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Abstract. Data-intensive analytic flows, such as populating a dataware-
house or analyzing a click stream at runtime, are very common in modern
business intelligence scenarios. Current state-of-the-art data flow man-
agement techniques rely on the users to specify the flow structure without
performing automated optimization of that structure. In this work, we
introduce a declarative way to specify flows, which is based on anno-
tated descriptions of the output schema of each flow activity. We show
that our approach is adequate to capture both a wide-range of arbi-
trary data transformations, which cannot be supported by traditional
relational operators, and the precedence constraints between the vari-
ous stages in the flow. Moreover, we show that we can express the flows
as annotated queries and thus apply precedence-aware query optimiza-
tion algorithms. We propose an approach to optimizing linear conceptual
data flows by producing a parallel execution plan and our evaluation re-
sults show that we can speedup the flow execution by up to an order of
magnitude compared to existing techniques.

1 Introduction

Data-intensive analytic flows are typically encountered in business intelligence
scenarios and are nowadays attracting renewed interest, since they go beyond
traditional Extract - Transform - Load (ETL) flows [19, 16]. ETLs are a special
form of data flows used to populate a data warehouse with up-to-date, clean and
appropriately transformed source records. They can be considered as a directed
acyclic graph (DAG), similar to scientific and business workflows, capturing the
flow of data from the sources to the data warehouse [18]. Next generation busi-
ness intelligence (BI) involves more complex flows that encompass data/text
analytics, machine learning operations, and so on [16]; in this work we target
such BI flows.

Our motivation is twofold. Firstly, modern data flows may be particularly
complex to be described manually in a procedural manner (e.g., [16]). Secondly,
the vast amount of data that such flows need to process under pressing time
constraints calls for effective, automated optimizers, which should be capable
of devising execution plans with minimum time cost. In this work, we target
two correlated goals, namely declarative statement and efficient optimization.



Declarative statement of data flows implies that, instead of specifying the ex-
act task ordering, flow designers may need to specify only higher-level aspects,
such as the precedence constraints between flow stages, i.e., which task needs to
precede other tasks. An example of an existing declarative approach is the De-
clare language that is based on linear temporal logic [12]. We follow a different
approach that bears similarities with data integration mediation systems and
allows the flow to be expressed in the form of annotated SQL-like queries.

Regardless of the exact declarative form a flow can be expressed, such declara-
tive approaches are practical only under the condition that the system is capable
of taking the responsibility for automatically devising a concrete execution plan
in an efficient and dependable manner; this is exactly the role of query opti-
mization in database systems, which also rely on declarative task specifications,
and we envisage a similar role in data flow systems as well. Although traditional
query optimization techniques cannot be applied in a straightforward manner,
we propose an approach to optimizing linear conceptual data flows by producing
a parallel execution plan, inspired by advanced query optimization techniques.

The contribution of this work is as follows. We demonstrate how we can ex-
press data flows in a declarative manner that is then amenable to optimization
in a straight-forward manner. To this end, we use an annotated flavour of SQL,
where flow steps are described by input and output virtual relations and anno-
tations are inspired by the binding patterns in [5]. Our approach to declarative
statement does not rely on the arguably limited expressiveness of relational al-
gebra in order to describe arbitrary data manipulations, like those in ETLs, and
is adequate to describe the precedence constraints between data flow tasks. In
addition, we present optimization algorithms for logically linear flows that take
into account the precedence constraints so that correctness is guaranteed. As
shown in our evaluation, the approach that allows for parallel execution flows
may lead to performance improvements up to an order of magnitude in the best
case, and performance degradation up to 1.66 times in the worst case compared
to the best current technique.

Structure: Sec. 2 presents our approach to declarative statement of data flows
with a view to enabling automated optimization. The optimization algorithms
for linear flows along with thorough evaluation of performance improvements are
in Sec. 3. In Sec. 4 and 5 we discuss related work and conclusions, respectively.

2 Declarative statement of data flows

We map each flow activity! to a virtual relation described by a non-changing
schema. More specifically, each activity is mapped to a virtual annotated relation
R(A, a,p), where (i) R is the task’s unique name that also serves as its identifier;
(ii) A = (41, Ay, -+, Ay,) is the list of input and output attributes, which are
also identified by their names; (iii) a is a vector of size equal to the size of A,
such that the i-th element of a is “b” (resp. “f”) if the i-th element of A must
be bound (resp. free); and (iv) p is a list of sets, where the j-th set includes the
names of the bound variables of other virtual relations that must precede R.A;.

! The terms flow tasks and activities are used interchangeably.



The notation of the a vector is aligned to the notation of binding patterns
in [5], and allows us to distinguish between the attributes that need to be-
long to the input (the bound ones) and the new attributes that are produced
in the output (free attributes). In other words, a binding pattern for a rela-
tion R means that the attributes of R annotated with b must be given as in-
puts when accessing the tuples of R, whereas the attributes annotated by f
denote the new attributes derived by the task invocation. For example, the
relation Taskl(A : (X,Y,Z), a : (bbf), p : {Task2.X}{NULL}{NULL}))
corresponds to an activity called Task!, which needs to be given the values of
the X and Y attributes as input and returns a new attribute Z. Attribute X
must first be processed by Task2. For brevity, this relation can also be writ-
ten as Taskl(X®Task2 yb 7f) Additionally, we treat data sources as specific
data-producing activities, where all attributes are annotated with f. Linear con-
ceptual flows comprise a single data source.

The following statements hold: (a) The output data items of each flow task
are regarded as tuples, the schema of which conforms to the virtual relations
introduced above. (b) Data sources are treated as specific data-producing activ-
ities, where all attributes are annotated with f. (¢) The flow tasks, even when
they can be described by standard relational operators (e.g., when they simply
filter data), they are always described as virtual relations. (d) The relations can
be combined with standard relation operators, such as joins and unions; con-
crete examples are given in the sequel. (e) For each attribute X that is bound
in relation R, there exists a relation R, which contains attribute X with a free
annotation. (f) A task outputing a free attribute must precede the tasks that
employ the same attributes as bound attributes in their schema. (g) Simply rely-
ing on b/ f annotations is inadequate for capturing all the precedence constraints
in ETL workflows, where there may exist a bound attribute that is manipulated
by a filtering task and also appears in the bound grouping values of an aggre-
gate function: in that case, the semantics of the flow may change if we swap
the two activities, as also shown in [6]. For that reason, it is always necessary
to define the p list of each activity. (h) Although most ETL transformation can
be described by static schemas, there may be data flow activities, such as some
forms of pivots/unpivots [3] that cannot be mapped to the virtual relations as
defined above, because the schema of their output cannot be always defined a-
priori. (1) Tasks need not correspond to ETL transformation solely; they can
also encompass intermediate result storage.

Precedence constraints of a flow form a directed acyclic graph (DAG) G in
which there is a node corresponding to each flow task and directed edges from
one task to another define the presence of precedence constraint between them.
A main goal of the annotations is to fully capture the precedence constraints
among tasks. This goal is attained because the edges in the precedence graph
can be derived from the p list of each activity and the (f) item above.

2.1 Flow Examples
Linear Flows Our first example is taken from [18] and is illustrated in Fig. 1. Tt
is a linear flow that applies a set of filters, transformations, and aggregations to a
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Fig. 1. A linear ETL flow.

single table from the TPC-H decision support benchmark. In particular, the flow
consists of 5 activities: (i) NotNull, which checks the fields PartKey, OrderKey
and SuppKey for NULL values. Any NULL values are replaced by appropriate
special values (or the tuple is dropped). (ii) DeriveFne, which calculates a value
for the new field Profit that is derived from other fields and more specifically
by subtracting the values of fields Tazx and Discount from the value in FxtPrice.
(iii) Currency, which alters the fields FztPrice, Taz, Discount and Profit to a
different currency. (iv) CheckStat, which is a filter that keeps only records whose
return status is false. (v) Aggregationl, which calculates the sum of ExtPrice
and Profit fields grouped by values in PartKey and LineStatus.

All activities can be mapped to virtual relations, and the whole ETL can
be modelled as a Select-Project-Join (SPJ) query in order to provide online
updates to the view in Fig. 1. It is important to note that the relevant at-
tributes of the source relation, Lineltem, are annotated as free attributes. Also,
the PartK ey CheckStat attribute in the aggregation activity contains a task an-
notation, which allows us to define that the aggregation must only be performed
after the CheckStat activity in order to ensure semantic equivalence with the
flow in Fig. 1. Finally, in Aggregationl, the attributes PartKey and LineStatus
have the same values with PartKeyGroup and LineStatusGroup, respectively,
but the latter are annotated as free attributes in order to facilitate manipulation
statements that build on the grouped values.

Select PartKeyGroup, LineStatusGroup, UpdatedSumProfit,
UpdatedSumExtPrice
From LineItem(PartKeyf ,OrderKeyf ,SuppKeyf ,Discountf ,Tawf 7Ethricef ,oee) X
NotNull (PartKeyb ,OrderKey® ,SuppKeyb) X
DeriveFnc (PartKeyb 7Pv”ofz'tf) X
Currency (PartKeyb 7E.'zcth'ceb , Discount® 7Profii&b 7T(Lacb) X
CheckStat (PartKeyb 7ReturnSt(Ltusb X
Aggregationl (PartKey®CheckStat = [ineStatus®, Profit’, ExztPrice®,
ReturnStatus® , LineStatusGroup’ , PartKeyGroup” ,
UpdatedS’umProfitf ,UpdatedSumEthricef)
Where Lineltem .PartKey = NotNull.PartKey and
Lineltem . PartKey DeriveFnc.PartKey and
Lineltem . PartKey Currency . PartKey and
Lineltem . PartKey CheckStat . PartKey and
CheckStat.PartKey = Aggregationl.PartKey

In the above example there are several precedence constraints that can auto-
matically derived from the annotated query: Lineltem must precede all other ac-
tivities, DeriveFnc must precede Currency and Aggregationl, whereas CheckStat
must precede Agregationl as well. Although those constraints seem restrictive,
they do not preclude other flow structures, e.g., CheckStat to be applied earlier
and Currency to be applied at the very end to decrease the number of total
currency transformations.
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Fig. 2. A more complex ETL flow.

More complex flows Fig. 2 shows a more complex flow on top of two real
data sources, also taken from [18]. The tasks employed are: (i) NotNull, which
checks the field Cost for NULL values, so that such values are replaced or the
tuple is dropped. (ii) dollar2euro, which changes the values in Cost from dollars
to euros. (iii) A2FE, which alters the format of the field Date from american
to european. (iv) Aggregation, which calculates the sum of costs grouped by
date, (v) Selection, which filters the (aggregated) cost field according to a user-
defined threshold. Although we can describe this flow as a complex nested query,
for clarity, we use two SPJ sub-queries. Note that, if the flow contains branches,
these can be modeled as separate sub-queries in a similar manner. Also, although
the selection task can easily be described by a simple select relational operator,
we treat it as a separate relation.

Query I:
WITH Q (PKEY , COST, DATE) AS (
(Select =*
From PARTS1(PKEYY, COST?, DATE')
NotNULL(PKEY®, COST®)
Where PARTS1.PKEY = NN.PKEY )
UNION
(Select PKEY , UpdatedAggCOST , DATEgroup
From  PARTS2(PKEY? ,cOST? ,DATE')
dollar2euro (PKEY® ,COST®)
A2E(PKEY® ,DATE®)
Aggregation (PKEY® ,DATE® ,COST® ,DAT Egroup’ ,UpdatedAggCOST?)
Where PARTS2.PKEY = dollar2euro .PKEY and
PARTS2.PKEY = A2E.PKEY and
PARTS2.PKEY = Aggregation .PKEY )
)
Query II:
(Select =*
From Q (PKEYY, coST?, DATEY)
Selection (PKEY®, COST®)
Where Q.PKEY = Selection .PKEY )

Real-world analytic flow The data flow, which is depicted in Fig. 3, shows
a real-world, analytic flow that combines streaming free-form text data with
structured, historical data to populate a dynamic report on a dashboard [16]. The
report combines sales data for a product marketing campaign with sentiments
about that product gleaned from tweets crawled from the Web and lists total
sales and average sentiment for each day of the campaign. There is a single
streaming source that outputs tweets on products and the flow accesses four
other static sources through lookup operations.
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Fig. 3. A real-world analytic flow.

The exact flow is as follows. When a tweet arrives as a timestamped string
attribute (tag), the first task is to compute a single sentiment value in the range
[-5 45] for the product mentioned in the tweet. Then, two lookup operations are
performed: the former maps product references in the tweet and the later maps
geographic information (latitude and longitude) in the tweet to a geographi-
cal region (region attribute in the figure). The Exzpr task converts the tweet
timestamp to a date. Then, the sentiment values are averaged over each region,
product, and date. On a parallel path, the sales data have been rolled up to
produce total sales of each product for each region and day. The rollups for sales
and sentiment are joined in a pipelined fashion and finally the specific campaign
of interest is selected and used to filter the result based on the information of
the campaign data store [16]. In this final stage, we consider that the Sales and
Campaign non-streaming sources are hidden behind the Aggregation2 and Selec-
tion look-up tasks, respectively. The annotated query that describes this flow is
shown below.

Select =
From Tweet (tag’ ,timestamp’)
Sentiment_Anal (tag®,sentiment’) x
LookupID(tagb s productIDf) X
LookupRegion(tagb , 'r'egionf) X
Expr (tagb ,timestamp® 7datef) X
Aggregationl (tagb ,sentimentb ,productIDb 77"egionb 7dav.teb s
productldGroup’ , dateGroup” , regionGroup’, AngggSentimentf) X
Aggregation2 (productIDf ,region? | date’ 7ifotalAggSalesf) X
Selection (productIDf ,campaignIDf ,dayBegf ,dayEndf 7regionb)
Where Tweet.tag = Sentiment_Anal.tag and

Tweet.tag = LookupID.tag and
Tweet.tag = LookupRegion.tag and
Tweet.tag = Expr.tag and

Tweet.tag = Aggregationl.tag and
Aggregationl.productID = Aggregation2.productID and
Aggregationl .region = Aggregation2.region and
Aggregationl .date = Aggregation2.date and
Aggregationl .productID = Selection.productID and
Aggregationl .region = Selection.region




2.2 Are data flows queries?

The consensus up to now is that ETL and more generic data flows cannot be
expressed as (multi-) queries, due to facts such as the presence of arbitrary
manipulation functions that cannot be described by relational operators, and
the presence of precedence constraints [4,13]. We agree that data flows cannot
be described as standard SQL queries just by regarding manipulation functions
as black box user-defined functions (UDFs). Nevertheless, as shown above, we
can express data flows in an SQL-like manner, where the distinctive features are
that (i) data manipulation steps are described through virtual relations instead
of relational operators or UDF's on top of real relations; and (ii) the attributes are
annotated so that precedence constraints can be derived. Our methodology thus
does not suffer from the limitations when mapping a flow to a complex query
with as many relations as the original data sources, which loses the information
about precedence constraints.

3 Optimization of linear flows

Having transformed the flow specification to an annotated query, we can treat
the flows as multi-source precedence-aware queries and benefit from any existing
optimization algorithms tailored to such settings. We treat flow tasks as black-
box operators. Note that we do not have to use multi-way joins regardless of the
numerous joins appearing in the SQL-like statements, as in [17]. In this section,
we firstly define the cost model, we then propose four optimization algorithms
for minimizing the total execution cost in time units, and finally, we investigate
the performance benefits.

Our optimization algorithms require that each flow activity is described by
the following metadata:

— Cost (¢;): We use ¢; = 1/r; to compute response time effectively, where r; is
the maximum rate at which results of invocations can be obtained from the
i-th task.

— Selectivity (sel;): it denotes the average number of returned tuples per input
tuple for the i-th service. For filtering operators selectivity is always below 1,
for data sources and operators that just manipulate the input, it is exactly
one, whereas, for operators that may produce more output records for each
input record, the selectivity is above 1.

— Input (I;): The size of the input of the i-th task in number of tuples per input
data tuple. It depends on the product of the selectivities of the preceding
tasks in the execution plan.

Our aim is to minimize the sum of the execution time of each task. As such,
the optimal plan minimizes the following formula: (I;¢; + Iaca + ... + Incy).

In the following, we present our optimization approaches. Due to lack of
space, we present only the main rationale.

PGreedy: The rationale of the PGreedy optimization algorithm is to order the
flow tasks in such a way that the amount of data that is received by expensive
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Fig. 4. A single linear conceptual data flow (left), along with its precedence constraints
(middle) and two logically equivalent parallel execution plans (right).

tasks is reduced because of preceding filtering activities that prune the input
dataset. Its main distinctive feature is that it allows for parallel execution plans,
as shown in Fig. 4, where on the left part of the picture, a linear flow and its
precedence constraints are depicted, while on the right two equivalent parallel
execution plans of the same flow are presented (which both preserve all the
precedence constraints). More specifically, depending on the selectivity values,
the optimal execution plan may dispatch the output of an activity to multiple
other activities in parallel, or place them in a sequence. To this end we adapt
the algorithm in [17] with the difference that instead of considering the cost I;¢;
in each step, we consider the (1 — sel;)(I;¢;). The latter takes into account the
selectivity of the next service to be appended in the execution plan and not only
the selectivity of the preceding services. We refer the reader to [17] for the rest
of the details. The complexity is O(n®) in the worst case.

Swap: The Swap algorithm compares the cost of the existing execution plan
against the cost of the transformed plan, if we swap two adjacent tasks provided
that the constraints are always satisfied. We perform this check for every pair of
adjacent tasks. Swap is proposed in [15], where, to the best of our knowledge, the
most advanced algorithm for optimizing the structure of data flows is proposed.
The complexity of the Swap algorithm is O(n?).

Greedy: Greedy algorithm is based on a typical greedy approach by adding
the activity with the maximum value of (1 — sel;)(I;c;), which meets the prece-
dence constraints. The time complexity of Greedy algorithm is O(n?). It bears
similarities with the Chain algorithm in [21]; latter appends the activity that
minimizes I;c;. Similarly to Swap and contrary to PGreedy, it builds only linear
execution plans.

Partition: The Partition optimization algorithm forms clusters with activi-
ties by taking into consideration their availability. Specifically, each cluster con-
sists from activities that their prerequisites have been considered in previous clus-
ters. After building the clusters, each cluster is optimized separately by checking
each permutation of cluster tasks. Like Greedy, it was first proposed for data
integration systems, and the details are given in [21]. Partition runs in O(n!)
time in the worst case, and is inapplicable if a local cluster contains more than
a dozen of tasks.

3.1 Experiments

In our experiments, we compare the performance of the afore-mentioned algo-
rithms. The data flows considered consist of n = 5,10, 25,50, 100 activities and
we experiment with 6 combinations of 3 selectivity value ranges and 2 sets of
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constraint probabilities. The cost value range is the same for all the sets of ex-
periments: ¢; € [1,10]. The results correspond to the average of the data flow
response time in 20 runs after removing the lowest and highest values to reduce
the standard deviation. In each run, the exact selectivity, cost values and the
constraints for each task are randomly generated.

In the first experiment, the selectivity values in each run are randomly gener-
ated so that sel € [0, 2] (thus only half of the tasks are selective) and cost € [1, 10]
with 25% probability of having precedence constraints between two activities.
The normalized results are shown in Fig. 5. A general observation in all our
experiments is that Swap consistently outperforms Greedy and Partition. From
Fig. 5, we can observe that Swap outperforms PGreedy as well. For n = 50, Swap
is 1.66 times faster. However, as less activities are selective, PGreedy yields sig-
nificantly lower cost than Swap. As shown in Figs. 6 and 7, those performance
improvement may be up to 22 times (one order of magnitude).

In the following experiment, we increase the probability of having a prece-
dence constraint between two activities. The more the constraints, the narrower
the space for optimizations. The results are presented in Figs. 8-10, which follow
the same pattern as above. In the worst case, Swap is 1.23 times faster than
PGreedy, and, in the best case, PGreedy is 3.15 times faster. The general con-
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clusions drawn is that Greedy and Partition are never the optimal choices, and
PGreedy outperforms Swap if less than half of the tasks are selective.

Regarding the time needed for the optimizations, even when n = 100, the
time for running PGreedy and Partition is approximately a couple of seconds
using a machine with an Intel Core i5 660 CPU with 6GB of RAM. Thus it can
be safely considered as negligible.

4 Related Work

Modern ETL and flow analysis tools, such as Pentaho’s platform?, do not sup-
port declarative statement of flows and automated optimizations of their struc-
ture. Declare is an example of a declarative flow language [12]; contrary to our
proposal, it is based on linear temporal logic and can be used only through a
graphical interface in the context of Yawl?. Declare can capture precedence con-
straints, and, as such, may stand to benefit from the optimizations proposed in
this work, but does not perform any optimizations in its own right.

The potential of data management solutions to enhancing the state-of-the
art in workflow management has been identified since mid 2000s. An example of
strong advocates of the deeper integration and coupling of databases and work-
flow management systems has appeared in [14]. Earlier examples of developing
data-centric techniques of manipulating workflows include the prototypes de-
scribed in [7, 11, 9], which allow workflow tasks to be expressed on top of virtual
data tables in a declarative manner but do not deal with optimization, although
they can be deemed as enabling it. Other declarative approaches to specifying
workflows, such as [1,22], are not coupled with approaches to capturing prece-
dence constraints and optimizing the flow structure either.

Data management techniques have been explored in the context of ETL
workflows for data warehouses in several proposals, e.g., [4,13,15]. In [15], the
authors consider ETL workflows as states and use transitions to generate new
states in order to navigate through the state space. The main similarity with
our work is the mapping of workflow activities to schemata, which, however,

2 http://www.pentaho.com/
3 http://www.yawlfoundation.org/



are not annotated and thus inadequate to describe precedence constraints on
their own. Focusing on the physical implementation of ETL flows, the work in
[18] exploits the logical-level description combined with appropriate cost models,
and introduces sorters in the execution plans. In [16], a multi-objective optimizer
that allows data flows spanning execution engines is discussed.

Another proposal for flow structure optimization has appeared in [20], which
decreases the number of invocations to the underlying databases through task
merging. In [10], a data oriented method for workflow optimization is proposed
that is based on leveraging accesses to a shared database. In [6], the optimiza-
tions are based on the analysis of the properties of user-defined functions that
implement the data processing logic. Several optimizations in workflows are also
discussed in [2]. Our optimization approach shown in Section 3 is different from
those proposals in that it is capable of performing arbitrary correct task reorder-
ing. In our previous work, we employ query optimization techniques to perform
workflow structure reformations, such as reordering or introducing new services
in scientific workflows [8].

5 Conclusions

As data flows become more complex and come with requirements to deliver re-
sults under pressing time constraints, there is an increasing need for more efficient
management of such flows. In this work, we focused on data-intensive analytic
flows that are typically encountered in business intelligence scenarios. To allevi-
ate the burden to manually design complex flows, we introduced a declarative
way to specify such flows at a conceptual level using annotated queries. A main
benefit from this approach is that the flows become amenable to sophisticated
optimization algorithms that can take over the responsibility for optimizing the
structure of the data flow while taking into account any precedence constraints
between flow activities. We discuss optimization of linear conceptual data flows,
and our evaluation results show that we can speedup the flow execution by up
to an order of magnitude if we consider parallel execution plans. Our future
work includes the deeper investigation of optimization algorithms to non-linear
conceptual flows and the coupling of optimization techniques that reorder tasks
with resource scheduling and allocation in distributed settings.
Acknowledgements: This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge
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ABSTRACT

Modern data analysis is increasingly employing data-intensive
flows for processing very large volumes of data. As the
data flows become more and more complex and operate in a
highly dynamic environment, we argue that we need to re-
sort to automated cost-based optimization solutions rather
than relying on efficient designs by human experts. We fur-
ther demonstrate that the current state-of-the-art in flow op-
timizations needs to be extended and we propose a promising
direction for optimizing flows at the logical level, and more
specifically, for deciding the sequence of flow tasks.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

Keywords

data flow optimization; task reordering

1. INTRODUCTION

Nowadays, not only more and more data is produced, but
there is also an increasing need for end-to-end processing
of this data. End-to-end processing includes tasks, such as
cleaning, extraction, integration and analytics, and as such,
gives rise to data-intensive flows that go beyond traditional
ETL (Extract-Transform-Loading) flows; the latter are re-
stricted to simpler transformation task sequences and pur-
pose, namely to populate a data warehouse. Data-intensive
flows are encountered in both business intelligence [4] and
scientific [13] settings.

