersec-
tions between circles and Voronoi edges.

5. THE BEST-FIRST SEARCH METHOD
This section describes an index-based Best-First Search

algorithm, denoted as BFS, for processing cohesion queries.
The method assumes a hierarchical space-partitioning index
on the set of objects.

Therefore, we consider a tree structure T that indexes the
database of objects D. A node N of the index corresponds
to a subtree rooted at N and hierarchically indexes all ob-
jects that reside in this subtree. In the following, we abuse
notation and refer to N as the set of all objects that reside
in N ’s subtree. To facilitate object retrieval, the index keeps
aggregate information about the objects withinN and stores
it in an entry at the parent node of N ; to simplify notation
we simply refer to the entry for N as the node N . The aggre-
gate information, which depends on the type of the tree, is
typically the minimum bounding rectangle (MBR) or sphere
(MBS) that covers all objects within N .
In the remainder of this paper, we assume that T is an

R∗-Tree [2], since it is perhaps the most well-known and
studied spatial index. We note, that our methodology does
not depend on the exact index type and is readily applicable
to other indices.

As is characteristic to any best-first search method, BFS
requires an optimistic bound (admissible heuristic) on the
cohesion of objects contained within a particular subtree,
represented by an index node. For cohesion queries, opti-
mistic translates into an upper bound. Given a tree node
N , let o ∈ N denote that object o is contained in the sub-
tree rooted at N . Also, assume d+(N,x) (resp. d−(N,x))
denote an upper (resp. lower) bound on the distance d(o,x)



Algorithm 2: BFS

Input: index T ; attractors A; repellers R
Output: o∗ the answer to the cohesion query
Variables: H a heap with nodes sorted by c+()

1 H ← ∅

2 Nx ← Nroot ⊲ root node of T
3 while Nx is an internal node do

4 read node Nx

5 foreach child N of Nx do

6 compute c+(N) ⊲ Lemma 1

7 H.push(N, c+(N))

8 Nx ← H.pop()

9 o∗ ← Nx

of any object o ∈ N from point x. Then, it is easy to con-
struct an upper bound on the cohesion of any object within
a node, as follows.

Lemma 1 (Upper Bound). Given a non-leaf node N , the
cohesion of an object o ∈ D within N cannot be more than
c+(N) = minr∈R d+(N, r)− λ ·mina∈A d−(N,a).

Proof. Follows from the definitions of d− and d+.

Note that even though the distance bounds d−, d+ are
tight, the resulting cohesion bound of Lemma 1 may not be.
This occurs because the point in the space contained by a
node N that gives the distance bound for the attraction part
may not coincide with the respective point for the repulsion
part. Deriving a tight bound means finding the point in the
space of N that maximizes the cohesion function. This es-
sentially entails solving a non-smooth constrained optimiza-
tion problem, which is computationally challenging and out-
side the scope of this paper. Nonetheless, our evaluation has
shown that, in most cases, this bound suffices as it results
in significant speedup over baseline methods.

Lemma 1 provides BFS with the means to guide the search,
visiting more promising nodes first. Algorithm 2 shows the
pseudocode of BFS. It takes as input the index T storing all
objects in the databaseD, the attractorsA, and the repellers
R, and returns the object o∗ with the largest cohesion.

BFS directs the search using the heap H, which contains
index nodes and is sorted descending on their upper bound
on cohesion, computed according to Lemma 1; initially H

is empty (Line 1). BFS performs a number of iterations
(Lines 3–8). At the end of each iteration the node Nx at
the top of the heap is popped (Line 8); for the first iteration
Nx is set to the root node of T (Line 2). Index traversal
terminates when node Nx is an external node, corresponding
to an object, which in this case is the answer o∗ (Line 9).
Assuming that Nx is an internal node, BB reads this node
from disk (Line 4), and for each child (Lines 5–8) it computes
its upper cohesion bound (Line 6) and inserts it into the heap
(Line 7). We next prove the correctness of BFS.

Theorem 1. The BFS algorithm returns the object with
the largest cohesion.

Proof. BFS terminates when it pops from the heap a non-
index node corresponding to object ox. As the heap contains
nodes sorted by the upper bound of Lemma 1, it holds that
c(ox) ≥ c+(N) for all nodes in H. Therefore ox has higher
cohesion than any object within any node in the heap and
thus any object in D.

6. THE BRANCH AND BOUND METHOD
This section describes an index-based Branch and Bound

algorithm, denoted as BB, for processing cohesion queries.

BB has the same index requirements as BFS and also uses
an optimistic cohesion bound to direct the search towards
promising nodes. In addition, BB applies the branch and
bound paradigm to prune parts of the space (subtrees rooted
at nodes) that may not contain the most cohesive object. In
particular, BB: (1) computes pessimistic cohesion bounds
on index nodes to derive threshold τ , which acts as a lower
bound on the solution to the cohesion query, and (2) employs
two pruning criteria to eliminate nodes containing objects
with cohesion smaller than τ .

Computing the Threshold. Using the distance bounds
d−, d+ of Section 5, we can also compute a lower bound on
the cohesion of any object within a tree node.

Lemma 2 (Lower Bound). Given a non-leaf node N , the
cohesion of an object o ∈ D within N cannot be less than
c−(N) = minr∈R d−(N, r)− λ ·mina∈A d+(N,a).

Proof. Follows from the definitions of d+ and d−.

The threshold τ is set to the largest among the lower co-
hesion bound of any seen node and the cohesion values of
any seen object.

Pruning Criteria. The discussion here assumes a cohe-
sion threshold value τ is computed. The following theorem,
which is a direct consequence of the coherence definition,
determines whether an object o can be pruned given an at-
tractor and a repeller.

Theorem 2. Given attractors A, a repeller r ∈ R and a
cohesion threshold τ , any object o ∈ D such that dr(o, r)−
λ ·mina∈A da(o,a) < τ has cohesion less than τ .

Theorem 2 can prune individual objects. However, we
need a method to prune an entire subtree rooted at a given
tree node. We thus consider the aggregation information
stored within a node. Then, Criterion 1 holds.

Criterion 1. Given a cohesion threshold τ , a node N con-
tains objects with cohesion less than τ , if there exists a re-
peller r ∈ R such that for every attractor a ∈ A it holds
that d+(N, r)− λ · d−(N,a) < τ .

Proof. From the definitions of d+(N,a) and d−(N, r), we
derive that ∀a ∈ A, ∃r ∈ R such that dr(o, r)−λ·da(o,a) ≤
d+(N, r)−λ ·d−(N,a) < τ and, thus, Theorem 2 applies for
all objects within N .

Criterion 1 is simple to check and succesfully prunes nodes.
However, it is based on rather loose bounds on the cohe-
sion of objects within nodes. To understand this, consider
the geometric interpretation of Theorem 2 for the case of
λ = 1, i.e., when attraction and repulsion forces are equally
weighted, which is the most computationally challenging
case for all algorithms as our experiments have shown.

We study the geometry of the function f(x) = d(x, r) −
d(x,a), where x is a point in the vector space. Then the
locus of points x satisfying equation f(x) = τ , for a given
constant τ , defines one of the two branches of a hyperbola
curve with foci the attractor a and the repeller r. Partic-
ularly, we distinguish three cases with respect to τ ’s value.

(a) When τ < 0, the locus is the branch around r. Theo-
rem 2 implies that any object that lies inside this branch
(i.e., in the part of space containing focus r) has cohe-
sion less than τ ; see Figure 2a.

(b) When τ = 0, the locus is the bisector of segment ar.
Theorem 2 implies that any object that lies closer to the
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Figure 2: Geometric interpetation of Theorem 2 for
λ = 1; locus of points x satisfying d(x, r)− d(x,a) < τ
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Figure 3: Criterion 2 for λ = 1 and τ < 0

repeller r than the attractor a has cohesion less than τ ;
see Figure 2b.

(c) When τ > 0, the locus is the branch around the at-
tractor a. Theorem 2 implies that any object that lies
outside this branch (i.e., in the part of space containing
focus r) has cohesion less than τ ; see Figure 2c.

The pruned space increases with τ . A higher τ value
causes the locus to move closer to a, and the correspond-
ing branch to become narrower.

Now, let us turn our attention to the case of τ < 0, and
consider a node N , attractor a, and repeller r as shown in
Figure 3; the absolute value of τ depicted on the bottom
right. Node N lies completely within the shaded area, and
thus cannot contain any points with cohesion more that τ .
Observe that Criterion 1 does not hold for N . The upper
distance bound d+(N, r) to the repeller is greater than the
lower distance bound d−(N,a) to the attractor, and thus
d+(N, r) − d−(N,a) > 0, which is clearly greater than the
negative threshold τ .

The reason for the previous observation is that the point
within N that has attraction from a equal to d−(N,a) and
the point that has repulsion from r equal to d−(N, r) do not
coincide in general. In Figure 3, the former is the bottom
left corner of N , while the latter is the top right corner of
N . As a result, the value d−(N, r)− d−(N,a) is not a tight
upper bound for the cohesion of any object within N .

In what follows, we derive a stronger criterion for pruning
nodes when λ = 1 and τ ≤ 0. The key observation is that
in this case the pruned space is convex.

Lemma 3. Given repeller r, an attractor a, and a cohesion
threshold τ ≤ 0, the space defined by points x such that
d(x, r)− d(x,a) < τ is convex.

Proof. The equation d(x, r)−d(x,a) = τ defines a hyperbola
branch around r for τ < 0. The inequality d(x, r)−d(x,a) <
τ defines the space inside the branch, i.e., that contains r,
which is known to be convex. For τ = 0 the branch reduces
to the bisector and the half-space closer to r is convex.

Convexity is desirable for its following property.

N

τ
f(x) = τ

a r

Figure 4: Non-convex pruning area for λ = 1, τ > 0

Lemma 4. A rectangle R is completely inside a convex
space S if and only if all its corners are inside the convex
space S.

Proof. The ⇒ direction is obvious. For the ⇐ direction,
assume otherwise that all corners of R are inside S, but
there exists a point p inside R which is outside S. From the
convexity of S, we derive that each edge of R is completely
inside S (any point in an edge of R is a linear combination
of two corners). With similar reasoning, we derive that any
face ofR is completely inside S. Then, since p can be written
as a linear combination of two points on faces of R, point p
must also be completely inside S — a contradiction.

Combining the previous two lemmas we derive the follow-
ing pruning criterion.

Criterion 2 (λ = 1, τ ≤ 0). Given attractors A, a repeller
r ∈ R, and a cohesion threshold τ ≤ 0, a node N contains
objects with cohesion less than τ for λ = 1, if for each corner
c of N it holds that d(c, r)−mina∈A d(c,a) < τ .

Proof. From Lemmas 3 and 4, we derive that for any point
x inside R it holds that d(x, r)−mina∈A d(x,a) < τ . Thus
Theorem 2 holds for all points in R.

Consider again the example of Figure 3, where the prereq-
uisites (λ = 1, τ ≤ 0) of Criterion 2 hold. It is easy to see
that all corners of node N are within the shaded are, and
thus Criterion 2 prunes this node.

Unfortunately, the pruning space for τ > 0 is not convex,
meaning that Criterion 2 does not apply. Consider Figure 4,
which depicts an example for λ = 1 and τ > 0. Observe that
while all corners of node N are within the shaded area, there
exists a part of N that is outside; hence, the node cannot
be pruned.

The BB Algorithm. Algorithm 3 shows the pseudocode
of the BB algorithm. It takes as input the index T storing
all objects in the database D, the set of attractors A, and
the set of repellers R. BB returns the object o∗ with the
largest cohesion.

BB operates largely similar to BFS. It also uses a data
structure L containing index nodes sorted descending on
their upper bound on cohesion (Lemma 1). BB requires
sorted access, and thus L could be implemented as a binary
search tree. In addition, BB maintains a cohesion thresh-
old τ , which corresponds to a lower bound of the maximum
cohesion, initially set to −∞. BB operates similar to BFS
with the following exceptions. BB updates the threshold
(Lines 8–10) whenever a node with a higher upper bound or
an object with a higher cohesion is seen. Also, BB marks
this event raising a flag (Line 10). Subsequently, after all
children nodes are inserted in L and if the flag was raised



Algorithm 3: BB

Input: index T ; attractors A; repellers R
Output: o∗ the answer to the cohesion query
Variables: L a list with nodes sorted by c+(); cohesion

threshold τ

1 τ ← −∞; L← ∅

2 Nx ← Nroot ⊲ root node of T
3 while Nx is an internal node do

4 read node Nx

5 foreach child N of Nx do

6 compute c+(N) ⊲ Lemma 1

7 L.insert(N, c+(N))

8 if c−(N) > τ then ⊲ Lemma 2

9 τ ← c−(N)
10 flag ← true

11 if flag = true then

12 flag ← false
13 foreach N ∈ L do

14 foreach r ∈ R do

15 pruned← true
16 foreach a ∈ A do

17 if d+(N, r)− λ · d−(N, a) ≥ τ then ⊲ Criterion 1
18 pruned← false
19 break

20 if λ = 1 and τ ≤ 0 and ∃ corner c of N :
d(c, r)− d(c, a) ≥ τ then ⊲ Criterion 2

21 pruned← false
22 break

23 if pruned = true then

24 L.erase(N)
25 break

26 Nx ← L.pop()

27 o∗ ← Nx

Algorithm 4: BB PruneCheck

Input: node N ; attractor a; repeller r

1 pruned← d−(N, r)− λ · d−(N, a) < τ ⊲ Criterion 1
2 return pruned

(Line 11), the list L of nodes is traversed (Lines 13–25), and
Criteria 1 and 2 are examined. If there exists a repeller r
such that after considering all attractors the pruned flag re-
mains true based on bothe criteria (Lines 17–22), then the
currently examined node is pruned (Lines 23–25). The next
theorem proves the correctness of BB.

Theorem 3. The BB algorithm returns the object with the
largest cohesion.

Proof. BB operates as BFS with the addition of the pruning
criteria. We only need to show that BB cannot miss the
answer object o∗ due to pruning. BB prunes index nodes
based on Criteria 1 and 2, and the threshold computed based
on Lemma 2. Therefore, by the correctness of these lemmas,
o∗ cannot be in any pruned node.

