

* Supported by the EU-funded ICT project "DIACHRON" (agreement no 601043).

+ Supported by the European Union (European Social Fund - ESF) and Greek national funds

through the Operational Program "Education and Lifelong Learning" of the National Strategic

Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge

society through the European Social Fund.

Supporting Complex Changes in RDF(S) Knowledge

Bases

Theodora Galani
1+

, Yannis Stavrakas
1*

, George Papastefanatos
1+

, Giorgos Flouris
2*

1Institute for the Management of Information Systems, RC ATHENA, GREECE
2Institute of Computer Science, FORTH, GREECE

{theodora, yannis, gpapas}@imis.athena-innovation.gr,

fgeo@ics.forth.gr

Abstract. The dynamic nature of web data brings forward the need for main-

taining data versions as well as identifying semantically rich changes between

them. In this paper, we advocate the need for supporting complex changes in

evolving RDF(S) knowledge bases. We outline the basic challenges and provide

solution insights through a real-world example from the field of biology.

Keywords: change management, data evolution, rdf(s)

1 Introduction

The increasing amount of information published on the web poses new challenges for

data management. A central issue concerns evolution management, as the dynamic

nature of data brings forward the need for maintaining data versions as well as identi-

fying changes between them. For example, biologists often use ontologies in order to

curate their data from multiple domains of interest like anatomy, diseases, biomedical

investigations, etc. These ontologies are frequently updated as errors may need to be

fixed or new knowledge about the state of the art may need to be incorporated. As a

result, curators of depending ontologies are interested in understanding the evolution

history in order to learn more about the changes that have taken place on the respec-

tive domain of interest.

In this paper, we argue that understanding data evolution should involve high-

level, semantically rich, user-defined changes that we call complex changes. Formal-

izing complex changes involves facing the challenges of modeling, defining, detect-

ing and querying changes. Although the concept of complex changes is not bound to

any specific data model, in this paper we focus on RDF(S) knowledge bases, as RDF

is a de-facto standard for representing data on the web. The goal of this paper is to

highlight the main challenges as well as possible solution insights towards a frame-

work that makes changes first class citizens.

The paper outline is as follows. In section 2 we discuss in detail the challenges for

supporting complex changes. In section 3 we provide an end-to-end real world exam-

ple that demonstrates important aspects of our approach to the aforementioned prob-

lems. Finally, in section 4 we conclude the paper.

2 Challenges and Roadmap

Modeling changes. An approach for modeling changes in RDF(S) knowledge bases

would be determining the added and deleted triples between versions. However, this

is not sufficient for understanding data evolution. Human-readable, high-level chang-

es should be employed. In this case, two basic issues must be taken into consideration.

─ Granularity of changes. Fine-grained or coarse-grained changes? Fine-grained

changes have the advantage of describing primitive changes, while coarse-grained

changes provide more semantics and conciseness by grouping primitive changes in

logical units.

─ Semantics of changes. Model-specific or data- and application- specific changes?

Model-specific changes describe modifications that may appear in a specific repre-

sentation model. They constitute a fixed set of generic changes. On the other hand,

data- or application- specific changes represent user-defined changes that suit on

specific use-case scenarios. Supporting user-defined changes has the advantage of

allowing different interpretations of evolution.

In order to tackle the above issues, we distinguish between simple and complex

changes. Simple changes constitute a fixed set of fine-grained, model-specific chang-

es. Complex changes are coarse-grained, user-defined, application-specific changes.

In previous works [2, 4, 6, 10], various lists of predefined changes have been pro-

posed, usually distinguished into fine-grained and coarse-grained changes. In [6] for-

mal semantics are defined guaranteeing useful properties. In [1] an approach for mod-

eling changes as sequences of triples is proposed.

Defining changes. A declarative language for defining changes is needed for sup-

porting user-defined complex changes. The language expressiveness should be inves-

tigated. A complex change definition should consist of a finite, non-empty list of sim-

ple or (already defined) complex changes, and a set of constraints over these changes.

The supported constraints may filter parameter values, express pre- or post- condi-

tions, relate change parameters, pose cardinality constraints (e.g. there must be at least

one change of a specific type) and allow or not overlaps among changes.

In [8] a language for defining high-level changes, called Change Definition Lan-

guage, has been proposed. Defined changes are detected over a version log [7] using

temporal queries, assuming that the version log is populated as modifications apply.

In [9] a framework for defining changes using SPARQL query features is presented as

an extension of [6].

Detecting changes. As new dataset versions are periodically released, simple and

complex changes can be detected among versions. In [4] a fixed-point algorithm for

comparing ontology versions has been proposed. The algorithm is based on heuristic-

based matchers, introducing uncertainty to the results. On the other hand, in [6] the

detection process does not introduce any uncertainty to the results. In our approach,

we need to identify the rules for mapping complex change definitions into processes

that return instances of the respective change patterns. The performance of the detec-

tion process has to be investigated with respect to the number of changes and the type

of constraints in complex change definitions, as well as the dataset versions’ size and

the number of changes performed between them.

Querying changes. In our view, querying data evolution should be based on data

as much as on changes. Changes, like data, can appear in the query body to express

complex conditions, like the fact that an entity has been modified in a specific man-

ner, or can be returned by the query in order to retrieve explicit change instances.

Some interesting query types that should be supported are the following:

─ Retrieve changes among versions, or restrict selected changes by the type of

change or the elements that they have affected or the versions between which they

are detected.

─ Retrieve elements, given that changes of specific type have affected them at specif-

ic versions.

3 An End-to-End Example

The Experimental Factor Ontology (EFO) [3] provides a systematic description of

many data elements available in EBI
1
 databases, and for external projects. It combines

parts of several biological ontologies regarding anatomy, disease and chemical com-

pounds in order to support data annotation, analysis and visualization. EFO is fre-

quently updated as new classes are added, while others are changed or made obsolete.

Classes in EFO are described by metadata like class label, definition, synonyms, etc.

Consider that a new class is added into the ontology. This class is also assigned

with a class label, a textual definition and synonyms of the class label. The class label

corresponds to rdfs:label annotation property, the textual definition corresponds to the

efo:definition property and the synonym to the efo:alternative-term property. Note

that for simplicity and space limitations we consider only these operations.

Modeling changes. These changes are fine-grained and can be described by mod-

el-specific operations. The addition of a new class can be modeled as

Add_Type_Class(c), where c is the new class. The addition of a new label can be

modeled as Add_Label(c, l), where c is the respective class holding the new label l.

The addition of a new definition or synonym corresponds to an addition of a new

property and can be modeled as Add_Property_Instance(s, p, o), where p is the new

property which is assigned to class s with value o. In our approach, these are simple

changes. We can rely on [6] for defining simple changes by selecting a minimal set of

primitive changes on RDF(S) having the properties of completeness and unambiguity.

Notice that Add_Property_Instance suits all possible properties, while in this sce-

nario the assigned properties are of two specific types: efo:definition and

1 http://www.ebi.ac.uk/

efo:synonym. It is more suitable to have intuitive changes regarding the specific prop-

erties involved, like Add_Definition and Add_Synonym. Also, the discussed modifica-

tions are likely to appear jointly. As a result, it may be useful to demonstrate these

changes as a unit. Therefore, they can be grouped into one change named

Add_Annotated_Class. In our approach, these are examples of complex changes.

Defining changes. The complex changes Add_Definition, Add_Synonym and

Add_Annotated_Class can be defined as follows:

CREATE COMPLEX CHANGE Add_Definition(class, definition) {

 CHANGE LIST Add_Property_Instance(class, prop, definition);

 SELECTION FILTER prop='efo:definition'; };

CREATE COMPLEX CHANGE Add_Synonym(class, synonym) {

 CHANGE LIST Add_Property_Instance(class, prop, synonym);

 SELECTION FILTER prop='efo:alternative_term'; };

CREATE COMPLEX CHANGE Add_Annotated_Class(class, label, defini-

tion, synonym) {

 CHANGE LIST Add_Type_Class(class), Add_Label(class, label),

Add_Definition(class, definition), Add_Synonym(class, synonym)

*; };

The name and parameters of each defined complex change are declared right after the

CREATE COMPLEX CHANGE clause. In the CHANGE LIST clause the contained

simple or complex changes are declared. Note that the asterisk (*) beside

Add_Synonym in Add_Annotated_Class definition indicates that there might be zero,

one, or more such changes, one for each added synonym, posing a cardinality con-

straint. Defining Add_Definition and Add_Synonym includes a constraint, declared in

the SELECTION FILTER clause, filtering the property type. In Add_Annotated_Term,

the parameter name class is used among the contained changes, indicating that they

refer to the same actual class.

Detecting changes. As ontology versions are periodically released, we can identify

the changes that have occurred among versions. Simple changes have to be detected

first. Notice that Add_Definition and Add_Synonym are defined in terms of simple

changes, while Add_Annotated_Class includes complex changes too. Therefore,

Add_Definition and Add_Synonym should be detected first by evaluating their defini-

tions over the detected simple change instances, while Add_Annotated_Class next as

it depends on complex change instances too. Alternatively, Add_Annotated_Class can

be expressed in terms of simple changes, by substituting Add_Definition and

Add_Synonym changes with their definitions. In this way, all complex change defini-

tions can be evaluated over the detected simple change instances. The detected simple

and complex change instances constitute a hierarchy of changes, where the user can

see the changes themselves as well as how they are interconnected.

Querying changes. For querying changes, SPARQL can be extended with suitable

keywords. The following query gives an example of querying changes. It returns all

classes that have been added and annotated between versions 2.45 and 2.46. For this

example, we assume that defined changes and detected instances are represented in an

ontology of changes as in [9]. Notice that the requested classes are the value of

co:aac_p1 parameter of Add_Annotated_Class. Also, change_span is a function that

verifies whether the complex change instance (?c) is detected between the requested

versions. Finally, the FROM CHANGES ON DATASET clause declares that the triples

pattern concerns changes regarding a specific dataset <D>.

SELECT ?class

FROM CHANGES ON DATASET <D>

WHERE {

 ?c rdf:type co:Add_Annotated_Class; co:aac_p1 ?class.

 FILTER change_span(?c BETWEEN VERSION 2.45 AND 2.46). }

4 Conclusions

In this paper we advocated the need for formalizing complex changes over RDF(S)

knowledge bases and outlined the basic challenges that have to be faced to realize our

vision. An example inspired from the biological domain is used to motivate the need

for complex changes and present the basic concepts of a possible solution. Neverthe-

less, supporting complex changes may be useful in any evolving domain.

5 References

1. S. Auer and H. Herre. A versioning and evolution framework for RDF knowledge bases.

In Perspectives of Systems Informatics, 6th International Andrei Ershov Memorial Confer-

ence on, 2007.

2. M. Klein. Change management for distributed ontologies. Ph.D. thesis, Vrije University,

2004.

3. J. Malone, E. Holloway, T. Adamusiak, M. Kapushesky, J. Zheng, N. Kolesnikov, A.

Zhukova, A. Brazma, H. Parkinson. Modeling Sample Variables with an Experimental

Factor Ontology. Bioinformatics 26(8):1112-1118, 2010.

4. N. F. Noy, and M. Musen. PromptDiff: A fixed-point algorithm for comparing ontology

versions. In Proceedings of the 18th National Conference on Artificial Intelligence, 2002.

5. G. Papastefanatos, Y. Stavrakas, and T. Galani. Capturing the history and change structure

of evolving data. 7th International Conference on Advances in Databases, Knowledge, and

Data Applications, 2013.

