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Abstract. The dynamic nature of web data brings forward the need for main-

taining data versions as well as identifying semantically rich changes between 

them. In this paper, we advocate the need for supporting complex changes in 

evolving RDF(S) knowledge bases. We outline the basic challenges and provide 

solution insights through a real-world example from the field of biology.  
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1 Introduction 

The increasing amount of information published on the web poses new challenges for 

data management. A central issue concerns evolution management, as the dynamic 

nature of data brings forward the need for maintaining data versions as well as identi-

fying changes between them. For example, biologists often use ontologies in order to 

curate their data from multiple domains of interest like anatomy, diseases, biomedical 

investigations, etc. These ontologies are frequently updated as errors may need to be 

fixed or new knowledge about the state of the art may need to be incorporated. As a 

result, curators of depending ontologies are interested in understanding the evolution 

history in order to learn more about the changes that have taken place on the respec-

tive domain of interest.  

In this paper, we argue that understanding data evolution should involve high-

level, semantically rich, user-defined changes that we call complex changes. Formal-

izing complex changes involves facing the challenges of modeling, defining, detect-

ing and querying changes. Although the concept of complex changes is not bound to 

any specific data model, in this paper we focus on RDF(S) knowledge bases, as RDF 

is a de-facto standard for representing data on the web. The goal of this paper is to 

highlight the main challenges as well as possible solution insights towards a frame-

work that makes changes first class citizens.  



The paper outline is as follows. In section 2 we discuss in detail the challenges for 

supporting complex changes. In section 3 we provide an end-to-end real world exam-

ple that demonstrates important aspects of our approach to the aforementioned prob-

lems. Finally, in section 4 we conclude the paper. 

2 Challenges and Roadmap 

Modeling changes. An approach for modeling changes in RDF(S) knowledge bases 

would be determining the added and deleted triples between versions. However, this 

is not sufficient for understanding data evolution. Human-readable, high-level chang-

es should be employed. In this case, two basic issues must be taken into consideration.  

─ Granularity of changes. Fine-grained or coarse-grained changes? Fine-grained 

changes have the advantage of describing primitive changes, while coarse-grained 

changes provide more semantics and conciseness by grouping primitive changes in 

logical units. 

─ Semantics of changes. Model-specific or data- and application- specific changes? 

Model-specific changes describe modifications that may appear in a specific repre-

sentation model. They constitute a fixed set of generic changes. On the other hand, 

data- or application- specific changes represent user-defined changes that suit on 

specific use-case scenarios. Supporting user-defined changes has the advantage of 

allowing different interpretations of evolution. 

In order to tackle the above issues, we distinguish between simple and complex 

changes. Simple changes constitute a fixed set of fine-grained, model-specific chang-

es. Complex changes are coarse-grained, user-defined, application-specific changes.  

In previous works [2, 4, 6, 10], various lists of predefined changes have been pro-

posed, usually distinguished into fine-grained and coarse-grained changes. In [6] for-

mal semantics are defined guaranteeing useful properties. In [1] an approach for mod-

eling changes as sequences of triples is proposed.  

Defining changes. A declarative language for defining changes is needed for sup-

porting user-defined complex changes. The language expressiveness should be inves-

tigated. A complex change definition should consist of a finite, non-empty list of sim-

ple or (already defined) complex changes, and a set of constraints over these changes. 

The supported constraints may filter parameter values, express pre- or post- condi-

tions, relate change parameters, pose cardinality constraints (e.g. there must be at least 

one change of a specific type) and allow or not overlaps among changes.  

In [8] a language for defining high-level changes, called Change Definition Lan-

guage, has been proposed. Defined changes are detected over a version log [7] using 

temporal queries, assuming that the version log is populated as modifications apply. 

In [9] a framework for defining changes using SPARQL query features is presented as 

an extension of [6].  

Detecting changes. As new dataset versions are periodically released, simple and 

complex changes can be detected among versions. In [4] a fixed-point algorithm for 

comparing ontology versions has been proposed. The algorithm is based on heuristic-



based matchers, introducing uncertainty to the results. On the other hand, in [6] the 

detection process does not introduce any uncertainty to the results. In our approach, 

we need to identify the rules for mapping complex change definitions into processes 

that return instances of the respective change patterns. The performance of the detec-

tion process has to be investigated with respect to the number of changes and the type 

of constraints in complex change definitions, as well as the dataset versions’ size and 

the number of changes performed between them. 

Querying changes. In our view, querying data evolution should be based on data 

as much as on changes. Changes, like data, can appear in the query body to express 

complex conditions, like the fact that an entity has been modified in a specific man-

ner, or can be returned by the query in order to retrieve explicit change instances. 

Some interesting query types that should be supported are the following:  

─ Retrieve changes among versions, or restrict selected changes by the type of 

change or the elements that they have affected or the versions between which they 

are detected.  

─ Retrieve elements, given that changes of specific type have affected them at specif-

ic versions.  

3 An End-to-End Example 

The Experimental Factor Ontology (EFO) [3] provides a systematic description of 

many data elements available in EBI
1
 databases, and for external projects. It combines 

parts of several biological ontologies regarding anatomy, disease and chemical com-

pounds in order to support data annotation, analysis and visualization. EFO is fre-

quently updated as new classes are added, while others are changed or made obsolete. 

Classes in EFO are described by metadata like class label, definition, synonyms, etc. 

Consider that a new class is added into the ontology. This class is also assigned 

with a class label, a textual definition and synonyms of the class label. The class label 

corresponds to rdfs:label annotation property, the textual definition corresponds to the 

efo:definition property and the synonym to the efo:alternative-term property. Note 

that for simplicity and space limitations we consider only these operations. 

Modeling changes. These changes are fine-grained and can be described by mod-

el-specific operations. The addition of a new class can be modeled as 

Add_Type_Class(c), where c is the new class. The addition of a new label can be 

modeled as Add_Label(c, l), where c is the respective class holding the new label l. 

The addition of a new definition or synonym corresponds to an addition of a new 

property and can be modeled as Add_Property_Instance(s, p, o), where p is the new 

property which is assigned to class s with value o. In our approach, these are simple 

changes. We can rely on [6] for defining simple changes by selecting a minimal set of 

primitive changes on RDF(S) having the properties of completeness and unambiguity. 

Notice that Add_Property_Instance suits all possible properties, while in this sce-

nario the assigned properties are of two specific types: efo:definition and 

                                                           
1  http://www.ebi.ac.uk/ 



efo:synonym. It is more suitable to have intuitive changes regarding the specific prop-

erties involved, like Add_Definition and Add_Synonym. Also, the discussed modifica-

tions are likely to appear jointly. As a result, it may be useful to demonstrate these 

changes as a unit. Therefore, they can be grouped into one change named 

Add_Annotated_Class. In our approach, these are examples of complex changes.  

Defining changes. The complex changes Add_Definition, Add_Synonym and 

Add_Annotated_Class can be defined as follows:  

CREATE COMPLEX CHANGE Add_Definition(class, definition) { 

   CHANGE LIST Add_Property_Instance(class, prop, definition); 

   SELECTION FILTER prop='efo:definition';   }; 

CREATE COMPLEX CHANGE Add_Synonym(class, synonym) { 

   CHANGE LIST Add_Property_Instance(class, prop, synonym); 

   SELECTION FILTER prop='efo:alternative_term';   }; 

CREATE COMPLEX CHANGE Add_Annotated_Class(class, label, defini-

tion, synonym) { 

   CHANGE LIST Add_Type_Class(class), Add_Label(class, label), 

Add_Definition(class, definition), Add_Synonym(class, synonym) 

*;   }; 

The name and parameters of each defined complex change are declared right after the 

CREATE COMPLEX CHANGE clause. In the CHANGE LIST clause the contained 

simple or complex changes are declared. Note that the asterisk (*) beside 

Add_Synonym in Add_Annotated_Class definition indicates that there might be zero, 

one, or more such changes, one for each added synonym, posing a cardinality con-

straint. Defining Add_Definition and Add_Synonym includes a constraint, declared in 

the SELECTION FILTER clause, filtering the property type. In Add_Annotated_Term, 

the parameter name class is used among the contained changes, indicating that they 

refer to the same actual class.  

Detecting changes. As ontology versions are periodically released, we can identify 

the changes that have occurred among versions. Simple changes have to be detected 

first. Notice that Add_Definition and Add_Synonym are defined in terms of simple 

changes, while Add_Annotated_Class includes complex changes too. Therefore, 

Add_Definition and Add_Synonym should be detected first by evaluating their defini-

tions over the detected simple change instances, while Add_Annotated_Class next as 

it depends on complex change instances too. Alternatively, Add_Annotated_Class can 

be expressed in terms of simple changes, by substituting Add_Definition and 

Add_Synonym changes with their definitions. In this way, all complex change defini-

tions can be evaluated over the detected simple change instances. The detected simple 

and complex change instances constitute a hierarchy of changes, where the user can 

see the changes themselves as well as how they are interconnected. 

Querying changes. For querying changes, SPARQL can be extended with suitable 

keywords. The following query gives an example of querying changes. It returns all 

classes that have been added and annotated between versions 2.45 and 2.46. For this 

example, we assume that defined changes and detected instances are represented in an 

ontology of changes as in [9]. Notice that the requested classes are the value of 



co:aac_p1 parameter of Add_Annotated_Class. Also, change_span is a function that 

verifies whether the complex change instance (?c) is detected between the requested 

versions. Finally, the FROM CHANGES ON DATASET clause declares that the triples 

pattern concerns changes regarding a specific dataset <D>. 

SELECT ?class 

FROM CHANGES ON DATASET <D> 

WHERE { 

 ?c rdf:type co:Add_Annotated_Class; co:aac_p1 ?class. 

 FILTER change_span(?c BETWEEN VERSION 2.45 AND 2.46). } 

4 Conclusions 

In this paper we advocated the need for formalizing complex changes over RDF(S) 

knowledge bases and outlined the basic challenges that have to be faced to realize our 

vision. An example inspired from the biological domain is used to motivate the need 

for complex changes and present the basic concepts of a possible solution. Neverthe-

less, supporting complex changes may be useful in any evolving domain. 

5 References 

1. S. Auer and H. Herre. A versioning and evolution framework for RDF knowledge bases. 

In Perspectives of Systems Informatics, 6th International Andrei Ershov Memorial Confer-

ence on, 2007. 

2. M. Klein. Change management for distributed ontologies. Ph.D. thesis, Vrije University, 

2004. 

3. J. Malone, E. Holloway, T. Adamusiak, M. Kapushesky, J. Zheng, N. Kolesnikov, A. 

Zhukova, A. Brazma, H. Parkinson. Modeling Sample Variables with an Experimental 

Factor Ontology. Bioinformatics 26(8):1112-1118, 2010.  