Currently, data flows are typically designed manually, al-
though commercial tools may provide some simple, static,
cost-oblivious rule-based optimizations [6, 7]. Interestingly,
there is an increasingly large portion of flow designers that
are not IT experts [1], which raises doubts about the opti-
mality of such manual designs. In addition, the optimality of
a data flow depends on statistics, such as task costs and se-
lectivities, which means that an optimal flow execution plan
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for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DOLAP’14, November 7, 2014, Shanghai, China.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-0999-8/14/11 ...$15.00.
http://dx.doi.org/10.1145/2666158.2666174 .

Anastasios Gounaris
Aristotle University of Thessaloniki

gounaria@csd.auth.gr

for a specific dataset may become sub-optimal when applied
to another dataset with different statistics, or even for the
same dataset if its characteristics evolve, as typically occurs
in streaming real-time analytics. Because of all these factors,
rather than relying on the skills of the designer, we need to
resort to automated cost-based optimization solutions.

Flow execution can be defined both at logical and the
physical level. At the logical level, the partial order of the
tasks is typically represented as a directed acyclic graph
(DAG), which describes the flow of the data from the source
tasks to the sink ones and the exact sequence of tasks in
between. Logical flow optimization bears similarities with
database query optimization but the problem is actually
more complex because (i) query optimizers cannot consider
the dependency constraints between tasks that appear in
data flows, (ii) the tasks in a flow execution graph do not
necessarily belong to a specific set of operators with clear
semantics, and (iii) the optimization objective is not limited
to performance. Overall, data flow optimization can be in-
spired by query optimization techniques that perform struc-
ture reformations, such as reordering and introducing new
tasks in an existing flow, but it cannot fully rely on them.
For example, in [9] ad-hoc query optimization methodolo-
gies are employed for optimizing the flow execution plan by
reordering and introducing filtering tasks. Other logical flow
optimization proposals consider swapping re-orderable flow
activities, merging tasks, splitting, and so on, in order to
generate new flow execution plan alternatives for ETL flows
[14]. Additional narrower proposals include task consolida-
tion for reducing the overall execution time [16, 5].

At the physical level, a wide range of implementation as-
pects need to be specified so that the flow can be executed.
The most significant of them include the choice of the ex-
act implementation alternative for each task, the selection
of the execution engine to run tasks, scheduling details, the
manner in which data is transmitted between tasks, deci-
sions as to whether the tasks are executed in a pipelined
or step-wise fashion, and so on. For all those aspects, sev-
eral techniques have been proposed, which assume that the
flow has been already optimized at the logical level. For
example, [17] proposes resource allocation algorithms and
heuristic techniques taking into account constraints, such
as cost optimization, user-specified deadline and workflow
partitioning according to assigned deadlines, while a set of
optimization algorithms for scheduling flows based on dead-
line and time constraints is analyzed in [2].

So far, the existing flow optimization methodologies tend
to focus either on the physical or the logical level, without
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Figure 1: A real-world analytic data flow.

[ID] Flow Task [ Cost(secs) | Selectivity |
1 Tweets (data source) 1.7 1
2 Sentiment Analysis 4.5 1
3 Lookup ProductID 5 1
4 Filter Products 1.9 0.9
5 Lookup Region 6.5 1
6 Extract Date from Timestamp 19.4 1
7 Filter Dates 2 0.2
8 | Sort Region, Product and Date 173 1
9 SentimentAvg 10.3 0.1
10 Lookup Total Sales 10.8 1
11 Lookup Campaign 11.6 1
12 Filter Region 2 0.22
13 Report Output 1 1

Table 1: The cost and selectivities values.

providing a holistic optimization proposal for both levels.
In this paper, we argue that the existing techniques regard-
ing logical flow optimization, although they are interesting,
they are inadequate. An optimal optimization solution re-
ferring at the physical level, which is based on a suboptimal
logical plan, yields an overall suboptimal execution. We re-
strict ourselves to one of the simplest cases and we show
that even for that case, the state-of-the-art can be signifi-
cantly advanced. More specifically, we focus on single-input
single-output (SISO) data flows, for which only the sequence
of tasks needs to be specified so that all dependency con-
straints are respected and the single optimization criterion
is the minimization of the sum of task execution times. We
provide a real use case that demonstrates the need for more
advanced optimization (Sec. 2), and we discuss the gap of
existing optimization proposals and our proposal for near-
optimal flow execution plans (Sec. 3).

2. MOTIVATIONAL EXAMPLE

A real data flow that processes free-form text data from
Twitter commenting on products in order to compose a dy-
namic report that associates sales with marketing campaigns
is shown in Figure 1. The flow is implemented with the
help of the Pentaho Data Integration tool (http://kettle.
pentaho.com). As shown in the figure, this data flow con-
sists of 13 tasks (or nodes or activities) with a single stream-
ing source that outputs tweets on products and a sink task
where the resulting report is stored. During processing, it
accesses four static sources (databases) through lookup op-
erations. The remainder 7 tasks perform various operations,
such as computing a single sentiment value for the products

Products

Filter Region Lookup RroductlD Lookup Tgtal Sales  Sales

Filter Dates

Extract Date from Timestamp

[ Flow Execution Cost: 18.3 |

Text file output

Figure 2: The optimized version of the data flow.

that are mentioned in the tweet (Sentiment Analysis), filter-
ing according to several criteria including product type, and
date, transformation of the timestamp text data to date and
ad-hoc aggregation (SentimentAvg that averages sentiment
values over each region, product, and date). At the final
stage, the user has the option to narrow down the report
in order to focus on a specific region. Table 1 shows the
selectivity and cost values computed for a specific dataset of
1M records. We can observe that the most expensive tasks
are the grouping and lookup tasks, the cost of which is up
to two orders of magnitude compared to the less expensive
ones. Also, there are 4 filtering tasks, while the rest do not
modify the number of records (note that in general, selec-
tivities may be higher than 1). For this flow, there are 38%
precedence constraints (PCs, not presented in detail due to
space constraints), where a fully constrained flow with n

tasks and 100% PCs has @ constraints and no equiva-
lent ordering alternatives.

We run an exhaustive algorithm and we find the optimal
flow for those statistics and precedence constraints, as shown
in Figure 2. We also apply the best-performing approximate
heuristic to date, which is proposed in [14]. Both exhaustive
and approximate solutions are discussed in the next section.
As we can see, the exhaustive optimization moves filtering
according to region, which at the initial design has been
placed at the end as a final optional step, at the very be-
ginning for this specific flow due to the metadata in Table
1. A less obvious optimization is to move the pair of date
extraction and filtering tasks upstream although the former
is expensive and not filtering.

The total execution times of the initial, optimal and heuris-
tic (i.e., approximately optimized) flow designs are 63, 18.3
and 36.5 seconds, respectively when run on a Intel Core
i5 machine. This is a representative example of a manually
designed data flow that exhibits significantly suboptimal be-
havior. In general, we can draw two observations. Firstly,
optimal solutions may yield lower execution costs by several
factors. A second equally important observation is that even
in simple cases like the one examined here, existing heuris-
tics may fail to closely approximate the optimal solution and
generate the plan in Figure 2. The main reason in this exam-
ple is that the approximate solution performs greedy swaps
of adjacent activities; however the region filter cannot move
earlier unless the campaign lookup task is moved earlier as
well, an action that a greedy algorithm cannot cover.



3. OPTIMIZATION SOLUTIONS

Finding the optimal ordering of tasks is an N P-hard prob-
lem when (i) each flow task is characterized by its cost per
input record and selectivity; (ii) the cost of each task is a
linear function of the number of records processed and that
number of records depends on the product of the selectivities
of all preceding tasks (assuming independence of selectivi-
ties for simplicity); and (iii) the optimization criterion is the
minimization of the sum of the costs of all tasks [3]. Here,
we discuss the inherently non-scalable exhaustive solutions,
the state-of-the-art heuristics and our proposal for flow op-
timization which improves on the latter heuristics.

3.1 Accurate (exhaustive) algorithms

Backtracking algorithm: The Backtracking algorithm,
as presented in [8], finds all the possible execution plans
generated after reordering the tasks of a given data flow
preserving the precedence constraints (PCs). The algorithm
enumerates all the valid sub-flow plans after applying a set
of recursive calls on these sub-flows and runs in O(n!) time.

Dynamic Programming (DP): The rationale of the
DP algorithm extends its query optimization counterpart
to calculate task subsets of size n based on subsets of size
n — 1. For each of these subsets, we keep only the optimal
solutions, which are valid with regards to the PCs. The time
complexity of DP is O(n?2").

Topological Sorting (TS): Contrary to query optimiza-
tion, we have found that enumerating all orderings that meet
the dependency constraints is a viable option for flows with
numerous PCs, although in the worst case the T'S algorithm
runs in O(n!). Due to space limitations, we do not give full
details, but as shown in the experiments below, a variant
based on [15] can significantly outperform the two other ex-
haustive approaches mentioned above in terms of optimiza-
tion time (overhead).

3.2 Approximate (heuristic) algorithms

The state-of-the-art heuristics for flow task ordering is
summarized below. Preliminary results regarding their effi-
ciency in optimizing flows is provided in [10].

Swap: The Swap algorithm, proposed in [14], compares
the cost of the existing execution plan against the cost of
the transformed plan, if we swap two adjacent tasks pro-
vided that the PCs are always satisfied. This check is per-
formed for every pair of adjacent tasks. The complexity is
O(n?). GreedyI: The Greedyl algorithm is based on a typ-
ical greedy approach, which builds the flow execution plan
incrementally. In each step, it adds at the end of the par-
tial plan the activity with the maximum rank lsei‘z%”y
among those for which all the prerequisite tasks have been
already added. The time complexity is O(n?). GreedyllI:
The rationale of the GreedylI algorithm is similar to Greedyl
apart from the fact that the construction of the optimized
execution plan is right-to-left (i.e., from the sink to the
source). The algorithm is presented in [12]. Partition:
The Partition algorithm, in each step, detects the set of
tasks that can be added based on the PCs. For that set, it
exhaustively finds the optimal sub-solution, and then pro-
ceeds to the next set until all activities have been added. It
runs in O(n!) time in the worst case.
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3.3 Pros and cons of exhaustive solutions

We conducted a set of experiments to further support the
observation in Section 2 that the existing heuristics fail to
approximate the optimal solution. We examined randomly
generated data flows consisting of n = 10,15, ...,25 tasks,
selectivity values sel € (0, 2] where selectivities higher than
1 denote increase in the task output, cost € [1,10] and 30%-
95% PCs. The flows were executed on an Intel Core i5 ma-
chine and all experiments were repeated 20 times. The re-
sults show that the performance improvement derived by
the application of exhaustive algorithms is significantly high
for small flows, as they provide the optimal solution. For
example, Figure 3(left) presents the results for flows with 15
tasks; the accurate algorithms, such as TS, can have up to
59% better performance improvement compared to a ran-
dom initial flow that just respects the PCs. On average, the
best performing heuristic is Swap. Figure 3(right) shows
the maximum normalized difference between Swap and T'S,
which can reach up to 61% in favor of the latter.

However, exhaustive solutions are inapplicable for medium
and large flows, and/or few PCs. As shown in Figure 4(top),
TS cannot scale in either the number of the flow tasks or
the PCs. DP’s overhead does not depend on the PCs and,
as shown in Figure 4(bottom), this algorithm is not practi-
cal for flows with more than 18 tasks. Backtracking is less
scalable than TS as well, with higher overhead by a factor
between 46 and 62 on average.

3.4 Our optimization proposal

In the quest of finding an efficient optimization solution for
our problem, as our starting point, we chose the well-known
KBZ query optimization algorithm for join ordering in [11].
That algorithm is of low complexity O(nQ) and can consider
PCs that can be represented as a rooted tree. The rationale
is to consider the rank of each task and order tasks by their



rank value; if this is not possible due to PCs, then tasks
are merged and the rank values are updated accordingly.
The evaluation results (not presented here in detail) show
that, when applicable, this approach can be dozens of times
less expensive than Swap and the other heuristics. However,
allowing only tree-shaped PC graphs implies that there is no
task with more than one independent prerequisite activity
and the percentage of PCs is very low and decreases with the
number of tasks (e.g., less than 10% for a 100-node flow);
both cases do not occur frequently in practice.

So, to combine KBZ’s efficiency and support for generic
flows, we reduce our problem to that of transforming the
DAG that typically represents PCs (an edge from one task
to another denotes that the former must precede) into an
acyclic one after removing edge directions. We initially pro-
pose a simple heuristic algorithm RO-I (for rank ordering)
that, omitting implementation details, transforms the graph
of PCs into an acyclic one by removing incoming edges with
no maximum rank, if a task has more than one incoming
edge. Then it applies the KBZ algorithm and is followed by
a post-processing phase, where any resulting PC violations
are resolved by moving tasks upstream if needed as prereq-
uisites for other tasks placed earlier. That heuristic is simple
but does not always behave well. We have investigated an-
other approach, termed as RO-II, which detects paths in the
PC graph that share an intermediate source and sink and
merges them to a single path based on their rank values. In
that way, both all PCs are preserved and the rationale of
rank ordering is kept at the expense of implicitly examining
fewer re-orderings. As such, these local optimizations do not
guarantee a globally optimal solution.

Preliminary evaluation results are shown in Figures 5 and
6. We can see that the average improvements of RO-II over
Swap can be significant, whereas RO-I in some cases outper-
forms RO-II but in others is significantly worse. For isolated
runs, we have observed that Swap can be up to 7 times more
expensive.

normalized cost
normalized cost

5 00 25 5 7 100
total number of flow tasks(n) total number of flow tasks(n)

Figure 5: 20% PCs. Figure 6: 50% PCs.

4. CONCLUDING REMARKS

The fact that existing logical optimization techniques are
inadequate to provide a (mear) optimal solution even for
small flows implies that, even after applying the most ad-
vanced physical optimization techniques, the execution per-
formance is suboptimal since the latter techniques depend
on the former. More research is needed (i) for deciding the
sequence of the flow tasks and (ii) for building more holistic
approaches that consider additional factors, such as merg-
ing and splitting tasks and physical implementation details.
For item (i), our proposal is promising and the results pro-
vided here provide strong insights in its ability to fill the
gap between exhaustive non-scalable solutions and existing
heuristics; however more research and thorough analysis and
evaluation is needed for rank-ordering-based solutions.
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Data-intensive flows are increasingly encountered in various settings, including business intelligence and
scientific scenarios. At the same time, flow technology is evolving. Instead of resorting to monolithic
solutions, current approaches tend to employ multiple execution engines, such as Hadoop clusters,
traditional DBMSs, and stand-alone tools. We target the problem of allocating flow activities to specific
heterogeneous and interdependent execution engines while minimizing the flow execution cost. To date,
the state-of-the-art is limited to simple heuristics. Although the problem is intractable, we propose
practical anytime solutions that are capable of outperforming those simple heuristics and yielding
allocation plans in seconds even when optimizing large flows on ordinary machines. Moreover, we prove
the NP-hardness of the problem in the generic case and we propose an exact polynomial solution for a
specific form of flows, namely, linear flows. We thoroughly evaluate our solutions in both real-world and
flows synthetic, and the results show the superiority of our solutions. Especially in real-world scenarios,
we can decrease execution time up to more than 3 times.
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1. Introduction

Our entry into the era of big data has signalled notable changes
in the way scientific research is conducted and enterprises operate.
More and more emphasis is put on processing large volumes of
data in less, if not real, time in order to accomplish scientific
or business intelligence tasks [1,2]. The most common approach
to this end is to design and execute data flows, using workflow
tools and platforms that take over the integration of multiple data
sources, data manipulation and service orchestration.

Our work is largely motivated by the needs of modern business
intelligence (BI) applications and data-intensive scientific work-
flows, e.g., in bio-informatics. Traditionally, BI builds on top of
data-warehouses and data-marts, which are populated by peri-
odic Extract-Transform-Load (ETL) flows. This setting has evolved

* Corresponding author.
E-mail addresses: georkoug@csd.auth.gr (G. Kougka), gounaria@csd.auth.gr
(A. Gounaris), tsichlas@csd.auth.gr (K. Tsichlas).

http://dx.doi.org/10.1016/j.future.2014.11.011
0167-739X/© 2014 Elsevier B.V. All rights reserved.

in two ways. First, flows have become more complex encompass-
ing text analytics and machine learning operations along with data
transformation activities. In addition, they operate on both stored
data and external, rapidly evolving runtime data, such as feeds
and click streams. Second, flows are no longer executed on a sin-
gle processing engine but their execution may span multiple en-
gines; such flows are also referred to as hybrid flows [3]. Examples
of execution engines include Hadoop clusters, traditional DBMS, R
scripts and stand-alone tools, each of which may come in several
different instances (e.g., both mysql and Oracle RDBMSs) or config-
urations (e.g., number of reducers in Hadoop) resulting in a big set
of candidate execution platforms for executing a single flow (e.g.,
[4,3,5-8]).

We can follow two main approaches to executing data flows.!
The first one involves the manual, low-level script-based design

1 Due to the increased impact of the volume of data in such flows, in the
remaining part of the paper, we will use the terms workflows, data flows or simply
flows interchangeably.
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of flows, which are then executed in a step-wise fashion. Such an
approach is prone to errors and sub-optimal execution, due to the
complexity of the flows. The second approach views the workflows
at a higher logical level and relies on flow optimizers to decide the
technical execution details; this is akin to the role of optimizers
in database systems. Optimizing data flows is a challenging multi-
dimensional task; two of the most important dimensions include
(i) the optimization of the structure of flows, which comes in a
form of a directed acyclic graph, but its vertices do not necessarily
have clear semantics, as is the case for relational operators; and
(ii) the allocation of each of the flow vertices to a potentially
different execution engine, choosing among multiple candidates.

Our work focuses on the second aspect mentioned above, and
more specifically, aims to devise a mapping of flow nodes to execu-
tion engines so that the performance is maximized putting empha-
sis on keeping the optimization overhead low. The performance is
measured in terms of the sum of the execution costs over all flow
activities (or flow nodes). For this problem, only simple heuristic or
non-scalable algorithms are known to date [4]; here we show how
we can significantly improve upon the state-of-the-art. Moreover,
we show how we can benefit from the existence of multiple exe-
cution engine options, rather than sticking to simple single-engine
solutions. The main challenges of tackling this problem are posed
by the following factors: the number of flow nodes and candidate
engine or engine configurations may be large, the engines are het-
erogeneous in the sense that each engine is capable of executing
a flow node in different time, and shipping data from one execu-
tion engine to another or switching between engines incurs cost,
i.e., choosing the best execution engine for each flow node in iso-
lation does not imply optimality [4].

Overall, we make the following contributions:

e We propose a set of anytime algorithms (Section 3) that, as
shown in our experimental section, they are capable of yield-
ing mappings of flow nodes to execution engines that are sig-
nificantly better than naive approaches (Section 2), even when
the flows are very large and our proposals are allowed to run
only for a few seconds on an ordinary machine. These anytime
algorithms fall into three main categories: branch and bound,
random walk and set-cover ones.

e We propose an optimal solution with polynomial time com-
plexity for the specific case, where the flow structure is linear,
i.e,, the flow is a chain of activities. Specifically, we present a
polynomial dynamic programming algorithm that can yield ex-
act solutions for linear flows and can act as an efficient approx-
imate solver in more generic cases (Section 4).

e We evaluate our proposals using both real flows and synthetic
in a wide range of settings. We declare winners among our pro-
posals, depending on the type of the flow. In summary, the value
of our solutions lies in that they are both effective in improv-
ing performance and easy to implement and light-weight. The
dynamic programming approach performs remarkably well in
many real-world settings and along with the anytime heuris-
tics, we perform consistently better than current heuristics. The
anytime proposals can run for any number of iterations toler-
ated by the users, e.g., to meet real-time constraints, and they
are capable of yielding improved performance in short time. Es-
pecially when the flows are near-linear, as happens in many
real-world cases, the execution cost can be decreased by more
than 3 times. If the flows are completely linear, the improve-
ments are even larger (Section 6).

e We prove the  #-hardness of the problem at hand (which
means that no solution with polynomial complexity can be
found in the generic case) and at the same time it is impossi-
ble to approximate it within a small constant, unless = N P
(Section 5).

2. Problem definition and background

In this paper, we will investigate resource allocation techniques,
where each flow activity can run on multiple execution engines,
of which, only one should be selected. At this point, we will not
consider the optimization of the ordering of flow activities or the
technical specifications of the available processors. To begin with,
we represent the logical view of a flow as a directed acyclic graph
(DAG), where each activity corresponds to a node in the graph and
the edges between nodes represent intermediate data shipping
among activities. Since we have different activity implementations
for a specific engine or multiple engines, each flow activity has
a processing cost in time units, which differs between engine
instances or engine configurations. Additionally, data transfer from
one engine to another and/or switching between engines has also
a cost.

The main notation and assumptions of this Flow Activity
Allocation problem (henceforth named FAA) are as follows:

e Let G = (A, E) be a directed acyclic graph, where A denotes the
nodes of the graph and E represents the data flow among the
nodes, i.e., which activity feeds data to which activity.

e LetA = {a;, ..., a,} be a set of (possibly streaming) activities
of size n. Each flow activity is responsible for one or both of the
following tasks: (i) reading or retrieving or storing data, and
(ii) manipulating data. The definition of the activities and the
complete flow G is left to the flow designer.

e Let E = {edge,, ..., edge,} be a set of edges of size n’. Each
edge edge;, 1 < i < n’ equals to an ordered pair (g;, ax), so that
edge™ = g; and edge!™ = qj.

e Let ENG = {eq,...,ey} be a set of execution engines that
activities can be allocated to; ENG's size is m. In general, the
number of execution engines tends to be smaller than the
number of flow activities. However, different engine instances
and/or configurations (e.g., multiple Hadoop clusters, each
with varying number of reducers) are essentially treated as
different engines, so that the number of different engines at
our disposal may well be larger than the number of the flow
activities. Note that nowadays, it has become easier to support
multiple execution engines for each activity; for example,
in [5], it is discussed how a logical data flow activity definition
can automatically be translated to several distinct physical
implementations according to the underlying execution engine
including SQL, pig-latin and PDI? scripts.

e Let ¢;; be the execution time of an activity a; when mapped to
engine e;. We assume that this information is available, through
e.g., micro-benchmarking as in [6], and we do not deal with the
engine configuration ourselves.

o Let cegl!;. be the cost associated with the graph edges. It
consists of (a) the engine switching cost from engine e;,
which executes activity a, to engine e;, which executes the
subsequent activity; and (b) the data shipping from the output
of activity a, (executed on engine e;) to the subsequent activity.
The subsequent activity is the activity the edge points to.
The first component depends on the two engines, while the
second depends additionally on the data volume transferred
across the edge; this volume depends on the sender activity.
Overall, ce depends on the sender activity and the execution
engines of the activities connected through the edge. As above,
we assume that this metadata is available to our algorithms
either through micro-benchmarking or through log files. We
can support arbitrary settings of cei . values denoting the

i—i

edge cost for activities running on the same engine instance;

2 http://www.pentaho.com/product/data-integration.
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however, in the remaining part, we assume that ce* ; cost from
engine e; to engine e; is 0, because there is no data transfer over
the network and/or engine configuration changes involved and

we will refer to the ce cost as inter-engine cost.

Our goal can be stated as the derivation of an allocation function
f : [1,n] — [1, m], which expresses the mapping between
activities and processor engines, so that (i) the total execution time
is minimized; (ii) each activity is mapped to one and only one
engine; and (iii) our allocation algorithms run in seconds at most.
Generally, we denote the mapping between an activity g; and a
processor engine e as f(i) = j,where1 <i<nand1 <j<m.
The total execution time TET for a specific allocation is the sum of
all the execution costs of each activity on their engines plus the
cost of transferring data and switching between different engines.
The latter occurs whenever two nodes of an edge belonging to E
are allocated to distinct engines:

head

n n
_ edge;
TET = Z Cif + Z Cef(edge?ead)—>f(edgef““)'
i=1 i=1

In a more generic scenario, there are constraints between
allocations to denote the fact that not all activities can run on all
engines. In the constrained case, the goal is to allocate all activities
so that the total execution time cost is minimized subject to the
allocation constraints.

As explained later, our solutions behave differently depending
on whether the flows are linear or not. Linear flows are those that
contain one and only one activity with no incoming edges and
one and only one activity with no outgoing edges; all the other
activities have exactly one incoming edge and one outgoing edge.

2.1. Motivational example

A real-world data flow, which has the role of analysing emerg-
ing temporal trends, is illustrated in Fig. 1. The data flow builds
a taxonomy of current trends for a specific region, which are ex-
tracted from Twitter messages (tweets), and its purpose is to cate-
gorize the trends and derive key representative features.