6. V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos, and V. Christophides. High-level

change detection in RDF(S) KBs. ACM Trans. Database Syst., 38(1), 2013.

7. P. Plessers and O. De Troyer. Ontology change detection using a version log. In Proceed-

ings of the 4th International Semantic Web Conference, 2005.

8. P. Plessers, O. De Troyer, and S. Casteleyn. Understanding ontology evolution: A change

detection approach. J. Web Sem. 5(1): 39-49, 2007.

9. Y. Roussakis, I. Chrysakis, K. Stefanidis, G. Flouris, and Y. Stavrakas. A flexible frame-

work for defining, representing and detecting changes on the data web. CoRR

abs/1501.02652, 2015.

10. L. Stojanovic. Methods and tools for ontology evolution. Ph.D. thesis, University of Karls-

ruhe, 2004.

Capturing the History and Change Structure

of Evolving Data

George Papastefanatos, Yannis Stavrakas, Theodora Galani

IMIS, RC ATHENA

Athens, Greece

{gpapas,yannis,theodora}@imis.athena-innovation.gr

Abstract—Evo-graph is a model for data evolution that

encompasses multiple versions of data and treats changes as

first-class citizens. A change in evo-graph can be compound,

comprising disparate changes, and is associated with the data

items it affects. In previous papers, we have shown that

recording data evolution with evo-graph is very useful in cases

where the provenance of the data needs to be traced, and past

states of data need to be re-assessed. We have specified how an

evo-graph can be reduced to the snapshot holding under a

specified time instance, we have given an XML representation

of evo-graph called evoXML, and we have presented how

interesting queries can be answered. In this paper, we explain

how evo-graph is used to record the history of data and the

structure of changes step by step, as the current snapshot

evolves. We present C2D, a novel framework that implements

the concepts in the paper using XML technologies. Finally, we

experimentally evaluate C2D for space and time efficiency and

discuss the results.

Keywords-data evolution; change modeling

I. INTRODUCTION AND PRELIMINARIES

Data published on the Web undergo frequent changes
due to advancements in knowledge and due to the
cooperative manner of their curation. Users of scientific data,
in particular, would like to go beyond revisiting past data
snapshots, and review how and why the recorded data have
evolved, in order to re-evaluate and compare previous and
current conclusions. Such an activity may require a search
that moves backwards and forwards in time, spread across
disparate parts of a database, and perform complex queries
on the semantics of the changes that modified the data. The
need for accounting for past changes and tracing data lineage
is evident not only in scientific data, but also in a wide range
of web information management domains.

Motivating Example. We will use an example taken from
Biology: the revision in the classification of diabetes, which
was caused by a better understanding of insulin [12].
Initially, diabetes was classified according to the age of the
patient, as juvenile or adult onset. As the role of insulin
became clearer two more subcategories were added: insulin
dependent and non-insulin dependent. All juvenile cases of
diabetes are insulin dependent, while adult onset may be
either insulin dependent or non-insulin dependent. In Fig. 1,
the leftmost image depicts a tree representation of the initial
diabetes classification, while the rightmost the revised
classification. These two representations, however, do not
provide any information about which parts of the data
evolved and how, which changes led from one version to

another, or what changes were applied on which parts of the
data. Recording change operations in a log or discovering
deltas out of successive versions, like many systems do, do
not solve the problem; in most cases isolated operations are
impossible to interpret a posteriori. This is because they
usually form more complex, semantically coherent changes,
each comprising many small changes on disparate parts of
the data.

We argue that in systems where evolution issues are
paramount, changes should not be treated solely as
transformation operations on the data, but rather as first class
citizens retaining structural, semantic, and temporal
characteristics. In previous work, we proposed a graph
model, evo-graph [16], and its XML representation, evoXML
[17], capturing the relationship between evolving data and
changes applied on them. A key characteristic is that it
explicitly models changes as first class citizens and thus,
enables querying data and changes in a uniform way. In what
follows, we discuss some preliminary concepts on evo-graph
and then present the contribution and structure of this paper.

Snap-graph. We assume that data is represented by a
rooted, node-labeled, leaf-valued graph called snap-graph. A
snap-graph S (V, E) consists of a set of nodes V, divided into
complex and atomic, with atomic nodes being the leaves of
the graph, and a set of directed edges E. At any time
instance, the snap-graph undergoes arbitrary changes.

Evo-graph. An evo-graph G is a graph-based model that
captures all the instances of an evolving snap-graph across
time, together with the actual change operations responsible
for the transitions. It consists of the following components:

· Data nodes, divided into complex and atomic: VD =

VD
c
 È VD

a
.

· Data edges depart from every complex data node,

ED Í (VD
c
 ´ VD).

· Change nodes are nodes that represent change
events. Change nodes are depicted as triangles, to
distinguish from circular data nodes. They are
divided into complex and atomic (denoting basic

change operations): VC = VC
c
 È VC

a
.

· Change edges connect every complex change node
to the (complex or atomic) change nodes it

encompasses: EC Í (VC
c
 ´ VC).

· Evolution edges are edges that connect each change
node with two data nodes, specifically the version

before and after the change: EE Í (VD ´ VC ´ VD).
Intuitively, the evo-graph consists of two interconnected

graphs: a data graph comprising the different versions of

Figure 1. Snap Graphs of diabetes classification before (left) and after (right) revision and the corresponding evo-graph (middle).

data, and a tree of changes. The data graph defines the
structure of data, while the change graph defines the
structure of changes. These two graphs interconnect via
evolution edges. Consequently, there are two roots: the data
root, rD, and the change root, rC. Moreover, we annotate
change nodes with a timestamp denoting the time instance
that the specific change occurred. These timestamps are used
for determining the validity timespan of all data nodes and
data edges in the evo-graph. Evo-graph can be reduced to a
snap-graph holding under a specified time instance through
the reduction process [16]. A snap-graph is actually a trivial

case of an evo-graph, consisting of a set of data nodes VÍVD

and a set of data edges EÍED.
As an evo-graph example consider the middle image in

Fig. 1, which represents the revision in the diabetes
classification from the graph of Fig. 1 left to the graph of
Fig. 1 right. The revision process is denoted by the complex
change reorg_diab_cat, (node &21) composed by 5 basic
snap changes (in the order they occurred): clone (node &8),
add (node &11), remove (node &13), create (node &15),
and create (node &18). Note the use of evolution edges; in
the case of add the evolution edge is annotated with the
timestamp 2 and connects node &3 (initial version) with
node &10 (version after adding the child node &6). Node
&10 is still a child of node &2, but for simplicity the
relevant edge is omitted. The reduction of the evo-graph for
T=start results in the snap-graph of the leftmost image of
Fig. 1, while for T=now in the snap-graph of the rightmost
image of Fig. 1. For the complete definitions of basic snap
changes see section 2.1.

EvoXML. In [17] we have shown how evo-graph can be
represented in an XML format, called evoXML. TABLE I.
presents an evoXML example. Due to space limitations, the
evoXML example covers up to time instance 1 of the evo-
graph in Fig. 1; specifically it includes only the clone
operation (node &8) in lines 12-15, 20. Notice that the edge
from node &7 to node &6 (which actually denotes that &6
remains a child of the next version of node &4) is

represented through the evoXML reference evo:ref in line
13, which points to the element in line 10. Also notice how
the change node &8 is represented in line 20.

Querying Evolution. Finally, in [16],[17] we have
outlined evo-path, an XPath extension that help us posing
regular queries over data snapshots as well as time- and
change-aware queries on evo-graph. We have also shown
how evo-path expressions can be evaluated on evoXML via
equivalent XQuery expressions. Evo-path takes advantage of
the complex change information in order to retrieve and
relate data that are otherwise distant and irrelevant to each
other. Queries expressed on evo-graph include:

· Temporal queries on the history of data nodes, like
“which is the structure of categories before the time
instance 6”?
 Evo-path: //Diabetes/categories [ts() not covers {now}]

· Evolution queries on changes applied to data nodes,
like “which changes are associated with the change
responsible for the reorganization of diabetes
categories” (node &21)?
 Evo-path: <//reorg_diab_cat/*>

· Causality queries on relationships between change
nodes and data nodes, like “what are the previous
versions of all data nodes that changed due to the
reorganization of diabetes categories”?
 Evo-path: //* [evo-before() <//reorg_diab_cat>]

Contribution and Structure. In this paper, we first define
a set of basic changes on the snap-graph, and how these can
be combined to construct complex changes (section 2). We
then define a set of basic operations on the evo-graph, and a
translation from snap-graph changes to evo-graph
operations, such that as changes occur on the snap-graph,
the evo-graph grows to represent those changes together
with all the successive snap-graph versions (section 2).
Furthermore, we introduce the C2D framework (section 3), a
prototype system that implements the concepts introduced in
this paper, and progressively builds the evo-graph as
changes take place on the current snap-graph. We present

TABLE I. EVOXML FOR TIME INSTANCE 1.

1

2
3

4

5
6

7

8
9

10

11
12

13

14
15

16

17
18

19

20
21

22

<evo:evoXML xmlns=””

 xmlns:evo=”http://web.imis.athena-innovation.gr/projects/c2d”>
 <evo:DataRoot evo:id=”dataroot”>

 <Diabetes evo:id=”1”>

 <categories evo:id=”2”>
 <cat evo:id=”3”>

 <age evo:id=”5”>juvenile</age>

 </cat>
 <cat evo:id=”4”>

 <age evo:id=”6”>adult onset</age>

 </cat>

 <cat evo:id=”7” evo:ts=”1” evo:previous=”4”>

 <age evo:ref=”6”/>

 <age evo:id=”9”>adult onset</age>

 </cat>

 </categories>

 </Diabetes>
 </evo:DataRoot>

 <evo:ChangeRoot evo:id=”changeroot”>

 <clone evo:id=”8” evo:tt=”1” evo:before=”4” evo:after=”7”/>

 </evo:ChangeRoot>

</evo:evoXML >

and discuss a detailed experimental evaluation of C2D
(section 3). Finally, we review the related work (section 4)
and we conclude the paper (section 5).

II. ACCOMMODATING BASIC AND COMPLEX CHANGES

IN EVO-GRAPH

A. Snap Basic and Complex Change Operations

In this section, we define the basic change operations
applied on a snap-graph S(V,E) (snap changes for short) and
present how they can be employed to define complex
changes. We consider the following snap changes:

· create(v
P
, v, label, value). Creates a new atomic

node v with a given label and value and connects it
with its parent node v

P
. If v

P
 is an atomic node, it

becomes complex.

· add(v
P
, v). Adds the edge (v

P
, v) to E, effectively

adding v as a child node of v
P
. The nodes v

P
, v must

already exist in V. If v
P
 is an atomic node, it

becomes complex.

· remove(v
P
, v). Removes the edge (v

P
, v) from E. If v

has no other incoming edges, it is removed from V.
If v

P
 has no other children, it becomes an atomic

node with the default value (empty string).

· update(v, newValue). Updates the value of an
atomic node v to newValue.

· clone(v
P
, v

source
, v

clone
). Creates a new data node v

clone

with the same label/value as v
source

, and a deep copy
of the subtree under v

source
 as a subtree under the

node v
clone

. The node v
P
 must be a parent of v

source
.