4. N. F. Noy, and M. Musen. PromptDiff: A fixed-point algorithm for comparing ontology 

versions. In Proceedings of the 18th National Conference on Artificial Intelligence, 2002. 

5. G. Papastefanatos, Y. Stavrakas, and T. Galani. Capturing the history and change structure 

of evolving data. 7th International Conference on Advances in Databases, Knowledge, and 

Data Applications, 2013. 

6. V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos, and V. Christophides. High-level 

change detection in RDF(S) KBs. ACM Trans. Database Syst., 38(1), 2013. 

7. P. Plessers and O. De Troyer. Ontology change detection using a version log. In Proceed-

ings of the 4th International Semantic Web Conference, 2005. 

8. P. Plessers, O. De Troyer, and S. Casteleyn. Understanding ontology evolution: A change 

detection approach. J. Web Sem. 5(1): 39-49, 2007. 

9. Y. Roussakis, I. Chrysakis, K. Stefanidis, G. Flouris, and Y. Stavrakas. A flexible frame-

work for defining, representing and detecting changes on the data web. CoRR 

abs/1501.02652, 2015. 

10. L. Stojanovic. Methods and tools for ontology evolution. Ph.D. thesis, University of Karls-

ruhe, 2004. 



Capturing the History and Change Structure 

of Evolving Data

George Papastefanatos, Yannis Stavrakas, Theodora Galani 

IMIS, RC ATHENA 

Athens, Greece 

{gpapas,yannis,theodora}@imis.athena-innovation.gr

 

 
Abstract—Evo-graph is a model for data evolution that 

encompasses multiple versions of data and treats changes as 

first-class citizens. A change in evo-graph can be compound, 

comprising disparate changes, and is associated with the data 

items it affects. In previous papers, we have shown that 

recording data evolution with evo-graph is very useful in cases 

where the provenance of the data needs to be traced, and past 

states of data need to be re-assessed. We have specified how an 

evo-graph can be reduced to the snapshot holding under a 

specified time instance, we have given an XML representation 

of evo-graph called evoXML, and we have presented how 

interesting queries can be answered. In this paper, we explain 

how evo-graph is used to record the history of data and the 

structure of changes step by step, as the current snapshot 

evolves. We present C2D, a novel framework that implements 

the concepts in the paper using XML technologies. Finally, we 

experimentally evaluate C2D for space and time efficiency and 

discuss the results. 

Keywords-data evolution; change modeling 

I.  INTRODUCTION AND PRELIMINARIES 

Data published on the Web undergo frequent changes 
due to advancements in knowledge and due to the 
cooperative manner of their curation. Users of scientific data, 
in particular, would like to go beyond revisiting past data 
snapshots, and review how and why the recorded data have 
evolved, in order to re-evaluate and compare previous and 
current conclusions. Such an activity may require a search 
that moves backwards and forwards in time, spread across 
disparate parts of a database, and perform complex queries 
on the semantics of the changes that modified the data. The 
need for accounting for past changes and tracing data lineage 
is evident not only in scientific data, but also in a wide range 
of web information management domains. 

Motivating Example. We will use an example taken from 
Biology: the revision in the classification of diabetes, which 
was caused by a better understanding of insulin [12]. 
Initially, diabetes was classified according to the age of the 
patient, as juvenile or adult onset. As the role of insulin 
became clearer two more subcategories were added: insulin 
dependent and non-insulin dependent. All juvenile cases of 
diabetes are insulin dependent, while adult onset may be 
either insulin dependent or non-insulin dependent. In Fig. 1, 
the leftmost image depicts a tree representation of the initial 
diabetes classification, while the rightmost the revised 
classification. These two representations, however, do not 
provide any information about which parts of the data 
evolved and how, which changes led from one version to 

another, or what changes were applied on which parts of the 
data. Recording change operations in a log or discovering 
deltas out of successive versions, like many systems do, do 
not solve the problem; in most cases isolated operations are 
impossible to interpret a posteriori. This is because they 
usually form more complex, semantically coherent changes, 
each comprising many small changes on disparate parts of 
the data. 

We argue that in systems where evolution issues are 
paramount, changes should not be treated solely as 
transformation operations on the data, but rather as first class 
citizens retaining structural, semantic, and temporal 
characteristics. In previous work, we proposed a graph 
model, evo-graph [16], and its XML representation, evoXML 
[17], capturing the relationship between evolving data and 
changes applied on them. A key characteristic is that it 
explicitly models changes as first class citizens and thus, 
enables querying data and changes in a uniform way. In what 
follows, we discuss some preliminary concepts on evo-graph 
and then present the contribution and structure of this paper. 

Snap-graph. We assume that data is represented by a 
rooted, node-labeled, leaf-valued graph called snap-graph. A 
snap-graph S (V, E) consists of a set of nodes V, divided into 
complex and atomic, with atomic nodes being the leaves of 
the graph, and a set of directed edges E. At any time 
instance, the snap-graph undergoes arbitrary changes. 

Evo-graph. An evo-graph G is a graph-based model that 
captures all the instances of an evolving snap-graph across 
time, together with the actual change operations responsible 
for the transitions. It consists of the following components: 

· Data nodes, divided into complex and atomic: VD = 

VD
c
 È VD

a
. 

· Data edges depart from every complex data node, 

ED Í (VD
c
 ´ VD). 

· Change nodes are nodes that represent change 
events. Change nodes are depicted as triangles, to 
distinguish from circular data nodes. They are 
divided into complex and atomic (denoting basic 

change operations): VC = VC
c
 È VC

a
. 

· Change edges connect every complex change node 
to the (complex or atomic) change nodes it 

encompasses: EC Í (VC
c
 ´ VC).  

· Evolution edges are edges that connect each change 
node with two data nodes, specifically the version 

before and after the change: EE Í (VD ´ VC ´ VD). 
Intuitively, the evo-graph consists of two interconnected 

graphs: a data graph comprising the different versions of



 

Figure 1.  Snap Graphs of diabetes classification before (left) and after (right) revision and the corresponding evo-graph (middle).

data, and a tree of changes. The data graph defines the 
structure of data, while the change graph defines the 
structure of changes. These two graphs interconnect via 
evolution edges. Consequently, there are two roots: the data 
root, rD, and the change root, rC. Moreover, we annotate 
change nodes with a timestamp denoting the time instance 
that the specific change occurred. These timestamps are used 
for determining the validity timespan of all data nodes and 
data edges in the evo-graph. Evo-graph can be reduced to a 
snap-graph holding under a specified time instance through 
the reduction process [16]. A snap-graph is actually a trivial 

case of an evo-graph, consisting of a set of data nodes VÍVD 

and a set of data edges EÍED. 
As an evo-graph example consider the middle image in 

Fig. 1, which represents the revision in the diabetes 
classification from the graph of Fig. 1 left to the graph of 
Fig. 1 right. The revision process is denoted by the complex 
change reorg_diab_cat, (node &21) composed by 5 basic 
snap changes (in the order they occurred): clone (node &8), 
add (node &11), remove (node &13), create (node &15), 
and create (node &18). Note the use of evolution edges; in 
the case of add the evolution edge is annotated with the 
timestamp 2 and connects node &3 (initial version) with 
node &10 (version after adding the child node &6). Node 
&10 is still a child of node &2, but for simplicity the 
relevant edge is omitted. The reduction of the evo-graph for 
T=start results in the snap-graph of the leftmost image of 
Fig. 1, while for T=now in the snap-graph of the rightmost 
image of Fig. 1. For the complete definitions of basic snap 
changes see section 2.1. 

EvoXML. In [17] we have shown how evo-graph can be 
represented in an XML format, called evoXML. TABLE I.  
presents an evoXML example. Due to space limitations, the 
evoXML example covers up to time instance 1 of the evo-
graph in Fig. 1; specifically it includes only the clone 
operation (node &8) in lines 12-15, 20. Notice that the edge 
from node &7 to node &6 (which actually denotes that &6 
remains a child of the next version of node &4) is 

represented through the evoXML reference evo:ref in line 
13, which points to the element in line 10. Also notice how 
the change node &8 is represented in line 20. 

Querying Evolution. Finally, in [16],[17] we have 
outlined evo-path, an XPath extension that help us posing 
regular queries over data snapshots as well as time- and 
change-aware queries on evo-graph. We have also shown 
how evo-path expressions can be evaluated on evoXML via 
equivalent XQuery expressions. Evo-path takes advantage of 
the complex change information in order to retrieve and 
relate data that are otherwise distant and irrelevant to each 
other. Queries expressed on evo-graph include: 

· Temporal queries on the history of data nodes, like 
“which is the structure of categories before the time 
instance 6”? 
 Evo-path: //Diabetes/categories [ts() not covers {now}] 

· Evolution queries on changes applied to data nodes, 
like “which changes are associated with the change 
responsible for the reorganization of diabetes 
categories” (node &21)? 
 Evo-path: <//reorg_diab_cat/*> 

· Causality queries on relationships between change 
nodes and data nodes, like “what are the previous 
versions of all data nodes that changed due to the 
reorganization of diabetes categories”? 
 Evo-path: //* [evo-before() <//reorg_diab_cat>] 

Contribution and Structure. In this paper, we first define 
a set of basic changes on the snap-graph, and how these can 
be combined to construct complex changes (section 2). We 
then define a set of basic operations on the evo-graph, and a 
translation from snap-graph changes to evo-graph 
operations, such that as changes occur on the snap-graph, 
the evo-graph grows to represent those changes together 
with all the successive snap-graph versions (section 2). 
Furthermore, we introduce the C2D framework (section 3), a 
prototype system that implements the concepts introduced in 
this paper, and progressively builds the evo-graph as 
changes take place on the current snap-graph. We present 



TABLE I.  EVOXML FOR TIME INSTANCE 1. 

1 

2 
3 

4 

5 
6 

7 

8 
9 

10 

11 
12 

13 

14 
15 

16 

17 
18 

19 

20 
21 

22 

<evo:evoXML xmlns=”” 

  xmlns:evo=”http://web.imis.athena-innovation.gr/projects/c2d”> 
   <evo:DataRoot evo:id=”dataroot”> 

      <Diabetes evo:id=”1”> 

         <categories evo:id=”2”> 
            <cat evo:id=”3”> 

               <age evo:id=”5”>juvenile</age> 

            </cat> 
            <cat evo:id=”4”> 

               <age evo:id=”6”>adult onset</age> 

            </cat> 

            <cat evo:id=”7” evo:ts=”1” evo:previous=”4”> 

               <age evo:ref=”6”/> 

               <age evo:id=”9”>adult onset</age> 

            </cat> 

         </categories> 

      </Diabetes> 
   </evo:DataRoot> 

   <evo:ChangeRoot evo:id=”changeroot”> 

      <clone evo:id=”8” evo:tt=”1” evo:before=”4” evo:after=”7”/> 

   </evo:ChangeRoot> 

</evo:evoXML > 

 
and discuss a detailed experimental evaluation of C2D 
(section 3). Finally, we review the related work (section 4) 
and we conclude the paper (section 5). 