This example flow comprises 14 activities for deriving the
timestamp from tweets (Extract timpestamp), deriving the textual
content (Extract textual content), performing look-up operations
on auxiliary data sources (LookupRegion, LookupTrends), executing
tasks that correspond to ordinary relational database operators
(Select, Join, Aggregation), and performing analysis operators
(Qualitative Analysis, Label trends, Quantitative Analysis).

In this example, we assume that 6 of the activities can execute
on 2 candidate engines and 5 of the activities can execute on 3 can-
didate engines. The engines can be MapReduce engines, GPU accel-
erators and O-RDBMSs. The remaining 3 activities are performed
using stand-alone scripts. In such a setting, the total number of
different engine allocations in the figure is 263° = 15,552. How-
ever, for each engine, there may be multiple engine instantiations
(not shown in the figure). If, for example, there are 3 different in-
stances per execution engine and stand-alone programs, there are
more than 7.4 - 10'° < 3'%(263°) possible allocations. It is easy
to see that this number increases exponentially in the number of
available engines. Furthermore, moving data from one engine to
another, e.g., from a Hadoop cluster to a database is associated with
a time overhead. Also, not all activities can run on any engine; for
example, the last activity can run only with the help of a GPU-based
implementation or as a Map-Reduce program in a specific cluster.
Our goal is to devise a concrete mapping of each flow activity to an
execution engine in a small amount of time.

In the remaining part of this section, we present first, an
exhaustive solution, upon which we later propose improvements,
and second, heuristics that are fast albeit not very efficient in
improving performance.

LookupTrends (timestamp,
textContent)

Trend
Dataset

Burst Detection
- LookupTrends .
(region)

s

Fig. 1. Areal-world data flow for interpreting emerging temporal trends.
2.2. An exhaustive solution

The rationale of an exhaustive methodology is to estimate all
the possible combinations of engine allocations with regards to
all flow activities. For a flow with n activities and m available
execution engines, we have the following auxiliary matrices: (i) the
n x m C matrix, where the element in the ith row and jth column
is the ¢; j execution time cost defined earlier; (ii) the n x m x m CE
matrix, where the element with the (k, i, j) coordinates is the
cef’;j inter-engine data shipping and engine switching cost; and
(iii) the n x m CONSTR matrix, where the element in the ith row
and jth column is set to 1 if the activity a; can be mapped to the
engine e;.

The exhaustive algorithm iterates over all possible m" alloca-
tions of execution engines to nodes. Due to this exponential com-
plexity, it can be only applied to tiny flows, e.g., flows with very
few nodes and candidate execution engines. In the exhaustive algo-
rithm, each allocation is mapped to a distinct number in the range
[0, m" — 1] with the help of the mapNumberToAllocation function.
We can imagine each allocation plan as a number with n digits of
base m. The value v of the ith digit from right to left denotes that the



136 G. Kougka et al. / Future Generation Computer Systems 45 (2015) 133-148

Algorithm 1 Exhaustive Search
Require: G(A, E), ENG, C, CE, CONSTR
1.f<0
2: mincost <— oo
3: foralli=0...m" — 1do
feandidate < mapNumberToAllocation (i)
if feandidace Satisfies constraints in CONSTR then
COSteandidate <— calculateCost (feandidate, C, CE)
if cost andidate < mincost then
mincost <— coSteandidate
f <_fcandida[e
10: end if
11:  end if
12: end for
13: return an engine allocation plan f

© e Nauh

ith activity is allocated to the engine v + 1. For example, the allo-
cation number (3521)s denotes a mapping of a 4-node flow to en-
gines, wherem = 6, f(1) = 2,f(2) = 3,f(3) = 6and f(4) = 4.
Since the allocations with the smallest and the largest numbers are
(0000)6 and (5555)¢, respectively, all possible allocations are in the
range of [0, 6% — 1].

2.3. Heuristics

Another approach of allocation is to apply simple heuristics in
order to avoid the complexity of estimating all the possible alloca-
tion combinations. For the purposes of this paper, we investigate
two different heuristics, similar to those mentioned in [4]:

H1: this is a 2-step heuristic. First, we rank all engines based
on their average execution cost for all flow activities in increasing
order, i.e., the value for g; is % 3%, cij. Then, we allocate each
activity to the engine with the highest rank that is capable of
executing that activity.

H2: this is also a 2-step heuristic. First, we rank all engines based
on their execution cost for each flow activity separately. Then, we
allocate each activity to the engine with the highest rank that is
capable of executing that activity.

In Fig. 2, we show an example for a linear and a non-linear flow
withn = 5 and m = 3. Because of the constraints between the en-
gines, some allocations are not considered and the corresponding
cells in C are shaded. Additionally, in this example we consider a
CE matrix; for simplicity this matrix is m x m assuming that the
values are the same for all n. For both flows, H1 and H2 provide a
single allocation plan as shown in the figure; this is because the
two flows differ only in their edges, which are not considered by
naive heuristics.

In the remaining part of this work, we will refer to those
solutions as simple or naive heuristics to distinguish them from
our proposals in the next two sections.

3. Anytime algorithms

We now introduce anytime algorithms that can be stopped at
any point and they are guaranteed to move closer to the optimal
allocation the longer they are allowed to run. In a sense, the ex-
haustive algorithm can be classified as an anytime algorithm, too.
But here, we present three types of solutions that are both efficient
and effective, as verified by our experiments.

3.1. A branch and bound solution

Abranch-and-bound (BB) approach can improve upon the naive
exhaustive algorithm of the previous section. More specifically, we

Algorithm input

[ CE CONSTR
8 2 0 2 7 0 1 1
5 8 3 6 0 2 1 1 1
9 2 5 1 1 1
4 7 1 1 0
0 9 8 6 6 linear flow
n=5
m=3
non-linear flow
H1 and H2
H1 Allocation H2 Allocation
6 8 2 3:f(1) 6 8 2 3:f(1)
5 8 3 3:(2) 5 8 3 3:(2)
9 2 5 3:(3) 9o |12 s 2:(3)
5 9 2 3:f(4) 5 9 2 3:f(4)
4 7 4 1:f(5) 4 7 4 1:f(5)
average 5.8 68 | 372

H2 allocation plan: f=332 31
H2 non-linear allocation cost: 30
H2 linear allocation cost: 26

H1 allocation plan: f=3333 1
H1 non-linear allocation cost: 32
H1 linear allocation cost: 24

Fig. 2. An application of H1 and H2.

can perform the following two main improvements. First, we can
calculate the flow execution cost after each activity gets allocated
and to abandon an intermediate allocation plan as soon as it
exceeds the current minimum cost, which is the minimum of H1
and H2 algorithms for the first time. Second, when an allocation of
an activity to a node is found not to satisfy the engine constraints,
we move the allocation id counter as many steps as required in
order not to examine a similarly invalid allocation of the same
engine to the same node. For example, let us suppose that the
(3300)¢ allocation is invalid because the 3rd node cannot run on
engine 4. Instead of examining (3301)g, (3302)¢, and so on (which
are bound to be invalid as well), we move directly to (3400)g.

Although, the two afore-mentioned improvements can yield
speedups in the decision taking time, the computational complex-
ity remains exponential, which renders the algorithm unsuitable
for use in large flows. Aremedy to this complexity problem is to cap
the number of the allowed iterations. More specifically, we derive
the BB-IC (Branch-n-Bound-Iteration Capping) algorithm, which,
in addition to the two previous improvements allows only a pre-
specified number of iterations (termed as noi). Given that thresh-
old, the algorithm first estimates the maximum number np,y of
nodes the allocation of which can be examined without exceeding
the iteration threshold: ny.x = |log,,(noi)]. Then, it runs the H1
and H2 and it keeps the best performing one. From the allocation
plan of the best performing heuristic, it detects the ny,, most ex-
pensive nodes, and investigates all their possible allocations using
the branch-and-bound approach. The rationale behind this is to in-
vestigate other allocations for the parts of the flow that contribute
the most to the total cost. The remaining nodes are allocated ac-
cording to the allocation of the best performing heuristic.

Compared to Algorithm 1, the main changes are in three places:
(i) the iteration of i is up to m™a — 1 in line 3; (ii) feandidate COTTE-
sponds to a plan with a subset of activities where the allocation of
the remaining activities is defined by the best performing simple
heuristic; as such, the cost estimation in line 6 needs to take this
into account, and (iii) after line 11, we insert an else statement to
increase the value of i, as explained above.
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Algorithm 2 RWR-b

Algorithm 3 DP-cost

Require: G(A, E), ENG, C, CE, CONSTR, length, r
1: f < best(H1, H2)

2: mincost < calculateCost (f)

3: foralli=1...rdo

4 fcandidate <~ f

5. forallj=1...lengthdo

6: make a random change in fangidace that satisfies constraints
in CONSTR

7: COSteandidate <— calculateCost (feandidate, C, CE)

8: if cost andidae < mincost then

9: Mincost < CoSteandidates S <— feandidate

10: end if

11:  end for

12: end for

13: return an engine allocation plan f

3.2. Random-walk solutions

Our second approach to coping with the complexity of the
problem is to explore the search space with random walks. We
examine three main variants:

RW: Starting from the allocation derived from the best perform-
ing heuristic between H1 and H2, we make random perturbations
for a pre-specified number of times; this number is the length of
the walk. In each iteration, we choose an activity in a round-robin
fashion and we randomly alter its allocation.

RWR-r: This flavour extends the previous one by restarting the
random walk r times. Each time, the starting point is a randomly
selected allocation of all activities.

RWR-b: This flavour also employs restarts, but the starting
point is the best performing allocation detected thus far (see
Algorithm 2).

3.3. Dealing with large flows

For flows with large sets of activities and candidate engines, BB-
IC and RW can explore only a very small part of the search space.
E.g., in BB-IC, if n = m = 100 and noi = 10, 000, then npy.x
is only 2. The two algorithms presented below, employ set-cover
approaches in order to prune the search space; more specifically,
they preprocess the candidate engines, and select a subset of ENG
before applying the BB-IC and RW solutions. The intuition is that if,
for large flows, we can derive a much smaller engine candidate set
than the initial one, BB-IC and RW can improve their performance.

SC1: This set-cover based approach reduces the ENG set as
follows. In each iteration, we count the number of activities each
engine is allowed to execute, and we select the engine that is
capable of processing the most activities. Conflicts are resolved
arbitrarily. Then, we remove the activities supported by that
engine and we proceed to the next iteration, unless there are no
activities left. After we have selected the subset of engines, we
apply both BB-IC and RWR-b (which run in very short time) and
we choose the allocation with the lowest cost.

SC2: The SC2 is another set-cover flavour, which takes into ac-
count the inter-engine cost. More specifically, it performs the first
iteration exactly as SC1 does. Then, in each subsequent iteration, it
chooses the engine with the lowest average inter-engine cost with
respect to the last added engine across all activities. Similarly to
SC1, this procedure continues until all the activities can be exe-
cuted on at least one engine, and the final allocation is found after
applying both BB-IC and RWR-b to the reduced engine set.

The maximum number of iterations in the pre-processing
engine selection phase for both set-cover approaches is m, but in
practice, it is a small fraction of m and thus, the pre-processing

Require: G(A, E), ENG, C, CE, CONSTR
1: forallj=1...mdo
2: if f(1) = j satisfies constraints in CONSTR then
3 DPeost (1, ) < C(1,))
4: endif
5: end for
6: foralli=2...ndo
7. forallj=1...mdo
8 if f (i) = j satisfies constraints in CONSTR then
9 kmin <= miny<x<m{DPcos: (i — 1, k) + CE(i, k, j)}

10: DP o5 (i, j) <= C(i, j) + DPeost (i — 1, Kinin)
11: DProdes (l,]) <~ kmin

12: end if

13:  end for

14: end for

step runs in a few milliseconds on a simple modern machine.
Additionally, the number of iterations or restarts of BB-IC and
RWR-b algorithms define the actual execution of the SC flavours
that can be classified as anytime, too.

3.4. A hybrid solution

According to our experience, each of the previous anytime
solutions may exhibit the best performance in different settings.
Since all of them are lightweight and explore the search space in
different ways, it is both possible and effective to run all of them
and choose the best each time. Therefore, we introduce the BEST
meta-heuristic that, after executing all BB-IC, RWR-b, SC1 and SC2,
chooses the one that yields the allocation plan with the lowest
execution cost. As shown in Section 6, we can further increase the
performance benefits by more than 10% because of that.

4. Dynamic programming

The previous proposals put emphasis on improving the naive
heuristics without significantly raising the optimization overhead.
Here, we propose a dynamic programming proposal that can find
the optimal solution for linear flows and can act as an approximate
solver for arbitrary flows.

4.1. Detailed description

The rationale of the DP algorithm is to calculate the cost of
increasingly larger portions of 4, i.e,, it starts of flows containing
only a;, then it examines flows containing (ay, a;), and so on,
until it examines the complete flow. When examining flows with
the first i activities, we consider the allocation costs of the flow
consisting with the first i — 1 activities. We employ a DP,,; matrix
of size n x m, where each cell (i, j) denotes the optimal cost of
the plan with the first i activities when f (i) = j. The first row is
initialized with the activity costs in C[1, *]. For the other rows, we
have DPCOSt(i7j) = C(l5]) + minke[LmJ {Dpcost(i - ]7 k) + CE(](,])}
We also employ an auxiliary matrix, DP .45, Which, in each cell
(i, j), stores the engine for which the last part of the sum expression
in the recursive formula is minimized. Overall, the last row of the
DP. contains the costs when all activities are considered for all
possible allocations of the last activity. In Algorithm 3, we show
how the matrices are populated. The exact allocation is found by
recursively examining the rows of the DP,,,q.s matrix from bottom
to top (not included in the pseudocode).

When the flow is linear, the DP algorithm finds the optimal cost
of an allocation; that cost is the minimum cost in the last row of
DP ... To find the allocation function f, we start from the minimum
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value of the last row of DPy, the column of which denotes the
allocation of the last activity f(n); then, with the help of DPges,
we can recursively find the allocations f (n— 1), f(n—2), ..., f(1).
Interestingly, the algorithm can be employed as an approximate
solver for arbitrary flows. In that case, we can run the algorithm as
previously and build the allocation plan, but such an allocation is
not guaranteed to be optimal.

In Fig. 3, the allocation plan of DP for the metadata of example
in Fig. 2 is the same for both flows as well, i.e., f = (3, 3, 3, 3, 2).
We can see that for both flows, DP yields a better solution than H1
and H2. The allocation of DP is optimal for the linear case, but it is
sub-optimal for the non-linear case.

Additionally, we should mention that for reasonable values of
noi, r and length, BB, BB-IC and the random walk flavours find the
optimal solution for both flows. The optimal solution of the non-
linear case is f = (3, 3, 2, 3, 2) with total cost 22 instead of 25.

4.2. Analysis

The time complexity of DP is O(nm?) because the size of the
DP . matrix is n x m and in order to fill in each cell, the algorithm
examines all m values of the cells in the previous row. As shown
in the experiments, for a few hundreds of nodes and engines, the
algorithm terminates in a few seconds. The space complexity is
O(nm), because of the n x m size of the DP,,4s matrix, which
stores intermediate allocation. Note that, although we assume an
n x m DP. matrix, we only need to keep two rows each time,
thus the space complexity depends on DP,,,4.s. Below, we provide
a sketch of the proof that DP is correct for linear plans; due to space
limitations, we prove only that the cost found by DP is optimal.

Theorem 1. DP finds the minimum cost of a linear flow.

Proof. A sketch using induction on the size of the set A is as
follows. If n = 1, the optimal solution is trivial and is found by the
algorithm. Let the algorithm find the optimal solution OPT (n, j) for
n = x and all engines 1 < j < m. Assume now thatn = x + 1.
For the cost of the (x + 1)th running on e;, the DP algorithm
examines, for all possible allocations of the xth activity, the sum of
the allocation cost of the first x activities and the inter-engine cost
ce}‘(x)ﬂ i The first part of that sum is optimal. The second part of the
sum corresponds to the cost incurred by an edge (x, x+ 1), which s
the only real edge that exists between the first x activities and the
(x+1)th one. Thus, forn = x+1, DP examines the whole set of valid
combinations of optimal allocations of the first x activities plus the
inter-engine cost between the first x activities and the (x + 1)th
one, i.e., it does not miss any valid solution. O

5. Theoretical analysis

In the following we prove that the FAA (Flow Activity Alloca-
tion) problem is not only . #-hard (the corresponding decision
problem is & #-complete) but at the same time it is impossible
(unless # = N &) to approximate it within a small constant factor.
The proof concerns a simplification of FAA, where¢;j =1, 1 <i <
n, 1 <j < m(uniform engines and activities with unit-processing
times) while ce*,; = 0 when i = jand ce{*,; = 1, when i # j. We
consider the case where the number of engines m can be arbitrary.
In case where the number of engines is restricted we can get sim-
ilar but slightly better results with respect to the approximation
ratio bound. The proof is based on a transformation of the schedul-
ing problem Poolprec, ¢ = 1,p; = 1|Cnax (we use the notation
introduced in [9] to denote scheduling problems). In this schedul-
ing problem, the number of engines is arbitrary (Poo), there are
precedence constraints (prec) with unit-processing times for the
activities (p; = 1), there is a unit-time communication cost among

DP
DPcost DPnodes
© 8 2 0 0 0 Non-linear:
DP allocation plan: f=33332
15 13 5 3 3 3 DP allocation cost: 25
22 10 10 3 3 3 Linear:
w © 12 L I DP allocation plan: f=3333 2
2 22 © 3 3 0 DP allocation cost: 22
Example | pPcost(2,1) = 5 + min { (inf +0), (8 +6), (2 +8)} = 15

computations:

DPcost(3,2) = 2+ min { (15 + 2), (13 +0), (5+3)} = 10

Fig. 3. An application of DP.

engines (c = 1) and the goal is to minimize the makespan, that is
the total length of the schedule. Note, that the simplified FAA prob-
lem could be represented as Poo|prec,c = 1,p; = 1| Y G, since
the goal is to minimize the total activity completion time. The fol-
lowing theorem is stated without a proofin [ 10], which we provide
here for the sake of completeness.

Theorem 2. The simplified FAA is N $-hard and cannot be approx-
imated by a polynomial-time algorithm with approximation error
bound less than 8/7.

Proof. [11] provides a polynomial-time transformation to prove
that the decision scheduling problem Poolprec, ¢ = 1, pj = 1|Crax
is & P-complete. In particular, given an instance S of the 3-SAT
problem, we construct an instance J for the scheduling problem.
In a nutshell, for each variable in S, 6 activities are constructed
and for each clause in S, 13 activities are constructed. Appropriate
precedence constraints between these activities are enforced so
that S has a truth assignment if and only if there is a schedule of
J with makespan 6. This means, than in the case where S is a YES-
instance of 3-SAT, then all activities in J are processed in the time
interval [0, 6], while in the case where S is a NO-instance then in
every possible feasible schedule of instance | there is at least one
activity that completes at time 7 or later.

Let there be a polynomial-time approximation algorithm for
the problem in the current paper with approximation 8/7 — e,
€ > %. We construct k copies of the instance J, J1, 2, ..., Jk
adding the precedence constraint that all activities in instance J;
are predecessors to all activities in Ji;1, 1 < i < k — 1. Let the
resulting schedule be denoted by J*.If S is a YES-instance of 3-SAT,
then instance J* has a schedule with total activity completion time
equal to 57mk?. This quantity is computed based on the precedence
graph of the activities related to variables and clauses (see [11]).IfS
is a NO-instance of 3-SAT then the earliest possible time that J; can
start is 7i — 7. Based on the precedence graph we get that at each
integer time in the range [7i—6, 7i— 3] at most 4m activities can be
completed. At time 7i—2 at most m activities can be completed and
finally at time 7i — 1 at most 2m activities can be completed. As a
result, the total completion time of J; is at least 133mi—76m, which
when summed for all i, gives that the minimum total completion
time for all activities in J* is 66.5mk*> — 9.5mk.

From the above discussion we get that a polynomial-time ap-
proximation algorithm for our restricted problem with approx-
imation ratio strictly less than 8/7 — —12- is impossible unless
P = NP, since this algorithm could be used to distinguish be-
tween the YES- and NO-instances of 3-SAT. This also proves the
fact that the FAA problem is & -hard. O

6. Evaluation

In this section, we conduct a thorough evaluation of the solu-
tions presented in the previous sections. We use both synthetic and
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Fig. 4. The structure of the real workflows used in our experiments.

real-world flows. First, we examine real-world flows, where the fo-
cus is on the performance (Section 6.1.1) and testing under “real-
world” conditions. For the latter, we examine two main aspects:
the impact of inaccuracy in the statistical metadata (Section 6.1.2)
and behaviour under settings where, intuitively, employing mul-
tiple engines does not seem promising; e.g., when all tasks can
be executed on any engine, and the inter-engine costs are an or-
der of magnitude higher than task processing costs (Section 6.1.3).
The real-world flows are taken from [12]; they correspond to data-
intensive scientific scenarios from several disciplines including as-
tronomy, earthquake hazard characterization, biology and physics,
and they are commonly used in the evaluation of techniques for
data flows (e.g., [13]).

The purpose of the synthetic flows’ experiments is to unveil the
strengths and weaknesses of each allocation algorithm in random
flow instances. In the synthetic flows, we focus on the following
dimensions: (i) performance of the alternatives presented in terms
of the estimated flow execution cost (Section 6.2.1); (ii) associated
overhead of each solution in terms of real time spent in reaching
allocation decisions (Section 6.2.2); (iii) accuracy, which refers to
the deviation of the approximate flow execution costs compared to
the optimal ones and is examined only when the optimal solution
can be found in reasonable time (Section 6.2.3); and (iv) sensitivity
analysis, which investigates the impact of different flavours and
parameter values for the random walk proposals (Section 6.2.4).

In order to cover a wide range of settings, the flows vary in terms
of the number of activities, engines, execution time of activities,
transfer and switching costs between engines, and density of the
DAG representing the flow. The probability of an engine to be ca-
pable of executing a specific activity is set to 50% unless otherwise
stated. The activity and the inter-engine cost values are uniformly

distributed in the range [1, 100]. To generate the inter-engine cost
values we take into account the engine-independent amount of
data outputted by each activity. The default settings of the random
walk solutions are: number of restarts r = 50 and length of walk
| = 103. The default setting of the number of iterations (noi) for
the BB-IC solution is 10%. These values are set in such a way that
the anytime algorithms complete in a few seconds at most.

All the algorithms are implemented in MATLAB and the
experiments were executed on a machine with an Intel Core i5 660
CPU and 6 GB of RAM. All experiments were repeated 50 times and
we report the average values (except in Table 5).

6.1. Real-world flows

We experimented with 4 real-world flow structures, described
in [12]. In particular, we created instances of the following flow
types: Montage, Epigenomics, LIGO and CyberShake (see Fig. 4).
For those flows, we experimented withn = m = 100 and the
rest of the settings as in the introduction of this section. Initially,
we assume that each activity processes the same amount of data
and the inter-engine connection speed is the same for all pairs
of engines; this implies that the inter-engine costs are activity-
independent but we relax this assumption later.

6.1.1. Performance

In this experiment, we evaluate the relative performance in
terms of execution time TET of the different policies (see Ta-
ble 1). The numbers are normalized according to the execution cost
yielded by BEST. For the montage flow, the BEST meta-heuristic is
the best performing policy, while the naive heuristics H1 and H2
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Table 1
Normalized performance for real-world flows with 50% engine constraints.
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Accurate statistics

Flow Algorithm
H1 H2 DP BB-IC RWR-b SC1 N BEST
Montage 1.3355 1.4083 1.4043 1.2555 1.2362 1.1578 1.0815 1
Epigenomics 1.5147 1.0282 0.3208 1.0057 1.0118 1.3652 1.1720 1
LIGO 1.3559 1.0512 0.7601 1.0245 1.0358 1.2604 1.0843 1
CyberShake 1.2858 1.1806 0.9751 1.1267 1.1304 1.1577 1.0489 1
Table 2
Normalized performance for real-world flows with 50% engine constraints and inter-engine cost activity-dependent.
Accurate statistics
Flow Algorithm
H1 H2 DP BB-IC RWR-b SC1 sc2 BEST
Montage 1.3463 1.2507 1.2589 1.1427 1.0984 1.1443 1.0984 1
Epigenomics 1.9009 1.2167 0.4664 1.1390 1.0911 1.5464 1.3353 1
LIGO 2.0327 1.4644 0.9433 1.3526 1.2668 1.5341 1.3177 1
CyberShake 1.5200 1.3433 1.1649 1.1749 1.1308 1.2738 1.1899 1
Table 3
Normalized performance for real-world flows with 50% engine constraints.
Inaccurate statistics
Flow Algorithm
H1 H2 DP BB-IC RWR-b SC1 sc2 BEST
10% inaccurate statistics
Montage 1.0660 1.1054 1.1035 1.0373 1.4565 1.1331 1.2793 1
Epigenomics 1.4548 0.9874 0.3107 1.0000 1.8556 1.6620 1.7467 1
LIGO 1.3206 0.9844 0.7026 1.0000 1.7263 1.4803 1.5855 1
CyberShake 1.1728 1.0381 0.8469 1.0215 1.5245 1.2302 1.3635 1
30% inaccurate statistics
Montage 1.1082 1.1542 1.1512 1.0649 1.5024 1.2354 1.3023 1
Epigenomics 1.4429 0.9789 0.3034 1.0000 1.8527 1.6091 1.7258 1
LIGO 1.2789 0.9890 0.7188 1.0000 1.7321 1.4334 1.5649 1
CyberShake 1.1614 1.0558 0.8744 1.0390 1.5639 1.2124 1.3491 1

yield 33% and 40% higher execution cost, respectively. However,
the pattern changes for the rest of the real-world flow types. Those
flows are not linear but they comprise linear subflows. So, DP out-
performs the other policies. For Epigenomics, DP’s execution time
is more than 3 times lower than those from the best performing
heuristic, which is H2, and BEST. For LIGO and Cybershake, the DP’s
performance benefits are higher than 20% compared to the simple
heuristics.