The edge (v
P
, v

clone
) is added to E, making v

clone
 a

sibling of v
source

.
The above definitions describe the effect of each snap

change to the current snap-graph. These changes leave the
snap-graph in any possible consistent state. Note that the
effect of the clone snap-change is to create a deep copy of a
subtree under the same parent node. Although clone can be
expressed as a sequence of other snap changes, we chose to

consider it as a basic operation. The reason is that deep copy
is difficult to express using successive create operations,
while at the same time it is an essential operation for
expressing complex changes like move-to, and copy-to.

A complex change applied on a node of the snap-graph is
a sequence of basic and other complex change operations
that are applied on the node itself or/and the node’s
descendants, and allows us to group operations in
semantically coherent sequences. Applying a complex
change on a snap-graph involves the application of each
constituent change in the order they appear. Consider the
complex change reorg_diab_cat applied on categories node
of the leftmost image of Fig. 1. This change is expressed as a
sequence of five basic snap changes, as follows:

reorg-diab-cat (&2) {
 clone (&4, &6, &9)
 add (&3, &6)
 remove (&4, &6)
 create (&3, &16, “type”, “insulin dependent”)
 create (&4, &19, “type”, “non insulin dependent”) }

B. Capturing Versions and Changes with Evo-graph

In our approach, snap changes are not actually applied on
the snap-graph, but on the evo-graph. This is shown in Fig.
2, which illustrates the effects of snap changes to the evo-
graph. Fig. 2 depicts three images for each snap change; the
leftmost image shows the initial snap-graph before the
change, the rightmost image shows the current snap-graph
after the snap change, and the middle image shows the evo-
graph fragment encompassing both snapshots, together with
the change. Notice that these snap-graph fragments are
actually reductions [16] of the respective evo-graph under
different time instances. Thus, the create operation in Fig. 2
actually causes node &4 to be added under the parent node
&5, and not under &2, as would be the case if create was
applied directly on the snap graph. This is a technical issue
tackled with at the implementation level, and does not
introduce any ambiguities.

In order to implement snap changes on an evo-graph G
we introduce the following evo-graph operations:

· addDataNode (vD
P
, vD, label, value). Creates a new

atomic data node vD as a child of vD
P
 with a given

label and a value. If vD
P
 is an atomic node, it turns

into complex.

· addDataEdge (vD
P
, vD). Creates a new data edge

from node vD
P
 (parent) towards node vD (child). The

two nodes must already exist in VD. If vD
P
 is an

atomic node, it turns into complex.

· applyAtomicChange(vD
1
, vD

2
, value, vC, vC

P
, label,

timestamp). This operation “evolves” node vD
1
 to

node vD
2
, as the result of applying a snap change.

First, a new atomic data node vD
2
 with the same

label as vD
1
 and a given value is created, and is

connected as a child of all the current parents of vD
1
.

Then, a new atomic change node vC with the label
and timestamp is created, and is connected as a child
of node vC

P
єVC

c
. The label denotes one of the snap

changes defined previously. Finally, a new evolution
edge e = (vD

1
, vC, vD

2
) is created between the data

nodes vD
1
, vD

2
 and the change node vC.

...
D

D

...

...

C

B

remove (&2, &4) at T=8

B

A
&1

&2

snap-graph

T=start
snap-graph

T=8

&3

D

&4

B

A
&1

&5

C

&3

evo-graph

T=8

B

A &1

&2

C

&3

D

&4

8

remove

&5

&4

...

...

...

C

B

create (&2, &4, D, 9) at T=2

B

A
&1

&2

snap-graph

T=start
snap-graph

T=2

&3

B

A
&1

&5

C

&3

evo-graph

T=2

A &1

C

&3

D

&4

2

create

&6

&5

&4

99

D

...

...

C

B

add (&2, &4) at T=12

B

A
&1

&2

snap-graph

T=start
snap-graph

T=12

&3

D

&4

B

A
&1

&5

C

&3

evo-graph

T=12

B

A &1

&2

C

&3

D

&4

12

add

&6

&5

&4

...

...

...

B 5

update (&2, 10) at T=5

A

update

&1

&2

5

snap-graph

T=start

B

A

&1

&3

10

snap-graph

T=5

B

&1

&2

5

&4

B

&3

10

evo-graph

T=5

C

...

C

B

clone (&3, &4, &2) at T=3

B

A
&1

&2

snap-graph

T=start
snap-graph

T=3

&3

B

A
&1

&5

C

&3

evo-graph

T=3

B

A &1

&2

C

&3

C

&4

3

clone

&6

&5

&4

...

Effect of snap changes

on evo-graph reduction

for T=start

B &2

reduction

for T=2

reduction

for T=start

reduction

for T=12

reduction

for T=start

reduction

for T=5

reduction

for T=start

reduction

for T=3

reduction

for T=start

reduction

for T=8
&6

Figure 2. Effect of snap change operations on the evo-graph.

· applyComplexChange(vD
1
, vD

2
, vC, vC

p
, label,

timestamp, {vC
1
, vC

2
, ..., vC

n
}). This operation

“evolves” node vD
1
 to node vD

2
, as the result of

applying a complex change operation on the snap-
graph. First, a new atomic data node vD

2
 with the

same label as vD
1
and the default value (empty

string) is created, and is connected as a child of all
the current parents of vD

1
. A new complex change

node vC with the label and timestamp is created,
and is connected as a child of the complex change
node vC

p
єVC

c
. The label is the name of the

complex change and can be any string. After that,
vC is connected as a parent of the change nodes
{vC

1
, vC

2
, ..., vC

n
}. Finally, a new evolution edge

e=(vD
1
, vC, vD

2
) is created between the data nodes

vD
1
, vD

2
 and the change node vC.

Note that we employ two separate evo-graph
operations for applying snap-graph basic and complex
changes. For complex changes, the applyComplexChange
is used, which creates a new complex change node, a new
version for the affected data node, a new evolution edge
connecting the change node and the two data node
versions and finally connects the complex change node as
the parent of its constituent change nodes. For basic
changes, the applyAtomicChange is used, which creates a
new atomic change node, a new version of the data node
that is affected by the change, and a new evolution edge.
The exact implementation of each snap change in terms of
evo-graph operations is given in TABLE II. .

For each snap change in TABLE II. , a timestamp is
given (appears as t) and, if this change is part of a complex
change, the parent complex change (vC

P
) is also specified.

If no parent complex change is specified, we assume the
parent is the change root rC. Note, that all snap change
implementations in TABLE II. start with
applyAtomicChange, which creates the corresponding
change node and the associated data node in evo-graph.

TABLE II. ACCOMMODATING SNAP CHANGES IN EVO-GRAPH.

1

2
3

4

5

create (vD
P, vD, label, value), t, vC

P

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘create’, t);

 for viÎgetCurrentChildren(vD
P)

 addDataEdge (v´D
P,vi);

 // create the new data node and connect it to the new parent node

 addDataNode (v´D
P, vD, label, value); }

1

2
3

4

add (vD
P, vD), t, vC

P

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘add’, t);

 //connect the new parent node to all current children plus vD

 for viÎ(getCurrentChildren(vD
P)ÈvD)

 addDataEdge (v´D
P,vi) ; }

1
2

3

4

remove (vD
P, vD), t, vC

P

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘remove’, t);

 //connect the new parent node to all current children except for vD

 for viÎ(getCurrentChildren (vD
P)-vD)

 addDataEdge (v´D
P,vi); }

1
update (vD, newValue), t, vC

P

{ applyAtomicChange(vD, v´D, newValue,vC, vC
P, ‘update’, t) }

1

2
3

4

5
6

7

8
9

clone (vD
P, vD

source, vD
clone), t, vC

P

{ applyAtomicChange(vD
P, v´D

P, ‘’,vC, vC
P, ‘clone’, t);

 for viÎ(getCurrentChildren (vD
P)

 addDataEdge (v´D
P,vi);

 //clone the source data node

 addDataNode (v´D
P, vD

clone, vD
source

.label, vD
source

.value);
 //create a deep copy of the cloned node

 for viÎgetCurrentChildren (vD
source)

 addDataNode(vD
clone, v´i, , vi.label, vi.value);

 repeat step 7 for vD
source = vi and vD

clone=v´i }

III. IMPLEMENTATION AND EVALUATION

A. The C2D Framework

We have implemented all above concepts into the C2D
(standing for Complex Changes in Data evolution)
framework. C2D has been developed in Java, on top of
Berkeley DB XML [3], an embedded XML database used
to manage the evoXML representation of evo-graphs. In
C2D, changes applied on the snap-graph are fed into a
process that populates the evo-graph. A snap change is
always applied on the current snap-graph (represented in
XML in C2D), which is actually produced as a reduction
[16] of the evo-graph for the time instance T=now. This
flow is depicted in Fig. 3. The top layer in Fig. 3 is the
view layer, where changes are launched. The purpose of
the logical model layer is to guide the translation processes
between the view layer and the storage representation
layer, where changes actually take place.

Change operations on the evo-graph are implemented
as XML update operations on the corresponding evoXML.
Expressing evo-graph operations with the XQuery Update
language is straightforward. For example the
addDataNode (&17, &19, “type”, “non insulin
dependent”) operation is expressed with the following
XQuery Update insert expression on the evoXML.
insert node <type evo:id=“19”>non insulin dependent </type>
into
/evo:evoXML/evo:DataRoot/Diabetes/categories/cat[evo:id=“17”]

B. Experimental setting

Our goal was to examine how our approach depends
on a number of factors that characterize the data. We first
examined the space efficiency of evoXML for various
configurations, regarding: the structure of the initial XML
tree, the type of snap changes, and the selectivity of the
elements. We also examined the performance of the
reduction process with respect to the size of the evoXML
file. Note that the comparison with other versioning
approaches [4], [6], [7] was not pursued, as these works do
not consider the role of changes as first class citizens in
storing and querying evolving data.

Experiments were performed over synthetic XML data,
on a PC with Intel Core 2 CPU 2.26 GHz, and 4.00 GB of
RAM. The initial XML file was generated with [19] and
contained about 10

5
 elements, over which 10

4
 snap

changes were sequentially applied as XQuery Update
statements. A new version was assumed after every 1000
changes; therefore 10 successive versions have been
created for each setting. We recorded the size (in terms of
the number of XML elements) of each “snap” version, and
the size of the evoXML file at the same instance.
Furthermore, we examined the performance of the
reduction process for the current snapshot (T=now), and
the initial snapshot (T=start).

Regarding the structure of the initial data, we used two
XML files with the same number of elements: (a) one
corresponding to a snap-graph with a “deep” tree structure
(denoted s1) with five levels and elements having a fan-out
of 10, and (b) a file with a “broad” tree structure (denoted
s2) with only two levels and elements with a fan-out of

Figure 3. C2D framework overview.

about 330 elements. We have applied three sets of snap
changes: (a) equal percentage for all changes except clone
(denoted t1), (b) 80% update and 20% create and remove
(denoted t2), and (c) equal percentage for all changes
including clone (denoted t3). Finally, concerning elements
selectivity, changes have been applied either on all
elements (denoted n1) or on a fixed set of pre-selected
elements so that each element is affected by 5 changes on
average per version (denoted n2).

We have examined the following combinations of the
above parameters: (t1n1), (t3n1), (t2n1), and (t2n2) for each of
s1, s2. t1n1 captures the typical case when random changes
are uniformly applied on all elements. t3n1 is similar to
t1n1, but it also includes clone. We have separately
examined the clone operation, as it may arbitrarily result in
the addition of a large amount of data. t2n1 captures the
case where most (80%) change operations are update on
random leaf elements, and only 20% are create or remove.
Finally, t2n2 is like the previous case except that changes
are concentrated on a pre-selected fixed set of elements.