II. ACCOMMODATING BASIC AND COMPLEX CHANGES 

IN EVO-GRAPH 

A. Snap Basic and Complex Change Operations 

In this section, we define the basic change operations 
applied on a snap-graph S(V,E) (snap changes for short) and 
present how they can be employed to define complex 
changes. We consider the following snap changes:  

· create(v
P
, v, label, value). Creates a new atomic 

node v with a given label and value and connects it 
with its parent node v

P
. If v

P
 is an atomic node, it 

becomes complex. 

· add(v
P
, v). Adds the edge (v

P
, v) to E, effectively 

adding v as a child node of v
P
. The nodes v

P
, v must 

already exist in V. If v
P
 is an atomic node, it 

becomes complex. 

· remove(v
P
, v). Removes the edge (v

P
, v) from E. If v 

has no other incoming edges, it is removed from V. 
If v

P
 has no other children, it becomes an atomic 

node with the default value (empty string). 

· update(v, newValue). Updates the value of an 
atomic node v to newValue. 

· clone(v
P
, v

source
, v

clone
). Creates a new data node v

clone
 

with the same label/value as v
source

, and a deep copy 
of the subtree under v

source
 as a subtree under the 

node v
clone

. The node v
P
 must be a parent of v

source
. 

The edge (v
P
, v

clone
) is added to E, making v

clone
 a 

sibling of v
source

. 
The above definitions describe the effect of each snap 

change to the current snap-graph. These changes leave the 
snap-graph in any possible consistent state. Note that the 
effect of the clone snap-change is to create a deep copy of a 
subtree under the same parent node. Although clone can be 
expressed as a sequence of other snap changes, we chose to 

consider it as a basic operation. The reason is that deep copy 
is difficult to express using successive create operations, 
while at the same time it is an essential operation for 
expressing complex changes like move-to, and copy-to. 

A complex change applied on a node of the snap-graph is 
a sequence of basic and other complex change operations 
that are applied on the node itself or/and the node’s 
descendants, and allows us to group operations in 
semantically coherent sequences. Applying a complex 
change on a snap-graph involves the application of each 
constituent change in the order they appear. Consider the 
complex change reorg_diab_cat applied on categories node 
of the leftmost image of Fig. 1. This change is expressed as a 
sequence of five basic snap changes, as follows: 

reorg-diab-cat (&2) { 
   clone (&4, &6, &9) 
   add (&3, &6) 
   remove (&4, &6) 
   create (&3, &16, “type”, “insulin dependent”) 
   create (&4, &19, “type”, “non insulin dependent”) } 

B. Capturing Versions and Changes with Evo-graph 

In our approach, snap changes are not actually applied on 
the snap-graph, but on the evo-graph. This is shown in Fig. 
2, which illustrates the effects of snap changes to the evo-
graph. Fig. 2 depicts three images for each snap change; the 
leftmost image shows the initial snap-graph before the 
change, the rightmost image shows the current snap-graph 
after the snap change, and the middle image shows the evo-
graph fragment encompassing both snapshots, together with 
the change. Notice that these snap-graph fragments are 
actually reductions [16] of the respective evo-graph under 
different time instances. Thus, the create operation in Fig. 2 
actually causes node &4 to be added under the parent node 
&5, and not under &2, as would be the case if create was 
applied directly on the snap graph. This is a technical issue 
tackled with at the implementation level, and does not 
introduce any ambiguities. 

In order to implement snap changes on an evo-graph G 
we introduce the following evo-graph operations: 

· addDataNode (vD
P
, vD, label, value). Creates a new 

atomic data node vD as a child of vD
P
 with a given 

label and a value. If vD
P
 is an atomic node, it turns 

into complex. 

· addDataEdge (vD
P
, vD). Creates a new data edge 

from node vD
P
 (parent) towards node vD (child). The 

two nodes must already exist in VD. If vD
P
 is an 

atomic node, it turns into complex. 

· applyAtomicChange(vD
1
, vD

2
, value, vC, vC

P
, label, 

timestamp). This operation “evolves” node vD
1
 to 

node vD
2
, as the result of applying a snap change. 

First, a new atomic data node vD
2
 with the same 

label as vD
1
 and a given value is created, and is 

connected as a child of all the current parents of vD
1
. 

Then, a new atomic change node vC with the label 
and timestamp is created, and is connected as a child 
of node vC

P
єVC

c
. The label denotes one of the snap 

changes defined previously. Finally, a new evolution 
edge e = (vD

1
, vC, vD

2
) is created between the data 

nodes vD
1
, vD

2
 and the change node vC.
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Figure 2.  Effect of snap change operations on the evo-graph. 

· applyComplexChange(vD
1
, vD

2
, vC, vC

p
, label, 

timestamp, {vC
1
, vC

2
, ..., vC

n
}). This operation 

“evolves” node vD
1
 to node vD

2
, as the result of 

applying a complex change operation on the snap-
graph. First, a new atomic data node vD

2
 with the 

same label as vD
1
and the default value (empty 

string) is created, and is connected as a child of all 
the current parents of vD

1
. A new complex change 

node vC with the label and timestamp is created, 
and is connected as a child of the complex change 
node vC

p
єVC

c
. The label is the name of the 

complex change and can be any string. After that, 
vC is connected as a parent of the change nodes 
{vC

1
, vC

2
, ..., vC

n
}. Finally, a new evolution edge 

e=(vD
1
, vC, vD

2
) is created between the data nodes 

vD
1
, vD

2
 and the change node vC. 

Note that we employ two separate evo-graph 
operations for applying snap-graph basic and complex 
changes. For complex changes, the applyComplexChange 
is used, which creates a new complex change node, a new 
version for the affected data node, a new evolution edge 
connecting the change node and the two data node 
versions and finally connects the complex change node as 
the parent of its constituent change nodes. For basic 
changes, the applyAtomicChange is used, which creates a 
new atomic change node, a new version of the data node 
that is affected by the change, and a new evolution edge. 
The exact implementation of each snap change in terms of 
evo-graph operations is given in TABLE II. . 

For each snap change in TABLE II. , a timestamp is 
given (appears as t) and, if this change is part of a complex 
change, the parent complex change (vC

P
) is also specified. 

If no parent complex change is specified, we assume the 
parent is the change root rC. Note, that all snap change 
implementations in TABLE II. start with 
applyAtomicChange, which creates the corresponding 
change node and the associated data node in evo-graph. 

TABLE II.  ACCOMMODATING SNAP CHANGES IN EVO-GRAPH. 

 

1 

2 
3 

4 

5 

create (vD
P, vD, label, value), t, vC

P
 

{  applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘create’, t); 

   for viÎgetCurrentChildren(vD
P)    

    addDataEdge (v´D
P,vi);    

    // create the new data node and connect it to the new parent node 

     addDataNode (v´D
P, vD, label, value);           } 

 

1 

2 
3 

4 

add (vD
P, vD), t, vC

P
 

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘add’, t); 

   //connect the new parent node to all current children plus vD 

   for viÎ(getCurrentChildren(vD
P)ÈvD) 

                 addDataEdge (v´D
P,vi) ;           } 

 

1 
2 

3 

4 

remove (vD
P, vD), t, vC

P
 

{  applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘remove’, t); 

    //connect the new parent node to all current children except for vD 

    for viÎ(getCurrentChildren (vD
P)-vD)   

                  addDataEdge (v´D
P,vi);           } 

 

1 
update (vD, newValue), t, vC

P
 

{ applyAtomicChange(vD, v´D, newValue,vC, vC
P, ‘update’, t) } 

 

1 

2 
3 

4 

5 
6 

7 

8 
9 

clone (vD
P, vD

source, vD
clone), t, vC

P
 

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘clone’, t); 

   for viÎ(getCurrentChildren (vD
P) 

                 addDataEdge (v´D
P,vi);  

   //clone the source data node  

   addDataNode (v´D
P, vD

clone,  vD
source

.label, vD
source

.value); 
   //create a deep copy of the cloned node  

   for viÎgetCurrentChildren (vD
source)                               

                 addDataNode(vD
clone, v´i, , vi.label, vi.value); 

                  repeat step 7  for vD
source = vi and vD

clone=v´i  } 



III. IMPLEMENTATION AND EVALUATION 

A. The C2D Framework 

We have implemented all above concepts into the C2D 
(standing for Complex Changes in Data evolution) 
framework. C2D has been developed in Java, on top of 
Berkeley DB XML [3], an embedded XML database used 
to manage the evoXML representation of evo-graphs. In 
C2D, changes applied on the snap-graph are fed into a 
process that populates the evo-graph. A snap change is 
always applied on the current snap-graph (represented in 
XML in C2D), which is actually produced as a reduction 
[16] of the evo-graph for the time instance T=now. This 
flow is depicted in Fig. 3. The top layer in Fig. 3 is the 
view layer, where changes are launched. The purpose of 
the logical model layer is to guide the translation processes 
between the view layer and the storage representation 
layer, where changes actually take place.  

Change operations on the evo-graph are implemented 
as XML update operations on the corresponding evoXML. 
Expressing evo-graph operations with the XQuery Update 
language is straightforward. For example the 
addDataNode (&17, &19, “type”, “non insulin 
dependent”) operation is expressed with the following 
XQuery Update insert expression on the evoXML. 
insert node <type evo:id=“19”>non insulin  dependent </type> 
into  
/evo:evoXML/evo:DataRoot/Diabetes/categories/cat[evo:id=“17”] 

B. Experimental setting 

Our goal was to examine how our approach depends 
on a number of factors that characterize the data. We first 
examined the space efficiency of evoXML for various 
configurations, regarding: the structure of the initial XML 
tree, the type of snap changes, and the selectivity of the 
elements. We also examined the performance of the 
reduction process with respect to the size of the evoXML 
file. Note that the comparison with other versioning 
approaches [4], [6], [7] was not pursued, as these works do 
not consider the role of changes as first class citizens in 
storing and querying evolving data. 

Experiments were performed over synthetic XML data, 
on a PC with Intel Core 2 CPU 2.26 GHz, and 4.00 GB of 
RAM. The initial XML file was generated with [19] and 
contained about 10

5
 elements, over which 10

4
 snap 

changes were sequentially applied as XQuery Update 
statements. A new version was assumed after every 1000 
changes; therefore 10 successive versions have been 
created for each setting. We recorded the size (in terms of 
the number of XML elements) of each “snap” version, and 
the size of the evoXML file at the same instance. 
Furthermore, we examined the performance of the 
reduction process for the current snapshot (T=now), and 
the initial snapshot (T=start). 