We now relax the assumption regarding the homogeneity of
inter-engine network and the volume of data processed by each
activity. More specifically, we experiment with scenarios where
the inter-engine cost is a linear function of the data volume, and
each activity may alter this volume by a factor uniformly drawn
from 0.5 to 1.5 (denoting the pruning of half of the data and
generating half as much additional data, respectively). The results
are shown in Table 2. We observe that the heuristics yield relatively
better performance for the montage flow, but the performance
degradation with regards to BEST remains significant (25%). For the
other three types of real-world flow structures, we observe that
both H2 and DP exhibit worse performance than the one reported
in Table 1 and difference between our best performing proposal
and the best performing heuristic widens. This is attributed to
the fact that the more the heterogeneity in the cost associated
with the graph edges, the more the need to consider these costs
carefully, something that H2 does not perform and DP performs
only partially (since it considers only some of the existing edges). In
the remaining part and in order to keep the evaluation concise, we
will discuss mostly the case, where inter-engine costs are assumed

to be activity-independent showing that even for that setting our
solutions manage to yield improvements.

Regarding the time overhead, this is a couple of seconds even
for the most time consuming techniques, such as the dynamic
programming and random walk. Detailed experiments for the
decision making overhead are presented later.

6.1.2. Imprecise statistical metadata

So far, we have assumed that the statistics in C and CE (the
execution time and inter-engine shipping and switching costs) are
accurately known. Here, we relax this assumption and we allow for
imprecise statistics. We repeat the first part of the experiment in
Section 6.1.1, but after we determine the allocation, we perturb the
values in C and CE and we re-evaluate the total cost. In particular,
we multiply each element in the two cost matrices with a scalar
value @« € [0.9, 1.1] (denoting inaccuracies of +10%) or o €
[0.7, 1.3] (denoting inaccuracies of £30%). In this way, we emulate
a situation, where the actual costs differ from those used during
decision taking.

The results are shown in Table 3. For smaller inaccuracies of up
to 10%, DP still outperforms the other policies for the last 3 flow
types. The performance improvements vary from 15% up to more
than 3 times. For Montage flows, BEST performs better, as in the
case with no inaccuracies. However, the difference of BEST from
the naive heuristics drops to 6.6%. When the inaccuracies grow
larger, this difference is up to 10% for Montage flows. For such
inaccuracies, DP clearly outperforms all the other policies for the
other flow types.
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Table 4
Normalized performance for real-world flows with no engine constraints.
Flow Algorithm
H1 H2 DP BB-IC RWR-b SC1 N BEST
Inter-engine cost € [1, 100] and no engine constraints
Montage 1.0502 3.4899 3.42259 1.0307 1.0453 1.1453 1.0196 1
Epigenomics 1.0293 1.2458 0.2980 1.0018 1.0248 1.1788 1.0359 1
LIGO 1.0328 1.4764 0.9932 1.0023 1.0265 1.1653 1.0396 1
CyberShake 1.0645 2.2775 1.8019 1.0387 1.0615 1.1628 1.0288 1
Inter-engine cost € [1, 1000] and no engine constraints
Montage 1.4840 32.4686 30.3408 1.4739 1.4761 1.1429 1.0012 1
Epigenomics 7.0332 1.0136 0.5915 1.0012 1.0099 8.1907 7.1936 1
LIGO 1.2568 13.6752 7.7084 1.2489 1.2514 1.1293 1.0037 1
CyberShake 1.2459 21.2047 15.6062 1.2424 1.2429 1.1289 1.0002 1
6.1.3. Settings discouraging multiple execution engines Table 5

Intuitively, one might expect that when allowing any engine to
run the complete flow (i.e., not having engine constraints), then
not switching between engines, as in H1, yields the highest per-
formance. However, as shown in the top part of Table 4, for the
Epigenomics flow, DP still achieves more than 3 times lower exe-
cution cost. For the rest of the real-world flows, the improvements
are significantly lower (between 3.2% and 6.4%). H2 produces much
worse results.

In addition, in real world, one might expect the inter-engine
data transfer and switching costs to dominate. So, we perform an-
other experiment, where the CE values are an order of magnitude
higher than the values in C. The results are presented in the lower
part of Table 4. Our solutions in that case improve the performance
from 24.5% to 42%.

6.2. Synthetic flows

The results regarding the real-flows provide strong insights into
the strengths of our solutions but they are tailored to the specific
flows examined. To complement the evaluation, we randomly
generate DAGs. The flows considered consist of n = 10, 20, 50, 100,
200 activities. We categorize the flows depending on their number
of activities, as small (10 or 20 activities), medium (50 activities),
large (100 activities) and very large (200 activities), based on the
categorization in [ 14]. Regarding the exact shape of the flow graph
G, we consider dense flows, where the probability of two activities
to be connected with an edge is 50% (i.e., there exist @ edges),
sparse flows, where the edge probability is 20% (i.e., there exist
% edges), and linear flows, where activity a; is connected only
with a; 1.

The number of the available engines is m = 10, 20, 50, 100,
200. The Montage flow is the one closer to the random flow
instances tested below. Also, the sparse flows are less sparse than
the rest of the flows in Section 6.1.

As in the experimental setting of real-world flows, by default
we assess the performance improvement where the inter-engine
cost is activity-independent, but we later relax this to show that
the our results hold for a wide range of inter-engine cost values.

6.2.1. Performance improvement

In the first set of experiments, we evaluate the flow perfor-
mance in terms of flow execution time. We compare the two
heuristics H1 and H2 against DP, BB-IC, RWR-b, SC1, SC2 and BEST,
which is the best among the last four. For the random walk flavours,
we choose only the best performing one, and we leave their com-
parison for Section 6.2.4. The average results of these experiments
are presented in Fig. 5. The numbers are normalized according to
the execution cost yielded by BEST as previously.

Maximum performance degradation of H1 and H2 in a single iteration compared to
our solutions.

n m
10 20 50 100 200
Dense flows
10 2.92 2.78 3.16 3.77 437
20 3.03 2.96 3.46 438 3.65
50 3.23 2.88 3.01 3.09 4.68
100 241 2.32 2.58 2.80 3.09
200 1.89 2.39 3.58 3.83 2.56

Sparse flows

10 2.10 2.67 2.24 2.31 2.80

20 2.70 2.22 2.67 3.41 2.90

50 3.15 3.01 2.67 2.62 3.10
100 2.60 3.50 2.75 2.42 2.68
200 3.27 2.68 2.42 2.25 2.24
Linear flows

10 2.15 2.70 4.36 5.64 6.99

20 1.93 2.60 3.84 4.95 6.65

50 2.09 2.47 3.51 4.29 5.84
100 1.72 2.39 3.13 4.14 5.53
200 1.82 2.10 2.94 4.02 5.40

The main observation for dense and sparse flows is that the
proposed anytime algorithms (i.e., BB-IC, RWR-b, SC1, SC2 and
BEST) consistently outperform the two simple heuristics; this is
not the case for the DP proposal, which is proved to be optimal for
linear flows and the more dense a flow is the higher the deviation
of DP’s solution from the optimal one. Specifically, for dense flows
(left column in Fig. 5), when the flow size is small, the best
performing simple heuristic can run on average up to 100% longer
than BEST (forn = 10and m = 100). The best performing heuristic
is H1 because it implicitly tackles edge cost minimization contrary
to solutions, such as H2 and DP. The relative degradation decreases
but remains significant as the flow size grows. For instance, the
average degradation can be up to 70% for dense flows of medium
size, 45% for large flows and 33% for very large flows. Note that
the maximum performance degradation in a single iteration can
be much higher, as shown in the upper part of Table 5. That table
presents the highest number of times the best performing heuristic
cost is higher than our best performing solution, which is always
BEST for dense and sparse flows, and DP for linear flows. In a single
iteration, the simple heuristics’ execution costs observed are up to
368% larger for medium flows and up to 283% for very large flows.

In sparse data flows, the performance improvement is lower
than in dense flows, but it is still considerable and up to 66%,
51%, 47% and 34% for small, medium, large and very large flows,
respectively. We always compare our best performing solution
against the best performing naive heuristic. Another observation
is that both in dense and sparse data flows, HI outperforms the
other heuristic H2, with some exceptions for small sparse flows.
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Fig. 5. Performance comparison when n = 10, 20, 50, 100 and 200 (from top to bottom).

As explained in Section 3, BEST is a meta-heuristic, which
leverages BB-IC, RWR-b and set cover solutions. In general, the set
cover solutions are the ones with the highest average performance
between the approaches considered by BEST (apart from sparse
flows when n = m = 10). Without BEST, our proposal with the
highest performance would be at least 10% slower. Between BB-IC
and RWR-b, which are used by all SC1, SC2 and BEST, there is no
clear winner, but in the majority of the settings, RWR-b is superior
to BB-IC.

As far as the linear data flows are considered, the DP algorithm
finds the optimal solution, and as such, achieves the lowest
execution times. On average, DP can exhibit up to 7.5 times better
performance than the naive heuristics. BB-IC and RWR-b attain
similar performance improvements for large and very large flows.
In all cases, both the SC1 and SC1 algorithms are outperformed by
the BB-IC and RWR-b solutions. H2, which does not consider edge

costs, performs better than H1, and in some cases better than some
of our proposals, such as SC1.

In the next experiment, we show the performance of the al-
gorithms when the average inter-engine cost becomes an order
of magnitude lower than the average activity cost. More specifi-
cally, Fig. 6 depicts the execution cost of dense data flows when
the inter-engine cost between engines € [1, 10]. In this figure, we
can see that, especially for non large flows, the naive heuristics per-
form very slightly worse than our solutions. This is expected since,
when the inter-engine cost becomes zero, H2 yields an optimal so-
lution. However, even in this setting, the performance degradation
for large and very large flows is significant and can reach 21%.

As for real flows, we relax the assumption and we consider
activity-dependent inter-engine costs as in Section 6.1.1. The
results are shown in Fig. 7 and confirm the conclusions that we
discussed for real flows about the impact of execution engine
homogeneity on the performance improvement of data flows.
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Fig. 6. Performance comparison when the inter-engine cost € [1, 10] for dense flows.
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Fig. 7. Performance comparison when n = 10, 20, 50, 100 and 200 and the inter-engine cost is activity-dependent.

Specifically, we observe that the performance improvement of
the data flows due to our proposals follows the same pattern
for both inter-engine activity-dependent and activity-independent
cases. We have observed that our solutions can be up to more
than 5 times faster than the existing heuristics in isolated runs.
Comparing Fig. 7 against the left column of Fig. 5, we see that H1 is
better than H2 in Fig. 7, but its performance against our solutions
is even worse for small and medium flows. For large and very large
flows, the performance gap is slightly narrower, especially for a
large number of candidate execution engines. In the remaining
part, we will only discuss the case where the inter-engine costs are
activity-independent for simplicity.

Figs. 8 and 9 refer to a more and a less constrained setting,
where, on average, each flow activity can run on only 20% or 80% of
the engines, respectively (instead of 50%). When having 20% engine
probability, the performance degradation of the naive solutions
is more evident for small flows (where it can be up to 51%), but
becomes smaller for very large flows (where it can be up to 12%).
In the case of 80% engine probability, the performance degradation
increases compared to the results of 20% or 50% engine constraints.
Specifically, for small flows, the simple heuristics in the best case
are 63% worse than our proposals, while, in large flows, our average
performance improvements are at least 60%.

6.2.2. Decision making overhead

We show the running time of the optimization process in
Fig. 10. For simplicity, we discuss only dense flows, but the obser-
vations apply to all flow types. We can draw the following observa-
tions: the naive heuristics run in milliseconds for any size of flows
and candidate engine sets. If the number of engines is up to 50,
the DP and BB-IC algorithms run in hundreds of milliseconds. For
m = 100, DP still runs in less than 1 s, except when n = 200.
For m = 200, the average time overhead of DP is between 0.3
and 6.7 s.

RWR-b runs in 1 s for small flows, up to 1.8 s for medium flows;
for large and very large flows, RWR-b does not exceed 4.2 and
13.7 s, respectively.® The overhead of the set cover solutions are
largely determined by the overhead of RWR-b; it is slightly smaller
than that of RWR-b since SC1 and SC2 examine a smaller set of
engines. Overall, the running overhead is low, which supports our
claim that our proposals are practical.

3 The overhead of RWR-b is mostly due to the estimation of the cost of each

allocation plan after each random change from scratch; for large flows, more
efficient cost estimation approaches that reuse previous results can be devised.
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6.2.3. Accuracy

The accuracy of the algorithms can be accurately measured only
if the optimal solution can be found. This can be done in reasonable
time in two cases: (i) when the flows are linear; and (ii) when
n and m are sufficiently small so that BB can be applied. For the
first case, we can use the third column of Fig. 5, which shows
the average performance of the algorithms. The accuracy of the
anytime algorithms degrades as n and m increase. In addition,
the bottom part of Table 5 shows the maximum performance
degradation observed for the two simple heuristics.

We also check the accuracy of the algorithms for very small
dense flows, where n,m = 5,6, 7, 8. For such flows, RWR-b is
remarkably accurate, and, on average, it is within 2% of the optimal
solution provided by BB. The next more accurate algorithm is BB-
IC, the average degradation of which is 15%. DP is 29% slower,
whereas, the best performing naive heuristic, H1 incurs 63% higher
execution costs (see Fig. 11).

6.2.4. Random walk flavours

In Section 3, we discussed a set of random walk flavours and
here we explain why we used only RWR-b in the previous experi-
ments. We present the comparison of the flavours only for a rep-
resentative setting: dense data flows with n = 50, m = 50. The

results of this experiment are presented in Fig. 12. RWR-b algo-
rithm has the best performance compared to RW and RWR-r, al-
though the difference of performance and time overhead between
RWR-r and RWR-b is negligible. Nevertheless, the optimization
time of the simple RW is much lower than 1 s for activities at the
expense of approximately 4.2% of performance degradation.

For the same experimental setting, we investigate the impact
of the random walk length for RWR-b. We evaluate walk lengths
of 103, 10* and 10°, as shown in the middle row of Fig. 12. The
main observation is that as we increase the length of the walks, the
execution cost of the algorithm is slightly increased too, whereas
the optimization time increases proportionally to the length of the
walk. For large lengths the optimization overhead is on the orders
of minutes without significant performance benefits. Finally, in the
last set of experiment, we evaluate the impact of the number of
restarts (r = 10, 20, 30, 40, 50), as shown in the bottom row of
Fig. 12. According to the results, the impact of restarts does not
significantly affect the performance: going from 10 restarts to 50
yields approximately 2% of improvement.

6.3. Summary of lessons learnt and discussion

The real-world flows in scientific scenarios tend to be sparse
and either close to linear ones, or comprising many linear subflows.
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Fig. 10. Decision making time for n = 10, 20, 50, 100 and 200 (from top to
bottom).

This implies that the contribution of the inter-engine cost to the
flow execution cost is less significant compared to arbitrarily
random flows. In scenarios, where there are many linear subflows,
DP exhibits clearly better performance; otherwise BEST yields the
lowest execution times. Our solutions can also yield significant
benefits when there is no obligation to switch between engines (in
the sense that an engine can run the complete flow) and the inter-
engine costs are an order of magnitude higher than the processing
costs.

From the experiments with the synthetic data, we can draw
the following conclusions for random flows: (i) our solutions
can efficiently handle even very large flows and outperform
naive solutions; (ii) we can declare clear winners for different
types of flows: for dense and sparse flows, BEST is the superior
algorithm; for linear flows, DP is optimal; (iii) the performance

improvements of our proposals compared to naive solutions are
significant in every type of flows; and (iv) the running time of
the decision making process completes in less than a second in
most of the cases, which supports our claim that our proposals are
practical.

Note that for random flows, BEST is a practical and efficient
solution, and its efficiency is largely due to the set cover algorithms.
For those algorithms, several additional flavours can be devised; for
example to select engines according to their average inter-engine
costs. Such flavours may support better specific scenarios, e.g., flow
types where some tasks play the role of a hub with high degree
of incoming and outgoing edges. In this work, we mostly focus on
generic flows; the development of additional flavours tailored to
specific flow structures is out of our scope.

7. Related work

The closest proposal to our work appears in [4,3], where
the authors also deal with the complexity of flows in multi-
engine environments and present a concrete workflow enactment
system that supports hybrid flow execution. Apart from the system
presentation, in [4], an exhaustive approach for allocating the
activities of a flow to different execution engines is proposed
in order to meet multiple-objectives, such as performance and
fault-tolerance. In addition, heuristic techniques are presented for
pruning the search space; those heuristics are equivalent to H1
and H2. In our work, we improve upon such allocation schemes,
and, through our evaluation, we show that our approaches are
both scalable and significantly better than simple heuristics, when
performance is the single optimization criterion.

[15] introduces an ant colony optimization algorithm that se-
lects service instantiations between multiple candidates, in a set-
ting where the flows mainly consist of a series of remote service
invocations. In our work, we do not employ such type of algo-
rithms, because their optimization overhead is at least two orders
of magnitude higher (see indicative running times in [16]).

A state-of-the-art approach to flow scheduling is presented
in [17,13]. Specifically, a set of optimization algorithms based on
deadline and time constraints was analysed for scheduling flows.
If we consider to adapt these methodologies in order to fit in our
problem keeping only the allocation part regardless of deadlines,
we will come to the conclusion that these methodologies are re-
duced to the simple heuristics presented in Section 2; more specif-
ically the allocation part is reduced to H2, to which our proposals
are shown to be superior. Another family of proposals aims at find-
ing allocations of flow nodes to processors within a cluster, when
the processors are homogeneous. Apart from that difference, which
renders them inapplicable to our setting, typical assumptions are
that there is no notion of inter-engine cost and there are no con-
straints with regards to the capabilities of an engine to execute a
specific flow activity. Examples of such allocation approaches are
described in [18-20].

For completeness, we briefly discuss additional aspects of flow
optimization, which differ from our problem setting. [21] discusses
optimal time schedules given a fixed allocation of activities to en-
gines. Scheduling issues are also considered in works such as [22],
which exploit existing systems, e.g. Pegasus, for task mapping
procedure and [23], in which deadline constraints are taken into
account. The proposals of [24-26] focus on methodologies of re-
ordering and/or merging flow activities in order to yield im-
proved performance, while keeping the flow semantics. In [27],
flow activities are transformed in order to benefit from underly-
ing data management infrastructures. [28,14] discuss optimization
of data flows according to multiple objectives without consider-
ing engine allocation issues. In [29], a data oriented method for
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workflow optimization is proposed in order to minimize execu-
tion cost. This method is based on the fact that data may be
shared across several functions, and, as such, workflow perfor-
mance stands to benefit from optimizations in the form of incor-
porating a shared database to handle common data-oriented tasks.
Another proposal of flow optimization is presented in [30] based
on soft deadline rescheduling in order to deal with the problem
of fault tolerance in flow executions. In [31], an auction-based
scheduling methodology for multi-objective flow optimization is
presented; in our setting, choosing the most inexpensive engine is
similar to the policy of the naive heuristic H2. Also, a methodology
for minimizing the performance fluctuations that might occur by

the resource diversity is proposed in [32]. Their proposal focuses on
the delay correction during task execution. All these optimization
aspects are orthogonal to our research.

The optimization of flows bears also similarities to distributed
query optimization [33] and optimization of queries with user-
defined functions [34]; however, in those problems, the focus is
on the shape of the query plan and the ordering of the distributed
operators (e.g., [34,35]) instead of deciding the mapping of a plan
node to a specific engine. Other issues that differentiate query and
flow optimization include the definition of the semantics of flow
nodes, algebraic re-writing of flow plans and respecting inter-task
dependencies.
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8. Conclusions and future work

In this work, we investigate the problem of allocating nodes
of data-intensive flows to concrete executing engines. We prove
that this problem is # #-hard and cannot be approximated within
a small constant. Due to the problem complexity, to date this
problem is addressed using naive heuristics. In this work, we
show that we can do significantly better without much overhead.
We propose an optimal polynomial time dynamic programming
solution for the specific case of flows that are linear, i.e., a chain of
activities. Furthermore, we propose anytime algorithms that can
handle any type and size of flows. With the help of our thorough
experimentation, we declare clear winners depending on the type
of the flow. Our proposals are capable of yielding solutions that are
significantly better than naive approaches; actually, in real-world
flows and conditions, they outperform those naive approaches by
a factor of up to three. Our proposals are also easy to implement
and are light-weight.

This work aims to propose fast algorithms for engine selection
and focuses on the generic properties of the solutions. Apart from
devising tailored solutions for each type of real-world flow, in
the future, it is interesting to investigate solutions without the
constraint of finding an allocation in a limited time period. Two
further avenues for extending this work are to consider multiple
objectives (e.g., both total time and makespan) and consider the
impact of co-allocating activities to the same engine on the costs
of those activities.
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Abstract The Extract-Transform-Load (ETL) flows are
essential for the success of a data warehouse and the busi-
ness intelligence and decision support mechanisms that are
attached to it. During both the ETL design phase and the
entire ETL lifecycle, the ETL architect needs to design and
improve an ETL design in a way that satisfies both per-
formance and correctness guarantees and often, she has to
choose among various alternative designs. In this paper, we
focus on ways to predict the maintenance effort of ETL work-
flows and we explore techniques for assessing the quality of
ETL designs under the prism of evolution. We focus on a
set of graph-theoretic metrics for the prediction of evolution
impact and we investigate their fit into real-world ETL sce-
narios. We present our experimental findings and describe
the lessons we learned working on real-world cases.
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1 Introduction

Having accurate and up-to-date data warehouses is essential
for Business Intelligence and Decision Support. A data ware-
houses design, apart from performance guarantees, should
also provide correctness guarantees. Every time an evolu-
tion event occurs anywhere in the warehouse environment
(e.g., a design change at the operational sources) it should
be smoothly absorbed without causing any further inconve-
nience. For achieving this, the warehouse and its counterparts
should be easily maintainable and the process of populating
it should not be destructed by evolution events.

The Extract-Transform-Load (ETL) flows constitute the
backbone of a typical data warehouse architecture. Most of
the research for improving ETL designs has focused solely on
improving performance. However, based on practical experi-
ence, maintenance makes up for up to 60 % of the resources
spent in a warehouse project [34], and therefore, maintain-
ability is an important factor for the determination of the
quality of a design [19,36]. Although practitioners are well
aware of this problem, still, we miss a formal and concrete
answer to fundamental questions like “How good is an ETL
design?” and “What makes an ETL design good or bad?”.
Typically, such questions are answered by a set of empirical
rules based on practical observations of the past, as well as
rules of thumb that have been established by expert practitio-
ners and despite their value, they simply transfer the lessons
learned the hard way in the “craft” of ETL design. Most of
these rules consider only structural properties of the ETL flow
or constructs internal to the underlying databases and do not
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take into account neither the incorporation of constructs sur-
rounding the databases, nor the fact that a software construct,
and especially an information system, evolves over time.

In practice, the problem is hard since changes in the
schema of database-centric systems affect not only both
its internals but also the surrounding deployed applications.
Hence, the minimal interdependence of these software mod-
ules results in higher tolerance to subsequent changes and
should be measured with a principled theory. Related work
for evolution data-intensive applications [9], view redefini-
tion [10,17,26], and data warehouse evolution [3,5,11,14]
has provided rewriting techniques and theoretical cost mod-
els. Yet, a well-founded model, specifically tailored for the
graph-based nature of ETL flows that assesses their vulner-
abilities to changes is missing.