7. EXTENSIONS
Section 7.1 discusses the case of non-point attractors and

repellers, and Section 7.2 overviews other distance metrics.

7.1 Non-point Attractors and Repellers
We assume that attractor and repellers are not points and

define a simply connected area, i.e., without holes. Consider
such an area A. The distance d(p, A) of an arbitrary point
p in the space to area A is defined as the minimum distance
of p to any point within A.

Depending on the complexity of the area A, computing
distances to A can be computationally hard. Therefore, we
show how to use its minimum bounding rectangle, denoted

A

A

N

minmaxdist(N,A)

mindist(N,A)

Figure 5: Distance bounds of node N to area A

as A, to compute lower and upper bounds on the distance
to A of points and tree nodes.

We first start with a point p in space. It is easy to see
that the following holds:

mindist(p, A) ≤ d(p, A) ≤ minmaxdist(p, A),

where mindist(p, A) is the minimum possible distance of p
to any point within A, and minmaxdist(p, A) is the mini-
mum across all faces of A of the maximum possible distance
of p to any point on an A face.

We next consider the case of a node N and seek to bound
the distance to area A of any object o within N . A similar
result holds for any o ∈ N :

mindist(N,A) ≤ d(o, A) ≤ minmaxdist(N,A), (2)

where mindist(N,A) is the minimum possible distance of
any point in N to any point in A, and minmaxdist(N,A) is
the minimum across all faces of A of the maximum possible
distance of any point within N to any point on an A face.
Figure 5 depicts the previous bounds for an areaA bounded

by A and node N . Note that the only necessary change to
the algorithms is that whenever bounds d±(N, ·) of the dis-
tance of a node N to a non-point attractor or repellers are
required, Equation 2 is employed. A final note is that Crite-
rion 2 does not apply for non-point attractors and repellers,
simply because the geometric interpretation of the pruning
area is no longer defined by a hyperbola.

7.2 Other Distance Metrics
An MBR-based node N is associated with a rectangle de-

fined by its lower N.ℓ and upper N.u corners. In what fol-
lows, we seek to bound d(o,p) for an object o within N ,
and some object p in the space, for the Lp distance metrics:

dp(o,p) =





|A|
∑

i=1

|o[i]− p[i]|p





1/p

.

Consider the points x−p , x
+
p inside N ’s MBR defined as:

x−p [i] =











N.ℓ[i] if p[i] < N.ℓ[i]

p[i] if N.ℓ[i] ≤ p[i] ≤ N.u[i]

N.u[i] if p[i] > N.u[i]

, and

x+
p [i] =

{

N.u[i] if p[i] < 1

2
(N.ℓ[i] +N.u[i])

N.ℓ[i] if p[i] ≥ 1

2
(N.ℓ[i] +N.u[i])

.

Then, define values: d−p (N,p) = dp(x
−
p ,p) and d+p (N,p) =

dp(x
+
p ,p) for which the following lemma holds.

Lemma 5. The values d−p (N,p), d+p (N,p) are a tight lower
and a tight upper bound, respectively, on dp(o,p) for any
object o ∈ N and an arbitrary object p.

Proof. The function f(x) =
(

∑|A|
i=1
|x[i]|p

)1/p

is non-decreasing



Table 2: Dataset Characteristics
Dataset Cardinality Dimensions Attraction Repulsion

SYNTH 5 · 106 – 108 2 – 10 d2 d2
FACTUAL 2,120,732 2 d2 d2

MIRFLICKR 1,000,000 50 d1 d1

monotonous in each dimension i. Therefore, it holds that the
lowest (resp. highest) possible values of x in all dimensions
gives a lower (resp. upper) bound for f().

Observe that |o[i]−p[i]| ≥ |x−p [i]−p[i]| and |o[i]−p[i]| ≤
|x+

p [i]−p[i]| for any o[i] ∈ [N.ℓ[i], N.u[i]]. Hence, the lemma
follows from the monotonicity of the Lp distance metric and
the fact that the specified x−p ,x

+
p points that determine the

values of d−p (N,p) and d+p (N,p) reside within N .

8. EXPERIMENTAL EVALUATION
Section 8.1 describes the experimental setting, while Sec-

tion 8.2 presents the results.

8.1 Experimental Setting

Methods. We implement our proposed BFS and BB al-
gorithms, discussed in Sections 5–6, for processing cohesion
queries over R-Trees. Moreover, we also implement the base-
line LIN algorithm, which performs an exhaustive linear scan
over the database of objects, as well as methods RR and SPP
described in Section 4. All algorithms are implemented in
C++ and executed on a 3GHz machine. We note that SPP
was consistenly slower than RR as it makes a series of ex-
pensive computations (finding intersections between Voronoi
edges and circles defining the search frontier [9]); hence SPP
is omitted from all figures. Moreover RR’s performance was
better than LIN only for very small or large values of weight
λ. Since we focus on the hard cases (λ = 1 and close values),
we only include RR in the first set of figures.

Datasets. Our evaluation includes both real and synthetic
datasets, whose characteristics are shown in Table 2. The
synthetic datasets, denoted as SYNTH, contain objects that
are randomly distributed around 1,000 cluster centers, se-
lected independently and uniformly at random. The proba-
bility that a cluster center attracts objects is drawn from a
Zipfian distribution with skew (zipfian parameter) 0.8.

The real dataset FACTUAL is a collection of 2,120,732
locations of places1 (restaurants, shops, etc.) in the U.S.
To check the applicability of our methods for other dis-
tance metrics, we use another real dataset, denoted as MIR-
FLICKR, which is a collection of 1,000,000 images used in
the evaluation of content-based image retrieval methods.2

In our experiments, we use the first 50 buckets (out of 150)
of edge histogram descriptors, of the MPEG-7 specification
[25], as the feature vector. This is thus a high dimensional
data set, where indices are expected to be less helpful in
pruning the search space. For the MIRFLICKR dataset,
the L1 norm (d1) is used as the distance metric.

Parameters, queries and metrics. We study the per-
formance of the algorithms by varying four parameters: (1)
the number of objects |D|, from 5M up to 100M in SYNTH,
(2) the dimensionality of the space |S|, from 2 up to 10 in
SYNTH and from 5 up to 50 in MIRFLICKR, (3) the num-
ber of repellers |R| from 1 up to 1000, and (4) the weight

1
Retrieved using the API http://www.factual.com/data/t/places

2
Available at http://press.liacs.nl/mirflickr/

Table 3: Parameters
Parameter Symbol Range Default

Number of Repellers |R| 1 – 1000 10
Weight λ 0.1 – 10 1

Cardinality (SYNTH) |D| 106 – 108 107

Dimensionality (SYNTH) |S| 2 – 10 2

Table 4: Pruning Power (|R| = 10)

λ Criterion 1 Criterion 2

0.5 75% —
0.9 59% —
1 59% 45%
1.1 60% —
2 63% —

parameter λ from 0.1 up to 10. The default values of these
parameters are specified in Table 3. Note that in all exper-
iments we assume a single attractor, |A| = 1. As we will
demonstrate in our experimental evaluation, our selected
value of λ = 1 is actually a worst-case scenario for our al-
gorithms, since their I/O and running time improvements
compared to LIN quickly improve as the value of λ deviates
from 1 (either higher or lower values of λ).

In each experiment, the set of attractors is constructed by
performing an |A|-NN query on a point uniformly selected
from the space at random. For the NBA dataset, this point
is a tuple with attributes values the best in all statistics.
The set of repellers is constructed progressively: we pose |R|
cohesion queries withA constructed as before andR initially
empty, inserting the result of each query to R. After these
steps, we obtain the set of attractors and repellers that will
ultimately be used in our evaluation for cohesion queries.
To quantify performance, we measure the number of I/O
operations, and the processing time for a cohesion query.
All reported quantities for all algorithms are measured after

the attractors and repellers have been chosen. The reported
values are in each case the averages of 10 distinct queries.

8.2 Results

Effect of λ. We first study the effect of the weight λ as
it varies from 0.1 up to 10 at the FACTUAL and SYNTH
datasets. The remaining parameters obtain their default
values, depicted in Table 3.

The results for the number of required I/O operations and
the total running time (in seconds) of the algorithms are
depicted in Figures 6 and 7 for FACTUAL and SYNTH, re-
spectively. The findings are identical between the datasets.
Please note that the y-axis in the figures is often in logarith-
mic scale. In this case, the x-axis is also logarithmic.

The number of I/O operations and running time in LIN
is independent of λ. The performance of RR is often worse
than LIN, especially its running time. Since RR was rou-
tinely outperformed by our algorithms, we omit it from the
remaining experiments. Note that our adaptation of the
SPP algorithm described in Section 2 performed even worse
than RR and it is also omitted. The effect of λ in all other
methods is similar. Our proposed algorithms offer signifi-
cant (up to 3 orders of magnitude) I/O and running time
savings over the LIN method, especially for values of λ much
lower or higher than 1. This behavior is inherent in co-
hesion queries and explains why they are more challenging
than NN or AFN queries. Large λ values assign more weight
to attraction, and thus cohesion query processing resembles



Table 5: Pruning Power (λ = 1)

|R| Criterion 1 Criterion 2

1 16% 4%
5 61% 28%
10 59% 45%
50 62% 40%
100 64% 35%
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NN search. On the other hand, small λ values assign more
weight to repulsion resembling AFN search. Values around
1 mean that attraction and repulsion are equally strong,
making it harder to identify the best object.

For the challenging case of λ = 1, BFS does not perform
better than LIN. The reason is that it cannot guide the
search towards the result as efficiently as in other cases (due
to the inherent difficulty of λ = 1 and non-tight bounds),
and consequently its computational overhead (computing
bounds and prioritizing sub-trees) outweights the savings.
On the other hand, when λ = 1, BB is almost an order of
magnitude faster than LIN, thanks to its pruning criteria.

To better illustrate the running time improvements, the
important area around λ = 1 is depicted in Figure 8a, but
in this case the x-axis is in linear scale. Figure 8b shows
the corresponding results for the SYNTH dataset (using the
default parameter values). Our BB algorithm is more than
6 times faster than LIN, even when λ = 1, with the benefits
quickly increasing for smaller or larger values of λ. BFS also
provides significant improvements over LIN, but not around
the value λ = 1. The superiority of BB is attributed to the
additional pruning that can be achieved.

In order to assess the effectiveness of the individual prun-
ing criteria in BB, Table 4 details the percentage of nodes
pruned per criterion with respect to the number of nodes
encountered during cohesion query processing. Empty cells
indicate that the corresponding criterion does not apply to
the specific setting. Please note that both criteria might
prune the same node.
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Figure 9: Effect of |R|

Effect of |R|. We now study the effect of the number
of repellers |R|, while fixing the weight at λ = 1. Recall
that this is the worst case scenario for our three algorithms.
In Figure 9a we present results on the FACTUAL dataset.
As the number of repellers increases, so does the running
time of all methods, as more distance computations need
to be performed. While more repellers offer more chances
for pruning, based on Theorem 2, what happens when |R|
increases significantly is that each repeller ends up being
close to other repellers, thus limiting the pruning power of
new repellers (recall that we insert repellers incrementally).
However, some small benefits are observed for BB, since a
100-fold increase in |R| results in a lower than 100-fold in
its running time.

The same graph, but for λ = 0.75 is depicted in Figure 9b.
As previously, when the value of λ deviates significantly from
1, both our algorithms provide running time improvements
around 2 orders of magnitude over LIN. For large values of
|R|, our algorithms have comparable performance. Table 5
shows the criteria pruning power for various |R| values.

Effect of |D|. In this experiment, we measure the effi-
ciency of queries using the synthetic SYNTH dataset, while
varying the cardinality |D| from 5M to 100M. As always,
the remaining parameters obtain their default values. Fig-
ure 10a depicts the total processing time as a function of |D|.
All methods scale linearly with the dataset cardinality. Our
BB algorithm actually scales slightly better than the other
approaches, since its relative benefits slightly increase with
the increase of |D|. While not depicting the results, we note
that for values of λ deviating significantly from 1, our BFS
and BB algorithms showed the same trends as in previously
experiments, significantly outperforming LIN.

Effect of |S|. We next study the effect of dimensionality
in processing cohesion queries, using the SYNTH dataset,
and vary the number of attributes |S| from 2 up to 10. Fig-
ure 10b depicts the total processing time as a function of |S|.
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The efficiency of all methods decreases as the dimensionality
increases. For BFS, the impact is smaller, as the algorithm
has poor performance in all cases of λ = 1. The effect of |S|
is more pronounced for BB due to the performance degrada-
tion of the underlying index (see, e.g., the study in [3]). Still,
for small or medium dimensionalities, BB remains up to 2
times faster than LIN. We note that, while not depicting it
due to space constraints, BB and BFS maintain significant
benefits over LIN for values of λ that deviate significantly
from 1, similarly to previous experiments.

Effect of distance metrics. In this experiment, we in-
vestigate the performance of our framework using the real
dataset MIRFLICKR. As already mentioned, we use the
histogram intersection distance. The used distance metrics
make more sense for the specific data sets.

Figure 11a shows the effect of the weight λ on cohesion
queries over the NBA dataset. In the chosen metrics, the
value of λ does not have a significant impact on the running
time of our BB and BFS algorithms. Both our algorithms
are faster than LIN, typically by a factor of 3 (for BFS)
and 4 (for BB). Figure 11b demonstrates the scalability of
the tested algorithms when we vary the dimensionality (|S|)
from 5 to 50. The improvements of BB and BFS over LIN
are important in all cases. For |S|=50, BFS (resp. BB) is
over 3 (resp. 4) times faster than LIN.

9. CONCLUSIONS
This work introduced the cohesion query, which given an

attractor and a set of repellers, returns the object that is
closer to the attractor and at the same time farther than
the repellers. For this problem, best-first search and branch
and bound algorithms were designed. The challenging case

of equal weight between the attraction and repulsion forces
is particularly studied and an optimized pruning criterion
was proposed. All methods have shown to be up to orders
of magnitude more efficient than a linear scan and existing
methods based on NN search.
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Abstract. Skyline queries return the set of non-dominated tuples, where
a tuple is dominated if there exists another with better values on all at-
tributes. In the past few years the problem has been studied extensively,
and a great number of external memory algorithms have been proposed.
We thoroughly study the most important scan-based methods, which
perform a number of passes over the database in order to extract the
skyline. Although these algorithms are specifically designed to operate
in external memory, there are many implementation details which are ne-
glected, as well as several design choices resulting in different flavors for
these basic methods. We perform an extensive experimental evaluation
using real and synthetic data. We conclude that specific design choices
can have a significant impact on performance. We also demonstrate that,
contrary to common belief, simpler skyline algorithm can be much faster
than methods based on pre-processing.