Regarding the structure of the initial data, we used two 
XML files with the same number of elements: (a) one 
corresponding to a snap-graph with a “deep” tree structure 
(denoted s1) with five levels and elements having a fan-out 
of 10, and (b) a file with a “broad” tree structure (denoted 
s2) with only two levels and elements with a fan-out of  

 
Figure 3.  C2D framework overview.  

about 330 elements. We have applied three sets of snap 
changes: (a) equal percentage for all changes except clone 
(denoted t1), (b) 80% update and 20% create and remove 
(denoted t2), and (c) equal percentage for all changes 
including clone (denoted t3). Finally, concerning elements 
selectivity, changes have been applied either on all 
elements (denoted n1) or on a fixed set of pre-selected 
elements so that each element is affected by 5 changes on 
average per version (denoted n2). 

We have examined the following combinations of the 
above parameters: (t1n1), (t3n1), (t2n1), and (t2n2) for each of 
s1, s2. t1n1 captures the typical case when random changes 
are uniformly applied on all elements. t3n1 is similar to 
t1n1, but it also includes clone. We have separately 
examined the clone operation, as it may arbitrarily result in 
the addition of a large amount of data. t2n1 captures the 
case where most (80%) change operations are update on 
random leaf elements, and only 20% are create or remove. 
Finally, t2n2 is like the previous case except that changes 
are concentrated on a pre-selected fixed set of elements. 

Intuitively, we expect that the size of the evoXML 
depends on the number of snap changes performed. We 
also expect that it depends on the average fan-out of the 
snap-graph, while it remains insensitive to its average 
height. This is due to the way that each snap change 
operation is implemented on the evo-graph. Next, we 
present and discuss the results. 

C. Results and Discussion 

In Fig. 4 (a) and (b) we present the evoXML sizes per 
version. Subsequently, we discuss how this size is affected 
by the aforementioned configurations parameters. 

File structure. For all configurations, better space 
efficiency is achieved for s1. For smaller fan-outs (s1), the 
evoXML has a smoother increase in size than for large 
fan-outs (s2). A snap change occurring on an element adds 
evo:ref elements for all of its children (i.e. fan-out) that are 
still valid in the new version. Hence, the increase in the 
evoXML size is relative to the average fan-out.  

Type of changes. t2 outperforms t1 and t3. The majority 
of changes in t2 are update, which have a smaller impact 
on the evoXML size. Again, the key point is the number of 
new elements that each change adds. Observe from 
TABLE II.  that all changes add at least two new elements; 



(a) (b) (c) (d) 

Figure 4.  evoXML size (a), (b), accumulative snapshot size (c) and current snapshot reduction time (d) per version for various configurations.  

one evolved data element and one change element. update 
adds only these two elements, whereas create and add 
insert one additional element for the new child, plus 
evo:ref elements for its siblings. remove results in inserting 
evo:ref elements in the evoXML for all the siblings of the 
removed element. Finally, clone adds a variable number of 
elements according to the height and average fan-out of 
the subtree that is cloned. On the other hand, the 
percentage of create and remove in t1 is higher. In t3, the 
use of clone further increases the file size by creating a 
deep copy of the subtree of the elements on which it is 
applied. 

Selectivity of elements.Applying changes randomly on 
all elements (n1) seems to have a smoother impact on the 
increase of the file size (e.g., compare t2n1 and t2n2 for 
each of s1, s2). This is due to the fact that changes are 
uniformly distributed over all the elements. On the other 
hand, the increase is higher when changes are targeting a 
fixed set of elements (n2). Changes in t2n2 are sequentially 
applied on the same elements, i.e., create is applied on the 
same elements, increasing the number of their children and 
thus the number of evo:ref elements to be inserted when a 
subsequent create occurs on the same element. 

Overall, the evoXML size depends almost linearly on 
the number of the snap changes applied, given that the 
average fan-out is constant. Moreover, the increase rate of 
the evoXML size is proportional to the average fan-out of 
its elements. This is more evident in t2n2 for s1, where the 
average fan-out of the elements sustaining changes 
increases significantly per version, resulting in a boost in 
the evoXML size, whereas in s2 the fan out increase rate is 
much smoother. 

In Fig. 4 (c) we present the accumulative size of the 
snapshots produced per version. This approach can be 
considered as an alternative to evoXML. For space 
reasons, we only depict the series for s2, as s1 shows a 
similar trend. The accumulative size of all snapshots per 
version is significantly bigger than the evoXML size, for 
all runs over s1. The same holds for all configurations of 
s2, except for t3n1 where many evo:ref elements are added 
in the evoXML file. Note that the overlap of the series is 
due to the small variance in the accumulative snapshot size 
between configurations. 

Regarding the performance of our reduction algorithm, 
we have measured the time the reduction process takes for 

producing the current and the initial snapshots. The results 
for the current snapshot for s2 are shown in Fig. 4 (d), 
where the mark signs are the recorded time values, and the 
series are the trends for each configuration. A safe 
conclusion is that the reduction time depends mostly on 
the evoXML size. For small file sizes, the reduction 
performs the same for all versions. In addition, the 
increase rates in time are similar for both the current and 
the initial snapshot, for both s1 and s2. Therefore, the time 
instance parameter of the reduction process does not affect 
the reduction performance.  

Concluding, both space and time efficiency are mostly 
affected by the average fan-out, which deteriorates as more 
changes are applied. That is mainly because of the evo:ref 
elements that are added for all children of an element that 
“evolves”. Still, our approach is much more efficient than 
retaining separately every different version. Future 
optimizations will take into consideration the above and 
will aim to encode evo:ref elements and to the overall 
compression of the file. 

IV. RELATED WORK 

Numerous approaches have been proposed for the 
management of evolving semistructured data. One of the 
early works [6] proposes DOEM, an extension of OEM 
capable of representing changes, such as Create Node, Add 
Arc, Remove Arc and Update Node, as annotations on the 
nodes and the edges of the OEM graph. In [10], the 
authors employ a diff algorithm for detecting changes 
between two versions of an XML document and storing 
them either as edit scripts or deltas. For each new version, 
they calculate the deltas with the previous and retain only 
the last version and the sequence of deltas. A similar 
approach is introduced in [7], where instead of deltas 
calculation, a referenced-based identification of each 
object is used across different versions. New versions hold 
only the elements that are different from the previous 
version whereas a reference is used for pointing to the 
unchanged elements of past versions. In [9] the authors 
propose MXML, an extension of XML that uses context 
information to express time and models multifaceted 
documents. Recently, there are works that deal with 
change modeling [15] and detection [13] in semantic data, 
in which the aforementioned problems are applied to 
ontologies and RDF.  
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Most approaches employ temporal extensions for the 
lifespan of different versions of documents. In [1], [6], the 
authors enrich data elements with temporal attributes and 
extend query syntax with conditions on the time validity of 
the data. In [14], the authors model an XML document as 
a directed graph, and attach transaction time information at 
the edges of the graph. Techniques for evaluating temporal 
queries on semistructured data are presented in [8], [18]. In 
[8] the authors propose a temporal query language for 
adding valid time support in XQuery. In [18] the notion of 
a temporally grouped data model is employed for 
uniformly representing and querying successive versions 
of a document. In [11], the authors extend this technique 
for publishing the history of a relational database in XML 
and employ a set of schema modification operators 
(SMOs) for representing the mappings between successive 
schema versions. In [1] the problem of archiving curated 
databases is addressed. The authors develop an archiving 
technique for scientific data that uses timestamps for each 
version, whereas all versions are merged into one 
hierarchy. This is in contrast with approaches that store a 
sequence of deltas and apply a large number of deltas for 
retrieving backwards the history of an element. Lastly, [5] 
deals with provenance in curated databases. All user 
actions for constructing a target database are recorded as 
sequences of insert, delete, copy and paste operations 
stored as provenance links from current data towards 
previous versions of the target database or external source 
databases.  

Compared to the above approaches, our model 
introduces a change-based perspective for evolving data, 
in which changes are not derived by data versions but are 
modeled as first class citizens together with data. In our 
view, changes are not described through diffs or 
transformations with edit scripts between document 
versions, but are complex objects operating on data, and 
exhibit structural, semantic, and temporal properties. 
Change-centric modeling of evolving semistructured data 
can provide additional information about what, why, and 
how data has evolved over time. 

V. CONCLUSIONS 

In this paper, we showed how a data model called evo-
graph can be used to progressively capture the structure of 
changes and the history of data. We believe that capturing 
structured changes within a data model enables a range of 
very useful queries on the provenance of data, and on the 
semantics of data evolution. We defined basic and 
complex changes over snap-graph, and described the 
process of building evo-graph step by step, as changes 
occur on the current snap-graph. We outlined C2D, a 
framework based on XML technologies that implements 
the ideas presented in this paper. We evaluated C2D using 
synthetic XML data for its space and time efficiency, and 
discussed the results. 
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Abstract. The dynamic nature of web data brings forward the need for main-

taining data versions as well as identifying changes between them. In this paper, 

we deal with problems regarding understanding evolution, focusing on RDF(S) 

knowledge bases, as RDF is a de-facto standard for representing data on the 

web. We argue that revisiting past snapshots or the differences between them is 

not enough for understanding how and why data evolved, especially in coopera-

tive environments. Instead, changes should be treated as first-class-citizens. In 

our view, this involves supporting semantic rich, user-defined changes that we 

call complex changes. In this paper, we present our perspective regarding com-

plex changes, propose a declarative language for defining complex changes for 

RDF(S) knowledge bases, and show how this language is used to detect com-

plex change instances among dataset versions. 

Keywords: change management, data evolution, rdf(s) 

1 Introduction 

The increasing amount of information published on the web poses new challenges for 

data management. A central issue concerns evolution management, as the dynamic 

nature of data brings forward the need for maintaining data versions as well as identi-

fying changes between them. Especially in cooperative environments, where depend-

encies between data appear, evolution management becomes more evident. For ex-

ample, biologists rely on the web for publishing research results. They often use on-

tologies in order to curate their data from multiple domains of interest like anatomy, 

diseases, biomedical investigations, etc. These ontologies are frequently updated as 

errors may need to be fixed or new knowledge about the state of the art may need to 

be incorporated. As a result, curators of depending ontologies are interested in under-

standing the evolution history in order to learn more about the changes that have tak-

en place on the respective domain of interest. In such cases, simply revisiting past 

snapshots and the differences between versions may not be enough. 