Intuitively, we expect that the size of the evoXML
depends on the number of snap changes performed. We
also expect that it depends on the average fan-out of the
snap-graph, while it remains insensitive to its average
height. This is due to the way that each snap change
operation is implemented on the evo-graph. Next, we
present and discuss the results.

C. Results and Discussion

In Fig. 4 (a) and (b) we present the evoXML sizes per
version. Subsequently, we discuss how this size is affected
by the aforementioned configurations parameters.

File structure. For all configurations, better space
efficiency is achieved for s1. For smaller fan-outs (s1), the
evoXML has a smoother increase in size than for large
fan-outs (s2). A snap change occurring on an element adds
evo:ref elements for all of its children (i.e. fan-out) that are
still valid in the new version. Hence, the increase in the
evoXML size is relative to the average fan-out.

Type of changes. t2 outperforms t1 and t3. The majority
of changes in t2 are update, which have a smaller impact
on the evoXML size. Again, the key point is the number of
new elements that each change adds. Observe from
TABLE II. that all changes add at least two new elements;

(a) (b) (c) (d)

Figure 4. evoXML size (a), (b), accumulative snapshot size (c) and current snapshot reduction time (d) per version for various configurations.

one evolved data element and one change element. update
adds only these two elements, whereas create and add
insert one additional element for the new child, plus
evo:ref elements for its siblings. remove results in inserting
evo:ref elements in the evoXML for all the siblings of the
removed element. Finally, clone adds a variable number of
elements according to the height and average fan-out of
the subtree that is cloned. On the other hand, the
percentage of create and remove in t1 is higher. In t3, the
use of clone further increases the file size by creating a
deep copy of the subtree of the elements on which it is
applied.

Selectivity of elements.Applying changes randomly on
all elements (n1) seems to have a smoother impact on the
increase of the file size (e.g., compare t2n1 and t2n2 for
each of s1, s2). This is due to the fact that changes are
uniformly distributed over all the elements. On the other
hand, the increase is higher when changes are targeting a
fixed set of elements (n2). Changes in t2n2 are sequentially
applied on the same elements, i.e., create is applied on the
same elements, increasing the number of their children and
thus the number of evo:ref elements to be inserted when a
subsequent create occurs on the same element.

Overall, the evoXML size depends almost linearly on
the number of the snap changes applied, given that the
average fan-out is constant. Moreover, the increase rate of
the evoXML size is proportional to the average fan-out of
its elements. This is more evident in t2n2 for s1, where the
average fan-out of the elements sustaining changes
increases significantly per version, resulting in a boost in
the evoXML size, whereas in s2 the fan out increase rate is
much smoother.

In Fig. 4 (c) we present the accumulative size of the
snapshots produced per version. This approach can be
considered as an alternative to evoXML. For space
reasons, we only depict the series for s2, as s1 shows a
similar trend. The accumulative size of all snapshots per
version is significantly bigger than the evoXML size, for
all runs over s1. The same holds for all configurations of
s2, except for t3n1 where many evo:ref elements are added
in the evoXML file. Note that the overlap of the series is
due to the small variance in the accumulative snapshot size
between configurations.

Regarding the performance of our reduction algorithm,
we have measured the time the reduction process takes for

producing the current and the initial snapshots. The results
for the current snapshot for s2 are shown in Fig. 4 (d),
where the mark signs are the recorded time values, and the
series are the trends for each configuration. A safe
conclusion is that the reduction time depends mostly on
the evoXML size. For small file sizes, the reduction
performs the same for all versions. In addition, the
increase rates in time are similar for both the current and
the initial snapshot, for both s1 and s2. Therefore, the time
instance parameter of the reduction process does not affect
the reduction performance.

Concluding, both space and time efficiency are mostly
affected by the average fan-out, which deteriorates as more
changes are applied. That is mainly because of the evo:ref
elements that are added for all children of an element that
“evolves”. Still, our approach is much more efficient than
retaining separately every different version. Future
optimizations will take into consideration the above and
will aim to encode evo:ref elements and to the overall
compression of the file.

IV. RELATED WORK

Numerous approaches have been proposed for the
management of evolving semistructured data. One of the
early works [6] proposes DOEM, an extension of OEM
capable of representing changes, such as Create Node, Add
Arc, Remove Arc and Update Node, as annotations on the
nodes and the edges of the OEM graph. In [10], the
authors employ a diff algorithm for detecting changes
between two versions of an XML document and storing
them either as edit scripts or deltas. For each new version,
they calculate the deltas with the previous and retain only
the last version and the sequence of deltas. A similar
approach is introduced in [7], where instead of deltas
calculation, a referenced-based identification of each
object is used across different versions. New versions hold
only the elements that are different from the previous
version whereas a reference is used for pointing to the
unchanged elements of past versions. In [9] the authors
propose MXML, an extension of XML that uses context
information to express time and models multifaceted
documents. Recently, there are works that deal with
change modeling [15] and detection [13] in semantic data,
in which the aforementioned problems are applied to
ontologies and RDF.

100

120

140

160

180

200

220

240

260

0 1 2 3 4 5 6 7 8 9 10

evoXML size / version (s1)

t3, n1

t2, n2

t1, n1

t2, n1

el
em

en
ts

(t
h

o
u

sa
n

d
s)

100

600

1.100

1.600

2.100

2.600

0 1 2 3 4 5 6 7 8 9 10

evoXML size / version (s2)

t3, n1
t2, n2
t1, n1
t2, n1

el
em

en
ts

(t
h

o
u

sa
n

d
s)

0

200

400

600

800

1.000

1.200

1.400

0 1 2 3 4 5 6 7 8 9 10

acc. snapshot size / version

(s2)

t3,n1

t2, n2

t1,n1

t2,n1

el
em

en
ts

(t
h

o
u

sa
n

d
s)

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10

reduction time / version (s2)

t3, n1
t2, n2
t1, n1
t2, n1

se
co

n
d

s

Most approaches employ temporal extensions for the
lifespan of different versions of documents. In [1], [6], the
authors enrich data elements with temporal attributes and
extend query syntax with conditions on the time validity of
the data. In [14], the authors model an XML document as
a directed graph, and attach transaction time information at
the edges of the graph. Techniques for evaluating temporal
queries on semistructured data are presented in [8], [18]. In
[8] the authors propose a temporal query language for
adding valid time support in XQuery. In [18] the notion of
a temporally grouped data model is employed for
uniformly representing and querying successive versions
of a document. In [11], the authors extend this technique
for publishing the history of a relational database in XML
and employ a set of schema modification operators
(SMOs) for representing the mappings between successive
schema versions. In [1] the problem of archiving curated
databases is addressed. The authors develop an archiving
technique for scientific data that uses timestamps for each
version, whereas all versions are merged into one
hierarchy. This is in contrast with approaches that store a
sequence of deltas and apply a large number of deltas for
retrieving backwards the history of an element. Lastly, [5]
deals with provenance in curated databases. All user
actions for constructing a target database are recorded as
sequences of insert, delete, copy and paste operations
stored as provenance links from current data towards
previous versions of the target database or external source
databases.

Compared to the above approaches, our model
introduces a change-based perspective for evolving data,
in which changes are not derived by data versions but are
modeled as first class citizens together with data. In our
view, changes are not described through diffs or
transformations with edit scripts between document
versions, but are complex objects operating on data, and
exhibit structural, semantic, and temporal properties.
Change-centric modeling of evolving semistructured data
can provide additional information about what, why, and
how data has evolved over time.

V. CONCLUSIONS

In this paper, we showed how a data model called evo-
graph can be used to progressively capture the structure of
changes and the history of data. We believe that capturing
structured changes within a data model enables a range of
very useful queries on the provenance of data, and on the
semantics of data evolution. We defined basic and
complex changes over snap-graph, and described the
process of building evo-graph step by step, as changes
occur on the current snap-graph. We outlined C2D, a
framework based on XML technologies that implements
the ideas presented in this paper. We evaluated C2D using
synthetic XML data for its space and time efficiency, and
discussed the results.

ACKNOWLEDGMENT

This research has been co-financed by the European
Union (European Social Fund - ESF) and Greek national

funds through the Operational Program "Education and
Lifelong Learning" of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thales.
Investing in knowledge society through the European
Social Fund.

REFERENCES

[1] T. Amagasa, M. Yoshikawa, S. Uemura, “A Data Model
for Temporal XML Documents”, In DEXA 2000.

[2] P. Amornsinlaphachai , N. Rossiter and M. A. Ali,
“Translating XML Update Language into SQL”, Journal of
Computing and Information Technology, 2006, 2, 91–110.

[3] Berkeley DB XML. http://www.oracle.com/technetwork/
database/berkeleydb/overview/index.html. 19 June 2012.

[4] P. Buneman, S. Khanna, K. Tajima, W.C. Tan, ”Archiving
Scientific Data”, ACM Transactions on Database Systems,
Vol. 20, pp 1-39, 2004.

[5] P. Buneman, A. P. Chapman, J. Cheney, “Provenance
Management in Curated Databases”, In SIGMOD’06.

[6] S. Chawathe, S. Abiteboul, J. Widom, “Managing
Historical Semistructured Data”, Journal of Theory and
Practice of Object Systems, Vol. 24(4), pp.1-20, 1999.

[7] S-Y. Chien, V. J. Tsotras, C. Zaniolo, “Efficient
Management of Multiversion Documents by Object
Referencing”, In VLDB 2001.

[8] D. Gao, R. T. Snodgrass, “Temporal Slicing in the
Evaluation of XML Queries”, In VLDB 2003.

[9] M. Gergatsoulis, Y. Stavrakas, “Representing Changes in
XML Documents using Dimensions”, In 1st International
XML Database Symposium, (XSym 2003).

[10] A. Marian, S. Abiteboul, G. Cobena, L. Mignet, “Change-
Centric Management of Versions in an XML Warehouse”,
In VLDB 2001.

[11] H.J. Moon, C. Curino, A. Deutsch, C.Y. Hou, C. Zaniolo,
“Managing and querying transaction-time databases under
schema evolution”, In VLDB 2008.

[12] National research council - Committee on Frontiers at the
Interface of Computing and Biology. Catalyzing Inquiry at
the Interface of Computing and Biology. Edited by J. C.
Wooley, H. S. Lin., National Academies Press, 2005.

[13] V. Papavassiliou, G. Flouris, I. Fundulaki, D. Kotzinos, V.
Christophides, “On Detecting High-Level Changes in
RDF/S KBs”, In ISWC 2009.

[14] F. Rizzolo, A. A. Vaisman, “Temporal XML: modeling,
indexing, and query processing”, In VLDB J. 17(5): 1179-
1212 (2008).

[15] F. Rizzolo, Y. Velegrakis, J. Mylopoulos, S. Bykau,
“Modeling Concept Evolution: a Historical Perspective”, In
ER 2009.

[16] Y. Stavrakas, G. Papastefanatos, “Supporting Complex
Changes in Evolving Interrelated Web Databanks”, In In
CoopIS 2010.

[17] Y. Stavrakas, G. Papastefanatos, “Using Structured
Changes for Elucidating Data Evolution”, In DaLi’11 (with
ICDE 2011).

[18] F. Wang, C. Zaniolo, “Temporal Queries in XML
Document Archives and Web Warehouses”, In TIME 2003.