Keywords: Experimental evaluation, experimental survey, disk-based algorithm.

1 Introduction

The skyline query, or skyline operator as it was introduced in [3], has in the past
few years received great attention in the data management community. Given a
database of objects, the skyline query returns those objects which are not dom-
inated. An object dominates another, if it has better values on all attributes,
and strictly better value on at least one. Finding the skyline is also known as
the Pareto-optimal set, or maximal vectors problem in multi-objective optimiza-
tion research, where it has been studied extensively in the past, but only for
in-memory computations. For example the well-known divide and conquer algo-
rithm of [7] has complexity O(N logd−2 N), for d ≥ 2, where N is the number of
objects, and d their dimensionality; the algorithm is optimal for d = 3.

The interest in external memory algorithms has sparked after the seminal
work in [3]. The most efficient method in terms of worst-case Input/Output
(I/O) operations is the algorithm in [15], which requires in the worst case

O
(

(N/B) logd−2
M/B(N/B)

)

I/Os, where M is the memory size and B the block

(minimum unit of transfer in an I/O operation) size in terms of objects. However,



in practice, other external-memory algorithms proposed over the past years can
be faster.

This work studies in detail an important class of practical algorithms, the
scan-based skyline algorithms. An algorithm of this class performs multiple passes
over an input file, where the input file in the first pass is the database, and in a
subsequent pass it is the output of the previous pass. The algorithm terminates
when the output file remains empty after a pass concludes. Generally speaking,
during each pass, the algorithm maintains in main memory a small window of
incomparable objects, which it uses to remove dominated objects from the input
file. Any object not dominated is written to the output file.

Although the studied algorithms are specifically designed to operate in exter-
nal memory, little attention has been given to important implementation details
regarding memory management. For example, all algorithms assume that the
unit of transfer during an I/O operation is the object, whereas in a real system
is the block, i.e., a set of objects. Our work addresses such shortcomings by in-
troducing a more realistic I/O model that better captures performance in a real
system. Furthermore, by thoroughly studying the core computational challenge
in these algorithms, which is the management of the objects within the window,
we introduce several novel potentially interesting policies.

Summarizing, the contributions of our study are the following:

− Based on a standard external memory model [1], we appropriately adapt four
popular scan-based algorithms, addressing in detail neglected implementa-
tion details regarding memory management.

− We focus on the core processing of scan-based algorithms, the management
of objects maintained in the in-memory window. In particular, we introduce
various policies for two tasks: traversing the window and evicting objects
from the window. Both tasks can have significant consequences in the number
of required I/Os and in the CPU time.

− We experimentally evaluate concrete disk-based implementations, rather than
simulations, of all studied algorithms and derive useful conclusions for syn-
thetic and real datasets. In particular, we demonstrate that, in many cases
and contrary to common belief, algorithms that pre-process (typically, sort)
the database are not faster.

− We perform an extensive study of our proposed policies, and reach the con-
clusion that in some settings (dimensionality and dataset distribution) these
policies can reduce the number of dominance checks by more than 50%.

2 Preliminaries

2.1 Definitions

Let O be a set of d-dimensional objects. Each object o ∈ O is represented by
its attributes o = (o1, o2, . . . , od). The domain of each attribute, is the positive
real numbers set R+. Without loss of generality, we assume that an object o1
is better than another object o2 on an attribute j, iff oj1 < oj2. An object o1



dominates another object o2, denoted by o1 ≻ o2, iff (1) ∀i ∈ [1, d], oi1 6 oi2 and
(2) ∃j ∈ [1, d], oj1 < oj2. The skyline of an object set O, denoted as SL(O), is the
set of objects in O that are not dominated by any other object of O. Formally,
SL(O) = {oi ∈ O | ∄ok ∈ O : ok ≻ oi}.

2.2 External Memory I/O Model

This section describes an external memory model, similar to that of [1]. The
unit of transfer between the main memory and the external memory (i.e., the
disk) is a single block.4 Any external memory algorithm, like the skyline methods,
read/write blocks from/to disk files. We assume that files are stored contiguously
on disk, and therefore a new block is written always at the end of a file.

We denote as N = |O| the size of the database, i.e., N is the total number of
objects to be processed. We measure the fixed size B of a block in terms of objects
(tuples). Similarly, main memory can fit M objects, with the requirements that
M < N (and often much smaller) to justify the need for external memory
algorithms, and M > 2B to support basic in-memory operations.

We next discuss Input/Output (I/O) operations. We assume no input or
output buffers, so that blocks from the disk are transferred directly to (resp.
from) the disk from (resp. to) the main memory. Equivalently, the input/output
buffers share the same memory of size M with the algorithm.

We categorize I/O operations in two ways. Naturally, a read transfers data
from the disk, whereas a write transfers data to the disk. The second catego-
rization is based on the number of blocks that are transferred. Note that a read
(resp. write) operation transfers at least one block and at most ⌊MB ⌋ blocks into
main memory (resp. disk). We also remark that in disks, the seek time, i.e., the
time it takes for the head to reach the exact position on the ever spinning disk
where data is to be read or written, is a crucial parameter in disk performance.
Reading or writing k consecutive blocks on the disk is much faster than read-
ing or writing k blocks in arbitrary positions on the disk. The reason is that
only one seek is required in the first case, compared to the k seeks for the sec-
ond. Therefore, we distinguish between sequential and random I/Os. A random
I/O incorporates the seek time, whereas a sequential I/O does not. For example,
when a procedure reads k blocks sequentially from the disk, we say that it incurs
1 random read and k − 1 sequential reads.

3 A Model for Scan-based Skyline Algorithms

3.1 Design Choices

All skyline algorithms maintain a set of objects, termed window, which consists
of possible skyline objects, actual skyline objects, or some arbitrary objects in
general. A common procedure found in all algorithms is the following. Given
some candidate object not in the window, traverse the window and determine if

4 [1] assumes that P blocks can be transferred concurrently; in this work we set P = 1



the candidate object is dominated by a window object, and, if not, additionally
determine the window objects that it dominates. Upon completion of the traver-
sal and if the candidate is not dominated, the skyline algorithm may choose to
insert it into the window, possible evicting some window objects.

In the aforementioned general procedure, we identify and focus on two dis-
tinct design choices. The first is the traversal policy that determines the order
in which window objects are considered and thus dominance checks are made.
This design choice directly affects the number of dominance checks performed
and thus the running time of the algorithm. An ideal (but unrealistic) traversal
policy would require only one dominance check in the case that the candidate is
dominated, i.e., visit only a dominating window object, and/or visit only those
window objects which the candidate dominates.

The second design choice is the eviction policy that determines which window
object(s) to remove so as to make room for the candidate object. This choice
essentially determines the dominance power of the window, and can thus indi-
rectly influence both the number of future dominance checks and the number of
future I/O operations.

We define four window traversal policies. The sequential traversal policy

(sqT ), where window objects are traversed sequentially, i.e., in the order they
are stored. This policy is the one adopted by all existing algorithms. The random
traversal policy (rdT ), where window objects are traversed in random order. This
policy is used to gauge the effect of others. The entropy-based traversal policy

(enT ), where window objects are traversed in ascending order of their entropy

(i.e.,
∑d

i=1 ln(o
i +1)) values. Intuitively, an object with a low entropy value has

greater dominance potential as it dominates a large volume of the space.

In addition to these traversal policies, we define various ranking schemes for
objects, which will be discussed later. These schemes attempt to capture the
dominance potential of an object, with higher ranks suggesting greater poten-
tial. Particularly, we consider the following traversal policies. The ranked-based

traversal policy (rkT ), where window objects are traversed in descending order
based on their rank values. Moreover, we consider three hybrid random-, rank-
based traversal policies. The highest-random traversal policy (hgRdT ), where the
k objects with the highest rank are traversed first, in descending order of their
rank; then, the random traversal policy is adopted. The lowest-random traversal

policy (lwRdT ), where the k objects with the lowest rank are compared first,
before continuing with a random traversal. Finally, the recent-random traver-

sal policy (rcRdT ), where the k most recently read objects are compared first,
before continuing with a random traversal.

Moreover, we define three eviction policies. The append eviction policy (apE ),
where the last inserted object is removed. This is the policy adopted by the
majority of existing algorithms. The entropy-based eviction policy (enE ), where
the object with the highest entropy value is removed. Finally, the ranked-based

eviction policy (rkE ), where the object with the lowest rank value is removed.
In case of ties in entropy or rank values, the most recent object is evicted.



We next discuss ranking schemes used in the ranked-based traversal and evic-
tion policies. Each window object is assigned a rank value, initially set to zero.
Intuitively, the rank serves to identify “promising” objects with high dominance
power, i.e., objects that dominate a great number of other objects. Then, the sky-
line algorithm can exploit this information in order to reduce the required dom-
inance checks by starting the window traversal from promising objects, and/or
evict non-promising objects.

We define three ranking schemes. r0R: the rank of an object o at a time
instance t, is equal to the number of objects that have been dominated by o until
t. In other words, this ranking scheme counts the number of objects dominated
by o. r1R: this ranking is similar to r0R. However, it also considers the number of
objects that have been dominated by the objects that o dominates. Let rank(o)
denote the rank of an object o. Assume that object o1 dominates o2, Then, the
rank of o1 after dominating o2 is equal to rank(o1) + rank(o2) + 1. r2R: this
ranking assigns two values for each object o, its r1R value, as well as the number
of times o is compared with another object and none of them is dominated (i.e.,
the number of incomparable dominance checks). The r1R value is primarily
considered to rank window objects, while the number of incomparable check is
only considered to solve ties; the more incomparable checks an object has, the
lower its rank.

3.2 Algorithm Adaptations for the I/O Model

BNL. The Block Nested Loop (BNL) [3] algorithm is one of the first external
memory algorithms for skyline computation. All computations in BNL occur
during the window traversal. Therefore, BNL uses a window as big as the memory
allows. In particular, let W denote the number of objects stored in the window,
and let Ob denote the number of objects scheduled for writing to disk (i.e., in
the output buffer). The remaining memory of size Ib = M −W − Ob serves as
the input buffer, to retrieve objects from the disk. Note that the size of the I/O
buffers Ib and Ob vary during the execution of BNL, subject to the restriction
that the size of the input buffer is always at least one disk block, i.e, Ib ≥ B,
and that the output buffer never exceeds a disk block, i.e., Ob ≤ B; we discuss
later how BNL enforces this requirements.

We next describe memory management in the BNL algorithm. BNL performs
a number of passes, where in each an input file is read. For the first pass, the
input file is the database, whereas the input file in subsequent passes is created
at the previous pass. BNL terminates when the input file is empty. During a
pass, the input file is read in chunks, i.e., sets of blocks. In particular, each read
operation transfers into main memory exactly ⌊ IbB ⌋ blocks from disk, incurring

thus 1 random and ⌊ IbB ⌋ − 1 sequential I/Os. On the other hand, whenever the
output buffer fills, i.e., Ob = B, a write operation transfers into disk exactly 1
block and incurs 1 random I/O.

We now discuss what happens when a chunk of objects is transfered into
the input buffer within the main memory. For each object o in the input buffer,



BNL traverses the window, adopting the sequential traversal policy (sqT ). Then,
BNL performs a two-way dominance check between o and a window object w.
If o is dominated by w, o is discarded and the traversal stops. Otherwise, if o
dominates w, object w is simply removed from the window.

At the end of the traversal, if o has not been discarded, it is appended in the
window. If W becomes greater than M −Ob−B, BNL needs to move an object
from the window to the output buffer to make sure that enough space exists for
the input buffer. In particular, BNL applies the append eviction policy (apE ),
and selects the last inserted object, which is o, to move into the output buffer.
If after this eviction, the output buffer contains Ob = B objects, its contents are
written to the file, which will become the input file of the next pass.

A final issue is how BNL identifies an object o to be a skyline object, BNL
must make sure that o is dominance checked with all surviving objects in the
input file. When this can be guaranteed, o is removed from the window and re-
turned as a result. This process is implemented through a timestamp mechanism;
details can be found in [3].

SFS. The Sort Filter Skyline (SFS) [4] algorithm is similar to BNL with one
significant exception: the database is first sorted by an external sort procedure
according to a monotonic scoring function. SFS can use any function defined in
Section 3.1.

Similar to BNL, the SFS algorithm employs the sequential window traversal
policy (sqT ) and the append eviction policy (apE ). There exist, however, two
differences with respect to BNL. Due to the sorting, dominance checks during
window traversal are one-way. That is an object o is only checked for dominance
by a window object w. In addition, the skyline identification in SFS is simpler
than BNL. At the end of each pass, all window objects are guaranteed to be
results and are thus removed and returned.

LESS. The Linear Elimination Sort for Skyline (LESS) [5] algorithm improves
on the basic idea of SFS, by performing dominance checks during the external
sort procedure. Recall that standard external sort performs a number of passes
over the input data. The so-called zero pass (or sort pass) brings into main
memory M objects, sorts them in-memory and writes them to disk. Then, the
k-th (merge) pass of external sort, reads into main memory blocks from up to
⌊M/B⌋ − 1 files created in the previous pass, merges the objects and writes the
result to disk.

LESS changes the external sort procedure in two ways. First, during the zero
pass, LESS maintains a window of size W0 objects as an elimination filter to
prune objects during sorting. Thus the remaining memory M −W0 is used for
the in-memory sorting. The window is initially populated after reading the first
M − W0 objects by selecting those with the lowest entropy scores. Then for
each object o read from the disk and before sorting them in-memory, LESS per-
forms a window traversal. In particular, LESS employs the sequential traversal
policy (sqT ) performing a one-way dominance check, i.e., it only checks if o is
dominated. Upon comparing all input objects with the window, the object with



the lowest entropy oh is identified. Then, another sequential window traversal
(sqT ) begins, this time checking if oh dominates the objects in the window. If
oh survives, it is appended in the window, evicting the object with the highest
entropy score, i.e., the entropy-based eviction policy (enE ) is enforced.