As an example, consider Experimental Factor Ontology (EFO) [6] which provides 

a systematic description of many data elements available in EBI
1
 databases, and for 

                                                           
1  http://www.ebi.ac.uk/ 



 

Fig. 1. Simplified part of EFO data. (a) The previous version. (b) The next version. 

external projects. It combines parts of several biological ontologies and it is frequent-

ly updated as new terms are added, while others are changed or made obsolete. Terms 

in EFO are assigned with descriptive metadata, like labels, textual definitions, syno-

nym labels and others. A new EFO version is released every month. External users 

and curators want to know what changed and how from one version to another.  

Consider Fig. 1 as a simplified example. Fig. 1 (a) depicts a part of EFO regarding 

diseases, while Fig. 1 (b) the same part in the next published EFO version. Each term 

is represented by a class, which is annotated by a descriptive label and with other 

metadata which are not depicted for clarity. Also, there is a hierarchical organization 

of terms. In the previous version "Behcet's syndrome", "Sjogren syndrome" and "My-

asthenia gravis" are types of "immune system diseases", which is a type of the generic 

term "diseases". In the next version, a new term is added. The modifications from one 

version to the other are depicted in grey color. The term efo:EFO_0005140 is added 

and annotated with the label "autoimmune diseases" and a definition. It is also posed 

into the hierarchy, being a generalization of "Behcet's syndrome", "Sjogren syn-

drome" and "Myasthenia gravis" and a specific type of "immune system diseases". 

This modification indicates that the knowledge regarding the classification of these 



diseases has been reviewed. In this scenario, external users and curators would like to 

know that in the new version there is a new annotated term, which is also added into 

the hierarchy, or more specifically that it serves as a generalization of already existing 

terms constituting a new immune system disease category. Maintaining successive 

versions does not facilitate the discovery of what changed and why, especially in a 

large ontology. Even computing the differences between them as deltas, i.e. added 

and deleted triples, is not enough for understanding the change semantics. Instead, 

human readable changes should be supported to capture the meaning behind the mod-

ifications. Table 1 presents such changes. Notice that simple changes are primitive, 

while complex changes have richer semantics attempting to interpret user intention.  

In this paper we argue that for understanding data evolution changes should be 

treated as first-class-citizens. In our view, this involves supporting semantically rich, 

user-defined changes that we call complex changes. Modeling complex changes ex-

plicitly can provide additional semantic information for interpreting past data. Defin-

ing complex changes for being detected between dataset versions allows interpreting 

evolution in multiple ways. We present the basic concepts regarding our perspective 

on complex changes. This involves that complex changes group simple changes, they 

may be interrelated constituting a hierarchical model, and they may be mutually ex-

clusive. We provide a declarative language for defining complex changes, given these 

concepts. Also, we describe the process of detecting complex change instances among 

dataset versions. Note that although the notion of complex changes is not bound to 

any specific data model, we focus on RDF(S) knowledge bases, as RDF
2
 is a de-facto 

standard for representing data on the web. 

The paper outline is as follows. In section 2 we discuss related work. In section 3 

we define the basic concepts of our approach on complex changes. In section 4 we 

present our language for defining complex changes and give examples. In section 5  

Table 1. Simple and complex change instances on EFO data of Fig. 1. 

 
                                                           
2  http://www.w3.org/TR/rdf-primer/ 



we present the detection process for complex changes defined by the presented lan-

guage. Finally, in section 6 we conclude the paper. 

2 Related work 

A number of works focus on computing the differences between knowledge bases. In 

[2] an ontology for representing differences, in the form of insertions and deletions, 

between RDF graphs is proposed. The problem of comparing RDF graphs is dis-

cussed, as well as updating a graph from the set of differences. In [13] two diff algo-

rithms are proposed: (i) one computing a structural diff which is the set-based differ-

ence of the triples explicitly recorded into the two graphs, and (ii) one semantic diff 

which also takes into consideration the semantically inferred triples. In [3], an ap-

proach for computing a semantic diff between knowledge bases is proposed for re-

porting differences in logical meaning. It focuses on propositional logic knowledge 

bases, but it is also applicable to more expressive logics. A number of desired proper-

ties are discussed, like the uniqueness of the semantic diff, the principal of minimal 

change, the ability to undo changes and version reconstruction. Similar properties are 

also supported in [14], which focuses on computing deltas over RDF(S) knowledge 

bases. In [7, 5], a fixed point algorithm for detecting ontology change is presented. 

The algorithm employs heuristic-based matchers, introducing uncertainty to results. 

Other works focus on supporting human-readable changes. In [9], a set of prede-

fined high-level changes for RDF(S) knowledge bases is proposed, as well as an algo-

rithm for their detection. The proposed changes verify the useful properties of com-

pleteness and unambiguity, for guaranteeing that every added or deleted triple is con-

sumed by one detected high-level change and that detected high-level changes are not 

overlapping respectively. In [11], an extension of [9] is proposed, by providing a 

more generic change definition framework, based on SPARQL
3
 queries, as well as an 

ontology of changes. In [10], Change Definition Language is proposed in order to 

define and detect changes over a version log using temporal queries. [1] discusses a 

framework for supporting evolution in RDF knowledge bases. Changes are additions 

and deletions of triples, as well as aggregated triples, resulting in a hierarchy of 

changes. However, neither a detection process, nor a specific language of changes is 

defined. In [5], an extension of [7] is proposed for detecting some of the proposed 

basic and composite changes. In general, in [5], [9] and [12] a number of human read-

able changes in similar categorizations given granularity and semantics are presented. 

Our approach focuses on human readable changes. A short visionary work was 

presented in [4]. Similar to [5], [9] and [12] we assume primitive changes, which we 

call simple changes, and groupings of them, which we call complex changes. For 

simple changes we rely on [9]. Our contribution concerns our perception on complex 

changes. Instead of providing a predefined list of complex changes, we propose a 

language for arbitrarily defining them in order to capture richer semantics and multi-

ple interpretations of evolution. Unlike [10], complex changes are defined over simple 

                                                           
3  http://www.w3.org/TR/sparql11-query/ 



changes or other complex changes, resulting in a hierarchical construct. Also, com-

plex changes may be defined as mutually exclusive, for supporting alternative percep-

tions of evolution. These features set us apart from [9] and [11]. Finally, we provide a 

mechanism for detecting defined complex changes. 

3 Simple and complex changes 

Modeling changes as first class citizens involves taking into consideration two basic 

issues: granularity and semantics of changes. Granularity of changes poses the ques-

tion of having fine-grained or coarse-grained changes. Fine-grained changes have the 

advantage of describing primitive changes, while coarse-grained changes provide 

semantics and conciseness by grouping primitive changes in logical units. Semantics 

of changes poses the question of having model-specific or data- and application- spe-

cific changes. Model-specific changes describe modifications that may appear in a 

specific representation model. They constitute a fixed set of generic changes. Data- or 

application- specific changes represent changes that suit on specific use-case scenari-

os and may be user-defined, allowing multiple interpretations of evolution. 

In order to tackle the aforementioned issues, we distinguish between simple and 

complex changes. Simple changes constitute a fixed set of fine-grained, model-

specific changes. Complex changes are coarse-grained, user-defined, application-

specific changes.  

Definition 1 provides a formal definition for simple changes. Table 2 summarizes 

the simple changes we assume. They are defined in [9], verifying completeness and 

unambiguity, constituting a first layer of human-readable changes. 

Definition 1: A simple change is a tuple , where:  

·  is the simple change name, which must be unique. 

·  is a list of parameters of the simple change, where each one is defined with a 

name  which is unique within the change.  

Simple changes are additions, deletions and terminological changes (rename, split, 

merge) of RDF(S) identified entities, which are classes, properties and individuals. As 

it is already stated simple changes are fine-grained, meaning that they cannot be de-

composed into more granular changes. This holds for the changes in the form of addi-

tions/deletions, but not for terminological changes, as they can be expressed in terms 

of additions/deletions plus some extra conditions. For example, a class rename can be 

considered as an add class plus a delete class, where these two classes have the same 

"neighborhood" (defined properties, connections to classes). However, we prefer them 

to be considered as simple changes in order to distinguish at simple change level "re-

al" additions and deletions from "virtual" ones representing terminological changes. 

As a result, simple changes' set is not minimal.  

An actual simple change instance is identified through a detection process (as de-

scribed in [9]) and is defined as the instantiation of the change parameters with actual 

values. As an example of simple change instances consider the ones given in Table 1. 



Table 2. Simple Changes on RDF(S) knowledge bases. 

Add_Type_Class(a) Add object a of type rdfs:class. 

Delete_Type_Class(a) Delete object a of type rdfs:class. 

Rename_Class(a) Rename class a to b. 

Merge_Classes(A, b) Merge classes contained in A into b. 

Merge_Classes_Into_Existing(A, b) Merge classes contained in A into b, where bÎA. 

Split_Class(a, B) Split class a into classes contained in B. 

Split_Class_Into_Existing(a, B) Split class a into classes contained in B, where aÎB. 

Add_Type_Property(a) Add object a of type rdf:property. 

Delete_Type_Property(a) Delete object a of type rdf:property. 

Rename_Property(a, b) Rename property a to b. 

Merge_Properties(A, b) Merge properties contained in A into b. 

Merge_Properties_Into_Existing(A, b) Merge properties contained in A into b, where bÎA. 

Split_Property(a, B) Split property a into properties contained in B. 

Split_Property_Into_Existing(a, B) Split property a into properties contained in B, where aÎB. 

Add_Type_Individual(a) Add object a of type rdfs:resource. 

Delete_Type_Individual(a) Delete object a of type rdfs: resource. 

Rename_Individual(a, b) Rename individual a to b. 

Merge_Individuals(A, b) Merge individuals contained in A into b. 

Merge_Individuals_Into_Existing(A, b) Merge individuals contained in A into b, where bÎA. 

Split_Individual(a, B) Split individual a into individuals contained in B. 

Split_Individual_Into_Existing(a, B) Split individual a into individuals contained in B, where aÎB. 

Add_Superclass(a, b) Parent b of class a is added. 

Delete_Superclass(a, b) Parent b of class a is deleted. 

Add_Superproperty(a, b) Parent b of property a is added. 

Delete_Superproperty(a, b) Parent b of property a is deleted. 

Add_Type_To_Individual(a, b) Type b of individual a is added. 

Delete_Type_From_Individual(a, b) Type b of individual a is deleted. 

Add_Property_Instance(a1, a2, b) Add property instance of property b. 

Delete_Property_Instance(a1, a2, b) Delete property instance of property b. 

Add_Domain(a, b) Domain b of property a is added. 

Delete_Domain(a, b) Domain b of property a is deleted. 

Add_Range(a, b) Range b of property a is added. 

Delete_Range(a, b) Range b of property a is deleted. 

Add_Comment(a, b) Comment b of object a is added. 

Delete_Comment(a, b) Comment b of object a is deleted. 