[19] Xmlgener: Synthetic XML data generator.
http://code.google.com/p/xmlgener/.

[20] XQuery Update Facility 1.0.
http://www.w3.org/TR/xquery-update-10/, W3C
Recommendation, 17 March 2011.

A Language for Defining and Detecting Complex

Changes on RDF(S) Knowledge Bases

Theodora Galani, George Papastefanatos, Yannis Stavrakas

Institute for the Management of Information Systems, RC ATHENA, GREECE

{theodora, gpapas, yannis}@imis.athena-innovation.gr

Abstract. The dynamic nature of web data brings forward the need for main-

taining data versions as well as identifying changes between them. In this paper,

we deal with problems regarding understanding evolution, focusing on RDF(S)

knowledge bases, as RDF is a de-facto standard for representing data on the

web. We argue that revisiting past snapshots or the differences between them is

not enough for understanding how and why data evolved, especially in coopera-

tive environments. Instead, changes should be treated as first-class-citizens. In

our view, this involves supporting semantic rich, user-defined changes that we

call complex changes. In this paper, we present our perspective regarding com-

plex changes, propose a declarative language for defining complex changes for

RDF(S) knowledge bases, and show how this language is used to detect com-

plex change instances among dataset versions.

Keywords: change management, data evolution, rdf(s)

1 Introduction

The increasing amount of information published on the web poses new challenges for

data management. A central issue concerns evolution management, as the dynamic

nature of data brings forward the need for maintaining data versions as well as identi-

fying changes between them. Especially in cooperative environments, where depend-

encies between data appear, evolution management becomes more evident. For ex-

ample, biologists rely on the web for publishing research results. They often use on-

tologies in order to curate their data from multiple domains of interest like anatomy,

diseases, biomedical investigations, etc. These ontologies are frequently updated as

errors may need to be fixed or new knowledge about the state of the art may need to

be incorporated. As a result, curators of depending ontologies are interested in under-

standing the evolution history in order to learn more about the changes that have tak-

en place on the respective domain of interest. In such cases, simply revisiting past

snapshots and the differences between versions may not be enough.

As an example, consider Experimental Factor Ontology (EFO) [6] which provides

a systematic description of many data elements available in EBI
1
 databases, and for

1 http://www.ebi.ac.uk/

Fig. 1. Simplified part of EFO data. (a) The previous version. (b) The next version.

external projects. It combines parts of several biological ontologies and it is frequent-

ly updated as new terms are added, while others are changed or made obsolete. Terms

in EFO are assigned with descriptive metadata, like labels, textual definitions, syno-

nym labels and others. A new EFO version is released every month. External users

and curators want to know what changed and how from one version to another.

Consider Fig. 1 as a simplified example. Fig. 1 (a) depicts a part of EFO regarding

diseases, while Fig. 1 (b) the same part in the next published EFO version. Each term

is represented by a class, which is annotated by a descriptive label and with other

metadata which are not depicted for clarity. Also, there is a hierarchical organization

of terms. In the previous version "Behcet's syndrome", "Sjogren syndrome" and "My-

asthenia gravis" are types of "immune system diseases", which is a type of the generic

term "diseases". In the next version, a new term is added. The modifications from one

version to the other are depicted in grey color. The term efo:EFO_0005140 is added

and annotated with the label "autoimmune diseases" and a definition. It is also posed

into the hierarchy, being a generalization of "Behcet's syndrome", "Sjogren syn-

drome" and "Myasthenia gravis" and a specific type of "immune system diseases".

This modification indicates that the knowledge regarding the classification of these

diseases has been reviewed. In this scenario, external users and curators would like to

know that in the new version there is a new annotated term, which is also added into

the hierarchy, or more specifically that it serves as a generalization of already existing

terms constituting a new immune system disease category. Maintaining successive

versions does not facilitate the discovery of what changed and why, especially in a

large ontology. Even computing the differences between them as deltas, i.e. added

and deleted triples, is not enough for understanding the change semantics. Instead,

human readable changes should be supported to capture the meaning behind the mod-

ifications. Table 1 presents such changes. Notice that simple changes are primitive,

while complex changes have richer semantics attempting to interpret user intention.

In this paper we argue that for understanding data evolution changes should be

treated as first-class-citizens. In our view, this involves supporting semantically rich,

user-defined changes that we call complex changes. Modeling complex changes ex-

plicitly can provide additional semantic information for interpreting past data. Defin-

ing complex changes for being detected between dataset versions allows interpreting

evolution in multiple ways. We present the basic concepts regarding our perspective

on complex changes. This involves that complex changes group simple changes, they

may be interrelated constituting a hierarchical model, and they may be mutually ex-

clusive. We provide a declarative language for defining complex changes, given these

concepts. Also, we describe the process of detecting complex change instances among

dataset versions. Note that although the notion of complex changes is not bound to

any specific data model, we focus on RDF(S) knowledge bases, as RDF
2
 is a de-facto

standard for representing data on the web.

The paper outline is as follows. In section 2 we discuss related work. In section 3

we define the basic concepts of our approach on complex changes. In section 4 we

present our language for defining complex changes and give examples. In section 5

Table 1. Simple and complex change instances on EFO data of Fig. 1.

2 http://www.w3.org/TR/rdf-primer/

we present the detection process for complex changes defined by the presented lan-

guage. Finally, in section 6 we conclude the paper.

2 Related work

A number of works focus on computing the differences between knowledge bases. In

[2] an ontology for representing differences, in the form of insertions and deletions,

between RDF graphs is proposed. The problem of comparing RDF graphs is dis-

cussed, as well as updating a graph from the set of differences. In [13] two diff algo-

rithms are proposed: (i) one computing a structural diff which is the set-based differ-

ence of the triples explicitly recorded into the two graphs, and (ii) one semantic diff

which also takes into consideration the semantically inferred triples. In [3], an ap-

proach for computing a semantic diff between knowledge bases is proposed for re-

porting differences in logical meaning. It focuses on propositional logic knowledge

bases, but it is also applicable to more expressive logics. A number of desired proper-

ties are discussed, like the uniqueness of the semantic diff, the principal of minimal

change, the ability to undo changes and version reconstruction. Similar properties are

also supported in [14], which focuses on computing deltas over RDF(S) knowledge

bases. In [7, 5], a fixed point algorithm for detecting ontology change is presented.

The algorithm employs heuristic-based matchers, introducing uncertainty to results.

Other works focus on supporting human-readable changes. In [9], a set of prede-

fined high-level changes for RDF(S) knowledge bases is proposed, as well as an algo-

rithm for their detection. The proposed changes verify the useful properties of com-

pleteness and unambiguity, for guaranteeing that every added or deleted triple is con-

sumed by one detected high-level change and that detected high-level changes are not

overlapping respectively. In [11], an extension of [9] is proposed, by providing a

more generic change definition framework, based on SPARQL
3
 queries, as well as an

ontology of changes. In [10], Change Definition Language is proposed in order to

define and detect changes over a version log using temporal queries. [1] discusses a

framework for supporting evolution in RDF knowledge bases. Changes are additions

and deletions of triples, as well as aggregated triples, resulting in a hierarchy of

changes. However, neither a detection process, nor a specific language of changes is

defined. In [5], an extension of [7] is proposed for detecting some of the proposed

basic and composite changes. In general, in [5], [9] and [12] a number of human read-

able changes in similar categorizations given granularity and semantics are presented.

Our approach focuses on human readable changes. A short visionary work was

presented in [4]. Similar to [5], [9] and [12] we assume primitive changes, which we

call simple changes, and groupings of them, which we call complex changes. For

simple changes we rely on [9]. Our contribution concerns our perception on complex

changes. Instead of providing a predefined list of complex changes, we propose a

language for arbitrarily defining them in order to capture richer semantics and multi-

ple interpretations of evolution. Unlike [10], complex changes are defined over simple

3 http://www.w3.org/TR/sparql11-query/

changes or other complex changes, resulting in a hierarchical construct. Also, com-

plex changes may be defined as mutually exclusive, for supporting alternative percep-

tions of evolution. These features set us apart from [9] and [11]. Finally, we provide a

mechanism for detecting defined complex changes.

3 Simple and complex changes

Modeling changes as first class citizens involves taking into consideration two basic

issues: granularity and semantics of changes. Granularity of changes poses the ques-

tion of having fine-grained or coarse-grained changes. Fine-grained changes have the

advantage of describing primitive changes, while coarse-grained changes provide

semantics and conciseness by grouping primitive changes in logical units. Semantics

of changes poses the question of having model-specific or data- and application- spe-

cific changes. Model-specific changes describe modifications that may appear in a

specific representation model. They constitute a fixed set of generic changes. Data- or

application- specific changes represent changes that suit on specific use-case scenari-

os and may be user-defined, allowing multiple interpretations of evolution.

In order to tackle the aforementioned issues, we distinguish between simple and

complex changes. Simple changes constitute a fixed set of fine-grained, model-

specific changes. Complex changes are coarse-grained, user-defined, application-

specific changes.

Definition 1 provides a formal definition for simple changes. Table 2 summarizes

the simple changes we assume. They are defined in [9], verifying completeness and

unambiguity, constituting a first layer of human-readable changes.

Definition 1: A simple change is a tuple , where:

· is the simple change name, which must be unique.

· is a list of parameters of the simple change, where each one is defined with a

name which is unique within the change.

Simple changes are additions, deletions and terminological changes (rename, split,

merge) of RDF(S) identified entities, which are classes, properties and individuals. As

it is already stated simple changes are fine-grained, meaning that they cannot be de-

composed into more granular changes. This holds for the changes in the form of addi-

tions/deletions, but not for terminological changes, as they can be expressed in terms

of additions/deletions plus some extra conditions. For example, a class rename can be

considered as an add class plus a delete class, where these two classes have the same

"neighborhood" (defined properties, connections to classes). However, we prefer them

to be considered as simple changes in order to distinguish at simple change level "re-

al" additions and deletions from "virtual" ones representing terminological changes.

As a result, simple changes' set is not minimal.

An actual simple change instance is identified through a detection process (as de-

scribed in [9]) and is defined as the instantiation of the change parameters with actual

values. As an example of simple change instances consider the ones given in Table 1.

Table 2. Simple Changes on RDF(S) knowledge bases.

Add_Type_Class(a) Add object a of type rdfs:class.

Delete_Type_Class(a) Delete object a of type rdfs:class.

Rename_Class(a) Rename class a to b.

Merge_Classes(A, b) Merge classes contained in A into b.

Merge_Classes_Into_Existing(A, b) Merge classes contained in A into b, where bÎA.

Split_Class(a, B) Split class a into classes contained in B.

Split_Class_Into_Existing(a, B) Split class a into classes contained in B, where aÎB.

Add_Type_Property(a) Add object a of type rdf:property.

Delete_Type_Property(a) Delete object a of type rdf:property.

Rename_Property(a, b) Rename property a to b.

Merge_Properties(A, b) Merge properties contained in A into b.

Merge_Properties_Into_Existing(A, b) Merge properties contained in A into b, where bÎA.

Split_Property(a, B) Split property a into properties contained in B.

Split_Property_Into_Existing(a, B) Split property a into properties contained in B, where aÎB.

Add_Type_Individual(a) Add object a of type rdfs:resource.

Delete_Type_Individual(a) Delete object a of type rdfs: resource.

Rename_Individual(a, b) Rename individual a to b.