Related work also includes an approach to impact analysis
and management of schema evolution, which represents the
structural properties of the data warehouse schema, along
with any views and queries defined over this schema, as a
graph [30]. Our graph-based model captures all the parts (or,
modules) of an environment, i.e., relations, views, and que-
ries (which are practically the parts of ETL scripts that work
the underlying data, or the elementary activities of a GUI-
based scenario that are involved in the ETL process). Then,
edges correspond to part-of or provider—consumer relation-
ships. Given a database configuration, the impact of a schema
change on the rest of the system is determined by exploiting
the structure of the graph (i.e., by propagating the impact of
the change via the involved edges). This clearly relates the
structure of the graph, and its edges in particular, with the
possibility that a component of the environment (a node in
the graph) is affected by a certain evolution event. Further-
more, the evolution of the entire environment is regulated
with the use of certain policies applied to the graph con-
structs. Example policies include either propagate/block a
change or prompt the user for action. This way, adminis-
trators can regulate the evolution management, in a semi-
automatic way, when changes on the database schema occur.
Another research work employs a set of graph-theoretic met-
rics to measure evolution impact in data warehouse environ-
ments [29]. Although informally and briefly introduced in
that work, these metrics are either degree-related or entropy-
based metrics and compute the degree of dependence of
nodes based on the structural properties of the system design
from both a graph theoretic and an information theoretic per-
spective. However, these two works have not been adequately
tested in real-world, large-scale applications.

In this paper, we built upon the aforementioned approaches
with the goal of validating and experimentally assessing the
proposed methods and metrics in real-world settings. We
formally present these metrics and show that such metrics
typically act as predictors for the vulnerability of a software
module (either internal like a relation or external like a query)

@ Springer

in a database-centric environment to future changes to the
structure of the environment. Thus, we answer the aforemen-
tioned questions on the design quality of an ETL scenario
from the perspective of maintenance.

Our experimental evaluation has been performed with
a home-grown, publicly available, software tool, namely
Hecataeus, which allows us to monitor evolution and per-
form evolution scenarios in database-centric environments.
(For implementation details, the interested reader could read
our ICDE’10 demo paper, Papastefanatos et al. [31].) The
experimental analysis is based on a 6-month monitoring of
seven real-world ETL scenarios processing data from statisti-
cal surveys. Our main goal was to examine different metrics
over various ETL configurations and evolution events for
assessing the usefulness and applicability of the proposed
metrics (e.g., how well do they actually predict the impact of
evolution events on a design construct). An additional desired
objective was to identify which metric works best in differ-
ent ETL configurations. Based on our findings, observations,
and analysis, we disclose a list of lessons learned through this
multi-month work.

In a nutshell, we have identified the schema size and mod-
ule complexity as two important factors for the vulnerability
of a system.

Schema sizes. The size of the schemas involved in an
ETL design significantly affects the design vulnerability
to evolution events. For example, source or intermediate
tables with many attributes are more vulnerable to changes
at the attribute level. Thus, a good design may involve tables
with smaller schemas (e.g., we should maintain intermediate
tables with a small number of attributes).

Functionality of ETL activity. The internal structure of an
activity plays a significant role for the impact of evolution
events on it. For example, activities with high out-degree
and out-strengths tend to be more vulnerable to evolution
and activities performing an attribute reduction (e.g., through
either a group-by or a projection operation) are in general,
less vulnerable to evolution events.

Module-level design. The module-level design of an ETL
flow also affects the overall evolution impact on the flow.
For example, it might be worthy to place schema reduction
activities early in an ETL flow to restrain the flooding of evo-
lution events. However, as we discuss in Sect. 5, such heuris-
tics that significantly improve maintainability of ETL flows
might contradict the normal practice for improving ETL per-
formance.

In addition, we tested our metric suite against various
ETL designs and have identified what metric provides better
evolution prediction for specific ETL constructs. For mod-
ules with a single provider, the out-degree and out strength
metrics (described in Sect. 3), which capture the dependen-
cies with an adjacent module, provide better results. How-
ever, transitive degree metrics may act as predictors for the
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evolution of a module when it has many different providers
and paths to evolving sources (e.g., queries).

Retrospectively, we can report that experimenting with
real-world evolution scenarios in data-centric environments—
and especially in ETL and data warehousing—is a difficult,
long-termed, and time-consuming process. Such a process
comprises a series of tasks, responsible for (a) recording all
metadata information and workload definitions; (b) modeling
and analyzing the dependencies between them; (c) collect-
ing and categorizing all different types of evolution changes
that occurred at different time periods and on different parts
of the environment, and (d) recording how often each part
of the environment (e.g., a query, a view) is affected by
each change. Besides the non-trivial technical difficulties and
effort needed for completing these tasks, in some cases, like
for tasks (a) and (c), we had to deal with political and organi-
zational issues as well. That is because more than one team
of an organization is typically involved in these tasks and get-
ting permissions, engaging people in exchanging and sharing
information, and depending on other people’s availability are
not easy to carry tasks. This is an additional reason in favor
of having a system toward the automatic or semi-automatic
handling of evolution events in ETL and in general, in infor-
mation management environments.

QOutline The rest of this paper is structured as follows.
Section 2 describes a graph-theoretic model for representing
the constructs of a data warehouse environment. Section 3
presents the set of metrics. Section 4 presents our experi-
mental findings. Section 5 provides a list of lessons learned.
Finally, Sects. 6 and 7 discuss related work and conclude the
paper, respectively.

2 Modeling ETL Designs

In this section, we describe a graph-based model for ETL
design. ETL designs are typically represented as graphs con-
necting activities and data stores. There are different styles
for populating a data warehouse, like ETL, ELT, ETLT, and
so on. Although these techniques have different performance
characteristics, they do not differ in terms of modeling and
thus, hereafter, we use the term ETL to capture all flavors of
data warehouse population.

Our model uniformly covers relational tables, views, ETL
activities, database constraints, and SQL queries as first class
citizens. This model represents all such database constructs
as adirected graph, named evolution graph, G = (V, E). The
nodes represent the entities of our model and the edges repre-
sent the relationships among these entities (mainly referring
to part-of or provider-consumer relationships). The rationale
for this modeling is to be able to represent data-centric eco-
systems in a uniform way. In other words, we aim at a single,
uniform way to model both database internals (like relations,

views and constraints) and software modules external to the
database (reports, forms, application programs, and so on).
ETL flows offer a tight coupling of the database internal and
external parts, along with the tight control of the application
code by a small group of developers. Here, we present a brief
description of our model. The interested reader may find a
detailed model definition in another research paper [30].

A relation R (21, 22,..., 2,) in the database schema
is represented as a directed graph, which comprises (a) a
relation node, R, representing the relation schema; (b) n
attribute nodes, 21, ..., 25, one for each of the attributes;
and (c) n schema relationships, directing from the relation
node towards the attribute nodes, indicating that the attribute
belongs to the relation.

The graph representation of a Select-Project-Join-Group
By (SPJG) query involves a new node representing the query,
named guery node, and attribute nodes corresponding to the
schema of the query. The query graph is a directed graph
connecting the query node with all its schema attributes, via
schema relationships. In order to represent the relationship
between the query graph and the underlying relations, we
resolve the query into its essential parts: SELECT, FROM,
WHERE, GROUP BY, HAVING, and ORDER BY, each
of which is eventually mapped to a subgraph. The edges
connected the involved attribute and operand nodes are anno-
tated as map-select, from, and where relationships. Ali-
ases in the FROM clause (mostly needed in self-joins for
our modeling) are annotated with alias edges. The direc-
tion of the edges is from the query node to the attribute
nodes. WHERE and HAVING clauses are modeled via a left-
deep tree of logical operands to represent the selection for-
mulae; all the involved edges are annotated as where and
having relationships, respectively. Nested queries are part
of this modeling, too. For the representation of aggregate
queries, we employ two special purpose nodes: (a) a new
node denoted as GB, to capture the set of attributes acting
as the aggregators; and (b) one node per aggregate func-
tion labeled with the name of the employed aggregate func-
tion,e.g., COUNT, SUM, MIN.Forthe aggregators, we use
edges directing from the query node towards the GB node
that are labeled <group-by>, indicating group-by rela-
tionships. Then, the GB node is connected with each of the
aggregators through an edge tagged also as <group-by>,
directing from the GB node towards the respective attributes.
These edges are additionally tagged according to the order
of the aggregators; we use an identifier i to represent the
ith aggregator. Moreover, for every aggregated attribute in
the query schema, there exists an edge directing from this
attribute towards the aggregate function node as well as an
edge from the function node towards the respective relation
attribute. Both edges are labeled <map-select> indicat-
ing the mapping of the query attribute to the corresponding
relation attribute through the aggregate function node. The
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CREATE VIEW V AS

SELECT Emp#, Hours

FROM EMP E, WORKS W
E.Emp# = W.Emp#
E.Sal >= 50K

SELECT Emp#,

SUM(Hours) as T_HOURS WHERE
FROM V AND
GROUP BY Emp#

Module

map-select

WORKS (Emp#. Proj#,Hours)

map-select

]

map-select

EMP(Emp#, Name, Sal)
from |

(b)

Fig. 1 a Graph and b abstract representation of an aggregate query on top of a view defined over two relations

representation of the ORDER BY clause of the query is per-
formed similarly.

Functions used in queries are denoted as a special pur-
pose node F having the name of the function. Each function
has an input parameter list comprising attributes, constants,
expressions, and nested functions, and one (or more) output
parameter(s). SQL Views are considered either as queries
or relations (materialized views). Finally, DML and loading
statements are modeled as simple SQL queries.

Figure la depicts the proposed graph representation for
two relations, EMP and WORKS. EMP has three attributes,
Emp#, which is the primary key, Name and Sal. WORKS
relation comprises Emp# (foreign key to EMP primary key),
Proj# and Hours attributes. On top of these relations,
there is a view performing a join operation and filtering
the employees having SAL more than 50 K. Finally, the
graph depicts an aggregate query defined on top of this
view.

Moreover, an ETL activity (e.g., a loading, cleansing, fil-
tering operation, etc.) is modeled as an SQL view defined
over the sources of the activity; furthermore, an ETL work-
flow is modeled as a sequence of views corresponding to the
activities of the flow.
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A module is a sub-graph of the overall graph in one of
the following patterns: (a) a relation with its attributes and
all its constraints, (b) a view with its attributes, functions
and operands, and (c) a query with all its attributes, func-
tions and operands. Modules are disjoint with each other
and connected through edges concerning foreign keys, map-
select and so on. Within a module, we distinguish rop-level
and low-level nodes. Top level nodes are used to signify the
identity of the module; for that purpose, query, relation and
view nodes are used as top-level nodes. Low-level nodes
comprise the rest of the module. Edges are classified into
provider and part-of relationships. Provider edges are inter-
module relationships, whereas part-of edges are intramodule
relationships In Fig. 1, the graph comprises four modules
corresponding to the query, view and the relation subgraphs.

Zoomed out graph The graph that we have presented
so far has the benefit of accurately representing the interre-
lationships of the involved constructs at the finest level of
detail (practically the attribute level when data-centric eco-
systems are involved). As usually happens, this comes at a
price: the graph soon becomes large and crowded with all
the details of internal representation of the modules. In order
to (a) concisely represent the overall graph in main memory
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and (b) visually depict it, whenever the scale becomes too
large, it is useful to zoom out the graph into a summary of
appropriate structure and size. The zoomed out graph is an
abstraction of the detailed evolution graph which comprises
only top level nodes and edges between them. Abstracting the
graph into a modular representation at a coarser level of detail
involves the following steps: (a) for each query, view or rela-
tion module, all low-level nodes and intramodule edges are
suppressed and only the respective top-level node is retained,
and, (b) all inter-module edges apart from from and foreign
key edges are dropped. A surviving edge between two mod-
ules is annotated with a weight corresponding to the number
of the edges that originally connected the two modules. We
call this weight the strength of the edge as it assesses how
tightly the involved modules are coupled. Figure 1b depicts
the abstract modular representation of Fig. la.

Events The space of potential events comprises the Carte-
sian product of two subspaces; specifically, (a) the space
of hypothetical actions (addition/deletion/modification), and
(b) the space of the graph constructs sustaining evolution
changes. We consider and collect several cases of data ware-
house evolution events, such as a dimension is removed, or
renamed, the structure of a dimension table is updated, (e.g.,
addition, removal or modification of a dimension attribute),
a fact table is completely decoupled from a dimension (dele-
tion of a FK) or decoupled from one dimension and coupled
to another (update of a FK), the measures of a fact table
change, or the source table of an ETL is altered. To avoid
overloading the text, we refer the interested reader to ([30],
section 3.1) for a detailed description of events.

An update can signify a change of data types or a renam-
ing of a construct; our practical experience indicates that it
mostly refers to the latter. We do not check for additions
of fact, dimension, or source tables, because such events do
not result in a direct impact on any other logical warehouse
construct per se. Given these changes that can occur to a
data warehouse, their basic impact is that all software mod-
ules that use these database structures must be rewritten. The
impact can be both syntactic (in the sense that all views and
queries using a deleted attribute will crash) and semantic (in
the sense that a new attribute in a relation or a modified con-
dition in a view might require a rewriting of all the queries
that use it). Assume for example that an attribute FullName
is split to attributes FirstName and LastName or a view con-
dition ‘Year = 2007 is altered to ‘Year > 2006’. The former
change has syntactic impacts on all the queries using the
attribute and the latter has semantic impact, since some of
the queries using the view require exactly values of 2007,
whereas some others will serve the purpose with any value
greater than 2006.

Handling of events Given an event posed to one of the
warehouse constructs (or, equivalently, to one of the nodes
of the graph of the warehouse that we have introduced), the

impact involves the possible rewriting of the constructs that
depend upon the affected construct either directly, or transi-
tively. In a non-automated way, the administrator has to check
all of these constructs and restructure the ones he finds appro-
priate. This process can be semi-automated using our graph-
based modeling and annotating the nodes and the edges of
the graph appropriately with policies in the event of change.
Assume for example, that the administrator guarantees to an
application developer that a view with the sum of sales for
the last year will always be given. Even if the structure of the
view changes, the queries over this view should remain unaf-
fected to the extent that its SELECT clause does not change.
On the contrary, if a query depends upon a view with seman-
tics ‘Year = 2007 and the view is altered to ‘Year > 2006,
then the query must be rewritten.

The main idea in our approach involves annotating the
graph constructs (relations, attributes, and conditions) sus-
taining evolution changes (addition, deletion, and modifica-
tion) with policies that dictate the way they will regulate the
change. Three kinds of policies are defined: (a) propagate the
change, meaning that the graph must be reshaped to adjust
to the new semantics incurred by the event; (b) block the
change, meaning that we want to retain the old semantics
of the graph and the hypothetical event must be vetoed or,
at least, constrained, through some rewriting that preserves
the old semantics; and (c) prompt the administrator to inter-
actively decide what will eventually happen. Papastefanatos
etal. [28] have proposed a language that greatly alleviates the
designer from annotating each node separately and allows the
specification of default behaviors at different levels of gran-
ularity with overriding priorities.

Given the annotation of the graph, there is also a
simple mechanism that (a) determines the status of a
potentially affected node on the basis of its policy, (b) depend-
ing on the node’s status, the node’s neighbors are appropri-
ately notified for the event. Thus, the event is propagated
throughout the entire graph and affected nodes are notified
appropriately. The STATUS values characterize whether (a)
anode or one of its children (for the case of top-level nodes)
is going to be deleted or added (e.g., TO-BE-DELETED,
CHILD-TO-BE-ADDED) or (b) the semantics of a view
have changed, or (c) whether a node blocks the further prop-
agation of the event (e.g., ADDITION-BLOCKED).

3 Metric Suite

This section presents a set of metrics based on graph the-
oretic properties of the evolution graph for measuring and
evaluating the design quality of a database centric environ-
ment with respect to its ability to sustain changes. For our
analysis, we examine the graph (a) at its most detailed level
(node level) that involves all the attributes of relations, views
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Table 1 Degree related metrics

Notation Metrics for any node

D' (v) In-degree of a node v

D9 (v) Out-degree of a node v

D(v) Degree of a node v

TD! (v) In-transitive degree of a node v
DO (v) Out-transitive degree of a node v
TD(v) Transitive degree of a node v

D' (v) In-degree of a module v

DO (v) Out-degree of a module v

D*(v) Degree of a module v

TD'S (v) In-transitive degree of a module v
TDY (v) Out-transitive degree of a module v
TDS (v) Transitive degree of a module v

Table 2 Entropy-based metrics

Notation Metric
H(v) Entropy of a node v
H*(v) Entropy of a module v

and queries, along with the internals of the queries, and, (b)
at a coarse level of abstraction (module level), where only
relations, views and queries are present. An earlier work,
has briefly introduced these metrics [28]. Here, we formally
define them and provide the intuition and a detailed defini-
tion for each metric. The whole set of proposed metrics is
presented in Tables 1 and 2.

3.1 Degree-Related Metrics

The first family of metrics concerns simple properties of each
node or module in the graph and specifically the degree of
nodes. The main idea lies in the understanding that the in-
degree, out-degree and total degree of anode v demonstrate in
absolute numbers the extent to which (a) other nodes depend
upon v, (b) v depends on other nodes, and (c) v is interacting
with other nodes in the graph, respectively.

Specifically, let G(V, E) be the evolution graph of a data-
base centric environment and v € V a node of the graph;
then

Definition 1 Degree of Node: The In-degree, D! (v), Out-
degree, D9 (v) and Degree, D(v) of the node v are the total
number of incoming, outgoing and adjacent edges to v. That
is

D! (v) = leinl, forall edges ej, € E of the form
(i, v), yi,veV

Do(v) = |eout|, for all edges eqye € E of the form
(v, i), yi,veV

D(v) = D'(v) + D%(v)
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Transitive Degrees. The simple degree metrics of anode v are
good measures for finding the number of nodes that directly
depend on v, or on which v directly depends on, but they can-
not detect the transitive dependencies between nodes. This
typically occurs whenever a query accesses a view, which
is of course defined over one or more views and relations.
The metrics related to simple degrees cannot capture the fact
that a change in a relation can eventually propagate to a large
number of dependent modules transitively. Take, for exam-
ple, the case of an ETL flow where a source relation may
feed only a single activity; however, a change in this relation
can transitively propagate and affect the entire workflow. In
the context of our graph model, we say that a node vy is tran-
sitive dependent on another node v if there is a path from v
towards v;. Therefore, we employ the following definition
for the transitive degrees of a node v with respect to the rest
of the graph:

Definition 2 Transitive Degree of Node: The In-Transi-
tive, TDI(V), Out-Transitive, TDO(V), and Transitive degree,
TD(v) of anode v € V with respect to all nodes y; € V are
given by the following formulae:

TD'(v) = ) |paths(yi, v)|, yi € V
yieV

TDO(w) = ) |paths(v, y)|, yi € V
yieV

TD() =TD'(v) +TD%(v)

Module degree. The aforementioned metrics are able to cap-
ture the significance of individual nodes of the graph at a
fine-grained level. However, it is quite possible that adminis-
trators and designers are interested to see the graph properties
at the module level. A first possible reason for this require-
ment is the graph’s size: the administrators/designers might
be willing to pay a small price in accuracy in favor of faster
computation. Also, the metric properties of the modules (seen
as black boxes) per se could be of interest to the administra-
tors and the developers. To address this requirement, one can
measure the degrees of the zoomed-out graph. As already
mentioned in chapter 2, zooming-out operation on the graph
provides an abstract view of the modules of the graph, which
comprises only top-level nodes, i.e., relations R, views V§
and queries Q and edges between them. All edges are anno-
tated with a strength corresponding to the number of edges
previously connecting these modules. Thus, we define the
module degree for a node of the zoomed out graph as

Definition 3 Degree of Module (Strength): The In-Module,
D'$ (v), Out-Module, D9’ (v) and Module Degree, D* (v)of
anode v are given by the following formulae:

DI (v) = z strength(y;, v), yi,v € {R, Q, VS}
yieV



Metrics for the Prediction of Evolution Impact in ETL Ecosystems

81

D% (v) = > strength(v, y;), yi,v € {R, Q, VS}
YieV

D*(v) = D" (v) + D% (v)

Module transitive degree. Similarly to above, we may extend
the transitive degrees to the zoomed-out graph according to
the following definition:

Definition 4 Transitive Degree of Module (Strength): The
In-Module, TDIS(U), Out- Module, TDOS(U), and Module
Transitive degree, TD®(v) of a node v €{R,Q,VS} with
respect to all nodes y; €{R,Q,VS] are given by the following
formulae:

TD'S (v) = Z Z strength(ep), i, ve(R, Q, VS}

Yi€V ep € paths(y;,v)

D (v)=>" D strength(ep). yi. ve(R. Q. VS)

Vi€V ep €paths(v,y;)

TDS (v) = TDS (v) + TDOS ()

3.2 Entropy-Based Metrics

The last family of metrics presented is related to the infor-
mation theoretic notion of entropy. Entropy is viewed as an
arcane subject related somehow to uncertainty and informa-
tion [32]. Given a set of events A = [A1, ..., A,] with prob-
ability distribution P = {p1, ..., py}, respectively, entropy
is defined as the average information obtained from a single
sample from A:

n
H(A) == pilog, pi.
i=l

Entropy is strongly related to the information that is “hid-
den” in a probabilistic model. For instance, in a uniform prob-
abilistic model, all events are equally likely to occur and
therefore the entropy of the model is maximum.

In our evolution context, the notion of entropy is used to
evaluate the extent to which a node is likely to be affected
by a random evolution event on the graph. Intuitively, this
likelihood is strongly related to the number of other nodes
in the graph on which this node depends (i.e., connected to)
either directly or transitively. Nodes connected via multiple
paths to many parts are more likely to be affected if a random
event occurs on the graph. Thus, entropy measures either the
a priori uncertainty of the impact of an event on a part of the
graph or equivalently the a posteriori amount of information
we get from the knowledge that a part of the graph has been
affected by an event. The more unpredictable the impact of a

o

Fig. 2 A graph with a query, three views, and two relations

schema change on a part (either a module or a specific node)
of the graph is, the higher the entropy is that characterizes
this impact. For example, consider the graph of Fig. 2, where
aquery Qg is defined on top of two views, V| and V;, which
both access a single relation Rp; a third view, V3, is defined
on top of a second relation, Ry. Q1 depends on three out of
five modules in the graph, i.e., V1, V, and Ry, and thus, it
has a high potential that it will be affected by a random event
on the graph, in contrast with V3, which is connected only to
R» and affected by changes occurring only to this relation.
The following definitions introduce the metrics of the
entropy of a node at the detailed and the zoomed out graph:

Definition 5§ Entropy of Node: Assume a node v in our graph
G(V, E). We define the probability that v € V is affected
by an arbitrary evolution event e over a node y; € V as the
number of paths from v towards y; divided by the total paths
from v towards all nodes in the graph, i.e.,

|paths(v, yi)|

> |paths(v, y;)|
i€V

P(|y) = , forallnodesy;, € V.

Then, the information we gain when a node v is affected
by an event that occurred on node yi is I(P(v|yr)) =
log, m and the entropy of node v with respect to the
rest of the graph is then

H(v) = — > P(v|y)log, P(vly:). forallnodesy; € V.
yieV

Observe that high entropy values correspond to these parts
of the graph, that are dependent on many providers either
directly or transitively, capturing in a “smoother” way than
the local or the transitive degrees the dependencies in the
graph.

Definition 6 Entropy of Module: Moreover, we can apply
the previously used technique to the zoomed out-graph
G*(V*, E®), by defining the probability of a node v €V *
to be affected by an evolution event over a node y; €V * as

Zep € paths(v,yx) Strength(e[’)
Z}’,’EV“ Zep € paths(v,y;) Strength(ep) '
for all nodes y; € V°.

P (vly) =
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with e, € E® being the edges of all the paths of the zoomed
out graph stemming from v towards y,. Similarly, the entropy
of node v € V* is

H*(v) = = D> P*(v]y;)logy P*(wly)
yieV?
for all nodes y; € V.

A summary of the proposed set of metrics is provided
in Tables 1 and 2.

3.3 Rationale for Our Approach and Broader Perspective

Before describing how the aforementioned metrics have been
applied to a real case study, we discuss the rationale for the
choice of this metric suite.