Change_Comment(u, a, b) Change comment of resource u from a to b. 

Add_Label(a, b) Label b of object a is added. 

Delete_Label(a, b) Label b of object a is deleted. 

Change_Label(u, a, b) Change label of resource u from a to b. 

Definition 2: A simple change instance of a simple change , is a tuple  

where  is the instantiation of the parameters in . 



In many cases, many simple changes are performed together, formulating a logical 

unit. In such cases, simple changes are not adequate for understanding evolution, as 

they are too granular. Also, understanding evolution may vary depending on the user's 

perspective. For these reasons, we introduce complex changes, as user-defined chang-

es that group simple or other complex changes. Definition 3 provides a formal defini-

tion for complex changes.  

Definition 3: A complex change is a quadruple , where: 

·  is the complex change name, which must be unique and different from the re-

served simple change names. 

·  is the list of parameters of the complex change, where each one is defined with a 

name  which is unique within the change. 

·  is a set of simple ( ) and complex changes ( ) that the complex change com-

prises of, where , and . 

·  is a set of constraints ( ) and bindings ( ). Constraints have to be verified in 

order a complex change to be detected. There are two types of constraints defined 

over changes: (i) cardinality constraints, (ii) exclusiveness constraints. There are 

three types of constraints defined over parameters of changes participating in : (i) 

testing value constraints, (ii) pre-conditions and post-conditions, (iii) relational 

constraints. Bindings indicate how complex change parameters are evaluated. 

Complex changes that are defined in terms of simple changes only are considered 

to be of level 0. Those that are defined in terms of simple changes and complex 

changes of level 0 are considered to be of level 1, etc.  

Defined constraints ( ) specialize the meaning of the complex change. A cardinal-

ity constraint states the number of actual change instances of a specific type the com-

plex change comprises of. An exclusiveness constraint states whether the respective 

change instances can be shared with others. A testing value constraint poses a value 

constraint on a parameter, while a relational constraint interrelates change parameters. 

Pre- and post- conditions state conditions that should hold in the version before or 

after the complex change respectively.  

Each defined complex change can be evaluated over a set of simple change in-

stances and respective dataset versions, resulting in possible complex change instanc-

es. The process of calculating possible complex change instances constitutes complex 

change detection. Definition 4 defines complex change instances. As an example of 

complex change instances consider those in Table 1. Definition 5 defines when a 

complex change instance is detected.  

Definition 4: A complex change instance of a complex change , is a tu-

ple  where  is the instantiation of the parameters in . 

Definition 5: Let  be a set of simple changes and  respective simple change in-

stances for two dataset versions  and . Also, let  be a defined 

complex change.  

· A complex change instance , where , is detected over  iff there 

is a mapping  such that  and  evaluates true for ,  

and . 



· A complex change instance , where  a set of defined complex 

changes and  respective complex change instances, is detected over  iff 

there is a mapping  such that  and  evaluates 

true for ,  and . 

Complex change instances may be interrelated, as a complex change may be de-

fined on another or share a common part. On the other hand, complex change instanc-

es may not be allowed to be interrelated due to exclusiveness constraints. Consequent-

ly, instances become mutually exclusive resulting in alternative results. Definitions 6, 

7 and 8 define possible relations between change instances. 

Definition 6: Let  be a complex change instance of a complex change 

.  

· We say that  contains the simple and complex change instances in .  

· We say that  contains exclusively the simple and complex change instances in 

 for which exclusiveness constraints are defined in . 

Note that the property of (exclusive) containment is transitive. Therefore, a com-

plex change instance  containing (exclusively) a complex change instance  con-

tains (exclusively) all the change instances contained by  too.  

Definition 7: Let  and  be two complex change instances that  does not con-

tain  and vice versa. They are conflicting iff they both contain at least one common 

simple or complex change instance which must be exclusively contained in at least 

one of them. 

Definition 8: Let  and  be two complex change instances that  does not con-

tain (exclusively)  and vice versa. They are overlapping iff they both contain at least 

one common simple or complex change instance and they are not conflicting. 

Notice that complex change instances may construct a hierarchy over simple 

change instances, as one may contain or overlap with another, while conflicts may 

lead to alternative sets of detected instances.  Note that the relationship between com-

plex change instances given in Table 1 depends on how complex changes are defined 

and will be further clarified in next section. 

4 A language for defining complex changes 

In this section we provide a declarative language for defining complex changes. We 

provide the syntax by means of its EBNF specification and a number of examples in 

order to illustrate its usage.  

Complex change definition. It is always composed by a heading and a body. The 

heading contains the complex change name and a parameter list. The parameter list is 

a non-empty, comma separated list of parameter names. The body contains: (i) a list 

of changes that the complex change comprises of, (ii) parameter bindings declaring 

how complex change parameters are evaluated (which are optional) and (iii) con-

straints on the parameters of changes that appear in the change list (which are optional 

too). Regarding constraints, in the selection filter list testing value constraints are 



listed, in the relational filter list relational constraints are listed and in the version 

filter list pre- and post- conditions are listed.  

complex-change-definition = 'CREATE COMPLEX CHANGE' heading '{' body '}' ';' ; 

heading = name '(' parameter-list ')' ;  

parameter-list = identifier { ', ' identifier } ;  

body = change-list [';' binding-list] [ ';' selection-filter-list ] [ ';' relational-filter-list ] [ ';' version-filter-list ] ';' ; 

name = STRING ; 

identifier = LETTER { LETTER | DIGIT } ;  

Change list. It comprises of the changes that the defined complex change groups. 

The change list is a non-empty, comma separated list of changes plus optionally some 

declarations which are attributed to each change. These declarations pose cardinality 

or exclusiveness constraints. Each change is declared by its heading. Simple changes 

or other already defined complex changes may be in the list. 

change-list = 'CHANGE LIST' change { ', ' change } ;  

change = change-heading [ cardinality ] [ exclusiveness ] ; 

change-heading = change-name '(' parameter-list ')' ;  

change-name = name | NAMES OF SUPPORTED SIMPLE CHANGES ; 

Cardinality constraints. They define the number of change instances of a specific 

type that have to be grouped into a complex change. Posing a cardinality constraint is 

optional, assuming that if it is not defined the default case is one change instance. The 

following cases are distinguished: (i) at least one change ("+"), (ii) zero or one change 

("?"), (iii) zero or more changes ("*"). Allowing zero changes implies that the specific 

change is optional, i.e. it might not be detected while the complex change is still pos-

sible to be detected. Therefore, a complex change definition is tolerant in partially 

performed modifications that are considered of minor significance. 

cardinality = '+' | '?' | '*' ; 

Exclusiveness constraints. They define whether the instances of a change can be 

contained by multiple complex changes instances. The following are distinguished: (i) 

If an instance  of a complex change  contains exclusively an instance  of a simple 

change , then  cannot be contained in any other instance  of any complex change, 

except from those  that contain  too. (ii) If an instance  of a complex change  

contains an instance  of a simple change  without explicitly declaring an exclusive-

ness constraint, then  is considered non-exclusively contained. (iii) If an instance  

of a complex change  contains exclusively an instance  of a complex change , 

then it contains exclusively all change instances contained in  too. (iv) If an instance 

 of a complex change  contains an instance  of a complex change  without ex-

plicitly declaring an exclusiveness constraint, then for all change instances contained 

in  the exclusiveness constraints declared in  are considered. 

exclusiveness = 'ex' ; 

Binding List. It comprises of rules that define how the complex change parameters 

are evaluated. A change parameter may evaluate either into a scalar value or a set of 

values. Despite that parameters evaluating into scalar values may be considered as 

evaluating into a set of cardinality equal to one, we make the above assumption in 

order to be able to write conditions on these parameters in a more intuitive and con-

cise way. In order to distinguish the parameter types, parameters that evaluate into 



scalar values should start with a lowercase letter, while those that evaluate into sets 

should start with an uppercase letter.  

A complex change parameter may be equal to another, which is defined into the 

body as a parameter of a contained change. In case of a parameter evaluating into a 

set, it may also be equal to the union of the parameter values of a change with a cardi-

nality constraint allowing multiple instances (+, *). Parameter bindings are optional, 

in case they can be inferred by repeating each parameter into the contained changes 

and respective constraints.  

binding-list = 'BINDING LIST' binding { ', ' binding } ; 

binding = binding-equality | binding-union ; 

binding-equality = identifier '=' identifier ; 

binding-union = 'for each' identifier ':' identifier '=' identifier 'union' identifier ; 

Testing value constraints. They restrict a parameter value against given constants. 

─ For a scalar parameter  a testing value constraint is in the form: , where  is a 

boolean expression that may contain (i) binary operators ( ) between 

 and a constant , (ii) predefined functions (e.g. for posing constraints on strings) 

over , (iii) logical , , .  

─ For a parameter  that evaluates into a set of values a testing value constraint is in 

the form: , where  is a boolean expression that may contain (i) binary set op-

erators ( ) relating  with a given set , (ii) existential or universal 

quantifiers, (iii) logical , , . Quantifiers are used to write constraints on 

set's elements, which actually are scalar values. Therefore, suitable constraints on 

set's elements are those for scalar parameters. 

In each selection-filter a cardinality prefix may be optionally defined (notice "card-

prefix" in the selection filter fragment in the following EBNF part). This is useful if 

the constraint is defined over a parameter of a change with cardinality constraint '+' or 

'*'. In this case, the constraint may be verified for each, some or any of the instances. 

Examples of testing value constraints are the following: , 

, , , , 

, etc. 

selection-filter-list = 'SELECTION FILTER' selection-filter { ', ' selection-filter } ; 

selection-filter = [ card-prefix ] [ quantifier ] sel-or-expr ; 

card-prefix = 'for' ('each' | 'some' | 'any') identifier ':' ; 

quantifier = 'for' ('each' | 'some' | 'any') identifier ('in' | 'not in') identifier ':' ; 

sel-or-expr = sel-and-expr { '||' sel-and-expr } ; 

sel-and-expr = sel-neg-expr { '&&' sel-neg-expr } ; 

sel-neg-expr = sel-expr | ('!' sel-expr ) ; 

sel-expr = sel-bracketed-expr | sel-bin-expr | sel-function ; 

sel-bracketed-expr = '(' sel-or-expr ')' ; 

sel-bin-expr = identifier bin-operator constant ; 

bin-operator = '=' | '!=' | '>' | '<' | '>=' | '<=' | 'subSet' | 'properSubset' | 'superSet' | 'properSuperset' ; 

constant = set | value ; 

set = '{' value-list '}' ; 

value-list = value { ', ' value } ; 



value = URI | LITERAL ; 

sel-function = CALL OF PREDEFINED FUNCTIONS ; 

Relational constraints. They restrict a parameter value by relating it with another 

parameter. 