Merge_Individuals(A, b) Merge individuals contained in A into b.

Merge_Individuals_Into_Existing(A, b) Merge individuals contained in A into b, where bÎA.

Split_Individual(a, B) Split individual a into individuals contained in B.

Split_Individual_Into_Existing(a, B) Split individual a into individuals contained in B, where aÎB.

Add_Superclass(a, b) Parent b of class a is added.

Delete_Superclass(a, b) Parent b of class a is deleted.

Add_Superproperty(a, b) Parent b of property a is added.

Delete_Superproperty(a, b) Parent b of property a is deleted.

Add_Type_To_Individual(a, b) Type b of individual a is added.

Delete_Type_From_Individual(a, b) Type b of individual a is deleted.

Add_Property_Instance(a1, a2, b) Add property instance of property b.

Delete_Property_Instance(a1, a2, b) Delete property instance of property b.

Add_Domain(a, b) Domain b of property a is added.

Delete_Domain(a, b) Domain b of property a is deleted.

Add_Range(a, b) Range b of property a is added.

Delete_Range(a, b) Range b of property a is deleted.

Add_Comment(a, b) Comment b of object a is added.

Delete_Comment(a, b) Comment b of object a is deleted.

Change_Comment(u, a, b) Change comment of resource u from a to b.

Add_Label(a, b) Label b of object a is added.

Delete_Label(a, b) Label b of object a is deleted.

Change_Label(u, a, b) Change label of resource u from a to b.

Definition 2: A simple change instance of a simple change , is a tuple

where is the instantiation of the parameters in .

In many cases, many simple changes are performed together, formulating a logical

unit. In such cases, simple changes are not adequate for understanding evolution, as

they are too granular. Also, understanding evolution may vary depending on the user's

perspective. For these reasons, we introduce complex changes, as user-defined chang-

es that group simple or other complex changes. Definition 3 provides a formal defini-

tion for complex changes.

Definition 3: A complex change is a quadruple , where:

· is the complex change name, which must be unique and different from the re-

served simple change names.

· is the list of parameters of the complex change, where each one is defined with a

name which is unique within the change.

· is a set of simple () and complex changes () that the complex change com-

prises of, where , and .

· is a set of constraints () and bindings (). Constraints have to be verified in

order a complex change to be detected. There are two types of constraints defined

over changes: (i) cardinality constraints, (ii) exclusiveness constraints. There are

three types of constraints defined over parameters of changes participating in : (i)

testing value constraints, (ii) pre-conditions and post-conditions, (iii) relational

constraints. Bindings indicate how complex change parameters are evaluated.

Complex changes that are defined in terms of simple changes only are considered

to be of level 0. Those that are defined in terms of simple changes and complex

changes of level 0 are considered to be of level 1, etc.

Defined constraints () specialize the meaning of the complex change. A cardinal-

ity constraint states the number of actual change instances of a specific type the com-

plex change comprises of. An exclusiveness constraint states whether the respective

change instances can be shared with others. A testing value constraint poses a value

constraint on a parameter, while a relational constraint interrelates change parameters.

Pre- and post- conditions state conditions that should hold in the version before or

after the complex change respectively.

Each defined complex change can be evaluated over a set of simple change in-

stances and respective dataset versions, resulting in possible complex change instanc-

es. The process of calculating possible complex change instances constitutes complex

change detection. Definition 4 defines complex change instances. As an example of

complex change instances consider those in Table 1. Definition 5 defines when a

complex change instance is detected.

Definition 4: A complex change instance of a complex change , is a tu-

ple where is the instantiation of the parameters in .

Definition 5: Let be a set of simple changes and respective simple change in-

stances for two dataset versions and . Also, let be a defined

complex change.

· A complex change instance , where , is detected over iff there

is a mapping such that and evaluates true for ,

and .

· A complex change instance , where a set of defined complex

changes and respective complex change instances, is detected over iff

there is a mapping such that and evaluates

true for , and .

Complex change instances may be interrelated, as a complex change may be de-

fined on another or share a common part. On the other hand, complex change instanc-

es may not be allowed to be interrelated due to exclusiveness constraints. Consequent-

ly, instances become mutually exclusive resulting in alternative results. Definitions 6,

7 and 8 define possible relations between change instances.

Definition 6: Let be a complex change instance of a complex change

.

· We say that contains the simple and complex change instances in .

· We say that contains exclusively the simple and complex change instances in

 for which exclusiveness constraints are defined in .

Note that the property of (exclusive) containment is transitive. Therefore, a com-

plex change instance containing (exclusively) a complex change instance con-

tains (exclusively) all the change instances contained by too.

Definition 7: Let and be two complex change instances that does not con-

tain and vice versa. They are conflicting iff they both contain at least one common

simple or complex change instance which must be exclusively contained in at least

one of them.

Definition 8: Let and be two complex change instances that does not con-

tain (exclusively) and vice versa. They are overlapping iff they both contain at least

one common simple or complex change instance and they are not conflicting.

Notice that complex change instances may construct a hierarchy over simple

change instances, as one may contain or overlap with another, while conflicts may

lead to alternative sets of detected instances. Note that the relationship between com-

plex change instances given in Table 1 depends on how complex changes are defined

and will be further clarified in next section.

4 A language for defining complex changes

In this section we provide a declarative language for defining complex changes. We

provide the syntax by means of its EBNF specification and a number of examples in

order to illustrate its usage.

Complex change definition. It is always composed by a heading and a body. The

heading contains the complex change name and a parameter list. The parameter list is

a non-empty, comma separated list of parameter names. The body contains: (i) a list

of changes that the complex change comprises of, (ii) parameter bindings declaring

how complex change parameters are evaluated (which are optional) and (iii) con-

straints on the parameters of changes that appear in the change list (which are optional

too). Regarding constraints, in the selection filter list testing value constraints are

listed, in the relational filter list relational constraints are listed and in the version

filter list pre- and post- conditions are listed.

complex-change-definition = 'CREATE COMPLEX CHANGE' heading '{' body '}' ';' ;

heading = name '(' parameter-list ')' ;

parameter-list = identifier { ', ' identifier } ;

body = change-list [';' binding-list] [';' selection-filter-list] [';' relational-filter-list] [';' version-filter-list] ';' ;

name = STRING ;

identifier = LETTER { LETTER | DIGIT } ;

Change list. It comprises of the changes that the defined complex change groups.

The change list is a non-empty, comma separated list of changes plus optionally some

declarations which are attributed to each change. These declarations pose cardinality

or exclusiveness constraints. Each change is declared by its heading. Simple changes

or other already defined complex changes may be in the list.

change-list = 'CHANGE LIST' change { ', ' change } ;

change = change-heading [cardinality] [exclusiveness] ;

change-heading = change-name '(' parameter-list ')' ;

change-name = name | NAMES OF SUPPORTED SIMPLE CHANGES ;

Cardinality constraints. They define the number of change instances of a specific

type that have to be grouped into a complex change. Posing a cardinality constraint is

optional, assuming that if it is not defined the default case is one change instance. The

following cases are distinguished: (i) at least one change ("+"), (ii) zero or one change

("?"), (iii) zero or more changes ("*"). Allowing zero changes implies that the specific

change is optional, i.e. it might not be detected while the complex change is still pos-

sible to be detected. Therefore, a complex change definition is tolerant in partially

performed modifications that are considered of minor significance.

cardinality = '+' | '?' | '*' ;

Exclusiveness constraints. They define whether the instances of a change can be

contained by multiple complex changes instances. The following are distinguished: (i)

If an instance of a complex change contains exclusively an instance of a simple

change , then cannot be contained in any other instance of any complex change,

except from those that contain too. (ii) If an instance of a complex change

contains an instance of a simple change without explicitly declaring an exclusive-

ness constraint, then is considered non-exclusively contained. (iii) If an instance

of a complex change contains exclusively an instance of a complex change ,

then it contains exclusively all change instances contained in too. (iv) If an instance

 of a complex change contains an instance of a complex change without ex-

plicitly declaring an exclusiveness constraint, then for all change instances contained

in the exclusiveness constraints declared in are considered.

exclusiveness = 'ex' ;

Binding List. It comprises of rules that define how the complex change parameters

are evaluated. A change parameter may evaluate either into a scalar value or a set of

values. Despite that parameters evaluating into scalar values may be considered as

evaluating into a set of cardinality equal to one, we make the above assumption in

order to be able to write conditions on these parameters in a more intuitive and con-

cise way. In order to distinguish the parameter types, parameters that evaluate into

scalar values should start with a lowercase letter, while those that evaluate into sets

should start with an uppercase letter.

A complex change parameter may be equal to another, which is defined into the

body as a parameter of a contained change. In case of a parameter evaluating into a

set, it may also be equal to the union of the parameter values of a change with a cardi-

nality constraint allowing multiple instances (+, *). Parameter bindings are optional,

in case they can be inferred by repeating each parameter into the contained changes

and respective constraints.

binding-list = 'BINDING LIST' binding { ', ' binding } ;

binding = binding-equality | binding-union ;

binding-equality = identifier '=' identifier ;

binding-union = 'for each' identifier ':' identifier '=' identifier 'union' identifier ;

Testing value constraints. They restrict a parameter value against given constants.

─ For a scalar parameter a testing value constraint is in the form: , where is a

boolean expression that may contain (i) binary operators () between

 and a constant , (ii) predefined functions (e.g. for posing constraints on strings)

over , (iii) logical , , .

─ For a parameter that evaluates into a set of values a testing value constraint is in

the form: , where is a boolean expression that may contain (i) binary set op-

erators () relating with a given set , (ii) existential or universal

quantifiers, (iii) logical , , . Quantifiers are used to write constraints on

set's elements, which actually are scalar values. Therefore, suitable constraints on

set's elements are those for scalar parameters.

In each selection-filter a cardinality prefix may be optionally defined (notice "card-

prefix" in the selection filter fragment in the following EBNF part). This is useful if

the constraint is defined over a parameter of a change with cardinality constraint '+' or

'*'. In this case, the constraint may be verified for each, some or any of the instances.

Examples of testing value constraints are the following: ,

, , , ,

, etc.

selection-filter-list = 'SELECTION FILTER' selection-filter { ', ' selection-filter } ;

selection-filter = [card-prefix] [quantifier] sel-or-expr ;

card-prefix = 'for' ('each' | 'some' | 'any') identifier ':' ;

quantifier = 'for' ('each' | 'some' | 'any') identifier ('in' | 'not in') identifier ':' ;

sel-or-expr = sel-and-expr { '||' sel-and-expr } ;

sel-and-expr = sel-neg-expr { '&&' sel-neg-expr } ;

sel-neg-expr = sel-expr | ('!' sel-expr) ;

sel-expr = sel-bracketed-expr | sel-bin-expr | sel-function ;

sel-bracketed-expr = '(' sel-or-expr ')' ;

sel-bin-expr = identifier bin-operator constant ;

bin-operator = '=' | '!=' | '>' | '<' | '>=' | '<=' | 'subSet' | 'properSubset' | 'superSet' | 'properSuperset' ;

constant = set | value ;

set = '{' value-list '}' ;

value-list = value { ', ' value } ;

value = URI | LITERAL ;

sel-function = CALL OF PREDEFINED FUNCTIONS ;

Relational constraints. They restrict a parameter value by relating it with another

parameter.

─ For two scalar parameters and a relational constraint is in the form:

, where is a boolean expression having the same expressiveness with

testing value constraints on scalar parameters.