We base our approach on the modeling power of the graph
proposed. Our graph-based model is simple, comprehen-
sive, rigorously defined, and it has a uniform treatment of
all involved constructs. Nodes correspond to both detailed
entities like attributes or values and to higher level entities
like relations or queries (this can further be abstracted to dat-
abases, scripts, libraries, and so on). Edges denote any form
of relationship, with two kinds of relationship being the most
prominent ones: (a) part-of (between high-level modules and
their constituents) and (b) provider-consumer in terms of data
provision. Both kinds of edges capture the notion of depen-
dency: an edge e(v, u) from node v to node u, signifies that
node v is potentially affected whenever u is affected too.

We believe that dependency is the cornerstone of mainte-
nance in data-centric ecosystems. To this end, we devised two
families of metrics based on mathematical fundamentals to
quantify the dependency of a node. The first family of metrics
has to do with graph-theoretic properties. In the context of
our studies, we focused on the properties of individual nodes,
and, in fact, we opted to constrain ourselves to simple met-
rics like degrees and we explore the main kinds of degrees.
At the same time, we also explore two different modes of
locality. First, we are interested in the local degree, as a sim-
ple measure of direct dependence between nodes. Second, we
operate in a workflow-like environment where data are “‘cop-
ied” from one module to another for further processing and
thus, we explore the idea of assessing transitive degrees as
measures of the overall dependency of a node to other nodes.
The second family of metrics serves an information-theo-
retic rationale: what if a random evolution event appears in
the graph? How likely is a node v to be affected by it due to its
dependency to other affected nodes? Thus, we follow a math-
ematically founded, information theoretic approach to cap-
ture the vulnerability of a node to a random evolution event.

In both families, we do distinguish between coarse-
grained metrics at the module level versus detailed metrics at
the full extent of the graph. As already mentioned, the coarse-
grained summary of the graph was intended to alleviate the
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user from the information overload of all the miniscule details
of module internals at the full extent of the graph. However,
due to the size of the graph, it is possible that large ecosys-
tems will have to be assessed at a coarser detail level for
performance reasons; then, the open question is how well do
coarse-level metrics approximate the detailed ones.

From a subjective viewpoint, without excluding the pos-
sibility of more sophisticated metrics, we support the idea of
simple metrics. In this paper, we are exploring the problem
from an empirical perspective and are primarily interested
to see what simple metrics appear to work well in the case
study we have encountered. We deem simplicity as an inher-
ent good quality that makes concepts easily understandable
and explainable to the involved stakeholders (let alone effi-
ciently computed). But even under the prism of simplicity,
we do not claim that our metric suite exhausts all possibili-
ties, either with respect to their mathematical foundation or
with respect to practical intuition (or any other rationale that
can be used to build a set of metrics); on the contrary, we
do anticipate that other metrics can possibly be devised to
assess the vulnerability of a node to change.

4 A Real-World Case Study and Experimental
Validation

The metrics presented in Sect. 3 express the degree of depen-
dence or importance of a node in an objective and quantifiable
way. Yet, this is a characterization of the structural properties
of a node within the graph. How accurately can we use the
metrics to predict the vulnerability of a node to change? Is
it fair to say that the more dependent a node is, the higher
the probability that it is affected by evolution changes? To
address this issue, we have evaluated the proposed metrics
with real-world ETL scenarios. The goal of our analysis is to
evaluate the extent to which our metrics are good indicators
for the prediction of the effect that evolution events have.
A clear desideratum in this context is the determination of
the most suitable metric for this prediction according to the
different types of evolved constructs.

4.1 Experimental Setting

In our experiments, we have studied a data warehouse sce-
nario, which involves real-world evolution scenarios of ETL
workflows that were monitored for a period of six months.
The environment involves a set of seven real ETL work-
flows extracted from a Greek public sector’s data warehouse
maintaining information for farming and agricultural statis-
tics. The ETL flows extract information out of a set of seven
source tables, namely S1 to S7 and 3 lookup tables, namely
L1 to L3, and load it to seven target tables, namely T1 to T7,
stored in the data warehouse. The seven scenarios comprise



Metrics for the Prediction of Evolution Impact in ETL Ecosystems 83
Table 3 ETL scenarios
configuratrion ETL # Activities Sources Tmp Tables Targets

ETL 1 16 L1,L2,L3,S1,54 T1_Tmp, T2_Tmp, T3_Tmp T1, T2, T3

ETL 2 6 L1,S2 T1_Tmp, T3_Tmp T3

ETL 3 6 L1,S3 T1_Tmp, T3_Tmp T3

ETL 4 15 L1,S4 T1_Tmp, T3_Tmp, T4_Tmp T3, T4

ETL 5 5 S5 T1_Tmp, TS_Tmp TS

ETL 6 5 S6 T1_Tmp, T6_Tmp T6

ETL 7 5 S7 T1_Tmp, T7_Tmp T7

Total 58
Table 4 Number of attributes in Table St S 33 Sa S5 S6 S7 L1 12 13
ETL source tables

# Attributes 59 160 82 111 13 7 5 7 19 7
Table 5 Distribution of events at the ETL tables for keeping data in the data staging area, as shown in Table
Source Change type Occurrence Affected ETL 3. The warehouse maintains statistical information collected

. from surveys, held once per year via questionnaires. The sur-

L1 Add Attribute ! ETL1,2,3,4 " yey data are primarily stored in the S1-S7 source tables and
L1 Add Constraint 1 ETL 1,2,3,4 . .
12 Add Attribute 3 ETL 1 are subsequently processed so that they can be integrated in
L3 Add Attribute 1 ETL 1 the organization’s warehouse and queried. Each survey var-
S1 Add Attribute 14 ETL 1 ies its schema according to the different number and types
S Drop Autribute 2 ETL 1 of questions comprising the survey’s questionnaire; however,
S1 Modify Attribute 3 ETL 1 .
S1 Rename Attribute 3 ETL 1 there are several common elements in all surveys. Table S1
S1 Rename Table 1 ETL 1 holds information about the metadata of the survey (e.g., the
S2 Add Attribute 15 ETL 2 year held, the sample size, etc.), which are rarely altered
52 Drop Attribute 4 ETL 2 or renamed and mostly complemented or specialized yearly
S2 Rename Attribute 121 ETL 2 . . . S
$2 Rename Table 1 ETL 2 by adding new attributes in the survey’s metadata. All other
S3 Rename Attribute 80 ETL 3 source tables (S2-S7) retain the answers to the question-
S3 Rename Table 1 ETL3 naires, where most alterations occur every year. The size of
54 Add A““P”‘e 58 ETL 1,4 the schema of each table, in terms of number of attributes, is
S4 Drop Attribute 26 ETL 1,4 .
s4 Modify Attribute 1 ETL 1, 4 shown in Table 4. o .
S4 Rename Attribute 27 ETL 1,4 Our choice for experimenting with these scenarios was
S4 Rename Table 1 ETL 1.4 based on their evolution behavior that satisfied the following
55 Modify Attribute 2 ETL 5 criteria: The first criterion was the ease of collecting real evo-
S5 Rename Table 1 ETL 6 . ..
S6 Rename Table 1 ETL 6 lution events. As statistical surveys are held once a year, most
S7 Rename Attribute 5 ETL 7 source tables are suffering the majority of evolution events
S7 Rename Table 1 ETL7 during a short peak period when surveys are designed and
T1 Drop Adtribute ! ETL 1 modeled in the database. This fact enabled us to collect and
T1 Modify Attribute 1 ETL 1 . ..
T1_tmp Drop Attribute 1 ETL 1-7 analyze most evoluthn er.:nts at once. The seconq criterion
T1_tmp Modify Attribute 1 ETL 1-7 was the number and diversity of events. The scenarios exam-
T2 Add Attribute 15 ETL 1 ined exhibit a large number of evolution events covering a
T2 Modify Atribute 2 ETL 1 broad variety of alterations on the source tables (see Table 5).
T2_tmp Add Attribute 15 ETL 1 . . .. . .. .
T2_tmp Modify Attribute 5 ETL 1 Finally, the third criterion was the diversity in the designs of
T5 Modify Attribute 2 ETL 5 the ETL flows. The chosen ETL scenarios enabled us to eval-
T5_tmp Modify Attribute 2 ETLS uate our metrics in simple (e.g., ETL5, ETL6, ETL7) as well
Total 416

a total number of 58 activities extracting, filtering and load-
ing data into the target tables. They, also, make use of seven
temporary tables (each target table has a temporary replica)

as more complex (e.g., ETL1) flows.

All ETL scenarios were source coded as PL\SQL stored
procedures in the data warehouse. First, we extracted embed-
ded SQL code (e.g., cursor definitions, DML statements,
SQL queries) from activity stored procedures. Table defini-
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tions (i.e., DDL statements) were extracted from the source
and data warehouse dictionaries. Each activity was repre-
sented in our graph model as a view defined over the previous
activities, and table definitions were represented as relation
graphs.

We have used a homegrown software artifact, called
Hecataeus' for the graph representation, the application of
changes on the source tables, the evaluation of the metrics
on the graph, and the identification of the impact of evolu-
tion events. Hecataeus is an open-source software tool for
enabling impact prediction, what-if analysis, and regulation
of relational database schema evolution. Under the hood, it
supports the proposed graph-based modeling technique and
represents database schemas and database constructs, like
queries and views, as graphs. Our tool enables the user to cre-
ate hypothetical evolution events and examine their impact
over the overall graph before these are actually enforced on it.
It also allows the definition of rules (i.e., policies) on nodes
of the graph (in the form of annotations) that regulate the
propagation of the evolution impact on specific parts. Most
importantly, Hecataeus includes a metric suite for evaluat-
ing the impact of evolution events and detecting crucial and
vulnerable parts of the system.

Our study is based on the evolution of the source tables
and their accompanying ETL flows, which has happened in
the context of maintenance due to the change of require-
ments at the real world. As already mentioned, source S1
stores the constant data of the surveys and did not change
a lot. The rest of the source tables (S2-S7), on the other
hand, sustained maintenance. The recorded changes in these
tables mainly involve restructuring, additions, and renaming
of the questions comprising each survey, which are further-
more captured as changes in the source attributes names and
types. The set of evolution events includes renaming of rela-
tions and attributes, deletion of attributes, modification of
their domain, and last, addition of primary key constraints.
We have recorded a total number of 416 evolution events
and the number of events per table is shown in Table 5.
Observe that the majority of evolution changes concerns
attribute renaming and attribute additions. These findings
were due to the evolution context of the examined warehouse
sources.

The last column in Table 4 shows the flows as affected by
each change. L1 table is used in 4 ETL flows (1-4), S4 in
2 flows, namely ETL1 and ETL4, whereas all other source
tables are used only to one flow. The most evolved table is S2
with a total of 141 changes and S4 follows with 113 changes.
S2, however, supplies only one flow (ETL 2), whereas S4
supplies both ETL1 and ETLA4. In addition, schema changes

I For more details about Hecataeus, we refer the interested reader to
our ICDE’ 10 demonstration paper [31] and the project website: www.
cs.uoi.gr/~pvassil/projects/hecataeus.
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were applied in Ty, T, and T target tables and their respec-
tive temporary tables as a result of the changes in the ETL
sources. All evolution changes were applied in the form of
annotations on the nodes of the graph.

Summarizing, the configuration of our experiments
involved representing the ETL workflows in our graph model
as well as the recorded evolution events on the nodes of the
source, lookup and temporary tables. We then applied each
event sequentially on the graph assuming that no rules con-
strain the propagation of the change towards the nodes of
the graph. We, finally, monitored the impact of the change
towards the rest of the graph by recording the times that a
node has been affected by each change.

4.2 Experimental Validation

We have first evaluated the graph metrics on the seven ETL
graphs and then applied the evolution events of Table 4
sequentially on these ETL graphs. We monitored each node
of the graphs on how many times it was affected by an event.
This measurement constitutes the baseline measurement that
simulates what would actually happen in practice. This base-
line measurement is compared with all measured metrics. In
the rest, we discuss our findings organized according to each
ETL flow.

ETL1. The first workflow (Fig. 3) comprises two source
tables (S1, S4), three lookup tables (L1-L3), three target
tables (T1-T3) along with their temporary tables and 16
activities. Both source tables contain a large number of attri-
butes, namely 59 for S1 and 111 for S4 (there are no foreign
keys defined), lookup tables are small in size, target tables T'1
and T2 are two dimension tables with 74 and 38 attributes,
respectively, whereas T3 is a fact table with 16 attributes.
S1 data are extracted and loaded in the two dimension tables
through the upper branch of the flow and to the fact table via
the lower branch. S4 contains measure data that are loaded in
the fact table. Regarding the functionality of the activities, the
activities 1-5 perform extraction and filtering of data from
the two source tables. Then, activity 9 joins the two sources
and projects all attributes of S1 but only a small number of
attributes of S4 (most data coming from S4 table are loaded
via the ETL4 scenario). Activities 10—12 of the upper branch
update the data with lookup values and activities Q2 and Q3
project and load data to T1, T2 temporary tables. In the lower
branch, Q4 activity updates the data with values from L3 and
loads it to T3 temporary table. Finally, activities 6—8 perform
the final loading to the target tables of the data warehouse.
Based on the functionality of each activity, we distinguish
the filtering activities performing a select or a transforming
operation on their source, (e.g., ETL1_ACTI1, ETL1_ACT2,
ETL1_ACTS, etc.), joining activities combining data from
more than one sources (e.g., ETL1_ACT9, ETL1_ACTI11,
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ETL1_Q4, etc.) and finally activities that project a subset
of the available attributes of their sources (e.g., ETL1_Q4,
ETL1_ACT10, ETL1_ACT12, ETL1_Q2, ETL1_Q3, etc.).
In Figs. 4, 5, 6 and 7, we present the results for the first of
the 7 ETL scenarios, grouped by the different types of met-
rics. In Fig. 4, we present the simple degree metrics, in Fig. 5
the transitive degree along with the entropy metrics (entropy
and transitive metrics have been scaled up and down, respec-
tively, for comparison reasons), and in Fig. 6 the strength
metrics and last in Fig. 7 the transitive strength metrics. The
goal is to show the overall trend of the examined metrics (i.e.,
we are not interested in the absolute numbers) with respect
to the type of module and the times it is affected by all events
that occurred at its source. In all figures, the tables are posi-
tioned on the left side followed by the activities. In Figs. 4
and 5 activities are first arranged by their type and then by
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Fig. 5 Results for strength metrics for ETL1

the affected series, whereas in Figs. 6 and 7 by their type and
then by their topological order in the workflow.

The affected series for the tables (in all figures) cor-
responds to the number of changes that occurred at their
schemas as presented in Table 4. The most “evolved” table
in ETL1 is S4, followed by S1, whereas T2 dimension table
(along with the relevant temporary table) exhibits the high-
est number of changes among the data warehouse tables.
This is due to the fact that most source schema changes,
occurred at S1, have been exclusively propagated to the T2
dimension table, without altering T1 dimension table. Filter-
ing activities are affected by all changes occurring at their
source table. For example, ETL1_ACT1, ETL1_ACT?2, and
ETL1_ACT3 activities exhibit the same affected number
with S1; ETL1_ACT4, ETL1_ACT5 with S4, etc. As we
mentioned earlier, ETL_ACT9 projects all S1 attributes, but
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only a small number of S4 attributes. Thus, all other project
and join activities, positioned after ETL_ACT9, are mostly
affected by S1 evolution changes and S4 attribute additions.
Next, we discuss our findings for each family of metrics.
The in-degree metric is significantly low and invariant to
the number of events affected all modules. The out-degree,
and consequently the total degree, follows proportionally the
number of events that occurred on the source and lookup
tables of the workflow, as well as on the T2 target table
(the table that “absorbed” most source schema changes).
The out-degree metric captures the size of the table schema,
which seems to be a crucial factor for the evolution of the
tables. The out-degree for all types of activities follows a
similar trend. The out-degree for activities mostly captures
the number of attributes that are projected by each activ-
ity and as a result, project activities exhibit low out-degree
values. However, most activities have been affected by evo-
lution proportionally to their out-degrees, except for some
peaks such as ETL1_ACT6. ETL1_ACT6 activity depends
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on the T1_Temp table, which, however, has not sustained any
schema changes.

The strength metrics for the tables (shown in Fig. 5)
follows an opposite trend from the simple degrees. The
strength-out is invariant to the affected series, whereas the
strength-in and total strength follows the affected series for
each table (with the exception of T1 and T1_temp). This
can be explained by the fact that the strength-in metric for a
table captures attribute dependencies between a module and
this table. Figure 5 shows that the more “used” is a table,
the higher the probability is to evolve. Filtering activities
show a similar trend for both in and out strengths, except for
ETL1_ACTS. The latter with all other activities show that
the out-strength values follow more smoothly the affected
series. Again, the peak for ETL1_ACTS6 is due to its depen-
dence from T1_Temp table.

The transitive degrees and entropy metrics, shown in
Fig. 6, do not provide useful results for tables, because all
values are insignificant to the affected series. This is not sur-
prising as the entropy metric and transitive out-degree for
a module captures the number of other modules on which
this module depends transitively and tables have few or no
dependencies on other modules. Regarding the activities,
transitive out degree metrics and entropy follow smoothly
the trend of the affected series, except for ETL1_ACT4 dive.
ETL1_ACT4 exhibits a low value for the transitive degree
metric, as it depends exclusively on S4, which, however, is
affected by a large number of evolution events.

Similar to the simple strengths, the transitive in and total
strengths follows the trend of affected series for tables. On the
other hand, transitive out and total strengths seem to be more
precise for activities, especially for join and filtering ones.

ETL2 and ETL3. The next two flows, ETL2 and ETL3,
are shown in Figs. 8 and 10, respectively. Both flows behave
similarly and load data from S2 and S3 to the T3 fact table;
L1 and T1_temp tables are used as lookup tables. S2 con-
tains 160 attributes and S3, 83 attributes. Both flows have
no branches, whereas the activities mainly filter data from
their sources and update lookup values. We observed that
the number of events on these tables follows proportionally
the tables’ size and out-degree metric is again validated as a
candidate predictor for the behavior of the evolution of the
tables. The examined metrics on the activities of these two
flows show similar results with ETL1. Out-Degree and out-
strength are the most accurate predictors, but also transitive
degree metrics (entropy and total transitive strength) follow
the “affected” series. In Fig. 9a—d, we present the results for
all the examined metrics for ETL2, and in Fig. 11a—d, the
corresponding results for ETL3.

ETLA4. Figure 12 shows the configuration of ETL4 and the
respective results are shown in Fig. 13a—d. The ETL4 flow
has one source, namely S4, comprising a fairly large number
of attributes, 111. The two data warehouse tables, T3 and
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T4, are both fact tables and are populated by a series of 9
activities, i.e., ETL4_Q2-ETL4_Q10. Each activity projects
a different subset of source attributes and maps them to mea-
sure attributes in the data warehouse. Finally, L1 and T1 are
used as lookup tables and ETL4_ACT3 and ETL4_ACT4 are
used for transferring data from the temporary tables to the
data warehouse tables.

The results for ETL4 are illustrated in Fig. 13a—d. Again,
the out degree can be used as a predictor for the events that

Join, filter

Targets
350
300 Alrectea A
250 —— — STRENGTHIN / \ / \
----- STRENGTH OUT / \ / \
200

STRENGTH TOTAL

=== Affected

affect a table. Out-degree, total strength, and transitive total
strength metrics are quite precise for the activities of this sce-
nario. In contrast with the previous scenarios, scaled entropy
and transitive out-degree are also proven to be good esti-
mators for this setting. This can be explained by the fact
that ETL4 is a short workflow, with only a few steps of pro-
cessing and few transitive dependencies. Therefore, transitive
degree metrics exhibit the same trend with the simple degree
or strength metrics for all activities.
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ETLS5, ETL6, and ETL7. The final three flows, ETLS,
ETL6, and ETL7, are depicted in Fig. 14a, b, c, respectively.
These three are similar to each other, loading data from three
different source tables, namely S5 (with 13 attributes in its
schema), S6 (with 7 attributes in its schema), S7 (with 4 attri-
butes in its schema) to three target tables, TS, T6, and T7.
T1_TMP table is used as a lookup table.

The results for these ETL flows are shown in Figs. 15, 16
and 17. The out-degree of relations follows proportionally
the number of occurred events on them, except for S7, which
unusually exhibits a high number of events with respect to
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its size. Activities in all three flows show similar behavior,
where out degrees and strengths seem to provide more accu-
rate results for the possible events on them (even though the
sample of occurred events is low for these flows and affected
series has very low values).

5 Lessons Learned

For several months, we have observed and experimented with
genuine evolution events in real-world, ETL workflows. Our
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experimental findings are reported in Sect. 4. In the past, we
did a similar exercise for a set of artificially created evolu-
tion scenarios [29]. Based on both activities, we assessed the
metrics for predicting the behavior of a software system to
evolution operations described in Sect. 3 and came up with
some interesting insights regarding the value of our metrics.
Next, we discuss our observations and suggest design strate-
gies based on the results obtained by the use of these metrics.

Observations Our first observation, which is in accor-
dance with intuition too, is that an important factor for the
potential evolution of the whole or a part of a system is even-
tually its schema size. Especially in a workflow setting like
the ETL environment, source or intermediate tables com-
prising many attributes in their schema are more likely to be
altered and hence, more likely to affect the workflow they
feed. Therefore, a particularly handy metric for the evalua-
tion of the evolution potential of a workflow source table is
practically the number of attributes it has (expressed by the
out-degree metric in our setting). In terms of design, although
it is often hard to change a source table, at least, the designer

join, project
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may choose to use intermediate tables with smaller schema
sizes. For example, instead of just saving a snapshot of a
table, she should try storing only its most valuable projec-
tion or instead of using a combination of production keys
along with their origins, she should replace keys-origin pairs
with surrogate keys.

Of course, in practice, looking just at a module size is not
a panacea. There are counterexamples too, like in the case of
the source table S7 in ETL7, where the number of evolution
events is disproportional to the table size. Due to these cases,
common practices like simple examination, through a set of
standard queries, of the DB catalog tables do not suffice to
get the most interesting metrics. Such cases are only iden-
tified with rigorous experimentation and for that, we need a
well-structured set of metrics (like the ones presented in Sect.
3) to avoid dealing with exponentially perplexing situations
as the project complexity increases.

Based on the results reported in Sect. 4, we observed that
the most accurate and suitable metrics for all module types
are the out-degree and out-strength metrics. On the one hand,
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Fig. 13 Results for examined metrics for ETL4

when a module has only one provider, then it is safer to take
into account the out-degree/out strength metrics, which cap-
ture the dependencies with an adjacent module. On the other
hand, transitive degree metrics may act as predictors for the
evolution of a module when it has many different provid-
ers and paths to evolving sources like for example Q2 and
Q3 queries in ETL4 (see Fig. 12c, d) or ETL1_ACTIO0 -
ETL1_ACTI12 in ETLI (see Figs. 6, 7).

Therefore, another observation is that the internal struc-
ture of each activity plays a significant role for the impact
of evolution events on it. Activities with high out-degree
and out-strengths tend to be more vulnerable to evolution.
For example, such activities may project or use in condi-
tions, a large number of attributes from their sources (either
previous activities or tables). The out-degree captures the
projected attributes by an activity, whereas the out-strength
captures the total number of dependencies between an activ-
ity and its sources. Activities with joins between many
sources tend to be more affected than activities sourced by
only one provider, but still, the most decisive factor seems
to be the activity size. Thus, activities that perform an attri-
bute reduction on the workflow through either a group-by
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operation or a projection of a small number of attributes are
in general, less vulnerable to evolution events and propa-
gate the impact of evolution further away on the workflow
(e.g., Q4 in ETL1 or Q2-Q10 in ETL4). In contrast, activ-
ities that perform join and selection operations on many
sources and result in attribute preservation or generation
on the workflow have a higher potential to be affected by
evolution events (e.g., observe the activities ETL1_ACT10—
ETL1_ACTI12 in Fig. 4 or the activity ETL4_ACTS in
Fig. 13a).

Out transitive degree metrics capture the dependencies of
a module with its various non-adjacent sources. These met-
rics exhibit more valuable results for activities, which act as
“hubs” of various different paths from sources in complex
workflows. For cases where the out-degree metrics do not
provide a clear view of the evolution potential of two or more
modules, the out-transitive degree and entropy metrics may
offer a more adequate prediction (as for example ETL4_Q3
and ETL4_Q2 in Fig. 7a, d).

Hence, the module-level design of an ETL workflow is
another crucial factor for the overall impact of evolution on
the whole workflow. Thus, in terms of design, since attri-
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bute reduction activities (e.g., projections, group by queries)
are less likely to be affected by evolution actions than other
activities that retain or increase the number of attributes in
the workflow (many projections with joins), the ETL designer
should attempt placing the attribute reduction activities in the
early stages of the workflow in order to restrain the flood-
ing of evolution events. In a way, that is in accordance with
typical performance optimization strategies, where the most
selective operations should be pushed toward the start of the
flow.