─ For two scalar parameters  and  a relational constraint is in the form: 

, where  is a boolean expression having the same expressiveness with 

testing value constraints on scalar parameters.  

─ For two parameters  and  evaluating into sets, a relational constraint is in the 

form , where  is a boolean expression having the same expressiveness 

with testing value constraints on parameters evaluating into sets. Note that quanti-

fiers can be used to write conditions interrelating sets element by element. 

─ For a scalar parameter  and a parameter  evaluating into a set a relational con-

straint is in the form  or . 

As in selection filters, cardinality prefixes ("card-prefix-list" fragment) may be op-

tionally defined. Examples of relational constraints are the following: 

, , , 

, etc. 

relational-filter-list = 'RELATIONAL FILTER' relational-filter { ', ' relational-filter } ; 

relational-filter = [ card-prefix-list ] [ quantifier-list ] rel-or-expr ; 

card-prefix-list = 'for' ('each' | 'some' | 'any') identifier ':' { 'for' ('each' | 'some' | 'any') identifier ':' } ; 

quantifier-list = 'for' ('each' | 'some' | 'any') identifier ('in' | 'not in') identifier ':' { 'for' ('each' | 'some' | 'any') 

identifier ('in' | 'not in') identifier ':' } ; 

rel-or-expr = rel-and-expr { '||' rel-and-expr } ; 

rel-and-expr = rel-neg-expr { '&&' rel-neg-expr } ; 

rel-neg-expr = rel-expr | ('!' rel-expr ) ; 

rel-expr = rel-bracketed-expr | rel-bin-expr | rel-function ; 

rel-bracketed-expr = '(' rel-or-expr ')' ; 

rel-bin-expr = identifier rel-bin-operator identifier ; 

rel-bin-operator = bin-operator | 'in' | 'not in' ; 

rel-function = CALL OF PREDEFINED FUNCTIONS ; 

Pre- and post- conditions. They state that a triple must or must not exist in the ver-

sion before or after the change. In place of subject, predicate or object scalar parame-

ters may be. In case of parameters evaluating into sets, conditions on their elements 

are supported, using quantified expressions. Note that, some triples may be inferred in 

a version. The flag "inferred" is optionally defined for declaring that the triple may 

not be explicitly stated in a dataset version. In case inference is not explicitly stated, 

the default operation is not checking the inferred triples. Examples of pre- and post- 

conditions are the following: , 

. 

version-filter-list = 'VERSION FILTER' version-filter { ', ' version-filter } ; 

version-filter = [ card-prefix-list ] [ quantifier-list ] ver-or-expr ; 

ver-or-expr = ver-and-expr { '||' ver-and-expr } ; 

ver-and-expr = ver-neg-expr { '&&' ver-neg-expr } ; 

ver-neg-expr = ver-expr | ('!' ver-expr ) ; 



ver-expr = ver-bracketed-expr | ver-tr-expr ; 

ver-bracketed-expr = '(' ver-or-expr ')' ; 

ver-tr-expr = '{' triple '}' [ inference ] ('in' | 'not in') ('Vb' | 'Va') ; 

inference = 'inferred' ; 

triple = '(' id-or-val ', ' id-or-val ', ' id-or-val ')' ; 

id-or-value = identifier | value ; 

Next we provide examples of complex change definitions. Table 3 summarizes the 

definitions of the complex changes regarding Fig.1 and Table 1, while Table 4 pro-

vides some alternative definitions. First we discuss changes of Table 3. 

Add_Definition models the case where a new definition property with value d is as-

signed to a class c. It comprises of a simple change Add_Property_Instance and a 

selection filter restricting the parameter type. Note that any binding is defined, as they 

are inferred by repeating the complex change parameters into the body. 

Add_Annotated_Class models the case where a new class is added and annotated 

with a label and optionally with a definition property. It comprises of the simple 

changes Add_Type_Class and Add_Label, and optionally the complex change 

Add_Definition, as it is denoted by the "?" cardinality constraint. Instead of writing 

relational constraints, the parameter c is repeated among Add_Type_Class, Add_Label 

and Add_Definition, indicating that they all refer to a specific class. 

Add_Class_to_Hierarchy models the case where an annotated class is added and 

positioned into a class hierarchy, having at least one superclass and one subclass. It 

groups Add_Annotated_Class and multiple instances of Add_Superclass simple 

changes that connect the added class to its superclasses and subclasses. The fact that 

the added class may be connected to one or more superclasses and subclasses is de-

noted by a "+" cardinality constraint besides Add_Superclass. For the complex change 

parameters Superclasses and Subclasses suitable bindings are defined, evaluating into 

the set of all superclasses (supC) and subclasses (subC) of c respectively. 

Move_Property_to_Upper_Class models the case where a common property of a 

set of classes is moved to a common ancestor class, and it is used in the definition of 

Add_Generalization_Class. It comprises the simple change Add_Property_Instance 

and one or more instances of Delete_Property_Instance, one for each class being 

annotated with the specific property and value. Notice that a version filter is defined, 

declaring that the classes which are initially annotated with the moved property are 

subclasses of the new class holding the property. The keyword "inferred" states that 

the property may be moved to an ancestor class rather a direct parent class.  

Add_Class_Generalization models the case where a newly added class serves as a 

generalization class for a set of Subclasses. Initially, each subclass was connected to 

each superclass. This is expressed by a pre-condition constraint in the first version 

filter. This is not the case after the change, as these connections are deleted. This is 

expressed by a post-condition constraint in the second version filter, while also De-

lete_Superclass simple changes for the respective connections are considered. Notice 

the relational constraints that limit grouped Delete_Superclass changes to those refer-

ring to mentioned connections. The subclasses are connected through the generaliza-

tion class with the superlasses, as it is shown by the Add_Class_to_Hierarchy com-

plex change. Also, any common parameters of the subclasses are optionally moved to  



Table 3. Complex change definitions on EFO data of Fig. 1. 

CREATE COMPLEX CHANGE Add_Definition (c, d) { 

CHANGE LIST Add_Property_Instance(c, d, p); 

SELECTION FILTER p='efo:definition';   }; 

CREATE COMPLEX CHANGE Add_Annotated_Class (c, l, d) { 

CHANGE LIST Add_Type_Class(c), Add_Label(c, l), Add_Definition(c, d) ?;   }; 

CREATE COMPLEX CHANGE Add_Class_to_Hierarchy (c, l, Subclasses, Superclasses) { 

CHANGE LIST Add_Annotated_Class (c, l, d), Add_Superclass (c, supC) +, Add_Superclass (subC, c) +; 

BINDING LIST for each supC: Superclasses= Superclasses union supC, for each subC: Subclasses= Sub-

classes union subC;   }; 

CREATE COMPLEX CHANGE Move_Property_to_Upper_Class (C, a, p) { 

CHANGE LIST Add_Property_Instance (a, p, v), Delete_Property_Instance (c, p, v) +; 

BINDING LIST for each c: C=C union c; 

VERSION FILTER for each c: {(c, rdfs:subClassOf, a)} inferred in Va;   }; 

CREATE COMPLEX CHANGE Add_Class_Generalization (c, l, Subclasses)   { 

CHANGE LIST Add_Class_to_Hierarchy (c, l, Subclasses, Superclasses), Move_Property_to_Upper_Class 

(Subclasses, c, p) *, Delete_Superclass (subC, supC) +; 

RELATIONAL FILTER for each subC: subC in Subclasses, for each supC: supC in Superclasses; 

VERSION FILTER for each x in Subclasses: for each y in Superclasses: {(x, rdfs:subClassOf, y)} in Vb, for 

each x in Subclasses: for each y in Superclasses: {(x, rdfs:subClassOf, y)} not in Va;   }; 

the generalization class. This is stated by assuming zero or more ("*") 

Move_Property_to_Upper_Class complex changes. Suitable parameters are used to 

demonstrate the initial and final classes holding the property.  

Note that Add_Class_Generalization definition could be more flexible or restric-

tive regarding the pre- and post-conditions of superclasses and subclasses. A more 

flexible alternative would be if some of the Superclasses are connected to some of the 

Subclasses in the previous version. Thus, the change may be detected even if there are 

new superclasses and subclasses of the generalization class c added in the next ver-

sion. In this case, the first version filter should be altered into: for some x in Sub-

classes: for some y in Superclasses: {(x, rdfs:subClassOf, y)} in Vb. A more restric-

tive alternative would be if all the subclasses are not connected to any other supeclass 

except from those in Superclasses. In this case, the following version filter should be 

included in the definition: for any x in Subclasses: for any y not in Superclasses: {(x, 

rdfs:subClassOf, y)} in Vb. A similar version filter should hold for Va. 

Given these definitions, the complex change instances in Table 1 can be detected. 

A hierarchy of complex change instances is constructed: Add_Generalization_Class 

instance contains Add_Class_to_Hierarchy instance, which in turn contains 

Add_Annotated_Class instance, which contains Add_Definition instance. 

Another approach would be reporting alternative change instances, instead of a hi-

erarchy. In this way alternative interpretations of evolution are provided. For exam-

ple, it would be preferable to receive either the addition of an annotated class into a 

hierarchy of classes or the addition of a generalization class. Therefore, the instances 

Add_Class_to_Hierarchy and Add_Generalization_Class should be reported as alter-

natives. This is feasible by modifying the definitions of Add_Annotated_Class and  



Table 4. Alternative complex change definitions on EFO data of Fig. 1. 

CREATE COMPLEX CHANGE Add_Annotated_Class (c, l, d) { 

CHANGE LIST Add_Type_Class(c) ex, Add_Label(c, l), Add_Definition(c, d) ?;   }; 

CREATE COMPLEX CHANGE Add_Class_Generalization (c, l, Subclasses)   { 

CHANGE LIST Add_Annotated_Class (c, l, d), Add_Superclass (c, supC) +, Add_Superclass (subC, c) +, 

Move_Property_to_Upper_Class (SubC, c, p) *, Delete_Superclass (sub, sup) +; 

BINDING LIST for each subC: Subclasses= Subclasses union subC; 

RELATIONAL FILTER for each sub: for some subC: sub=subC, for each sup: for some supC: sup=supC for 

each subC: for each SubC: subC in SubC; 

VERSION FILTER for each subC: for each supC: {(subC, rdfs:subClassOf, supC)} in Vb, for each subC: for 

each supC: {(subC, rdfs:subClassOf, supC)} not in Va;   }; 

Add_Generalization_Class as in Table 4. Add_Type_Class is contained exclusively 

into Add_Annotated_Class, given the exclusiveness constraint "ex" besides the 

change. Add_Class_Generalization is defined in terms of Add_Annotated_Class, 

while the rest changes of Table 3 remain immutable. As a result, the instances of 

Add_Annotated_Class, Add_Class_to_Hierarchy and Add_Class_Generalization 

contain exclusively the Add_Type_Class instance. Also, Add_Class_to_Hierachy 

instance and Add_Class_Generalization instance are conflicting and constitute alter-

native instances when referring to the same added class c. 