─ For two parameters and evaluating into sets, a relational constraint is in the

form , where is a boolean expression having the same expressiveness

with testing value constraints on parameters evaluating into sets. Note that quanti-

fiers can be used to write conditions interrelating sets element by element.

─ For a scalar parameter and a parameter evaluating into a set a relational con-

straint is in the form or .

As in selection filters, cardinality prefixes ("card-prefix-list" fragment) may be op-

tionally defined. Examples of relational constraints are the following:

, , ,

, etc.

relational-filter-list = 'RELATIONAL FILTER' relational-filter { ', ' relational-filter } ;

relational-filter = [card-prefix-list] [quantifier-list] rel-or-expr ;

card-prefix-list = 'for' ('each' | 'some' | 'any') identifier ':' { 'for' ('each' | 'some' | 'any') identifier ':' } ;

quantifier-list = 'for' ('each' | 'some' | 'any') identifier ('in' | 'not in') identifier ':' { 'for' ('each' | 'some' | 'any')

identifier ('in' | 'not in') identifier ':' } ;

rel-or-expr = rel-and-expr { '||' rel-and-expr } ;

rel-and-expr = rel-neg-expr { '&&' rel-neg-expr } ;

rel-neg-expr = rel-expr | ('!' rel-expr) ;

rel-expr = rel-bracketed-expr | rel-bin-expr | rel-function ;

rel-bracketed-expr = '(' rel-or-expr ')' ;

rel-bin-expr = identifier rel-bin-operator identifier ;

rel-bin-operator = bin-operator | 'in' | 'not in' ;

rel-function = CALL OF PREDEFINED FUNCTIONS ;

Pre- and post- conditions. They state that a triple must or must not exist in the ver-

sion before or after the change. In place of subject, predicate or object scalar parame-

ters may be. In case of parameters evaluating into sets, conditions on their elements

are supported, using quantified expressions. Note that, some triples may be inferred in

a version. The flag "inferred" is optionally defined for declaring that the triple may

not be explicitly stated in a dataset version. In case inference is not explicitly stated,

the default operation is not checking the inferred triples. Examples of pre- and post-

conditions are the following: ,

.

version-filter-list = 'VERSION FILTER' version-filter { ', ' version-filter } ;

version-filter = [card-prefix-list] [quantifier-list] ver-or-expr ;

ver-or-expr = ver-and-expr { '||' ver-and-expr } ;

ver-and-expr = ver-neg-expr { '&&' ver-neg-expr } ;

ver-neg-expr = ver-expr | ('!' ver-expr) ;

ver-expr = ver-bracketed-expr | ver-tr-expr ;

ver-bracketed-expr = '(' ver-or-expr ')' ;

ver-tr-expr = '{' triple '}' [inference] ('in' | 'not in') ('Vb' | 'Va') ;

inference = 'inferred' ;

triple = '(' id-or-val ', ' id-or-val ', ' id-or-val ')' ;

id-or-value = identifier | value ;

Next we provide examples of complex change definitions. Table 3 summarizes the

definitions of the complex changes regarding Fig.1 and Table 1, while Table 4 pro-

vides some alternative definitions. First we discuss changes of Table 3.

Add_Definition models the case where a new definition property with value d is as-

signed to a class c. It comprises of a simple change Add_Property_Instance and a

selection filter restricting the parameter type. Note that any binding is defined, as they

are inferred by repeating the complex change parameters into the body.

Add_Annotated_Class models the case where a new class is added and annotated

with a label and optionally with a definition property. It comprises of the simple

changes Add_Type_Class and Add_Label, and optionally the complex change

Add_Definition, as it is denoted by the "?" cardinality constraint. Instead of writing

relational constraints, the parameter c is repeated among Add_Type_Class, Add_Label

and Add_Definition, indicating that they all refer to a specific class.

Add_Class_to_Hierarchy models the case where an annotated class is added and

positioned into a class hierarchy, having at least one superclass and one subclass. It

groups Add_Annotated_Class and multiple instances of Add_Superclass simple

changes that connect the added class to its superclasses and subclasses. The fact that

the added class may be connected to one or more superclasses and subclasses is de-

noted by a "+" cardinality constraint besides Add_Superclass. For the complex change

parameters Superclasses and Subclasses suitable bindings are defined, evaluating into

the set of all superclasses (supC) and subclasses (subC) of c respectively.

Move_Property_to_Upper_Class models the case where a common property of a

set of classes is moved to a common ancestor class, and it is used in the definition of

Add_Generalization_Class. It comprises the simple change Add_Property_Instance

and one or more instances of Delete_Property_Instance, one for each class being

annotated with the specific property and value. Notice that a version filter is defined,

declaring that the classes which are initially annotated with the moved property are

subclasses of the new class holding the property. The keyword "inferred" states that

the property may be moved to an ancestor class rather a direct parent class.

Add_Class_Generalization models the case where a newly added class serves as a

generalization class for a set of Subclasses. Initially, each subclass was connected to

each superclass. This is expressed by a pre-condition constraint in the first version

filter. This is not the case after the change, as these connections are deleted. This is

expressed by a post-condition constraint in the second version filter, while also De-

lete_Superclass simple changes for the respective connections are considered. Notice

the relational constraints that limit grouped Delete_Superclass changes to those refer-

ring to mentioned connections. The subclasses are connected through the generaliza-

tion class with the superlasses, as it is shown by the Add_Class_to_Hierarchy com-

plex change. Also, any common parameters of the subclasses are optionally moved to

Table 3. Complex change definitions on EFO data of Fig. 1.

CREATE COMPLEX CHANGE Add_Definition (c, d) {

CHANGE LIST Add_Property_Instance(c, d, p);

SELECTION FILTER p='efo:definition'; };

CREATE COMPLEX CHANGE Add_Annotated_Class (c, l, d) {

CHANGE LIST Add_Type_Class(c), Add_Label(c, l), Add_Definition(c, d) ?; };

CREATE COMPLEX CHANGE Add_Class_to_Hierarchy (c, l, Subclasses, Superclasses) {

CHANGE LIST Add_Annotated_Class (c, l, d), Add_Superclass (c, supC) +, Add_Superclass (subC, c) +;

BINDING LIST for each supC: Superclasses= Superclasses union supC, for each subC: Subclasses= Sub-

classes union subC; };

CREATE COMPLEX CHANGE Move_Property_to_Upper_Class (C, a, p) {

CHANGE LIST Add_Property_Instance (a, p, v), Delete_Property_Instance (c, p, v) +;

BINDING LIST for each c: C=C union c;

VERSION FILTER for each c: {(c, rdfs:subClassOf, a)} inferred in Va; };

CREATE COMPLEX CHANGE Add_Class_Generalization (c, l, Subclasses) {

CHANGE LIST Add_Class_to_Hierarchy (c, l, Subclasses, Superclasses), Move_Property_to_Upper_Class

(Subclasses, c, p) *, Delete_Superclass (subC, supC) +;

RELATIONAL FILTER for each subC: subC in Subclasses, for each supC: supC in Superclasses;

VERSION FILTER for each x in Subclasses: for each y in Superclasses: {(x, rdfs:subClassOf, y)} in Vb, for

each x in Subclasses: for each y in Superclasses: {(x, rdfs:subClassOf, y)} not in Va; };

the generalization class. This is stated by assuming zero or more ("*")

Move_Property_to_Upper_Class complex changes. Suitable parameters are used to

demonstrate the initial and final classes holding the property.

Note that Add_Class_Generalization definition could be more flexible or restric-

tive regarding the pre- and post-conditions of superclasses and subclasses. A more

flexible alternative would be if some of the Superclasses are connected to some of the

Subclasses in the previous version. Thus, the change may be detected even if there are

new superclasses and subclasses of the generalization class c added in the next ver-

sion. In this case, the first version filter should be altered into: for some x in Sub-

classes: for some y in Superclasses: {(x, rdfs:subClassOf, y)} in Vb. A more restric-

tive alternative would be if all the subclasses are not connected to any other supeclass

except from those in Superclasses. In this case, the following version filter should be

included in the definition: for any x in Subclasses: for any y not in Superclasses: {(x,

rdfs:subClassOf, y)} in Vb. A similar version filter should hold for Va.

Given these definitions, the complex change instances in Table 1 can be detected.

A hierarchy of complex change instances is constructed: Add_Generalization_Class

instance contains Add_Class_to_Hierarchy instance, which in turn contains

Add_Annotated_Class instance, which contains Add_Definition instance.

Another approach would be reporting alternative change instances, instead of a hi-

erarchy. In this way alternative interpretations of evolution are provided. For exam-

ple, it would be preferable to receive either the addition of an annotated class into a

hierarchy of classes or the addition of a generalization class. Therefore, the instances

Add_Class_to_Hierarchy and Add_Generalization_Class should be reported as alter-

natives. This is feasible by modifying the definitions of Add_Annotated_Class and

Table 4. Alternative complex change definitions on EFO data of Fig. 1.

CREATE COMPLEX CHANGE Add_Annotated_Class (c, l, d) {

CHANGE LIST Add_Type_Class(c) ex, Add_Label(c, l), Add_Definition(c, d) ?; };

CREATE COMPLEX CHANGE Add_Class_Generalization (c, l, Subclasses) {

CHANGE LIST Add_Annotated_Class (c, l, d), Add_Superclass (c, supC) +, Add_Superclass (subC, c) +,

Move_Property_to_Upper_Class (SubC, c, p) *, Delete_Superclass (sub, sup) +;

BINDING LIST for each subC: Subclasses= Subclasses union subC;

RELATIONAL FILTER for each sub: for some subC: sub=subC, for each sup: for some supC: sup=supC for

each subC: for each SubC: subC in SubC;

VERSION FILTER for each subC: for each supC: {(subC, rdfs:subClassOf, supC)} in Vb, for each subC: for

each supC: {(subC, rdfs:subClassOf, supC)} not in Va; };

Add_Generalization_Class as in Table 4. Add_Type_Class is contained exclusively

into Add_Annotated_Class, given the exclusiveness constraint "ex" besides the

change. Add_Class_Generalization is defined in terms of Add_Annotated_Class,

while the rest changes of Table 3 remain immutable. As a result, the instances of

Add_Annotated_Class, Add_Class_to_Hierarchy and Add_Class_Generalization

contain exclusively the Add_Type_Class instance. Also, Add_Class_to_Hierachy

instance and Add_Class_Generalization instance are conflicting and constitute alter-

native instances when referring to the same added class c.

5 Complex change detection

Complex change detection is the process of identifying complex change instances

between two dataset versions. It is divided into two parts. The first part detects com-

plex change instances, taking into consideration the complex change definition ex-

cluding exclusiveness constraints. This process requires as input a set of simple

change instances between two dataset versions (for this we rely on [9]), as well as the

actual dataset versions. The second part identifies conflicting complex change in-

stances and alternative sets of complex change instances, taking into account the de-

tected instances of the first step and exclusiveness constraints.

Regarding the first part, we consider that detected change instances are represented

in an RDF graph. For each change instance the change type, its parameters and re-

spective values, as well as (exclusively) contained change instances are recorded

(similarly to [11]). Each complex change definition is evaluated over the RDF graph

of already detected instances and the version before or after the changes.