The second change in the external sort procedure is during its last pass,
where LESS maintains a window of size W objects. In this pass, as well as
any subsequent skyline processing passes, LESS operates exactly like SFS. That
is the sequential traversal policy (sqT ) is used, one-way dominance checks are
made, and window objects are removed according to the append eviction policy
(epE ).

RAND. In the Randomized multi-pass streaming (RAND) algorithm [13], each
pass in RAND consists of three phases, where each scans the input file of the
previous pass. Therefore, each pass essentially corresponds to three reads of the
input file. In the first phase, the input file is read and a window of maximum size
W = M −B is populated with randomly sampled input objects (using reservoir
sampling).

In the second phase, the input file is again read one block at a time, while the
window of W objects remain in memory. For each input object o, the algorithm
traverses the window in sequential order (sqT ), performing one-way dominance
checks. If a window object w is dominated by o, w is replaced by o. Note that,
at the end of this phase, all window objects are skyline objects, and can be
returned. However, they are not removed from memory.

In the third phase, for each input object o, RAND performs another se-
quential traversal of the window (sqT ), this time performing an inverse one-way
dominance check. If o is dominated by a window object w, or if o and w corre-
spond to the same object, RAND discards o. Otherwise it is written on a file on
the disk, serving as the input file for the next pass. At the end of this phase, the
memory is cleaned.

4 Related Work

External memory skyline algorithms can be classified into three categories: (1)
scan-based, (2) index-based, and (3) partitioning-based algorithms.

The scan-based approaches perform multiple passes over the dataset and use
a small window of candidate objects, which is used to prune dominated objects.
The algorithms of this category can be further classified into two approaches:
with and without pre-processing. Algorithms of the first category, directly pro-
cess the set of objects, in the order in which they are stored, or produced (e.g.,
in the case of pipelining multiple operators). The BNL [3] and RAND [13] algo-
rithms, detailed in Section 3.1, lie in this category. On the other hand, methods
in the second category perform an external sort of the objects before, or par-
allel to the skyline computation. The SFS [4] and LESS [5], also detailed in
Section 3.1, belong to this category. Other algorithm, include Sort and Limit
Skyline algorithm (SaLSa) [2], which is similar to SFS and additionally intro-
duces a condition for early terminating the input file scan, and Skyline Operator



on Anti- correlated Distributions (SOAD) [14], which is also similar to SFS but
uses different sorting functions for different sets of attributes.

In index-based approaches, various types of indices are used to guide the
search for skyline points and prune large parts of the space. The most well-
known and efficient method is the Branch and Bound Skyline (BBS) [12] algo-
rithm. BBS employs an R-tree, and is shown to be I/O optimal with respect
to this index. Similarly, the Nearest Neighbor algorithm (NN) [6] also uses an
R-tree performing multiple nearest neighbor searches to identify skyline objects.
A bitmap structure is used by Bitmap [16] algorithm to encode the input data.
In the Index [16] algorithm, several B-trees are used to index the data, one
per dimension. Other methods, e.g., [9,10], employ a space-filling curve, such as
the Z-order curve, and use a single-dimensional index. The Lattice Skyline (LS)
algorithm [11] builds a specialized data structure for low-cardinality domains.

In the partitioning-based approaches, algorithms divide the initial space into
several partitions. The first algorithm in this category, D&C [3] computes the
skyline objects adopting the divide-and-conquer paradigm. A similar approach
with stronger theoretical guarantees is presented in [15]. Recently, partitioning-
based skyline algorithms which also consider the notion of incomparability are
proposed in [17,8]. OSP [17] attempts to reduce the number of checks between
incomparable points by recursively partition the skyline points. BSkyTree [8]
enhances [17] by considering both the notions of dominance and incomparability
while partitioning the space.

5 Experimental Analysis

5.1 Setting

Datasets.Our experimental evaluation involves both synthetic and real datasets.
To construct synthetic datasets, we consider the three standard distribution
types broadly used in the skyline literature. In particular, the distributions are:
anti-correlated (ANT), correlated (CORR), and independent (IND). The syn-
thetic datasets are created using the generator developed by the authors of [3].

We also perform experiments on three real datasets. NBA dataset consists
of 17,264 objects, containing statistics of basketball players. For each player
we consider 5 statistics (i.e., points, rebound, assist, steal blocks). House is
6-dimensional dataset consists of 127,931 objects. Each object, represents the
money spent in one year by an American family for six different types of ex-
penditures (e.g., gas, electricity, water, heating, etc.). Finally, Colour is a 9-
dimensional dataset, which contains 68,040 objects, representing the first three
moments of the RGB color distribution of an image.

Implementation. All algorithms, described in Section 3.1, were written in
C++, compiled with gcc, and experiments were performed on a 2.6GHz CPU. In
order to accurately convey the effect of I/O operations, we disable the operating
system caching, and perform direct and synchronous I/O’s.



The size of each object is set equal to 100 bytes, as was the case in the
experimental evaluation of the works that introduced the algorithms under in-
vestigation. Finally, the size of block is set to 2048 bytes; hence each block
contains 20 object.

Metrics. To gauge efficiency of all algorithms, we measure: (1) the number of
disk I/O operations, which are distinguished into four categories, read, write
operations, performed during the pre-processing phase (i.e., sorting) if any, and
read, write operations performed during the main computational phase; (2) the
number of dominance checks; (3) the time spent solely on CPU processing de-
noted as CPU Time and measured in seconds; (4) the total execution time,
denoted as Total Time and measured in seconds; In all cases the reported time
values are the averages of 5 executions.

5.2 Algorithms Comparison

Table 1. Parameters
Description Parameter Values

Number of Objects N 50k, 100K, 500K, 1M, 5M
Number of Attributes d 3, 5, 7, 9, 15
Memory Size M/N(%) 0.15%, 0.5% 1%, 5%, 10%

Table 1 lists the parame-
ters and the range of val-
ues examined. In each ex-
periment, we vary a single
parameter and set the re-
maining to their default (bold) values. SFS and LESS sort according to the
entropy function. During pass zero in LESS, the window is set to one block.

Varying the number of objects. In this experiment, we vary the number of
objects from 50K up to 5M and measure the total time, number of I/O’s and
dominance checks, and CPU time, in Figures 1–4.

The important conclusions from Figure 1 are two. First, RAND and BNL
outperform the other methods in anti-correlated datasets. This is explained as
follows. Note that the CPU time mainly captures the time spent for the following
task: dominance checks, data sorting in case of LESS/SFS, and skyline identifi-
cation, in case of BNL. From Figure 4 we can conclude that BNL spends a lot
of CPU time in skyline identification. BNL requires the same or more CPU time
than RAND, while BNL performs fewer dominance checks than RAND. This
is more clear in the case of independent and correlated datasets where the cost
for dominance checks is lower compared to the anti-correlated dataset. In these
datasets, the BNL CPU time increased sharply as the cardinality increases.

The second conclusion is that, in independent and correlated datasets, the
performance of BNL quickly degrades as the cardinality increases. This is due to
the increase of the window size, which in turn makes window maintenance and
skyline identification more difficult.

Figure 2 shows the I/O operations performed by the algorithms. We observe
that BNL outperforms the other methods in almost all settings. Particularly, in
the correlated dataset, LESS is very close to BNL. Also, we can observe that, in
general, the percentage of write operations in LESS and SFS is much higher than
in BNL and RAND. We should remark that, the write operations are generally
more expensive compared to the read operations. Finally, for LESS and SFS, we



can observe that the larger amount of I/O operations are performed during the
sorting phase.
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Fig. 1. Total Time: Varying Number of Objects
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Fig. 2. I/O Operations: Varying Number of Objects
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Fig. 3. Dominance Checks: Varying Number of Objects
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Fig. 4. CPU Time: Varying Number of Objects
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Fig. 6. I/O Operations: Varying Number of Attributes
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Fig. 7. Dominance Checks: Varying Number of Attributes
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Fig. 8. CPU Time: Varying Number of Attributes

Regarding the number of dominance checks, shown in Figure 3, LESS and
SFS perform the fewest, while RAND the most, in all cases. Figure 4 shows the
CPU time spent by the methods. SFS spends more CPU time than LESS even



 0

 200

 400

 600

 800

 1000

1% 5% 10%

T
o
ta

l 
T

im
e
 (

s
e
c
)

Memory Size

LESS
SFS

RAND
BNL

(a) Anti-correlated

 0

 200

 400

 600

 800

1% 5% 10%

T
o
ta

l 
T

im
e
 (

s
e
c
)

Memory Size

LESS
SFS

RAND
BNL

(b) Independent

 0

 200

 400

 600

 800

1% 5% 10%

T
o
ta

l 
T

im
e
 (

s
e
c
)

Memory Size

LESS
SFS

RAND
BNL

(c) Correlated

Fig. 9. Total Time: Varying Memory Size

though they perform similar number of dominance checks; this is because SFS
sorts a larger number of object than LESS. Finally, as previously mentioned,
BNL spends considerable CPU time for skyline identification.

Varying the number of dimensions. In this experiment we investigate the
performance as we vary the number of dimensions from 3 up to 15. In Figure 5
where the total time is depicted, the performance of all methods become almost
the same for anti-correlated and independent datasets, as the dimensionality
increases. In the correlated dataset, the skyline can fit in main memory, hence
BNL and RAND require only a few passes, while SFS and LESS waste time
sorting the data.

Regarding I/O’s (Figure 6), BNL outperforms all other methods in all cases,
while LESS is the second best method. Similarly, as in Figure 2, LESS and SFS
performs noticeable more write operations compared to BNL and RAND. Fig-
ure 7 shows that LESS and SFS outperforms the other method, performing the
same number of dominance checks. Finally, CPU time is presented in Figure 8,
where once again the cost for skyline identification is noticeable for BNL.

Varying the memory size. In Figure 9, we vary the size of the available
memory. In general, the total time here, follows the trend of I/O operations. We
observe that the required time of all methods decreased sharply for memory sizes
up to 1%. However, beyond this point, the time is almost stable as the memory
size increases, with the exception of BNL, where the time slightly increases (due
to the skyline identification cost w.r.t. window size).

Table 2. Real Datasets: Total
Time (sec)

Dataset LESS SFS RAND BNL

House 30.11 178.21 15.25 4.98
Colour 14.43 90.73 3.70 1.28
NBA 9.45 26.68 0.71 0.41

Real Datasets. In this experiment, we eval-
uate our methods using the real datasets de-
scribed in Section 5.1. Table 2 summarizes the
results, presenting the total time required by all
methods. We observe that BNL outperforms the
other methods in all datasets in terms of total
time. RAND outperforms the other methods in
all cases, while SFS is the worst. Note that, in House and Colour datasets, RAND
performs more dominance checks, and more I/O operations, than LESS. How-
ever, LESS requires more total time, due to larger number of write operations,
and the CPU time spend for sorting.



5.3 Policies Evaluation

In this experiment, we study the effect of different window policies in scan-
based skyline algorithms. Particularly, we use BNL and SFS algorithms and we
employ several traversal and eviction and policies, in conjunction with different
ranking schemes. The effect of policies in LESS are similar to those in SFS and
are not shown. Regarding RAND, only the window traversal policy affects its
performance; its effect is not dramatic and hence it is also not shown.

All results are presented w.r.t. the original algorithms. That is, let m be a
measurement for the original algorithm, and m′ be the corresponding measure-
ment for an examined variation. In this case, the measurement presented for the
variation is 1 + (m′ −m)/m.

BNL. We first study the performance of BNL under the 10 most important
policy and ranking scheme combinations. Figure 10 shows the I/O operations
performed by the BNL flavors. As we can see, none of the examined variations
performs significant better than the original algorithm. In almost all cases, the
I/O performance of most variations is very close to the original. The reason is
that the append eviction policy (apE), adopted by the original BNL already
performs very well for two reasons. First, the apE policy always removes objects
that have not dominated any other object. This way, the policy indirectly im-
plements a dominance-oriented criterion. Second, the apE policy always removes
the most recently read object, which is important for BNL. A just read object,
requires the most time (compared to other objects in the window) in order to
be identified as a skyline, thus propagated to the results and freeing memory.
Hence, by keeping “older” objects we increase the probability of freeing memory
in the near future. Still it is possible to marginally decrease the number of I/Os.

Figure 11 shows the number of dominance checks performed. We can observe
that, in several cases, the variants that adopt rank-based traversal, perform sig-
nificant fewer dominance checks than the original. Particularly, the rkT/rkE/r1R
and rkT/rkE/r2R variants outperform the others in almost all cases, in inde-
pendent and correlated datasets, by up to 50%. Similar results also hold for
low dimensionalities in the anti-correlated dataset. However, this does not hold
in more dimensions, due to the explosion of skyline objects in anti-correlated
datasets.

SFS. Here, as in the previous experiment, we examine the performance of SFS
algorithm adopting several policies. Similar to BNL, none of SFS variants per-
form noticeable fewer I/O operations (Figure 12). Regarding the dominance
checks (Figure 13), in anti-correlated and independent datasets, most of vari-
ants have similar performance to the original algorithm. Only for correlated
datasets, ranked-based policies exhibit significant performance gains.

5.4 Discussion

In an I/O-sensitive setting, i.e., when I/O operations cost significantly more than
CPU cycles, BNL seems to be the ideal choice, as it performs less I/O operations
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Fig. 13. SFS Policies (Dominance Checks): Varying Number of Attributes

than all other methods in almost all settings. Additionally, BNL and RAND
perform less write operation than the other methods. On the other hand, in a
CPU-sensitive setting, LESS and RAND seem to be good choices. LESS performs
the fewest dominance checks, while RAND doesn’t spend time for sorting the



data, or for skyline identification. Finally, regarding the policies tested, the rank-
based ones show significant gains but only in CPU-sensitive settings.
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ABSTRACT

Given an attractor, a set of repellers and a database of objects, all
embedded in a metric space, the maximum attraction, minimum
repulsion (MAMR) query returns the object that maximizes the
weighted difference of its distance to the attractor and its aggre-
gate distance to the repellers, i.e., it is as close to the attractor and
as far from the repellers as possible. MAMR queries arise in vari-
ous optimization problems, such as the query results diversification
problem, where the goal is to retrieve a set of objects that are rele-
vant to a given query and at the same time dissimilar to each other.
In the basic MAMR query, similar to the nearest neighbor (NN)
query, the attractor is the optimal point in space. However, unlike
NN queries, the answer to a MAMR query could be very far from
the attractor. While MAMR queries require only linear time in the
worst case, we show that it is possible to devise a much faster algo-
rithm in practice, by studying the properties of the objective func-
tion and introducing pruning criteria. Using a multi-dimensional
index structure, drawn from a large variety of supported indexes,
we are able to process MAMR queries for a broad class of objec-
tive functions and distance metrics, I/O efficiently and orders of
magnitude faster than a simple linear scan.