Heuristics Based on these observations, we identify the
most suitable metrics for each type of construct and pro-
vide possible optimization heuristics for reducing the main-
tenance effort. Table 6 reflects our observations. When
persistent data stores are involved, the generic guideline
is to retain their schema as small as possible. Since the
schema size affects a lot the propagation of evolution
events, it is advisable to reduce schema sizes across the
ETL flow, so activities that help in that direction should
be considered first. In addition, based on our discoveries
related to what metric is suitable for each construct, e.g.,
transitive degree metrics are good predictors for modules
with many providers and the out-degree and out strength
metrics could be used for modules with a single pro-
vider.

filter

filter
Targets
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filter filter

filter
Targets

Discussion Finally, we discuss how our methods and
results may be used elsewhere and how such design choices
may affect other ETL optimization objectives.

Generalization of results. Our analysis is based on a
specific case study and the extent of how much this is rep-
resentative is hard to show. However, in a previous work,
we had presented a benchmark for ETL designs, where we
presented a set of frequently used ETL template designs
like butterfly, tree, fork, primary flow, and so on [35,36].
Interestingly, the designs in our case study resemble either
those template designs or a combination of those. In par-
ticular, ETL1 is a complex butterfly-like design, ETL2 and
ETL3 are tree designs, ETL4 is a combination of fork and
tree designs, and ETLS, ETL6, and ETL7 are primary flow
designs. Hence, we believe that the results obtained in this
study may serve as general hints in other ETL projects as
well.

Optimization trade-offs. In general, the aforementioned
guidelines that favor maintainability of ETL flows contra-
dict the normal practice for improving ETL performance. For
example, when we have source data stores with large schema
sizes, from an evolution handling perspective, it makes sense
to split the schema into smaller chunks. How to efficiently
do this for not hurting performance much (e.g., for avoiding
join operations later on) is an open and challenging research
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Fig. 15 Results for examined metrics for ETLS

question. As another example trade-off, although an attri-
bute reduction operation like aggregation seems to better
be placed at the beginning of a flow in terms of maintain-
ability, in general, it should not be placed early in the flow
when performance is considered. For performance, it makes
sense to have early in the flow tuple reduction operators
and heavier operations like aggregations should be placed
next. Clearly, the ETL architect has to deal with an interest-
ing trade-off between maintainability and performance, two
very important quality factors for the design of an ETL sys-
tem. However, this topic is out of the scope of this paper.
Preliminary efforts towards such a multi-objective optimiza-
tion of ETL flows has been presented elsewhere (e.g., [35—
37D).

Usage in ETL engines Ideally, database administrators
and ETL designers can employ these metrics for detecting,
evaluating, and most importantly, experimenting with the
design properties of ETL flows with respect to evolution.
Based on such an analysis, the designer may decide to mod-
ify an ETL design or choose among more than one design
for improving the maintainability of her system. In addi-
tion, the metric suite that we propose may be incorporated to
an existing ETL tool for facilitating the ETL design. Since
the most popular ETL tools already represent an ETL flow
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as a graph, measuring and predicting the evolution impact
with metrics as those proposed in this work, is a realistic
goal. Alternatively, the metric suite may be used as a basis
of an external module—like our home-grown tool, Hecata-
eus—that could connect to an ETL tool. Then, based on such
measures, the ETL designer could be notified about possible
actions.

6 Related Work

Various approaches exist in the area of database metrics. Most
of them attempt to define a set of database metrics and map
them to abstract quality factors, such as maintainability, good
database design, and so on. According to the model in which
they are applied, we can categorize these efforts into concep-
tual metrics referring to the conceptual design of the database
(i.e. ER diagram), relational metrics referring to the logical
design of the database (i.e. relational data diagram), multidi-
mensional metrics evaluating the design of data warehouses,
information-theoretic approaches, etc.

Conceptual metrics are useful for evaluating quality issues
for a database in the early stage of the design. To summarize
the motivation for conceptual-level metrics, a “good” design
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Table 6 Metrics and heuristics for different types of ETL construct
ETL construct Most suitable metric Heuristic

Source tables

Intermediate & target tables
Filtering activities

Join activities

Project activities

D (v)

D (v)

D (v), D% (v)

D9 (v), D9 (v), TD? (v), TD9 (v), H* (v)
DO (v), D9 (v), TD? (v), T DO (v), H* (v)

Retain small schema size

Retain small schema size in intermediate tables

Retain small number of conditions

Move to early stages of the workflow

Move attribute reduction activities to early stages of the workflow
and attribute increase activities to later stages

at the conceptual level of a database may assure that fewer
inconsistencies will emerge (mainly in terms of fundamental
violations, e.g., primary and foreign keys) and furthermore
fewer changes are needed during the lifetime of the infor-
mation system, in general. In one of the early works, Gray
et al. [16] propose two objective and open-ended metrics,
namely ER metric and Area metric, to evaluate the quality
of an ER diagram. ER Metric is a measure of the complexity
of an ERD, based on the number of relationships between
entities and Area metric is a measure of the compliance of
an ERD with the corresponding ERD in 3rd Normal Form.
Kesh [21] develops a method for assessing the quality of an
ERD, based on both ontological and behavioral components.
Ontological components are distinguished into structure and

content metrics. Structure metrics are suitability, soundness,
consistency, and conciseness, whereas content metrics are
completeness, cohesiveness, and validity. Behavioral com-
ponents are considered to be usability (from the user’s point
of view), usability (from the designer’s point of view), main-
tainability, accuracy, and performance. Moreover, Moody
[25] proposes a data model quality evaluation framework,
which can be applied to a wide range of organizations. The
proposed framework comprises a set of eight quality fac-
tors (completeness, integrity, flexibility, understandability,
correctness, simplicity, integration, and implementability)
which can be considered as properties of a data model with
positive and negative interactions with each other. They are,
in turn, evaluated by a set of 25 quality metrics. The quality
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factors may contribute to the overall quality of the system
according to weights, which determine the importance of
each factor in a problem situation. Genero et al. [13] focus on
measuring the maintainability of ER diagrams through eval-
uating their structural complexity. They introduce a set of
open-ended metrics and classify them into three main cate-
gories: entity metrics (i.e., number of entities within an ERD),
attribute metrics (i.e., number of attributes within an ERD,
number of composite attributes, etc.), and relationship met-
rics (i.e. number of M:N relationships, etc.). Wedemeijer [41]
proposes a metric set for evaluating the stability capabilities
of conceptual data model. The author sets up a framework
for stability of conceptual schemas and proceeds to develop
a set of metrics from it. The metrics are based on measure-
ments of conceptual features, such as the number of con-
ceptual constructs affected by a change, the complexity of a
conceptual schema, the abstraction of a conceptual schema,
etc. Last, Berenguer et al. [4] present a set of quality indica-
tors and metrics for conceptual models of data warehouses.
They employ UML diagrams for modeling multidimensional
databases and in this context they define metrics for cap-
turing diagram’s properties such as number of packages in
a diagram, number of relationships between two packages,
etc. Although they provide a methodology for theoretically
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validating the proposed metric set, they do not present an
empirical validation.

Relational database metrics are used as measures for the
quality of a database at the logical level. Relational met-
rics are used to measure internal characteristics and struc-
tures of a database, such as tables, foreign keys, and so
on. Normalization theory can give the guidelines for design-
ing a database, but still cannot address other quality issues,
such as the maintainability—or evolution—of a database. In
[7,8,33], the authors propose a set of metrics for relational
databases that focuses on assessing maintainability issues
in a database, such as analyzability, testability, stability, and
changeability. These are the number of relational tables (NT)
in the database, the number of foreign keys (NFK), total
number of attributes (NA), and the depth of referential tree
(DRT), which is the maximum distance from a table towards
another table through referential integrity constraints). Ana-
lyzability is proportionally correlated to NT, NA, DRT and
NFK, changeability to NT, testability to NT, NA, and NFK,
whereas stability is correlated to NT in an inverse relation-
ship. Last, in [27], the authors propose a set of quality metrics,
defined at four granularity levels (database, relation, attri-
bute, and value) that measure referential completeness and
consistency.



Metrics for the Prediction of Evolution Impact in ETL Ecosystems

95

Data warehouse metrics. Quality in the context of data
warehouses (DW) has been studied in [13,38]. The authors
propose mathematical techniques for measuring or optimiz-
ing certain aspects of DW quality and adapt the Goal-Ques-
tion-Metric approach from software quality management to
a metadata management environment to link these special
techniques to a generic conceptual framework of DW quality.
Similar to aforementioned approaches DW quality is classi-
fied into several quality dimensions according to the stake-
holders (e.g., data warehouse administrator, the programmer,
and the decision maker) that are typically interested in them,;
each of these dimensions is further mapped to sample types of
measurement (metrics), which help to establish the quality of
a particular DW component with respect to a particular qual-
ity dimension. Various types of measurements are introduced
to evaluate these dimensions. For example, the administrator
is interested in the completeness dimension which concerns
the preservation of all the crucial knowledge in the data ware-
house schema (model), which is further quantified by the
number of missing entities in the DW schema with respect to
the conceptual model. Another approach to DW quality met-
rics is presented in [7,8]. They elaborate three kinds of met-
rics: table metrics regarding only table characteristics of the
database (e.g. number of attributes, number of foreign keys),
star metrics regarding only multidimensional characteristics
of the database (e.g. number of dimension tables), and last,
schema metrics regarding characteristics of the whole data-
base schema (e.g. number of fact tables, number of overall
dimension tables).

Data Warehouses and their Evolution. Concerning the
evolution of data warehouses, we refer the reader to an excel-
lent survey of [42]. A distinct line of work concerns multi-
version data warehousing: see for example, Wrembel and
Morzy [43] that handle the evolution of data warehouses via
multiple versions and [2] that handles the problem via nested
transactions, or Golfarelli et al. [14] for cross-version que-
rying. Another excellent survey by [15] on temporal data
warehousing contains a summary of the related work along
these lines. A survey by [40] discusses the area of ETL and
the related work.

Various information-theoretic metrics exist in software
engineering for evaluating the quality of software design [1,
18,22]. Inthe data management field, an information theoretic
approach to evaluating the design quality of data warehouses
is presented in [23], where the relation between entropy and
redundancy in the context of data warehouses is studied. They
show that the redundancy in the snowflake join of the primary
key of the fact table is zero, i.e. it is minimal. They define a
new normal form, namely SSNF—Snowflake Schema Nor-
mal Form, justifying it in terms of entropy-based equations.

Most of the aforementioned approaches consider design
metrics that correlate structural properties of the database
schema to abstract quality factors. However, they confine

themselves to constructs internal to the database without tak-
ing into account the incorporation of constructs surrounding
the database. To the best of our knowledge this is the first
set of design metrics that are explicitly targeted towards the
assessment of evolution ability of the design of a data-centric
ecosystem as a whole to evolutionary processes.

Formally specified frameworks. Several software qual-
ity metrics have been introduced in the software engineer-
ing community. Software measurement is a well-established
research area that has been explored under many different
programming paradigms (e.g., procedural, object oriented,
service oriented, etc.) and for various stages of the lifecycle
of software development (i.e., requirements analysis, design,
coding, testing and maintenance). A detailed presentation
of software metrics, software quality factors, and measure-
ment approaches is out of the scope of this paper and can be
found in [12]; still, we mention here the concepts of module
cohesion and coupling that are mostly used for assessing the
maintainability of software [24] along with complexity, as
well (referred as the 3 ‘c’-s in [34]).

Briand et al. [6] employed measurement theory to provide
a set of five generic categories of measures for software arti-
facts. In a previous work, we made a first attempt to relate
these families of measures to ETL flows [39]. In that work,
we used a different model for module representation (based
on LDL) and formally proved that the measures proposed
respect the properties of the framework by [6]. However,
representing ETL activities with LDL does not scale well in
terms of operations that can be supported. In addition, a typ-
ical, modern ETL flow involves operations implemented in
different environments and runs on different engines (e.g.,
operations in Java, PL/SQL, SQL, Perl, Awk, etc. that may
run in different engines like DBMS, ETL, Map-Reduce, and
so on). However, independently of the internal representa-
tion, our graph-based model for data-centric systems, such as
ETL flows, can be viewed as a modular system, with queries,
views and relations being its building blocks encapsulating
data and business logic. We generalize thus the discussion, to
highlight how our method fits within a more formally speci-
fied framework like the one by [6]. First, we start by referring
to the involved measures, which are

— Size, referring to the number of entities that constitute the
software artifact; we assess the size of a (sub)graph by
the number of its nodes.

— Length, referring to the longest path of relationships
among these entities, which we assessed by the maxi-
mum transitive dependency of a module’s node.

— Complexity, referring to the amount of inter-relationships
of acomponent, which we assessed measured by the num-
ber of internal edges plus the 50 % of the strength of the
module.
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— Coupling, capturing the amount of interrelationships
between the different modules of a system, which we
assessed by the strength of a module.

— Cohesion, measuring the extent to which each module
performs exactly one job, by evaluating how closely
related are its components, which we assessed as the frac-
tion of the input/output nodes of a module related to some
internal function of the module.

Some (but not all) of these metrics are straightforwardly
related to the metrics used in this study. The transitive degree
is an attempt to test the sensitivity of nodes depending on the
length of their provider path. The coupling of modules within
the flow is probably the most straightforward measure relat-
ing to the strength of the module.

Cohesion refers to how much interrelated are the constit-
uents of a module. If a module performs more than one *“job”
and its constituents are divided in two groups of nodes doing
different things, then a module is not cohesive. Still, related to
data-centric software, cohesion is a weakly definable notion.
For example, how can one intuitively convince on a model
for the cohesion of a relation? In a more subtle line, even
if we adopt the idea that each selection and each group-by
constitutes a different “job”” how convincing is it to assume
that a query combining several selections and/or a group by
is not cohesive?

A serious observation (that goes well beyond the scope of a
case study) is that the Briand et al. meta-measures were orig-
inally thought towards traditional imperative/object-oriented
software with loops and control structures rather than data-
centric software. In [39], the authors provide measures for the
Briand et al. [6] classification, but they do not fit important
measures into the framework, like the maximum path over
the graph or the degree of an individual attribute of a relation.
Complexity is a good example where the respective notion
in traditional software (McCabe’s cyclomatic complexity) is
not adequately mapped to a measure for data intensive soft-
ware.

Hence, overall, we find that our most valuable metric, out-
degree, which is going down to the details of individual attri-
butes, does not fit well with the Briand et al. framework. At
the same time, although module coupling is smoothly cov-
ered by strength, cohesion and complexity must be re-eval-
uated when we think of data-centric software.

7 Conclusions

In this paper, we have presented a real-world case study of
data warehouse evolution for exploring the behavior of a set
of metrics that (a) monitor the vulnerability of warehouse
modules to future changes and (b) assess the quality of var-

@ Springer

ious ETL designs with respect to their maintainability. We
have described first our graph-theoretic model for capturing
the evolution impact in the ETL ecosystem, and then, we
presented a detailed description of our metric suite. Finally,
we have reported on our exhaustive, 6-month experimenta-
tion with real-world evolution scenarios affecting seven ETL
workflows.

We have identified the schema size and module complex-
ity as two important factors for the vulnerability of a system.
We have observed that out-degrees help as predictors for the
source tables; the out-degree and out-strength are very good
predictors for the evolution of views; out transitive degree
and entropy may be applied for queries in addition to the
aforementioned metrics. Based on our experiments, we have
compiled a list of lessons learned regarding the evolution
behavior of an ETL environment with respect to the schema
of the source tables, its constituent activities, and its overall
design. We believe that these metrics and the lessons learned
in this paper can be practically useful for database adminis-
trators and designers for detecting vulnerable parts and eval-
uating the design properties of data-centric ecosystems, like
ETL workflows, with respect to evolution.

Coming back to our starting point, have we answered the
fundamental questions like How good is an ETL design?
and What makes an ETL design good or bad?. We have
demonstrated only ways to predict vulnerability to change
and discussed some interrelationship with other aspects, like
for example, performance. A complete answer to the above
questions and an attempt to combine different aspects of the
environments design (performance, vulnerability to change,
understandability, etc.) in a comprehensive framework are
prominent directions for future research. Another direction
for future work concerns models that are not founded on a
graph-based model. Although our approach is founded on
a simple and intuitive graph representation of modules and
their dependencies, it is quite possible that other approaches
that avoid the translation of code to graphs can be pursued.
How this can be done and what is the effect to the metrics
used are open problems.
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Abstract. Lehman’s laws of software evolution is a well-established set
of observations (matured during the last forty years) on how the typi-
cal software systems evolve. However, the applicability of these laws on
databases has not been studied so far. To this end, we have performed a
thorough, large-scale study on the evolution of databases that are part
of larger open source projects, publicly available through open source
repositories, and report on the validity of the laws on the grounds of
properties like size, growth, and amount of change per version.

Keywords: Schema evolution, software evolution, Lehman’s laws

1 Introduction

Software evolution is the change of a software system over time, typically per-
formed via a remarkably difficult, complicated and time consuming process, soft-
ware maintenance. In an attempt to understand the mechanics behind the evo-
lution of software and facilitate a smoother, lest disruptive maintenance process,
Meir Lehman and his colleagues introduced a set of rules in mid seventies [1],
also known as the Laws on Software Evolution (Sec. 2). Their findings, that
were reviewed and enhanced for nearly 40 years [2], [3], have, since then, given
an insight to managers, software developers and researchers, as to what evolves
in the lifetime of a software system, and why it does so. Other studies ([4], [5], [6]
to name a few significant ones) have complemented these insights in this field,
typically with particular focus to open-source software projects.

In sharp distinction to traditional software systems, database evolution has
been hardly studied throughout the entire lifetime of the data management dis-
cipline. This deficit in our knowledge is disproportional to the severity of the
implications of database evolution, and in particular, of database schema evolu-
tion. A change in the schema of a database may immediately drive surrounding
applications to crash (in case of deletions or renamings) or be semantically defec-
tive or inaccurate (in the case of information addition, or restructuring). Overall,
schema evolution threatens the syntactic and semantic validity of the surround-
ing applications and severely affects both developers and end-users. Given this
importance, it is only amazing to find out that in the past 40 years of database



research, only three(!) studies [7], [8] and [9] have attempted a first step towards
understanding the mechanics of schema evolution. Those studies, however, focus
on the statistical properties of the evolution and do not provide details on the
actual events, or the mechanism that governs the evolution of database schemata.

In this paper, we perform the first large-scale study of schema evolution in
the related literature. Specifically, we study the evolution of the logical schema of
eight databases, that are parts of publicly available, open-source software projects.
To achieve the above goal, we have collected, cleansed and processed the avail-
able versions of the database schemata for the eight case studies. Moreover, we
have extracted the changes that have been performed in these versions and,
finally, we have come up with the respective datasets that can serve as a foun-
dation for future analysis by the research community (Sec. 3). Concerning the
applicability of Lehman’s laws to open-source databases, our results show that
the essence of Lehman’s laws holds: evolution is not about uncontrolled growth;
on the contrary, there appears to be a stabilization mechanism that employs
perfective maintenance to control the otherwise growing trend of increase in in-
formation capacity of the database (Sec. 4). Having said that, we also observe
that the growth mechanisms and the change patterns are quite different between
open source databases and typical software systems.

2 Lehman Laws of Software Evolution in a Nutshell

Meir M. Lehman and his colleagues, have introduced, and subsequently amended,
enriched and corrected a set of rules on the behavior of software as it evolves
over time [1], [2], [3]. Lehman’s laws focus on E-type systems, that concern “soft-
ware solving a problem or addressing an application in the real-world” [2]. The
main idea behind the laws of evolution for E-type software systems is that their
evolution is a process that follows the behavior of a feedback-based system. Be-
ing a feedback-based system, the evolution process has to balance (a) positive
feedback, or else the need to adapt to a changing environment and grow to ad-
dress the need for more functionality, and, (b) negative feedback, or else the need
to control, constrain and direct change in ways that prevent the deterioration
of the maintainability and manageability of the software. In the sequel we list
the definitions of the laws as they are presented in [3], in a more abstract form
than previous versions and with the benefit of retrospect, after thirty years of
maturity and research findings.

(I) Law of Continuing Change An E-type system must be continually adapted
or else it becomes progressively less satisfactory in use.

(IT) Law of Increasing Complexity Asan E-type system is changed its com-
plexity increases and becomes more difficult to evolve unless work is done to
maintain or reduce the complexity.

(III) Law of Self Regulation Global E-type system evolution is feedback reg-
ulated.



(IV) Law of Conservation of Organisational Stability The work rate of
an organisation evolving an E-type software system tends to be constant
over the operational lifetime of that system or phases of that lifetime.

(V) Law of Conservation of Familiarity In general, the incremental growth
(growth ratio trend) of E-type systems is constrained by the need to maintain
familiarity.

(VI) Law of Continuing Growth The functional capability of E-type sys-
tems must be continually enhanced to maintain user satisfaction over system
lifetime.

(VII) Law of Declining Quality Unless rigorously adapted and evolved to
take into account changes in the operational environment, the quality of an
E-type system will appear to be declining.

(VIII) Law of Feedback System E-type evolution processes are multi-level,
multi-loop, multi-agent feedback systems.

Before proceeding with our study, we present a first apodosis of the laws, taking
into consideration both the wording of the laws, but most importantly their
accompanying explanations [3].

An E-Type software system continuously changes over time (I) obeying a
complez feedback-based evolution process (VIII). On the one hand, due to the
need for growth and adaptation that acts as positive feedback, this process results
in an increasing functional capacity of the system (VI), produced by a growth ra-
tio that is slowly declining in the long term (V). The process is typically guided
by a pattern of growth that demonstrates its self-regulating nature: growth ad-
vances smoothly; still, whenever there are excessive deviations from the typical,
baseline rate of growth (either in a single release, or accumulated over time),
the evolution process obeys the need for calibrating releases of perfective main-
tenance (expressed via minor growth and demonstrating negative feedback) to
stop the unordered growth of the system’s complexity (III). On the other hand,
to requlate the ever-increasing growth, there is negative feedback in the system
controlling both the overall quality of the system (VII), with particular emphasis
to its internal quality (II). The effort consumed for the above process is typically
constant over phases, with the phases disrupted with bursts of effort from time
to time (IV).

3 Experimental Setup of the Study

Datasets. We have studied eight database schemata from open-source software
projects. ATLAS" is a particle physics experiment at CERN, with the goal of
learning about the basic forces that have shaped our universe — famously known
for the attempt on the Higgs boson. BioSQL? is a generic relational model cover-
ing sequences, features, sequence and feature annotation, a reference taxonomy,
and ontologies from various sources such as GenBank or Swissport. Ensembl is

1 http://atlas.web.cern.ch/Atlas/Collaboration/
2 http://www.biosql.org/wiki/Main_Page



a joint scientific project between the European Bioinformatics Institute (EBI)3
and the Wellcome Trust Sanger Institute (WTSI)* which was launched in 1999
in response to the imminent completion of the Human Genome Project. The
goal of Ensembl was to automatically annotate the three billion base pairs of
sequences of the genome, integrate this annotation with other available biologi-
cal data and make all this publicly available via the web. Media Wiki® was first
introduced in early 2002 by the Wikimedia Foundation along with Wikipedia,
and hosts Wikipedia’s content since then. Coppermine® is a photo gallery web
application. OpenCart” is an open source shopping cart system. PhpBB?® is an
Internet forum package. TYPOS3? is a free and open source web content man-
agement framework.

Dataset Collection and Processing. A first collection of links to available
datasets was made by the authors of [9], [10]'%; for this, these authors deserve
honorable credit. We isolated eight databases that appeared to be alive and
used (as already mentioned, some of them are actually quite prominent). For
each dataset we gathered as many schema versions (DDL files) as we could from
their public source code repositories (cvs, svn, git). We have targeted main devel-
opment branches and trunks to maximize the validity of the gathered resources.
We are interested only on changes of the database part of the project as they
are integrated in the trunk of the project. Hence, we collected all the versions of
the database, committed at the trunk or master branch, and ignored all other
branches of the project.