Our first baseline approach for detecting the instances of a complex change over

an RDF graph of detected simple change instances , given two RDF(S) graphs

and of dataset versions is described in Algorithm 1. The instances of each change

in the definition of are selected one-by-one via a SPARQL query on , taking into

consideration selection and version filters defined on its parameters. In case of com-

plex changes in the definition of , the algorithm repeats recursively for . The

selected instances are combined given the relational and version filters defined be-

tween their parameters, resulting in the complex change instances.

Algorithm 1. Detect complex change instances of - Baseline approach

INPUT: Definition of a complex change , RDF graph of detected simple change instances , RDF(S) dataset

versions and

OUTPUT: RDF graph of detected complex change instances of

Step 1. If there are simple changes in the definition of , then do Step 1.1, else proceed in Step 2.

Step 1.1. For each simple change in the definition of , select all simple change instances of type from

that verify the selection and version filters defined only on the parameters of . Let be the RDF graph of the

selected instances of type .

Step 2. If there are complex changes in the definition of , then do Step 2.1-2.2, else proceed in Step 3.

Step 2.1. For each complex change in the definition of , if the respective complex change instances are

computed, continue in Step 2.2. Else repeat Step 1 for each , considering as .

Step 2.2. For each complex change in the definition of , select all complex change instances from that

verify the selection and version filters defined only on the parameters of . Delete the initial and let be

the RDF graph of the selected instances.

Step 3. Combine the graphs of selected change instances .

Step 3.1. Select from and all the change instances that verify the relational and version filters defined only

on the parameters of the respective changes. Delete the initial and and let , , ..., be the RDF graphs

where each one contains the selected change instances from and that verify the constraints.

Step 3.2. Repeat Step 3 for each , , ..., until all the graphs per set are

combined into one graph .

Step 4. For each combined graph create a complex change instance, evaluating its parameters given the

bindings in its definition and the change instances it contains which are in .

Step 5. Return , the graph of the detected complex changes instances of .

An optimized approach is given in Algorithm 2. It proposes selecting as many

changes in as possible in a combined manner from and RDF graphs of already

detected complex change instances, for fetching the change instances that verify se-

lection, relational and version filters defined on the respective parameters. Then the

intermediate results are combined. In this way, the number of queries is reduced, by

posing more complex queries. However, a question is whether this method is applica-

ble to all possible defined complex changes. In order to answer this question we have

to consider how changes are grouped given cardinality constraints and prefixes. For

example, the following cases are suitable for selecting all together the respective

changes, taking into account the constraints between them.

1. A change with cardinality 1 and a set of changes where each one has cardinali-

ty 1 or "?". There might be further constraints between changes in .

2. A change with cardinality 1 and a set of changes where each one has cardinali-

ty "+" or "*" and its parameters are related to the parameters of only with prefix-

es "for each" or "for any". There might be further constraints over the changes in

or between them.

3. A change with cardinality "+" or "*" and a set of changes where each one has

cardinality "+" or "*" and its parameters are related to the parameters of only

with prefixes "for each" or "for any". There might be further constraints over the

changes in or between changes in .

However, typically a set of complex changes are to be detected. In order to de-

tect all complex changes in , Algorithm 1 or 2 must run for each complex change in

. Consider that some complex changes have common patterns in their definitions.

This means that they may comprise of same changes, or have the same constraints on

their parameters, or may be interrelated with the same relational constraints. A typical

Algorithm 2. Detect complex change instances of - Grouping changes

INPUT: Definition of a complex change , RDF graph of detected simple change instances , RDF(S) dataset

versions and

OUTPUT: RDF graph of detected complex change instances of

Step 1. If there are complex changes in the definition of , then do Step 1.1, else proceed in Step 2.1.

Step 1.1. For each complex change in the definition of , if the respective complex change instances are

computed, continue in Step 2.1. Else repeat Step 1 for each , considering as .

Step 2.1. For a change and a (maximal) set of changes in the definition of that follow the rules 1, 2 or 3,

select all change instances of and changes in from and the computed graphs of complex change instances

 that verify the selection, relational and version filters defined only on their parameters. Let , , ...,

be the RDF graphs where each one contains the selected change instances that verify all constraints.

Step 2.2. Repeat Step 2.1 for the remaining changes of (i.e. excluding and those in) until any change in
remains or neither rule 1 nor rule 2 or 3 holds.

Step 2.3. If there are still remaining changes of , then for each change select all change instances from or

 that verify selection and version filters defined only on its parameters. Let be the RDF graph of the se-

lected change instances of type .

Step 3. Create all possible sets of selected change instances , by taking all possible combinations

of the RDF graphs computed for each change in Step 2.1, and adding in each set the graphs computed in Step

2.3. For each set combine the graphs, do Step 3.1-3.2.

Step 3.1. Select from and all the change instances that verify the relational and version filters defined only

on the parameters of the respective changes. Delete the initial and and let , , ..., be the RDF graphs

where each one contains the selected change instances from and that verify the constraints.

Step 3.2. Repeat Step 3 for each , , ..., until all the graphs per set are

combined into one graph .

Step 4. For each combined graph create a complex change instance, evaluating its parameters given the

bindings in its definition and the change instances it contains which are in .

Step 5. Return , the graph of the detected complex changes instances of .

common pattern example is complex changes. If we overlook this remark, the pre-

sented algorithms lead in computing the common patterns once for each complex

change that comprises them, leading to an overhead in the detection performance.

In order to avoid this, a preprocessing step for identifying the common patterns be-

tween complex change definitions is needed. Algorithm 1 or 2 can be used in order to

compute the respective graphs of instances for each pattern. Next, each complex

change in is detected based on similar algorithms being amended so that Step 1

and 2 are performed for the changes in excluding any common patterns and Step 3

takes into account already constructed graphs for the common patterns.

Next we proceed in the second step, identifying conflicting instances and find pos-

sible alternative solutions, in order to evaluate exclusiveness constraints. For demon-

strating and resolving conflicting complex change instances we construct a graph

named exclusiveness graph . Every node in represents a detected complex

change instance. Every edge in connects two nodes representing conflicting in-

stances. A maximal independent set of an exclusiveness graph is a set of complex

change instances where any pair of them is conflicting. Calculating all possible sets of

non-conflicting complex change instances is reduced into listing all maximal inde-

pendent sets of . This is a known graph problem, equivalent to listing all maximal

cliques in the complementary graph .

Algorithm 3 describes how an exclusiveness graph is constructed given an RDF

graph of detected (simple and complex) change instances . The set of nodes

equals the union of all detected complex change instances in (line 3). In order to

construct the set of edges the following steps are followed: For each complex

change instance in that contains exclusively change instances, the ancestors

Algorithm 3. Exclusiveness graph construction

INPUT: RDF graph of detected complex and simple change instances

OUTPUT: Exclusiveness graph for

1

2 for each complex change instance do

3

4 if contains exclusively changes then

5

6 for each change instance s.t. contains exclusively do

7 if is a simple change instance then

8

9 for each complex change instance s.t. , , contains/contains exclusively do

10 , ,
11 end for

12 for each do for each do end for end for

14 else

15

16

17 for each do

18

19 for each complex change instance s.t. , , contains/contains exclusively do

20 , ,
21 end for

22 for each do for each do end for end for

23 end for

24 end if

25 end for

26 end if

27end for

28 return

of are found using function (lines 2-5). The ancestors are complex

change instances that (exclusively) contain or any parent of them in the hierarchy of

changes. They are stored in variable together with . Then for each simple change

instance that contains exclusively, complex change instances (different from

and its ancestors) that (exclusively) contain are found, as well as all its ancestors

() (lines 7-10). Only the uncommon ancestors with those of have to be taken

into consideration in , as these are the conflicting ones (line 10). summariz-

es all complex change instances and all their uncommon ancestors with (line 10).

Therefore, all combinations of elements of and are conflicting, and for these

edges have to be added into (line 12). Respectively, for each complex change in-

stance that contains exclusively, all simple () and complex change () descend-

ant instances are found by function (line 16). The descendant

instances are those contained by or by any of its children in the hierarchy of chang-

es. Then each simple change instance in is handled as in previous (lines 18-20).

Notice that in case there is a hierarchy of complex change instances with at least

one exclusive containment declaration between them, some simple changes may be

checked multiple times depending on the number of ancestor complex change in-

stances. In order to avoid this, already checked changes may be marked with suitable

flags. Also, the implementation of and func-

tions is trivial and thus omitted.

6 Conclusions

In this paper we have argued that treating changes as first class citizens is a central

issue regarding evolution management. In our view this involves modeling, defining

and detecting complex changes. In this way semantic rich changes are employed for

understanding evolution and multiple interpretations of evolution can be supported.

We proposed our perception regarding complex changes, as well as a declarative lan-

guage for defining complex changes for RDF(S) knowledge bases. Also, we provided

algorithms for detecting possible complex change instances. Future work is directed

in implementing the above ideas and evaluating them over real cases in order to

demonstrate the language expressiveness as well as the efficiency of detection alterna-

tives.

Acknowledgements: Supported by the European Union (European Social Fund -

ESF) and Greek national funds through the Operational Program "Education and Life-

long Learning" of the National Strategic Reference Framework (NSRF) - Research

Funding Program: Thales. Investing in knowledge society through the European So-

cial Fund.

7 References

1. S. Auer and H. Herre. A versioning and evolution framework for RDF knowledge bases.

In Perspectives of Systems Informatics, 2007.

2. T. Berners-Lee and D. Connolly. Delta: An ontology for the distribution of differences be-

tween RDF graphs. http://www.w3.org/DesignIssues/Diff (version: 2006-05-12), 2004.

3. E. Franconi, T. Meyer, and I. Varzinczak. Semantic diff as the basis for knowledge base

versioning. In NMR, 2010.

4. T. Galani, Y. Stavrakas, G. Papastefanatos, G. Flouris. Supporting Complex Changes in

RDF(S) Knowledge Bases. In 1st Diachron Workshop, hosted by ESWC 2015.

5. M. Klein. Change management for distributed ontologies. Ph.D. thesis, Vrije University,

2004.

6. J. Malone, E. Holloway, T. Adamusiak, M. Kapushesky, J. Zheng, N. Kolesnikov, A.

Zhukova, A. Brazma, and H. Parkinson. Modeling Sample Variables with an Experimental

Factor Ontology. Bioinformatics 26(8):1112-1118, 2010.

7. N. F. Noy, and M. Musen. PromptDiff: A fixed-point algorithm for comparing ontology

versions. In AAAI, 2002.

8. G. Papastefanatos, Y. Stavrakas, and T. Galani. Capturing the history and change structure

of evolving data. In DBKDA, 2013.

9. V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos, and V. Christophides. High-level

change detection in RDF(S) KBs. ACM Trans. Database Syst., 38(1), 2013.

10. P. Plessers, O. De Troyer, and S. Casteleyn. Understanding ontology evolution: A change

detection approach. J. Web Sem. 5(1): 39-49, 2007.

11. Y. Roussakis, I. Chrysakis, K. Stefanidis, G. Flouris, and Y. Stavrakas. A flexible frame-

work for defining, representing and detecting changes on the data web. CoRR

abs/1501.02652, 2015.

12. L. Stojanovic. Methods and tools for ontology evolution. Ph.D. thesis, University of Karls-

ruhe, 2004.

13. M. Volkel, W. Winkler, Y. Sure, S. Kruk, and M. Synak. SemVersion: A versioning sys-

tem for RDF and ontologies. In ESWC, 2005.

14. D. Zeginis, Y. Tzitzikas, and V. Christophides. On computing deltas of RDF/S knowledge

bases. ACM Transactions on the Web, 2011.