1. INTRODUCTION
This paper introduces the maximum attraction, minimum repul-

sion (MAMR) query. Assume a metric space S, and consider a
database of objects D , an attractor a, and a set of repellers R ,
which are all points embedded in S. The attraction of an object
o ∈ D is the opposite of its distance to a, while the repulsion of o

is the opposite of its minimum distance to any repeller in R . The
MAMR query returns the object o∗ ∈ D that maximizes an objec-
tive score defined as the weighted difference of its attraction and
repulsion. Intuitively, MAMR returns an object that is both close
to the attractor and far from the repellers.
The motivation for MAMR queries comes from various opti-

mization problems; we next describe three examples. Consider the
top-k diversification problems, where the general goal is to deter-
mine a set of k documents that are relevant/similar to a given query
and at the same time dissimilar to each other. Since these problems
are generally NP-hard, a standard heuristic approach is to build the
result set incrementally [13]. Then, the sub-problem at the n-th step
can be seen as a MAMR query. The database consists of all doc-
uments, the attractor is the query, and the repellers are the set of
documents selected at the previous steps.
As another motivational example, consider a competitive facility

location [7], where the goal is to determine the optimal location for
opening a new department store. In this setting, the database con-
sists of possible building sites, the attractor represents a desirable
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Figure 1: MAMR queries with two repellers

location, e.g., the city center, and the repellers represents the com-
petitor stores. Then, the MAMR query returns the location that is
close to the city center and faces the least competition.
In other optimization problems, the attractor could be implied.

For example, assume an NBA team that decides which player to
pick so as to better complement its existing roster. Here, the database
is the set of eligible players, the set of repellers is the team’s cur-
rent players, and the attractor is the “ideal” player having perfect
statistics. Similar problems also appear in other domains, e.g., a
company that looks for a new product to launch, where the attrac-
tor would have minimum production cost and best specifications,
and the repellers would be the competing products.
MAMR queries are related to nearest neighbor (NN) and aggre-

gate farthest neighbor (AFN) queries. The NN query retrieves the
object that is closest to an attractor, while the AFN query the one
that is farthest from a group of repellers. Contrary, the MAMR
query returns the object that strikes the perfect balance between
the attraction and the repulsion forces, and as a result, the MAMR
answer could significantly differ from the NN or AFN answers.
To illustrate this, consider the example in Figure 1a, which de-

picts an attractor a, two repellers r1, r2, and four objects, o1 through
o4. We assume that distances are measured by the Euclidean dis-
tance (we draw a grid for ease of reference), and seek to maximize
the difference between attraction and repulsion. Observe that ob-
ject o2 is the NN of the attractor, while o4 (at the lower right part
of the figure) is the min-aggregate FN of {r1,r2}. The answer to
the MAMR query is o1 with score about 2.9, as the distance to its
closest repeller (6.1) minus the distance to the attractor (3.2) is the
largest; for example, o3 has a score about only 2.7.
In basic MAMR queries, where the weights are equal, the attrac-

tor is an optimal point that maximizes the objective score. In other
words, in the continuous case of MAMR queries (whereD contains
all points in the space), the answer is the attractor. This is a desir-
able property for NN variants, which is used to guide the search

1



given that the result may lie near the optimal point. For example,
in NN queries, the optimal point is the attractor, whereas for AFN
queries, it is a vertex in the bounded Voronoi diagram constructed
on the set of repellers [10]. However, in MAMR queries the result
may not be close to the attractor. In Figure 1, both objects o2 and
o3 are closer to a than o1, and yet have suboptimal scores.
To further complicate things, there exist cases (depending on

the distance metric and the position of the attractor and repellers)
where no single optimal point (or a finite set) maximizing the ob-
jective score exists, but rather a locus. In the example of Figure 1b,
the locus is the line segment from the attractor a towards the edge
of the space at point p, drawn with a thick line. Any point on this
segment has the highest attainable score 1.
The simplest method for answering a MAMR query is to per-

form a linear scan on the database D and compute the score of
each object. The computational cost is tolerable, as |D| · (|R |+1)
distance computations are necessary (a linear cost assuming only a
few repellers). A better approach, though, is to process in parallel
the corresponding constituent NN, AFN queries and progressively
retrieve answers from each until a common object is seen (or a
threshold is exceeded), similar to Fagin’s algorithms [9].
We propose a different approach for MAMR query processing

by studying the properties of the objective function. Returning to
the example of Figure 1a, examine object o3 with score of about
2.7. Considering only repeller r2, the locus of points that have
objective score equal to that of o3’s defines the hyperbola branchH2
(since the distance from r2 minus the distance from a is constant).
Hyperbola branch H1 is similarly defined with respect to repeller
r1. Based on these hyperbolas, it is possible to characterize the
space with respect to the score of o3. In Figure 1a, the shaded area,
defined as the intersection of the interior of the two hyperbolas,
contains points in space that have score greater than o3’s, and thus
may contain a better object, in our case o1. So, given an object’s
score, it is possible to define pruning criteria that eliminate parts of
the space containing objects with lower score.
Given an appropriate tree index for the space, we compute bounds

for the score of all objects within sub-trees. Using these results, we
propose a generic index-based algorithm termed Branch and Bound

MAMR (BBM) that, in practice, processes MAMR queries signifi-
cantly faster than a linear scan and a baseline approach.
The BBM algorithm applies for a broad range of distance met-

rics, including the popular Lp metrics (e.g., Euclidean and Manhat-
tan distances), cosine distance, and histogram intersection. More-
over, BBM works with any index based on minimum bounding
rectangles (MBR) or spheres (MBS), including vector space in-
dices, such as the R-tree variants [14, 2] (MBR-based), SS-tree [27]
(MBS-based), A-tree [24] (MBR-based), X-tree [3], but also generic
metric space indices, such as the M-tree [6]. Other indices, such
as the SR-tree [18] combine characteristics from both MBR-based
and MBS-based indices and, while they can be supported by our
techniques, require some special attention (discussed at the end of
Section 5). The contributions of this work are the following:

• We introduce and study the maximum attraction, minimum re-
pulsion query on metric spaces.

• We study the characteristics of the MAMR query and intro-
duce pruning criteria to determine parts of the space with non-
promising objects.

• We propose the BBM algorithm for processing MAMR queries
for a broad range of distance metrics and a large family of hier-
archical indices.

• We perform a detailed experimental study on real and synthetic
data, showing that BBM is orders of magnitude faster than a

simple linear scan and significantly more efficient than more
elaborate techniques based on NN query processing.

Roadmap. Section 2 reviews related work. Section 3 defines all
concepts and formally states the MAMR query. Section 4 presents
baseline approaches. Section 5 details our methodology for pro-
cessing MAMR queries. In Section 6 we compute bounds for index
nodes, an essential tool for our algorithm. Section 7 presents our
experimental study, and Section 8 concludes this paper.

2. RELATED WORK
Nearest Neighbor Queries. There is an enormous body of work on
the nearest neighbor (NN) query, also known as similarity search,
which returns the object that has the smallest distance to a given
query point; kNN queries output the k nearest objects in ascending
distance. An overview of index-based approaches to accelerate the
search can be found in [4]. Recently, more efficient approaches
for metric spaces, e.g., [16], and high-dimensional data, e.g., [26],
have been proposed.
For a set of query points, the aggregate nearest neighbor (ANN)

query [22] retrieves the object that minimizes an aggregate distance
to the query points. As an example, for the MAX aggregate func-
tion and assuming that the set of query points are users, and dis-
tances represent travel times, ANN outputs the location that min-
imizes the time necessary for all users to meet. In the case of the
SUM function and Euclidean distances, the optimal location is also
known as the Fermat-Weber point, for which no formula for the co-
ordinates exists. The k-medoid problem is a generalization, which
seeks a set of k objects that collectively minimizes an aggregate
distance to the query points. The problem is NP-hard and has ap-
plications in clustering [21, 20].
A MAMR query, although also an optimization problem involv-

ing distances from a set of points (the repellers and the attractor),
cannot be mapped to an ANN problem or its variants, and can-
not be solved by adapting existing ANN algorithms. The reason is
that the MAMR answer is an object that maximizes an aggregate
distance to repellers (and minimizes the distance to the attractor),
instead of minimizing an aggregate distance as in ANN variants.
Rather MAMR queries are more related to aggregate farthest neigh-
bor queries.
The farthest neighbor (FN) query returns the object that has the

largest distance to a given query point, and can be used, for ex-
ample, to determine the minimum radius required to cover a set
of points from a given location. Naturally, the aggregate farthest

neighbor (AFN) query seeks the object that maximizes an aggre-
gate distance to a set of query points. The work in [11] proposes an
R-tree based algorithm for processing AFN queries for the SUM,
MAX, MIN functions. Again, a MAMR query cannot be mapped
to an AFN query, and thus cannot be solved by algorithms for AFN
queries, but an AFN algorithm together with an NN algorithm, can
be used as a module for processing MAMR queries. This is the
baseline approach described in Section 4. We note that the MAMR
query is not related to reverse variants of the aforementioned prob-
lems, e.g., where the goal is to determine the objects that have a
given query as their nearest neighbor [25, 19].
Diversification. The notion of (content-based) diversification first
appears in information retrieval systems. The seminal work of [5]
shows that a diversity-based reranking of the results list, which
combines relevance and diversity similar to our formulation, achieves
higher precision/recall values. An interesting study on diversifica-
tion objectives is [13], which categorizes common diversification
objectives and proves NP-hardness.
Note that, in general, diversification problems seek a group of
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Table 1: Notation

Symbol Definition

D,o database of objects, an object
A set of attributes
a the attractor

R ,r the set of repellers, a repeller
a(o) attraction of object o by the attractor a

r(o) repulsion of object o by the set of repellers in R

s(o) objective score of o given a and R

ρ repulsion reach
da

x distance metric x is used for attraction
dr

x distance metric x is used for repulsion
τ a threshold on objective scores

documents that are relevant and diverse. Thus, they are not di-
rectly related to MAMR queries. However, sub-problems similar
to MAMR queries appear in many heuristic solutions to diversifica-
tion problems. We emphasize that all referenced works in this sec-
tion, unless stated otherwise, process these sub-problems by per-
forming an exhaustive linear scan.
There are other types of diversification, such as coverage based

approaches [1, 8], which however are not related to our problem.
A more relevant line of work combines diversification and NN
queries. [17] introduces the k-nearest diverse neighbor (kNDN)
query, whose goal is to return a set of k objects that are as close as
possible to a given query point, and at the same time no two objects
have diversity below a given hard threshold. Similarly, [23] defines
a variation of top-k search, adding the restriction that the result set
must not contain any pair of objects having similarity above a user-
specified hard threshold. In both these problems the hard threshold
on diversity is fundamentally different than our notion of repulsion;
hence such methods do not apply for MAMR queries.
The most related diversification problem appears in [10]. Their

iterative approach solves a sub-problem identical to a restricted ver-
sion of the MAMR query, when we restrict MAMR to Euclidean
space and distance. UsingMAMR terminology, the key idea of [10]
is to alternate between NN retrievals from the attractor and from
certain points computed using the Voronoi diagram of the repellers.
We note that [10] is proposed for a more restrictive setting, where
only NN modules are available, and thus its application to MAMR
queries does not result in a strong competitor.

3. PROBLEM DEFINITION
We now present the necessary definitions and formally introduce

the maximum attraction, minimum repulsion query. Table 1 gathers
the most important symbols used throughout this paper.
Consider a finite set of objectsD , termed the database. An object

o ∈D is defined over a set of numerical attributes A that form the
metric space S. Given an attractor a 6∈D , the attraction of an object
o ∈D is defined as:

a(o) =−da(o,a),

where da is a distance metric on S. The smaller the distance to a is,
the greater the attraction. The object that maximizes the attraction
is the nearest neighbor (NN) of a. Given a set of repellers R , such
that R ∩D =∅, the repulsion of object o ∈D is defined as:

r(o) =−min
r∈R

dr(o,r),

where dr is a distance metric on S. The smaller the distance to the
closest repeller is, the greater the repulsion. The object that min-
imizes the repulsion is the min-aggregate farthest neighbor (min-
AFN) of R .

Regarding notation, note that the superscripts a, r indicate that
the distance metric is used for attraction or repulsion, respectively.
Thus, da

cos, dr
2 signifies that cosine distance is used for attraction

and Euclidean distance (L2) for repulsion. The superscripts a, r

are omitted when the distinction between attraction and repulsion
is clear, or when the same distance metric is used for both.
Given an attractor a, a set of repellers R and a sanity bound

ρ, termed as the repulsion reach, that seeks to limit the effect of
distant repellers, we define the objective score of an object o to be
equal to the weighted difference of its attraction and repulsion:

s(o) = λ ·a(o)−max{−ρ,r(o)}

=min

{

ρ,min
r∈R

dr(o,r)

}

−λ ·da(o,a), (1)

where the weight parameter λ controls the relative strength of at-
traction and repulsion.
To understand the role of the repulsion reach, consider the ex-

treme case depicted in Figure 1b, where no ρ is set. As a result,
points a and p have the same score, even though the latter is at the
edge of the space. The reason is that, as we walk along the thick
line away from a, the attraction and repulsion decrease by the same
amount. The repulsion reach ρ sets a limit to how small repulsion
can become. As a result, walking away from a, we reach a point
where repulsion no longer decreases and thus the score (attraction
minus repulsion) will start to decrease, so that p eventually gets a
score lower than a. In many applications, a meaningful value for ρ
is minri,r j

dr(ri,r j), which implies that the repulsion reach is equal
to the maximum existing repulsion among the repellers. For ex-
ample, in the competitive facility location example, a new store is
assumed to have acceptable competition when it is opened farther
to its nearest competitor than the closest distance between exist-
ing stores. Of course, in other applications, different ρ values may
make more sense; ρ can even be set to ∞ to cancel its effect.
The problem we address in this work is the MaximumAttraction,

Minimum Repulsion (MAMR) query: how to efficiently find the
object that has the greatest objective score.