5 Complex change detection 

Complex change detection is the process of identifying complex change instances 

between two dataset versions. It is divided into two parts. The first part detects com-

plex change instances, taking into consideration the complex change definition ex-

cluding exclusiveness constraints. This process requires as input a set of simple 

change instances between two dataset versions (for this we rely on [9]), as well as the 

actual dataset versions. The second part identifies conflicting complex change in-

stances and alternative sets of complex change instances, taking into account the de-

tected instances of the first step and exclusiveness constraints. 

Regarding the first part, we consider that detected change instances are represented 

in an RDF graph. For each change instance the change type, its parameters and re-

spective values, as well as (exclusively) contained change instances are recorded 

(similarly to [11]). Each complex change definition is evaluated over the RDF graph 

of already detected instances and the version before or after the changes.  

Our first baseline approach for detecting the instances of a complex change  over 

an RDF graph of detected simple change instances , given two RDF(S) graphs  

and  of dataset versions is described in Algorithm 1. The instances of each change 

in the definition of  are selected one-by-one via a SPARQL query on , taking into 

consideration selection and version filters defined on its parameters. In case of com-

plex changes  in the definition of , the algorithm repeats recursively for . The 

selected instances are combined given the relational and version filters defined be-

tween their parameters, resulting in the complex change instances.  



Algorithm 1. Detect complex change instances of  - Baseline approach 

INPUT: Definition of a complex change , RDF graph of detected simple change instances , RDF(S) dataset 

versions  and  

OUTPUT: RDF graph  of detected complex change instances of  

Step 1. If there are simple changes in the definition of , then do Step 1.1, else proceed in Step 2. 

Step 1.1. For each simple change  in the definition of , select all simple change instances of type  from  

that verify the selection and version filters defined only on the parameters of . Let  be the RDF graph of the 

selected instances of type .  

Step 2. If there are complex changes in the definition of , then do Step 2.1-2.2, else proceed in Step 3. 

Step 2.1. For each complex change  in the definition of , if the respective complex change instances  are 

computed, continue in Step 2.2. Else repeat Step 1 for each , considering  as .  

Step 2.2. For each complex change  in the definition of , select all complex change instances from  that 

verify the selection and version filters defined only on the parameters of . Delete the initial  and let  be 

the RDF graph of the selected instances. 

Step 3. Combine the graphs of selected change instances . 

Step 3.1. Select from  and  all the change instances that verify the relational and version filters defined only 

on the parameters of the respective changes. Delete the initial  and  and let , , ...,  be the RDF graphs 

where each one contains the selected change instances from  and  that verify the constraints.  

Step 3.2. Repeat Step 3 for each , , ...,  until all the graphs per set are 

combined into one graph . 

Step 4. For each combined graph  create a complex change instance, evaluating its parameters given the 

bindings in its definition and the change instances it contains which are in .  

Step 5. Return , the graph of the detected complex changes instances of . 

An optimized approach is given in Algorithm 2. It proposes selecting as many 

changes in  as possible in a combined manner from  and RDF graphs  of already 

detected complex change instances, for fetching the change instances that verify se-

lection, relational and version filters defined on the respective parameters. Then the 

intermediate results are combined. In this way, the number of queries is reduced, by 

posing more complex queries. However, a question is whether this method is applica-

ble to all possible defined complex changes. In order to answer this question we have 

to consider how changes are grouped given cardinality constraints and prefixes. For 

example, the following cases are suitable for selecting all together the respective 

changes, taking into account the constraints between them. 

1. A change  with cardinality 1 and a set of changes  where each one has cardinali-

ty 1 or "?". There might be further constraints between changes in . 

2. A change  with cardinality 1 and a set of changes  where each one has cardinali-

ty "+" or "*" and its parameters are related to the parameters of  only with prefix-

es "for each" or "for any". There might be further constraints over the changes in  

or between them.  

3. A change  with cardinality "+" or "*" and a set of changes  where each one has 

cardinality "+" or "*" and its parameters are related to the parameters of  only 

with prefixes "for each" or "for any". There might be further constraints over the 

changes in  or between changes in . 

However, typically a set of complex changes  are to be detected. In order to de-

tect all complex changes in , Algorithm 1 or 2 must run for each complex change in 

. Consider that some complex changes have common patterns in their definitions. 

This means that they may comprise of same changes, or have the same constraints on 

their parameters, or may be interrelated with the same relational constraints. A typical  



Algorithm 2. Detect complex change instances of  - Grouping changes 

INPUT: Definition of a complex change , RDF graph of detected simple change instances , RDF(S) dataset 

versions  and  

OUTPUT: RDF graph  of detected complex change instances of  

Step 1. If there are complex changes in the definition of , then do Step 1.1, else proceed in Step 2.1. 

Step 1.1. For each complex change  in the definition of , if the respective complex change instances  are 

computed, continue in Step 2.1. Else repeat Step 1 for each , considering  as .  

Step 2.1. For a change  and a (maximal) set of changes  in the definition of  that follow the rules 1, 2 or 3, 

select all change instances of  and changes in  from  and the computed graphs of complex change instances 

 that verify the selection, relational and version filters defined only on their parameters. Let , , ...,  

be the RDF graphs where each one contains the selected change instances that verify all constraints.  

Step 2.2. Repeat Step 2.1 for the remaining changes of  (i.e. excluding  and those in ) until any change in  
remains or neither rule 1 nor rule 2 or 3 holds. 

Step 2.3. If there are still remaining changes of , then for each change  select all change instances from  or 

 that verify selection and version filters defined only on its parameters. Let  be the RDF graph of the se-

lected change instances of type . 

Step 3. Create all possible sets of selected change instances , by taking all possible combinations 

of the RDF graphs computed for each change  in Step 2.1, and adding in each set the graphs computed in Step 

2.3. For each set combine the graphs, do Step 3.1-3.2. 

Step 3.1. Select from  and  all the change instances that verify the relational and version filters defined only 

on the parameters of the respective changes. Delete the initial  and  and let , , ...,  be the RDF graphs 

where each one contains the selected change instances from  and  that verify the constraints.  

Step 3.2. Repeat Step 3 for each , , ...,  until all the graphs per set are 

combined into one graph . 

Step 4. For each combined graph  create a complex change instance, evaluating its parameters given the 

bindings in its definition and the change instances it contains which are in .  

Step 5. Return , the graph of the detected complex changes instances of . 

common pattern example is complex changes. If we overlook this remark, the pre-

sented algorithms lead in computing the common patterns once for each complex 

change that comprises them, leading to an overhead in the detection performance.  

In order to avoid this, a preprocessing step for identifying the common patterns be-

tween complex change definitions is needed. Algorithm 1 or 2 can be used in order to 

compute the respective graphs of instances for each pattern. Next, each complex 

change  in  is detected based on similar algorithms being amended so that Step 1 

and 2 are performed for the changes in  excluding any common patterns and Step 3 

takes into account already constructed graphs for the common patterns. 

Next we proceed in the second step, identifying conflicting instances and find pos-

sible alternative solutions, in order to evaluate exclusiveness constraints. For demon-

strating and resolving conflicting complex change instances we construct a graph 

named exclusiveness graph . Every node in  represents a detected complex 

change instance. Every edge in  connects two nodes representing conflicting in-

stances. A maximal independent set of an exclusiveness graph  is a set of complex 

change instances where any pair of them is conflicting. Calculating all possible sets of 

non-conflicting complex change instances is reduced into listing all maximal inde-

pendent sets of . This is a known graph problem, equivalent to listing all maximal 

cliques in the complementary graph . 

Algorithm 3 describes how an exclusiveness graph  is constructed given an RDF 

graph of detected (simple and complex) change instances . The set of nodes  

equals the union of all detected complex change instances in  (line 3). In order to 

construct the set of edges  the following steps are followed: For each complex 

change instance  in  that contains exclusively change instances, the ancestors  



Algorithm 3. Exclusiveness graph construction 

INPUT: RDF graph of detected complex and simple change instances  

OUTPUT: Exclusiveness graph  for  

1  

2 for each complex change instance  do 

3    

4   if  contains exclusively changes then 

5      

6     for each change instance  s.t.  contains exclusively  do 

7       if  is a simple change instance then 

8          

9         for each complex change instance  s.t. , ,  contains/contains exclusively do 

10          , ,  
11        end for 

12       for each  do for each  do  end for end for 

14      else 

15        

16        

17       for each  do 

18          

19         for each complex change instance  s.t. , ,  contains/contains exclusively do 

20           , ,  
21         end for 

22         for each  do for each  do  end for end for 

23       end for 

24      end if 

25    end for 

26  end if 

27end for 

28 return  

of  are found using  function (lines 2-5). The ancestors are complex 

change instances that (exclusively) contain  or any parent of them in the hierarchy of 

changes. They are stored in variable  together with . Then for each simple change 

instance  that  contains exclusively, complex change instances  (different from  

and its ancestors) that (exclusively) contain  are found, as well as all its ancestors 

( ) (lines 7-10). Only the uncommon ancestors with those of  have to be taken 

into consideration in , as these are the conflicting ones (line 10).  summariz-

es all complex change instances  and all their uncommon ancestors with  (line 10). 

Therefore, all combinations of elements of  and  are conflicting, and for these 

edges have to be added into  (line 12). Respectively, for each complex change in-

stance  that  contains exclusively, all simple ( ) and complex change ( ) descend-

ant instances are found by  function (line 16). The descendant 

instances are those contained by  or by any of its children in the hierarchy of chang-

es. Then each simple change instance in  is handled as in previous (lines 18-20).  

Notice that in case there is a hierarchy of complex change instances with at least 

one exclusive containment declaration between them, some simple changes may be 

checked multiple times depending on the number of ancestor complex change in-

stances. In order to avoid this, already checked changes may be marked with suitable 

flags. Also, the implementation of  and  func-

tions is trivial and thus omitted.  



6 Conclusions 

In this paper we have argued that treating changes as first class citizens is a central 

issue regarding evolution management. In our view this involves modeling, defining 

and detecting complex changes. In this way semantic rich changes are employed for 

understanding evolution and multiple interpretations of evolution can be supported. 

We proposed our perception regarding complex changes, as well as a declarative lan-

guage for defining complex changes for RDF(S) knowledge bases. Also, we provided 

algorithms for detecting possible complex change instances. Future work is directed 

in implementing the above ideas and evaluating them over real cases in order to 

demonstrate the language expressiveness as well as the efficiency of detection alterna-

tives. 
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