Problem 1. [Maximum Attraction, Minimum Repulsion

(MAMR) Query] Given an attractor a and a set of repellers R ,
find an object o∗ ∈D such that o∗ = argmax

o∈D

s(o).

4. BASELINE METHODS
A baseline processing technique is to decompose aMAMR query

into a nearest neighbor (NN) query on the attractor and an aggre-
gate farthest neighbor (AFN) query on the set of repellers. The
basic idea is to retrieve, in a round robin manner, objects from
the NN and the AFN search until a termination condition is met.
Therefore, we require modules capable of progressively process-
ing NN and AFN queries. For NN queries, we use the DF algo-
rithm [15], whereas for AFN queries the algorithm of [11]. Algo-
rithm 1 presents the pseudocode of this algorithm, which we call
RR.
The algorithm maintains two threshold values, τa, τr, which rep-

resent the smallest possible distance of an object not yet retrieved
by the NN search, and the largest possible aggregate distance of an
object not yet seen in the AFN search, initially set to 0 and ∞, re-
spectively (Line 1). Also RR initializes the result o∗ to null and the
next search module to NN (Line 1). Then, RR begins a loop with
progressive objective retrievals, until the largest attainable score by
retrieving additional objects, which is min{ρ,τr}−λ ·τa, drops be-
low the current best score (Line 2). At each iteration, a single ob-
ject is retrieved (Line 4 or 8), the appropriate threshold is updated
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Algorithm 1: RR
Input: index T ; attractor a; repellers R ; repulsion reach ρ
Output: o∗ the answer to the MAMR query
Variables: objective threshold τ

1 o∗← /0; τa← 0; τr ← ∞; search← NN
2 while o∗ = /0 or min{ρ,τr}−λ · τa > s(o∗) do

3 if search = NN then

4 o← NN.getNext()
5 τa← da(o,a)
6 search← AFN

7 else

8 o← AFN.getNext()
9 τr ←minr∈R dr(o,r)

10 search← NN

11 if s(o)> s(o∗) then

12 o∗← o

(Line 5 or 9), and the other search method is set for the next re-
trieval (Line 6 or 10). Because the search modules are progressive,
the thresholds set are a lower bound on the distance to a, and an
upper bound on the aggregate distance to R of any object not seen
in NN and AFN search, respectively. The answer object is updated
if an object with better score is retrieved (Lines 11–12).
As another baseline, we adapt the SPP algorithm from [10], which

was proposed for a top-k diversification setting. Similar to RR, our
SPP implementation employs an NN search module, but unlike RR
it does not use an AFN module. Instead, SPP determines probing
locations around which the aggregate most farthest neighbor should
lie and performs NN search around them. These probing locations
are the vertices of the Voronoi diagram computed over the set of
repellers. SPP uses a NN search module for each probing location
and maintains a threshold for each. A round robin strategy for se-
lecting the next search module is also used in SPP.1 As we show in
our experimental study, SPP performs much worse than RR, both
in terms of I/O operations and CPU time, because the objects re-
trieved by the NN search around the probing locations are not guar-
anteed to maximize the aggregate distance from the repellers, and
the thresholds used are CPU intensive, requiring the computation
of intersections between circles and Voronoi edges.

5. METHODOLOGY
Our techniques for efficiently processingMAMR queries assume

the existence of an index over the database of objects D . In Sec-
tion 5.1, we establish space pruning criteria for eliminating un-
promising objects. We then exploit (Section 5.2) the underlying
index and show how to apply our criteria to prune entire groups
of objects contained within index nodes. In Section 5.3 we derive
bounds on the score of all objects contained within an index node.
The BBM algorithm for MAMR queries is described in Section 5.4.

5.1 Pruning Criteria
We hereafter seek to simplify notation by introducing the follow-

ing concepts. For an object o ∈ D , we define rNR to be its nearest
repellent amongst set R , i.e., rNR = argminr∈R dr(o,r); thus Equa-
tion 1 simplifies to: s(o) =min{ρ,dr(o,rNR)}−λ ·da(o,a).
Given an objective threshold τ, the goal of this section is to char-

acterize the metric space, i.e., determine the sub-space containing
objects that have score less than τ, in order to define pruning crite-

ria for processing a MAMR query. Our algorithm retrieves objects
until it finds the one with the maximum objective score. Assume
that τ is the score of an object already retrieved (or it is the lower
bound on the score of some non-retrieved object). Clearly, the ob-
jects that fall in the less than τ sub-space need not be considered.
1The authors also propose a more elaborate strategy, but with no significant gains.

d2(x,a) = ρ− τ

a r

(a) Criterion 1

a r

d2(x,r)−d2(x,a) = τ

(b) Criterion 2

a r

(c) Pruned space

Figure 2: Pruned space with score less than τ (Euclidean dis-

tances, λ = 1, τ > 0)

Important note. For illustration purposes, all examples hereafter
assume that (1) S=R

2, i.e., the Euclidean plane, (2) attraction and
repulsion are defined based on the Euclidean distance d2, and (3)
λ = 1. We emphasize that the pruning criteria that we introduce
apply without any changes to other metrics and weight values λ as
well. The only thing that changes is the geometric interpretation
of these criteria. Moreover, our pruning criteria, which utilize up-
per and lower bounds on the score of objects lying inside an index
node (which in turn depend on the distance bounds computed in
Section 6), can be applied in our problem without requiring us to
draw their geometric interpretation.

Criterion 1. Given an attractor a, a set of repellers R and an ob-
jective threshold τ, any object o ∈D such that da(o,a)> 1

λ
(ρ− τ)

has score less than τ.

Proof. The score of an object under the condition of the criterion
is: s(o) = min{ρ,dr(o,rNR)}−λ ·da(o,a)< ρ+(τ−ρ) = τ.

Consider the geometric interpretation of Criterion 1 for the Eu-
clidean case. Any object o outside the circle with center a and
radius 1

λ
(ρ− τ) cannot have score more than τ. Figure 2a draws

shaded the pruning area for λ = 1,ρ > 0. Observe that the size of
the pruning area increases with the threshold, as higher τ values
mean smaller radii (i.e., smaller ρ− τ values).

Criterion 2. Given an attractor a, a repeller r∈R and an objective
threshold τ, any object o ∈ D such that dr(o,r)− λ · da(o,a) < τ
has score less than τ.

Proof. For any object o ∈ D and its nearest repeller rNR, it holds
that dr(o,r) ≥ dr(o,rNR). Since dr(o,rNR) ≥ min{ρ,dr(o,rNR)},
the score of object o is s(o)≤ dr(o,rNR)−λ ·da(o,a)≤ dr(o,r)−
λ · da(o,a). Therefore, any object o satisfying the criterion must
have s(o)< τ.

Note that Criterion 2 holds, and is in fact stronger, when we sub-
stitute the repeller rwith o’s nearest repeller rNR. Consider the geo-
metric interpretation of Criterion 2 for the Euclidean case. Observe
that the locus of points x satisfying equation d2(o,a)−λ ·d2(o,r) =
τ defines one of the two branches of a hyperbola-like curve with
foci the attractor a and the repeller r. Particularly, we distinguish
two cases with respect to τ’s value.
(a) When τ > 0, the locus is the branch around the attractor a.

Criterion 2 states that any object that lies outside this branch
(i.e., the part of space containing focus r) has score less than τ.

(b) When τ≤ 0, the locus is the branch around r. Criterion 2 states
that any object that lies inside this branch (i.e., the part of space
containing focus r) has score less than τ.

The size of the pruning area increases with τ. A higher τ value
causes the locus to move closer to a, and the corresponding branch
to become narrower. Figure 2b portrays case (a) of Criterion 2
for λ = 1 and τ > 0. Any object that lies in the shaded area, i.e.,
outside the hyperbola branch around focus a, has score less than
τ. Figure 2c illustrates the pruning area of both criteria for the
depicted attractor a and repeller r. We emphasize that we can derive
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Figure 3: Pruning criteria for nodes (Euclidean distances, λ =
1, τ > 0). The same pruning criteria hold on both subfigures.

bounds on the score of objects grouped at an index node and apply
our pruning criteria without their exact geometric interpretation.

5.2 Pruning Criteria for Nodes
We assume a tree structure that indexes the database of objects

D . A node N of the index corresponds to a subtree rooted at N and
hierarchically indexes all objects that reside in this subtree. In the
following, we abuse notation and refer to N as the set of all objects
that reside in N’s subtree. To facilitate object retrieval, the index
keeps aggregate information about the objects within N and stores
it in an entry at the parent node of N. The aggregate information,
which depends on the type of the tree, is typically the minimum
bounding rectangle (MBR) or sphere (MBS) that covers all objects
within N.
In order to prune entire index nodes during MAMR processing,

we need to adapt the pruning criteria to take into account the aggre-
gate information of nodes. This, in turn, requires computing lower
(d−(N)) and upper (d+(N)) bounds on the distance of a node N,
i.e., bounds on the distance of any object within the node (d(o),
∀o ∈ N). Section 6 presents bounds for MBR-based and MBS-
based nodes for the family of Lp distance metrics, cosine distance
and histogram intersection distance. We emphasize that our space
pruning framework, presented in Section 5.1, is generic and applies
to any distance metrics da, dr. Given distance bounds, we apply the
criteria for index nodes as follows. First, consider Criterion 1.

Lemma 1. Given an objective threshold τ, a node N contains ob-
jects with score less than τ, if da−(N,a)> 1

λ
(ρ− τ).

Proof. Any object o ∈ N has da(o,a) ≥ da−(N,a). From the con-
dition of the lemma, we obtain da(o,a)> 1

λ
(ρ−τ). Thus, Criterion

1 applies for all objects o ∈ N.

Figure 3a shows a Euclidean plane example of Lemma 1 for three
MBR-based nodes N1, N2 and N3, assuming λ = 1 and τ ≥ 0. Ex-
actly the same example for MBS-based nodes N1, N2 and N3 is pre-
sented in Figure 3b. Observe that d−2 (N1,a) is greater than ρ− τ,
i.e., N1 lies completely outside the circle with radius ρ− τ around
a, and thus Lemma 1 applies. On the other hand, the lemma does
not apply to N2 or N3. The next lemma applies Criterion 2 for a
node N.

Lemma 2. Given an objective threshold τ, a node N contains ob-
jects with score less than τ, if there exists a repeller r∈R such that
dr+(N,r)−λ ·da−(N,a)< τ.

Proof. From the definitions of da+(N,a) and dr−(N,r), we derive
that dr(o,r)−λ ·da(o,a)≤ dr+(N,r)−λ ·da−(N,a)< τ and, thus,
Criterion 2 applies for all objects within N.

Note that the object withinN that has attraction equal to da−(N,a)
and the object that has repulsion (from r) equal to dr+(N,r) do not
coincide in general. In other words, the score of any object within

N may be much lower than the value dr+(N,r)− λ · da−(N,a).
As a result, Lemma 2 might not succeed in pruning a node N

that only contains objects with scores less than τ, if for that node
dr+(N,r)−λ ·da−(N,a)≥ τ.
Figure 3 shows an example where Lemma 1 does not apply, but

Lemma 2 does. Let us examine repeller r and MBR-based node
N3. Observe that the condition of Lemma 1 does not apply for N3,
but Lemma 2 applies for N3 and r, since d+

2 (N3,r)− d−2 (N3,a) is
positive, but smaller than τ (the size of τ is depicted at the lower
right part of the figure). Thus, Lemma 2 allows us to prune N3.

5.3 Objective Score Bounds for Nodes
Using the distance bounds on index nodes, computed in Sec-

tion 6, we can also compute bounds on the score of any object
within a tree node. Such bounds are then used to compute an ob-
jective threshold and guide the search during MAMR processing.

Lemma 3. Given a non-leaf node N, the score of an object o ∈D

within N cannot be more than s+(N) =minr∈R {ρ,d
r+(N,r)}−λ ·

da−(N,a).

Proof. By the definitions of da− and dr+, for any object o ∈ N, we
have da−(N,a)≤ da(o,a) and dr+(N,r)≥ dr(o,r). We thus derive
s(o)=minr∈R {ρ,d

r(o,r)}−λ ·da(o,a)≤minr∈R {ρ,d
r+(N,r)}−

λ ·da−(N,a) = s+(N) for any object o ∈ N.

Lemma 3 implies that the non-leaf node with the highest s+()
value is more likely to contain the answer object, and thus provides
the means to direct the search.

Lemma 4. Given a non-leaf node N, the score of an object o ∈D

within N cannot be less than s−(N) = minr∈R {ρ,d
r−(N,r)}−λ ·

da+(N,a).

Proof. By definition, it holds that da+(N,a)≥ da(o,a) for any ob-
ject o ∈ N. Furthermore, it holds that dr−(N,r) ≤ dr(o,r) for any
object o ∈ N and any r ∈ R . Therefore s−(N)≤ s(o).

Lemma 4 provides a lower bound s−(N) on the score of the an-
swer object for any non-leaf node N. This bound can be used to
define an objective threshold and thus apply the pruning criteria.

5.4 Algorithm
Putting the results of the previous sections together, we propose

the Branch and Bound MAMR (BBM) algorithm for index-based
processing of MAMR queries. BBM requires a hierarchical index
on the set of objects D . We emphasize that BBM can be used with
any MBR-based or MBS-based index for vector spaces as well as
any MBS-based index for general metric spaces.
Algorithm 2 shows the pseudocode of the BBM algorithm. It

takes as input the index T storing all objects in the database D , the
attractor a, the set of repellers R , and the repulsion reach ρ. BBM
returns the maximum attraction, minimum repulsion object o∗.
BBM maintains an objective threshold τ, which corresponds to

a lower bound of the highest possible score. This value is used to
prune the space and avoid visiting non promising nodes. BBM di-
rects the search using the heap H, which contains index nodes and
is sorted descending on their upper bound on score, computed ac-
cording to Lemma 3. BBM initializes τ to −∞, and H to empty
(Line 1). The BBM algorithm performs a number of iterations
(Lines 3–15). At the end of each iteration the node Nx at the top
of the heap is popped (Line 15); for the first iteration Nx is set to
the root node of T (Line 2). BBM terminates when node Nx is a
non-index node, corresponding thus to an object, which in this case
is the answer o∗ (Line 16). Assuming that Nx is an index node,
BBM reads this node from disk (Line 4) and checks if Lemmas 1–
2 apply for its children (Lines 5–11). Particularly, it first checks if
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Algorithm 2: BBM
Input: index T ; attractor a; repellers R ; repulsion reach ρ
Output: o∗ the answer to the MAMR query
Variables: H a heap with nodes sorted by s+(); objective threshold τ

1 τ←−∞; H←∅

2 Nx ← Nroot ⊲ root node of T

3 while Nx is an index node do

4 read node Nx

5 foreach child N of Nx do

6 pruned← f alse

7 if da−(N,a)> 1
λ (ρ− τ) then ⊲ Lemma 1

8 pruned← true; continue

9 foreach r ∈ R do

10 if dr+(N,r)−λ ·da−(N,a)< τ then ⊲ Lemma 2
11 pruned← true; break

12 if not pruned then

13 if s−(N)> τ then τ← s−(N); ⊲ Lemma 4
14 push(H,N)

15 Nx ← pop(H)

16 o∗← Nx

Table 2: Bounds provided in this paper

Index Type Lp Cosine distance
Histogram inter-

section distance

Tight upper and lower bounds Non-tight upper Non-tight upper
MBR-based for any finite value of p and lower bounds and lower bounds

as well as p = ∞ provided provided

MBS-based Tight upper and lower bounds for Tight upper and Non-tight upper
Bounding spheres p = 1,2,∞. Non-tight bounds lower bounds and lower bounds

built in L2 also computed for p 6∈ {1,2,∞} provided provided

MBS-based Non-tight upper and lower bounds provided
Bounding spheres for same metric space, as the one in which
in metric space the bounding spheres are constructed

Lemma 1 applies for a child N (Lines 7–8). If not, BBM examines
all repellers within the set R (Lines 9–11). For each repeller r, the
algorithm checks if Lemma 2 (Lines 10–11) applies for node N. If
not, (Lines 12–14), then N is pushed in the heap (Line 14), and the
score threshold is appropriately updated (Line 13) using the lower
bound on the score of N, according to Lemma 4. The next theorem
prove the correctness of BBM.

Theorem 1. The BBM algorithm returns the maximum attraction,
minimum repulsion object.

Proof. We show that BBM cannot miss the answer object o∗. BBM
prunes index nodes based on Lemmas 1–2 and the threshold com-
puted based on Lemma 4. Therefore, by the correctness of these
lemmas, o∗ cannot be in any pruned node.
BBM terminates when it pops from the heap a non-index node

corresponding to object ox. As the heap contains nodes sorted by
the upper bound of Lemma 3, it holds that s(ox) ≥ s+(N) for all
nodes in H. Therefore ox has higher score than any object within
any node in the heap and thus any object in D .

Table 2 provides a synopsis of all the bounds provided in Sec-
tion 6 for both MBR-based and MBS-based indexes. At this point
we need to note that our techniques can also support the SR-tree
index, in which an index node specifies a region that is the intersec-
tion of a bounding sphere and a bounding rectangle, can be adopted
in our techniques, by using as a lower (upper) bound for an index
node the maximum (minimum) of the bounds derived for its bound-
ing sphere and rectangle. The corresponding bounds are, though,
not tight for the SR-tree.

6. DISTANCE BOUNDS FOR NODES

6.1 Minimum Bounding Rectangles

An MBR-based node N is associated with a rectangle defined
by its lower N.ℓ and upper N.u corners. In what follows, we seek
to bound d(o,p) for some distance metric d, where o is an object
within N, and p is some object in the metric space. We first discuss

the Lp distance metrics: dp(o,p) =

(

|A |

∑
i=1
|o[i]−p[i]|p

)1/p

.

Consider the points x−p , x+p inside N’s MBR defined as:

x−p [i] =











N.ℓ[i] if p[i]< N.ℓ[i]

p[i] if N.ℓ[i]≤ p[i]≤ N.u[i]

N.u[i] if p[i]> N.u[i]

, and

x+p [i] =

{

N.u[i] if p[i]< 1
2 (N.ℓ[i]+N.u[i])

N.ℓ[i] if p[i]≥ 1
2 (N.ℓ[i]+N.u[i])

.

Then, define values: d−p (N,p) = dp(x
−
p ,p) and d+

p (N,p) =

dp(x
+
p ,p) for which the following lemma holds.

Lemma 5. The values d−p (N,p), d+
p (N,p) are a tight lower and a

tight upper bound, respectively, on dp(o,p) for any object o ∈ N

and an arbitrary object p.

Proof. The function f (x)=
(

∑
|A |
i=1 |x[i]|

p
)1/p

is non-decreasing mo-

notonous in each dimension i. Therefore, it holds that the lowest
(resp. highest) possible values of x in all dimensions gives a lower
(resp. upper) bound for f ().
Observe that |o[i]−p[i]| ≥ |x−p [i]−p[i]| and |o[i]−p[i]| ≤ |x+p [i]−

p[i]| for any o[i] ∈ [N.ℓ[i],N.u[i]]. Hence, the lemma follows from
the monotonicity of the Lp distance metric and the fact that the
specified x−p ,x

+
p points that determine the values of d−p (N,p) and

d+
p (N,p) reside within N.

Consider the cosine distance metric: dcos(o,p) = 1− 〈o,p〉
‖o‖·‖p‖

,

where 〈x,y〉=∑
|A |
i=1(x[i] ·y[i]) is the inner product of x and y, ‖x‖=

√

∑
|A |
i=1 x[i]2 is the norm of x, and ‖o‖ 6= 0 for any object o in N and

also ‖p‖ 6= 0.
Consider the points x−cos, x+cos inside N’s MBR defined as:

x−cos[i] =

{

N.u[i] ,if p[i]< 0

N.ℓ[i] ,if p[i]≥ 0
, x+cos[i] =

{

N.ℓ[i] ,if p[i]< 0

N.u[i] ,if p[i]≥ 0
.

Then, based on these points, the bounds d−2 , d+
2 on the L2 (Eu-

clidean) distance metric, and the zero vector /0, i.e., /0[i] = 0 for all

i∈ [1, |A |], define values: d−cos(N,p) =max{0,1− 〈x+cos,p〉
d−2 (N, /0)·‖p‖

} and

d+
cos(N,p) = 1− 〈x−cos,p〉

d+
2 (N, /0)·‖p‖

for which the following lemma holds.

Lemma 6. The values d−cos(N,p), d+
cos(N,p) are a lower and an

upper bound, respectively, on dcos(o,p) for any object o ∈ N and
an arbitrary object p.

Proof. The cosine distance of any object of N and object p is given

by: dcos(o,p) = 1− 〈o,p〉
‖o‖·‖p‖

. Therefore, it holds that a upper (resp.
lower) bound on the numerator and an lower (resp. upper) bound on
the denominator result in a lower (resp. upper) bound on dcos(o,p).
It thus follows that dcos(o,p) ≥ d−cos(N,p). Similarly, we derive
dcos(o,p)≤ d+

cos(N,p).

Finally, we discuss the histogram intersection distance metric:

dhi(o,p) = 1−
∑
|A |
i=1min{o[i],p[i]}

min
{

∑
|A |
i=1 o[i],∑

|A |
i=1p[i]

} ,
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where o[i]≥ 0 for any object o ∈ N and p[i]≥ 0. Define values:

d−hi(o,p) =max{0,1− ∑
|A |
i=1min{N.u[i],p[i]}

min
{

∑
|A |
i=1N.ℓ[i],∑

|A |
i=1p[i]

}}

d+
hi(o,p) = 1− ∑

|A |
i=1min{N.ℓ[i],p[i]}

min
{

∑
|A |
i=1N.u[i],∑

|A |
i=1p[i]

} ,

for which the following lemma holds.

Lemma 7. The values d−hi(N,p), d+
hi(N,p) are a lower and an up-

per bound, respectively, on dhi(o,p) for any object o ∈ N and an
arbitrary object p.

Proof. The proof follows from the fact that the functions f (x) =

∑
|A |
i=1min{x[i],p[i]} and g(x) = min

{

∑
|A |
i=1 x[i],∑

|A |
i=1p[i]

}

are non-

decreasing monotonous in every dimension i, and the fact that 0≤
N.ℓ[i]≤ o[i]≤ N.u[i].

6.2 Minimum Bounding Spheres
AnMBS-based nodeN is associated with a sphere that has center

N.c and radius N.r. In the following, we abuse notation and use the
symbols c and r instead for the center and radius of the sphere. The
sphere may be constructed either in a general metric space (as in
the M-trees [6]), or, more commonly, in L2, thus creating spheres
in the Euclidean plane (as in the SS-tree [27]). In the latter case,
the distance metrics used between any point and an attractor or a
repeller can be expressed in a different metric distance than L2.

6.2.1 Bounding Spheres in Metric Spaces

When the bounding sphere is built in a generic metric space, the
triangle inequality can be used to derive the desired bounds. In
such a case, for a metric m, the values d+

m (N,p) = dm(c,p) + r,
while d−m (N,p) = dm(c,p)−r. The bounds are not tight. The proof
is straightforward and omitted for brevity.

6.2.2 Bounding Spheres Defined in L2

More often, the bounding sphere is constructed in L2, rather than
a general metric distance. In what follows, we seek to bound d(o,p)
for some distance metric d, where o is an object within N, and
p is some object in the metric space. A straightforward way to
achieve this is to (a) Consider the minimum bounding rectangle
of the sphere, and (b) Compute the bounds using this minimum
bounding rectangle, as described in Section 6.1. For the histogram
intersection distance metric, this is the approach that we adopt.
However, in many cases we can derive tighter bounds.

Lemma 8. For the L∞ distance metric, the value d+
∞ (N,p)= d∞(c,p)+

r is a tight upper bound, while a tight lower bound d−∞ (N,p) can be
computed by an efficient iterative algorithm in O(|A |2) time.
Proof. Let j ∈ {1, . . . , |A |} denote the dimension with the maxi-
mum |p[ j]−c[ j]| value. Consider the point o on the boundary of the
sphere N: o[i] = p[i], for i 6= j and o[ j] = p[ j]+ r · sign(p[ j]−c[ j]),
otherwise. Obviously o is the point inside the sphere which deter-
mines the tight upper bound d+

∞ (N,p) = r+d∞(p,c).
For the lower bound d−∞ , it is trivial to see that the point o with

the minimum d∞(o,p) value must lie on the boundary of the sphere
(otherwise, pushing it towards p could decrease its distance from p

in the dimensions with the max |o[i]−p[i]| values). We thus seek
to determine ui ≥ 0 values, such that we minimize: max|A |i=1{|c[i]−
p[i]− ui · sign(c[i]−p[i])|}, subject to ∑

|A |
i=1 u2i = r2. Assume that

we sort the differences |c[i]−p[i]| in descending order and let di, i∈
{1, . . . , |A |} denote the sorted list of differences. It is easy to see

that what must be accomplished by the optimal algorithm is to start
devoting the budget r2 so as to reduce the maximum d1 difference,
until we reach the second largest d2 value, then start to equally de-
voting budget to both d1 and d2 until we reach d3 etc. The process
terminates when the available budget is exhausted. Assume that
the first 1 ≤ k ≤ |A | sorted differences are affected when the bud-
get is exhausted and that budget x is devoted at the last step. Thus,
u2i = (x+∑

k−1
j=i (d j−d j+1))

2 for i≤ k and ui = 0, for i > k. Then,
k

∑
i=1

(x+
k−1
∑
j=i

(d j−d j+1))
2 = r2⇒

k

∑
i=1

(x+di−dk)
2 = r2 yields the

solution for x. If x > dk− dk+1, then the algorithm should assign
budget dk − dk+1 to the first k dimensions and proceed with di-
mension k+1. The bound is obviously tight. The process requires
O(|A |2) time to determine the optimal assignment of ui values.

Lemma 9. The values d−p (N,p)=max{dp(c,p)−r|A |
1
p
− 1

2 ,0} and
d+

p (N,p) = dp(c,p)+r|A |
1
p
− 1

2 are a lower and an upper bound, re-
spectively, on dp(o,p) for any object o ∈ N and an arbitrary object
p for the Lp distance metric, when p is finite. For the L1 and L2 dis-
tance metrics the provided upper and lower bounds are tight. The
tight lower bound for L1 is different from the generic formula for
d−p , but can be derived by an analytical formula in O(|A |2) time.

Proof. For finite p values, we prove the case for the upper bound,
since the case for the lower bound is similar. For any point o inside
N, due to the triangle inequality, dp(o,p)≤ dp(c,p)+dp(c,o), sub-
ject to d2(c,o)≤ r. To derive the bounds, we thus seek to determine
the maximum possible value of dp(c,o).
For finite p values, it is trivial to see that the point o with the

maximum dp(c,p) value must lie on the boundary of the sphere
(otherwise, pushing it outwards would increase its distance from c).

Maximizing (∑
|A|
i=1 |o[i]− c[i]|p)

1
p subject to (∑

|A|
i=1 |o[i]− c[i]|2) 12 =

r yields (using Lagrange multipliers) that each |o[i]− c[i]| be equal
to r√

|A | . The upper bound then follows trivially. The case for the

lower bound is symmetric.
For the L2 metric the provided bounds are tight. Consider the

vector d= c−p and d̂= d
‖d‖ . The points c−r · d̂ and c+r · d̂ are the

ones that determine the d−2 and d+
2 values, making the bounds tight.

For the L1 metric, the point o with coordinates o[i] = c[i]+ r√
|A | ·

sign(c[i]− p[i]) does have d1(o,p) = d1(c,p)+ r · |A |, making the
upper bound tight. The provided lower bound is not tight, but we
can reach a tight lower bound with a more intelligent approach.
For the lower bound d−1 (N,p), this is trivially 0 if p is inside the

sphere. Otherwise, we seek to determine a point of the sphere N,

such that we minimize ∑
|A |
i=1 |p[i]− c[i]− ui · sign(p[i]− c[i])|, sub-

ject to ∑
|A |
i=1 u2i ≤ r2. Again, it is easy to see that the minimum must

occur for a point at the boundary of the sphere. Consider all differ-
ences di = |p[i]− c[i]| and sort them in ascending order. Assume
for ease of presentation that d1 ≤ d2 ≤ ·· · ≤ d|A |. We claim that

the optimal assignment of ui values is ui = min{di,

√

r2−∑
i−1
j=1 u2j

|A|+1−i
}.

Therefore, ui values are non-decreasing, and once we discover the
first k index such that uk is not capped by dk, then all ui values

for k ≤ i ≤ |A | are equal to
√

r2−∑
k−1
j=1 u2j

|A|+1−k
. We prove that this is

the optimal assignment by contradiction. Assume that there ex-
ists a different optimal assignment U∗ of u∗i values with a lower
overall d−1 value. Assume that h is the first index where uh < u∗h.

7



This obviously cannot happen if h < k (i.e., uh == dh) – other-
wise U∗ would have created a non-zero difference for the corre-
sponding index, while wasting budget. Let l denote the first index
where ul > u∗l . If l < h, then ul ≤ uh ⇒ u∗l < u∗h. If l > h, then
ul == uh⇒ u∗l < u∗h.
For a sufficiently small ε> 0, an alternative assignmentU+ from

U∗, such that u+l = u∗l + ε and u+h = u∗h− ε results in the same d−1
value as U∗, but requires less budget, as (u+l )

2+(u+h )
2 = (u∗l )

2+

(u∗h)
2+ 2ε(ε− (u∗h− u∗l )) < (u∗l )

2+(u∗h)
2, thus meaning that U+

can exploit the extra budget to reduce its d−1 value. Thus,U∗ cannot
be optimal, which is a contradiction.

Lemma 10. Let p̂ = p
||p|| , z = 〈p̂,c〉 · p̂ denote the projection of the

sphere’s center onto p. The d−cos(N,p)= 1−cos(max{0,argcos( ‖z‖‖c‖ )−
argsin( r

‖c‖ )}) and d+
cos(N,p) = 1−cos(argcos( ‖z‖‖c‖ )+argsin( r

‖c‖ ))
values are a tight lower and a tight upper bound, respectively, on
dcos(o,p) for any object o ∈ N and an arbitrary object p.

Proof. The angle between p̂ and c is argcos( ‖z‖‖c‖ ). The cone with
vertex at the beginning of the coordinate system to which the sphere
of N is tangent creates a maximum angle argsin( r

‖c‖ ) between the
center of the sphere and any of the tangent points of the cone to
the sphere. Let dist = ‖c− z‖. If dist ≤ r, then the extension of
p intersects the sphere and, thus, d−cos(N,p) = 0 and d+

cos(N,p) =

1− cos(argcos( ‖z‖‖c‖ )+ argsin( r
‖c‖ )) provide tight lower and upper

bounds for the cosine distance metric.
If dist ≤ r, then the extension of p does not intersects the sphere

and, thus, d−cos(N,p) = 1− cos(argcos( ‖z‖‖c‖ )− argsin( r
‖c‖ )) and

d+
cos(N,p)= 1−cos(argcos( ‖z‖‖c‖ )+argsin(

r
‖c‖ )) provide tight lower

and upper bounds for the cosine distance metric. The proof is thus
complete.

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setting
Methods. We implement our proposed BBM algorithm, discussed
in Section 5, as well as the two baseline approaches, SPP and RR,
discussed in Section 4, for processing MAMR queries. Moreover,
we also implement the naı̈ve algorithm, LIN, which performs an
exhaustive linear scan over the database of objects, computing their
scores. All algorithms are implemented in C++ and executed on a
3GHz machine.
Datasets. Our evaluation includes real and synthetic datasets, whose
characteristics are shown in Table 3. The synthetic datasets, de-
noted as SYNTH, contain objects that are randomly distributed
around 1,000 cluster centers selected independently and uniformly
at random. The probability with which a cluster center attracts ob-
jects is drawn from a Zipfian distribution with degree 0.8. The
number of attributes in the SYNTH datasets varies from 2 up to 8,
while the total number of objects varies from 500K up to 20M. The
Euclidean distance is used for both attraction and repulsion.
The real dataset FACTUAL is a collection of 2,120,732 locations

of places2 (restaurants, shops, etc.) in the U.S. The Euclidean dis-
tance is used for both attraction and repulsion.
The second real dataset, denoted as MIRFLICKR, is a collection

of 1 million images used in the evaluation of content-based image
retrieval methods.3 In our experiments, we use the first 200,000

2Retrieved using the API http://www.factual.com/data/t/places
3Available at http://press.liacs.nl/mirflickr/

Table 3: Dataset Characteristics

Dataset Cardinality Dimensions Attraction Repulsion

SYNTH 0.5 – 20 ·106 2 – 8 −d2 −d2
FACTUAL 2,120,732 2 −d2 −d2
MIRFLICKR 200,000 50 −dhi −dhi

NBA 21,961 4 −dcos −d2
JESTER 50,691 5 −dcos −d2

images and the first 50 buckets (out of 150) of edge histogram de-
scriptors, of the MPEG-7 specification [28], as the feature vector.
Histogram intersection is used for both attraction and repulsion, as
per [28].
The third real dataset, denoted as NBA, is a collection of NBA

players statistics4 covering seasons 1946 until 2009. For our exper-
iments, we use the points, rebounds, assists and blocks per game
attributes. Cosine similarity is used for attraction and Euclidean
distance for repulsion.
The fourth real dataset, denoted as JESTER, is a collection of rat-

ings from 50,691 users on a set of jokes (Dataset 3),5 and is widely
used in the collaborative filtering literature. In our experiments,
we use four popular jokes, which are also used as a gauge in [12].
Cosine similarity is used for attraction and Euclidean distance for
repulsion.
Indices. We have implemented our BBM algorithm over R∗-trees,
the most popular and efficient MBR-based vector space index, and
over M-trees, a MBS-based metric space index. We use the R∗-tree
for all datasets; for MIRFLICKR we also use the M-tree.
Parameters, queries and metrics. We study the performance of
the algorithms by varying four parameters: (1) the number of ob-
jects |D|, from 500K up to 20M in SYNTH, (2) the number of
attributes |A|, from 2 up to 8 in SYNTH and from 5 up to 50 in
MIRFLICKR, (3) the number of repellers |R | from 5 up to 100,
and (4) the weight parameter λ from 0.01 up to 100.
In each experiment, the attractor is an object uniformly selected

from the dataset at random. For the NBA dataset, the attractor is
a tuple with attributes values the highest in all statistics. The set
of |R | repellers is constructed progressively by posing |R |MAMR
queries and inserting the answer to R . To quantify performance,
we measure the number of examined objects, the number of I/O
operations, and the processing time for a MAMR query. All re-
ported quantities for all algorithms are measured after the R re-
pellers have been chosen. The reported values are the averages of
10 distinct queries.

7.2 Results
Effect of λ. We first study the effect of the weight λ as it varies from
0.01 up to 100. Initially, in Figure 4, we fix |R | = 5 and execute
all methods on a small subset of FACTUAL containing only 500K
tuples. The low cardinality is chosen so that the weakest algorithm
(SPP) terminates within reasonable time.
Figure 4a shows (using a logarithmic y-axis) that the number

of I/O operations in LIN is independent of λ. The effect of λ in
all other methods is similar. All algorithms perform the most I/Os
when λ is 1 (or around 1), while they perform the least I/Os at
extreme λ values (either very small or very large). This behav-
ior is inherent in MAMR queries and explains why they are more
challenging than NN or AFN queries. Large λ values assign more
weight to attraction, and thus MAMR query processing resembles
NN search. On the other hand, small λ values assign more weight
to repulsion resembling AFN search. Values around 1 for λ mean

4Available at http://www.basketball-reference.com
5Available at http://eigentaste.berkeley.edu/dataset/
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Figure 4: Effect of λ, FACTUAL (|D|= 500K, |R |= 5)
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Figure 5: Effect of λ (|R |= 50)

that attraction and repulsion are equally strong, making it harder to
identify the best object.
BBM consistently outperforms all competitors, in terms of I/Os,

by up to 2-3 orders of magnitude (when λ = 5). Even in its worst
performance setting (λ = 1), BBM performs about 3-4 times less
I/Os than its competitors. These results attest that BBM is able to
guide the search towards the MAMR answer, effectively pruning
non-promising objects. Regarding the baseline methods, they have
a similar performance in terms of I/O operations, with RR outper-
forming SPP in small weights.
Figure 4b draws the total processing time of MAMR queries as

a function of λ. The thing to notice is that the dominant factor for
LIN, RR and BBM is the I/O cost, whereas for SPP is the CPU
cost. SPP is impractical for the majority of the tested λ values, as it
is much slower than a linear scan. BBM, on the other hand, is sig-
nificantly faster than all competitors, up to 2-3 orders of magnitude,
while being 3-4 times faster in the worst case. In the remaining ex-
periments, we increase both the database size and the number of
repellers and, consequently, we do not consider SPP any further.
Moreover, we only report the total processing time.
Figure 5a presents running times on the entire FACTUAL dataset,

setting the number of repellers to |R | = 50 and varying λ. The
graph shows the same behavior for all methods as that in Figure 4b.
BBM is the dominant algorithm significantly outperforming the
others in the entire range of λ values. For λ = 1, BBM is almost
an order of magnitude faster, and for λ = 100, it becomes almost
four orders of magnitude faster. Note that RR achieves its best per-
formance for λ = 0.01; still, BBM is more than two times faster
at that extrene setting. Figure 5b shows processing times on the
SYNTH dataset with 5M objects and 50 repellers. The findings are
analogous to the FACTUAL dataset.
Effect of |R |. We now study the effect of the number |R | of re-
pellers, while fixing the weight at λ = 1. First, in Figure 6a we
present results on the FACTUAL dataset. As the number of re-
pellers increases the performance of all methods slightly worsens
as more distance computations need to be performed. The perfor-
mance deterioration is only marginal, because, due to the MIN in
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Figure 7: Effect of |D| and |A | (λ = 0.1, |R |= 50)

theMAMR objective function, only one repeller (the nearest) deter-
mines the score of an object. The same trends appear in Figure 6b
for the SYNTH dataset.
Effect of |D|. In this experiment, we measure MAMR efficiency
using synthetic datasets (|A | = 2 attributes) of varying cardinality
|D| from 500K up to 20M, while we fix λ = 0.1 and |R | = 50.
Figure 7a depicts the total processing time as a function of |D|.
All methods scale linearly with the dataset cardinality. The effect
is apparent for LIN and RR (both axes are in logarithmic scale),
but is less pronounced in BBM, whose running time increases at a
smaller rate. As a result, the gap between BBM and its competitors
increases with |D|.
Effect of |A |. We next study the effect of dimensionality in MAMR
processing, using SYNTH (|D| = 1M objects) and vary the num-
ber of attributes |A | from 2 up to 8, while we fix λ = 0.1 and
|R |= 50. Figure 7b depicts the total processing time as a function
of |A |. The efficiency of all methods decreases as dimensionality
increases. The effect is more pronounced for BBM due to the per-
formance degradation of the underlying index (see, e.g., the study
in [3]). This degradation with dimensionality appears in all indices
based on bounding surfaces (MBR or MBS), as we also verify in a
subsequent experiment, and stems from the fact that node bound-
aries are forced to occupy more space in higher dimensions (curse
of dimensionality). Still, BBM remains more than two times faster
than RR and threes time faster than LIN.
Effect of distance metrics. In this experiment, we investigate
the performance of our framework using the real datasets NBA,
JESTER, and define attraction using the cosine distance, as de-
picted in Table 3. A different distance metric, namely histogram
intersection distance, will be later used in the experiment of Fig-
ure 9.
Figure 8a shows the effect of weight λ on MAMR queries over

NBA. The worst-case performance of RR and BBM comes when
λ takes its highest value, meaning that attraction (defined in terms
of cosine distance) plays the dominant role in defining the MAMR
answer. For λ= 100, BBM is almost three times faster than RR and
1.4 times faster than LIN. A thing to notice here is that the dataset
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is very small (a few tens of thousands of tuples) and thus a linear
scan is already a very fast option. As we have discussed, the gain
of BBM over its competitors increases with the data cardinality.
Figure 8b shows the effect of the number of repellers on MAMR

queries over JESTER. The performance of all methods deteriorates
with |R |. In the worst setting BBM is about 1.3 and 1.5 times faster
than RR and LIN, respectively. The previous discussion regarding
the data cardinality applies in this experiment as well.
Effect of index type. Finally, we study the effect of using other in-
dices in the BBM framework. In particular we test an R∗-tree and
an M-tree based implementation of BBM using the high-dimensio-
nal MIRFLICKR dataset, where attraction and repulsion are de-
fined using the histogram intersection distance. We set the number
of repellers to 50 and increase dimensionality from 5 up to 50. Due
to the curse of dimensionality, the performance of any index struc-
ture is expected to degrade rapidly while the number of attributes
increases, making the linear scan method LIN the only option. Still,
as Figure 9 shows, BBM performs comparably to LIN and even
outperforms it in the case of λ = 0.1, shown in Figure 9b. Note that
the M-tree BBM variant exhibits better scalability in λ = 1 outper-
forming the R-tree variant for |A |> 5, and also (slightly) in λ= 0.1
for |A |> 25.

8. CONCLUSIONS
This work introduced the maximum attraction, minimum repul-

sion query, which finds applications in various optimization prob-
lems, including top-k diversification and facility location. By study-
ing the characteristics of the problem, we proposed pruning criteria,
and derived upper and lower bounds on the score of objects, which
we then applied in an index-based approach, suitable for a large va-
riety of indices and distance metrics. The resulting BBM algorithm
is shown to be up to four orders of magnitude faster than baseline
approaches and a linear scan of the database.
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