We collected the files during June 2013. For all of the projects, we focused on
their release for MySQL (except ATLAS Trigger, available only for Oracle). The
files were then processed by sequential pairs from our tool, Hecate, that allows
the detection of (a) changes at the attribute level, and specifically, attributes
inserted, deleted, having a changed data type, or participation in a changed
primary key, and (b) changes at the relation level, with relations inserted and
deleted, in a fully automated way. Hecate, was then used to give us (a) the
differences between two subsequent committed versions, and (b) the measures
we needed to conduct this study — for example, the size of the schema (in number
of tables and attributes), the total number of changes for each transition from
a version to the next, which we also call heartbeat, or the growth assessed as
the difference in the size of the schema between subsequent versions. Hecate,
along with all the data sets and our results are available at our group’s public
repository https://github.com /DAINTINESS-Group.

https://www.ebi.ac.uk/
https://www.sanger.ac.uk/
https://www.mediawiki.org/wiki/MediaWiki
http://coppermine-gallery.net/
http://www.opencart.com
https://www.phpbb.com/
http://typo3.org/
http://data.schemaevolution.org
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Fig. 1. Combined demonstration of heartbeat (number of changes per version) and
schema size (no. of tables) for Coppermine and Ensemble. The left axis signifies the
amount of change and the right axis the number of tables.

4 Assessing the Laws for Schema Evolution

The laws of software evolution where developed and reshaped over forty years.
Explaining each law in isolation from the others is precarious as it risks losing
the deeper essence and inter-dependencies of the laws [3]. To this end, in this
section, we organize the laws in three thematic areas of the overall evolution
management mechanism that they reveal. The first group of laws discusses the
existence of a feedback mechanism that constrains the uncontrolled evolution of
software. The second group discusses the properties of the growth of the system,
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Fig. 2. Combined demonstration of heartbeat (number of changes per version) and
schema size (no. of tables) for Atlas and BioSQL. The left axis signifies the amount of
change and the right axis the number of tables.

i.e., the part of the evolution mechanism that accounts for positive feedback.
The third group of laws discusses the properties of perfective maintenance that
constrains the uncontrolled growth, i.e., the part of the evolution mechanism
that accounts for negative feedback.

4.1 Is There a Feedback-based System for Schema Evolution?

Law of continuing change (Law I) The main argument of the first law is
that the schema continuously changes over time. To validate the hypothesis that
the law of continuing change holds, we study the heartbeat of the schema’s life
(see Fig. 1 and 2 for a combined demonstration of heartbeat and schema size).

With the exception of BioSQL that appeared to be “sleeping” for some years
and was later re-activated, in all other cases, we have changes (sometimes mod-
erate, sometimes even excessive) over the entire lifetime of the database schema.
An important observation stemming from the visual inspection of our change-
over-time data, is that the term continually in the law’s definition is challenged:
we observe that database schema evolution happens in bursts, in grouped periods
of evolutionary activity, and not as a continuous process! Take into account that
the versions with zero changes are versions where either commenting and beauti-
fication takes place, or the changes do not refer to the information capacity of the
schema (relations attributes and constraints) but rather, they concern the phys-
ical level properties (indexes, storage engines, etc) that pertain to performance
aspects of the database.

Can we state that this stillness makes the schema “unsatisfactory” (referring
back to the wording of the first law by Lehman)? We believe that the answer
to the question is negative: since the system hosting the database continues
to be in use, user dissatisfaction would actually call for continuous growth of
the database, or eventual rejection of the system. This does not happen. On
the other hand, our explanation relies on the reference nature of the database



in terms of software architecture: if the database evolves, the rest of the code,
which is basically using the database (and not vice versa), breaks!

Owerall, if we account for the exact wording of the law, we conclude that the
law partially holds.

Law of feedback system (Law VIII) The wording of Law VIII refers to
the existence of a self-stabilizing feedback mechanism that governs evolution. Its
experimental evaluation typically refers to the possibility of demonstrating ad-
herence to a basic formula of feedback, by estimating the size of the system (here:
in terms of number of relations) accurately — i.e., with small error compared to

the actual values. The formula typically used [2] is: S, =8_1+ §2L, where S
i—1

refers to the estimated system size and E is a model parameter approximating

effort (actually obtained as the average value of a set of past assessments of E).

Related literature [2] suggests computing E as the average value of individ-
ual F;, one per transition. Then, we need to estimate these individual effort
approximations. [2] suggests two formulae that we generalize here as follows:
B, = %, where s; refers to the actual size of the schema at version i

j=a <2
and a refers to the version from which counting starts. Specifically, [2] suggests
two values for «, specifically (i) 1 (the first version) and (ii) s;—1 (the previous
version).

We now move on to discuss what seems to work and what not for the case
of schema evolution. We will use the OpenCart data set as a reference example;
however, all datasets demonstrate exactly the same behavior.

First, we assessed the formulae of [2]. In this case, we compute the average £
of the individual E; over the entire dataset. We employ four different values for
«a, specifically 1, 5, 10, and n, with n being the entire data set size, and depict
the result in Fig. 3, where the actual size is represented by the blue solid line.
The results indicate that the approximation modestly succeeds in predicting an
overall increasing trend for all four cases, and, in fact, all four approximations
targeted towards predicting an increasing tendency that the actual schema does
not demonstrate. At the same time, all four approximations fail to capture the
individual fluctuations within the schema lifetime.

A better estimation occurred when we realized that back in 1997 people
considered that the parameter E was constant over the entire lifetime of the
project; however, later observations (see [3]) led to the revelation that the project
was split in phases. So, for every version 4, we compute E as an average over the
last 7 E; values, with small values for 7 (1/5/10).

As we can see in Fig. 3, the idea of computing the average E with a short
memory of 5 or 10 versions produced extremely accurate results. This holds for
all data sets. This observation also suggests that, if the phases that [3] mentioned
actually exist for the case of database schema, they are really small and a memory
of 5-10 versions is enough to produce very accurate results.

Overall, the evolution of the database schema appears to obey the behavior
of a feedback-based mechanism, as the schema size of a certain version of the
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Fig. 3. Actual and estimated schema size via a total (left) and a bounded (right)
average of individual E; for OpenCart; the x-axis shows the version id.

database can be accurately estimated via a regressive formula that exploits the
amount of changes in recent, previous versions.

Law of self-regulation (Law III). Whereas the law simply states that the
evolution of software is feedback regulated, its experimental validation in the
area of software systems is typically supported by the observation of a recurring
pattern of smooth expansion of the system’s size(a.k.a. “baseline” growth), that
is interrupted with releases of perfective maintenance with size reductions or
with releases of growth. Moreover, due to a previous wording of the law (e.g.,
see [2]) that described change to follow a normal distribution, the experimental
assessment included the validation of whether growth demonstrates oscillations
around the average value [1,2,3].

Size. The evolution of size can be observed in Fig. 1 and 2. We have to say
that we simply do not detect the same behaviour that Lehman did (contrast
Fig. 1, 2 to the respective figures of articles [1] and [2]): in sharp contrast to the
smooth baseline growth that Lehman has highlighted, the evolution of the size
of the studied database schemata provides a landscape with a large variety of
sequences of the following three fundamental behaviors.

— In all schemata, we can see periods of increase, especially at the beginning
of their lifetime or after a large drop in the schema size. This is an indica-
tion of positive feedback, i.e., the need to expand the schema to cover the
information needs of the users.

— In all schemata, there are versions with drops in schema size. Those drops
are typically sudden and steep and usually take place in short periods of
time. Sometimes, in fact, these drops are of significantly larger size than
the typical change. We can safely say that the existence of these drops in
the schema size indicate perfective maintenance and thus, the existence of a
negative feedback mechanism in the evolution process.
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— In all schemata, there are periods of stability (i.e., size stays still, or —near-
still).

Growth. Growth (i.e., the difference in the size between two subsequent
versions) in all datasets has the following broad characteristics (Fig. 4, 6). In
terms of tables, in most cases, growth is small (typically ranging within 0 and
1), and moderately small when it comes to attributes. We have too many occur-
rences of zero growth, typically iterating between small non-zero growth and zero
growth. Due to perfective maintenance, we also have negative values of growth
(less than the positive ones). We do not have a constant flow of versions where
the schema size is continuously changing; rather, we have small spikes between
one and zero. Thus, we have to state that the growth comes with a pattern of
spikes. Due to this characteristic, the average value is typically very close to zero
(on the positive side) in all datasets, both for tables and attributes. There are
few cases of large change too; we forward the reader to Law V for a discussion
of their characteristics.

We would like to put special emphasis to the observation that change is small.
In terms of tables, growth is mostly bounded in small values. This is not directly
obvious in the charts, because they show the ripples; however, almost all numbers
are in the range of [-2..2] — in fact, mostly in the range [0..2]. Few abrupt changes
occur. In terms of attributes, the numbers are higher, of course, and depend on
the dataset. Typically those values are bounded within [-20,20]. However, the
deviations from this range are not many.

In the course of our deliberations, we have observed a pattern common in
all datasets: there is a Zipfian model in the distribution of frequencies. Observe
Fig. 5 that comes with two parts, both depicting how often a growth value
appears in the attributes of Ensemble. The x-axis keeps the delta size and the
y-axis the number of occurrences of this delta. In the left part we include zeros
in the counting (343 occurrences out of 528 data points) and in the right part
we exclude them (to show that the power law does not hold only for the most
popular value). We observe that there is a small range of deltas, between -2 and
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4 that takes up 450 changes out of the 528. This means that, despite the large
outliers, change is strongly biased towards small values close to zero.

Despite the fact that change does not follow the pattern of baseline smooth
growth of Lehman and the fact that change obeys a Zipfian distribution with a
peak at zero, we have to say that the presence of feedback in the evolution process
is evident; thus the law holds.

4.2 Properties of Growth for Schema Evolution

Law of continuing growth (Law VI). The sixth law of continuing growth
requires us to verify whether the information capacity of the system (schema
size) continuously grows. In all occasions, the schema size increases in the long
run (Fig. 1, 2). We frequently observe some shrinking events in the timeline
of schema growth in all data sets. However, all data sets demonstrate the ten-
dency to grow over time. However, we also have differences from the traditional
software systems that the law studies: as with Law I, the term ”continually”
is questionable. As already mentioned (refer to Law III and Fig. 1, 2), change
comes with frequent (and sometimes long) periods of stability, where the size of
the schema does not change (or changes very little).

Therefore we can conclude that the law holds, albeit modified to accommodate
the particularities of database schemata.

Law of conservation of familiarity (Law V). A first question, of central
interest for the fifth law’s intuition is: “What happens after excessive changes?
Do we observe small ripples of change, showing the absorbing of the change’s
impact in terms of corrective maintenance and developer acquaintance with the
new version of the schema?” An accompanying question, typically encountered
in the literature, is: “What is the effect of age over the growth and the growth
ratio of the schema?” Is it slowly declining, constant or oblivious to age? Again,
we would like to remind the reader on the properties of growth, discussed in Law
IIT of self-regulation: the changes are small, come with spike patterns between
zero and non-zero deltas and the average value of growth is very close to zero.
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Concerning the ripples after large changes, we can detect several patterns.
Observe Fig. 6, depicting attribute growth for the MediaWiki dataset. Due to
the fact that this involves the growth of attributes, the phenomena are amplified
compared to the case of tables. Reading from right to left, we can see that there
are indeed cases where a large spike is followed by small or no changes (case
1). However, within the small pool of large changes that exist overall, it is quite
frequent to see sequences of large oscillations one after the other, and quite
frequently being performed around zero too (case 2). In some occurrences, we
see both (case 3).

Concerning the effect of age, we do not see a diminishing trend in the values
of growth; however, age results to a reduction in the density of changes and the
frequency of non-zero values in the spikes. This explains the drop of the average
value in almost all the studied data sets (Fig. 4): the linear interpolation drops;
however, this is not due to the decrease of the height of the spikes, but due to
the decrease of their density.

The heartbeat of the systems tells a similar story: typically, change is quite
more frequent in the beginning, despite the fact that existence of large changes
and dense periods of activities can occur in any period of the lifetime. Fig. 1 and
2 clearly demonstrate this by combining schema size and activity. This trend
is typical for almost all of the studied databases (with phpBB being the only
exception, demonstrating increased activity in its latest versions with the schema
size oscillating between 60 and 63 tables).

Concerning the validity of the law, we believe that the law is possible but
not confirmed. The law states that the growth is constrained by the need to
maintain familiarity. However, the peculiarity of databases, compared to typical
software systems, is that there are other good reasons to constrain growth: (a)



a high degree of dependence of other modules from the database, and, (b) an
intense effort to make the database clean and organized. Therefore, conservation
of familiarity, although important cannot solely justify the limited growth. The
extent of the contribution of each reason is unclear.

Law of conservation of organizational stability (Law IV). To validate
the hypothesis that the law of conservation of organizational stability holds, we
need to establish that the project’s lifetime is divided in phases, each of which
(a) demonstrates a constant growth, and, (b) is connected to the next phase
with an abrupt change. Moreover, abrupt changes should occur from time to
time and not all the time (resulting in extremely short phases).

If we focus on the essence of the law, we can safely say that it does not
hold. The heartbeats of Fig. 1 and 2 and the arbitrary sequencing of spikes and
stability (Fig. 4, 6) make it impossible to speak about constant growth, even in
phases. The open-source nature of our cases plays a role to that too.

4.3 Perfective Maintenance for Schema Evolution

Law of increasing complexity (Law II). The law states that complexity
increases with age, unless effort is taken to prevent this — nevertheless, the law
does not prescribe a clear assessment method for its validity. The rationale be-
hind verifying the law dictates the observation of (a) an increasing trend in
complexity of a software system, battled by (b) a perfective maintenance activ-
ity that attempts to reduce it and demonstrated by drops in the system size and
rate of expansion. As there is no precise definition and measurement of com-
plexity in the law, different metrics have been employed (coupling, cyclomatic
complexity, etc. — see [6] for a review). Unfortunately, as most of these metrics
are non-applicable to the case of databases, we take a definition already found
in Lehman [1]: complexity is defined as the number of modules handled (in our
case tables added or modified) over the absolute value of growth per transition.
This formula approximates how much effort has been invested in expanding the
system over the actual difference achieved (large values demonstrate too much
effort for too small change).

Related literature typically speaks for increasing complexity [1], [2], [3], [6],
although there have been counterarguments for the case of open source soft-
ware [5]. In our case, in all the datasets but Biosql, complezity, as defined in the
previous paragraph, does not increase (Fig. 7). The phenomenon must be cou-
pled with the drop in change density (Law V) and although we cannot provide
undisputable explanation, we offer the synergy of two causes: (a) the increasing
dependence of the surrounding code to the database that makes developers more
cautious to perform schema changes as they incur higher maintenance costs, and,
(b) the success of the perfective maintenance, which results in a clean schema,
requiring less corrective maintenance in the future.

Although we cannot confirm or disprove the law based on undisputed objective
measurements, we have indications that the second law partially holds, albeit with



completely different connotations than the ones reported by Lehman for typical
software systems: in the case of database schemata, complexity, when measured
as the fraction of expansion effort over actual growth, drops.

Law of declining quality (Law VII) The seventh law postulates that quality
declines with age unless the system is rigorously adapted to its external envi-
ronment. Lehman and Fernandez-Ramil [3] avoid both (a) a definition of quality
”the definition, measurement, modelling and monitoring of software quality-
related characteristics are very dependent on application, organisation, product
and process characteristics and goals”, and, (b) giving any other support to the
law than a logical proof: as the system expands over time, its complexity rises
and thus the addressing of user requirements and removal of defects becomes
more and more difficult, unless work is done to confront the phenomenon (”the
decline in software quality with age, appears to relate to a growth in complexity
that must be associated with ageing”).

We have already demonstrated that the rationale behind complexity increase
is not supported by our observations. At the same time, we cannot assess schema
quality with undisputed means. Therefore, we cannot confirm or disprove the law
based on undisputed objective measurements.

5 Discussion

In this section, we summarize fundamental observations and patterns that have
been detected in our study. We intentionally avoid the term law, as we do
not have unshakeable evidence for their explanation. Apart from the empiri-
cal grounding, due a very large amount of datasets that obey the same patterns
(which we believe we have fairly attained), we would require an undisputed ratio-
nalized grounding, that can be obtained via a clear explanation of the underlying
mechanism that guides them, also established on measured, undisputed data.
Feedback-based Behavior for Schema Evolution. As an overall trend,
the information capacity of the database schema is enhanced — i.e., the size
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Fig. 7. Complexity for Coppermine and Ensembl (over version-id, concealed for clarity)



grows in the long term (VI). The existence of perfective maintenance is evident
in almost all datasets with the existence of relation and attributes removals, as
well as observable drops in growth and size of the schema (sometimes large ones).
In fact, growth frequently oscillates between positive and negative values (III).
The schema size of a certain version of the database can be accurately estimated
via a regressive formula that exploits the amount of changes in recent, previous
versions (VIII). Based on the above, we can state that the essence of Lehman’s
laws applies to open-source databases too: Schema evolution demonstrates the
behavior of a feedback-requlated system, as it obeys the antagonism between the
need for expanding its information capacity to address user needs and the need
to control the unordered expansion, with perfective maintenance.

Observations concerning the heartbeat of change. The database is
not continuously adapted, but rather, alterations occur from time to time, both
in terms of versions and in terms of time (I). Change does not follow patterns
of constant behaviour (IV). Age results in a reduction of the density of changes
to the database schema in most cases (V).

Schema growth is small (observations): Growth is typically small in the
evolution of database schemata, compared to traditional software systems (III).
The distribution of occurrences of the amount of schema change follows a Zipfian
distribution, with a predominant amount of zero growth in all data sets. Plainly
put, there is a very large amount of versions with zero growth, both in the case of
attributes and in the case of tables. The rest of the frequently occurring values are
close to zero, too. The average value of growth is typically close to zero (although
positive) (III) and drops with time, mainly due to the drop in change density (V).

Threats to validity. We start with a fundamental inquiry: are databases
E-type systems, so that this research is meaningful in the first place? Despite
a fundamental difference (as databases involve information and not functional
capacity), databases, closely resemble E-type systems as they address the real
problem of query answering, come with their own user community (developers,
DBA’s), and act as fairly independent modules in information systems. Con-
cerning the external validity of our study, its context concerns the study of the
evolution of the logical schema of databases in open-source software. We avoid
generalizing our findings to databases operating in closed environments and we
stress that our study has focused only on the logical structure of databases,
avoiding physical properties (let alone instance-level observations). Overall, we
believe we have provided a safe, representative experiment with a significant
number of schemata, having different purposes in the real world and time span
(from rather few (40) to numerous (5004) versions). Our findings are generally
consistent (with few exceptions that we mentioned). Concerning internal validity
and cause-effect relationships, we avoid directly relating age with phenomena like
the dropping density of changes or the size growth; on the contrary, we attribute
the phenomena to a confounding variable, perfective maintenance actions, which
we anticipate to be causing the observed behavior. When it comes to construct
validity, all the measures we have employed are accurate, consistent with the
metrics used in the related literature and appropriate for assessing the law to




which they are employed. The only exceptions to this statement are Laws IT and
VII dealing with the complexity and the quality of the schemata. Both terms are
very general and the related database literature does not really provide adequate
metrics other than size-related (which we deem too simple for our purpose); our
own measurement of complexity requires deeper investigation. Therefore, the
undisputed assessment of these laws remains open.

Future Work. The extension of the study to more datasets, possibly non-
relational too, and the study of databases in closed environments for large periods
of time, are possible roads for future research. Concerning the current findings
of our study, the detailed understanding of the feedback mechanism, especially
when it comes to ageing and complexity (Law II) as well as patterns of growth
(Laws IIT and V), or patterns in the heartbeat of the evolution, are open issues
worth investigating.
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A truly stable system expects the unexpected, is prepared
to be disrupted, waits to be transformed.Tom Robbins, Even
Cowgirls Get the Blues

backbone” is stable and applications are build on top of it. This
is due to the “dependency magnet” nature of databases: a
change in the schema of a database may immediately drive
surrounding applications to crash (in case of deletions or
renamings) or be semantically defective or inaccurate (in the
case of information addition, or restructuring). Therefore,

1. Introduction

Software evolution is the change of a software system over
time, typically performed via a remarkably difficult, compli-
cated and time consuming process, software maintenance.
Schema evolution is the most important aspect of software
evolution that pertains to databases, as it can have a tremen-
dous impact to the entire information system built around the
evolving database, severely affecting both developers and
end-users. Quite frequently, development waits till a “schema
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discovering laws, patterns and regularities in schema evolu-
tion can result in great benefits, as we would be able to design
databases with a view to their evolution and minimize the
impact of evolution to the surrounding applications: (a) by
avoiding “design anti-patterns” leading to cumulative com-
plexity for both the database and the surrounding applica-
tions and (b) by planning administration and maintenance
tasks and resources, instead of just responding to emer-
gencies.

In sharp distinction to traditional software systems, and
disproportionately to the severity of its implications, database
evolution has hardly been studied throughout the entire
lifetime of the data management discipline. It is only amazing
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to find out that, in the history of the discipline, just a handful
of studies had been published in the area. The deficit is really
amazing in the case of traditional database environments,
where only two(!) studies [1,2] have been published. Apart
from amazing, this deficit should also be expected: allowing
the monitoring, study and eventual publication of the evolu-
tion properties of a database would expose the internals of a
critical part of the core of an organization's information syst-
em. Fortunately, the open-source movement has provided us
with the possibility to slightly change this landscape. As public
repositories (git, svn, etc.) keep the entire history of revisions
of software projects, including the schema files of any
database internally hosted within them, we are now pre-
sented with the opportunity to study the version histories of
such open source databases. Hence, within only a few years in
the late ‘00's, several research efforts [3-6] have studied of
schema evolution in open source environments. Those stu-
dies, however, focus on the statistical properties of the
evolution and do not provide details on the mechanism that
governs the evolution of database schemata.

To contribute towards amending this deficit, the research
goal of this paper involves the identification of patterns and
regularities of schema evolution that can help us understand the
underlying mechanism that governs it. To this end, we study the
evolution of the logical schema of eight databases, that are
parts of publicly available, open-source software projects
(Section 3). We have collected and cleansed the available
versions of the database schemata for the eight case studies,
extracted the changes that have been performed in these
versions and, finally, we have come up with usable datasets
that we subsequently analyzed.

Our main tool for this analysis came from the area of
software engineering. In an attempt to understand the
mechanics behind the evolution of software and facilitate
a smoother, lest disruptive maintenance process, Meir
Lehman and his colleagues introduced a set of rules in
mid seventies [7], also known as the Laws on Software
Evolution (Section 2). Their findings, that were reviewed
and enhanced for nearly 40 years [8,9], have, since then,
given an insight to managers, software developers and
researchers, as to what evolves in the lifetime of a software
system, and why it does so. Other studies (see [10] for a
survey) have complemented these insights in this field,
typically with particular focus to open-source software
projects. In our case, we adapted the laws of software
evolution to the case of schema evolution and utilized
them as a driver towards understanding how the studied
schemata evolve. Our findings (Section 4) indicate that the
schemata of open source databases expand over time, with
long periods of calmness connected via bursts of main-
tenance effort focused in time, and with significant effort
towards the perfective maintenance of the schema that
appears to result in an unexpected lack of complexity
increase. Incremental growth of the schema is typically
low and its volume follows a Zipfian distribution. In both
the presentations of our results and in our concluding
notes (Section 5) we also demonstrate that although the
technical assessment of Lehman's laws shows that the
typical software systems evolve quite differently than
database schemata, the essence of the laws is preserved:
evolution is not about uncontrolled expansion; on the

contrary, there appears to be a stabilization mechanism
that employs perfective maintenance to control the other-
wise growing trend of increase in the information capacity
of the database.

Roadmap: In Section 2, we summarize Lehman's laws
for the non-expert reader and survey related efforts, too. In
Section 3 we discuss the experimental setup of this study
and in Section 4, we detail our findings. We conclude our
deliberations with a summary of our findings and their
implications in Section 5.

2. Lehman laws of software evolution in a nutshell

Meir M. Lehman and his colleagues, have introduced,
and subsequently amended, enriched, and corrected a set
of rules on the behavior of software as it evolves over time
[7-9]. Lehman's laws focus on E-type systems that concern
“software solving a problem or addressing an application
in the real-world” [8]. The main idea behind the laws of
evolution for E-type software systems is that their evolu-
tion is a process that follows the behavior of a feedback-based
system. Being a feedback-based system, the evolution
process has to balance (a) positive feedback, i.e., the need
to adapt to a changing environment and grow to address
the need for more functionality, and, (b) negative feedback,
i.e., the need to control, constrain and direct change in
ways that prevent the deterioration of the maintainability
and manageability of the software. In the sequel, we list
the definitions of the laws as they are presented in [9], in a
more abstract form than previous versions and with the
benefit of retrospect, after thirty years of maturity and
research findings.

4)) Law of Continuing Change: An E-type system
must be continually adapted or else it becomes
progressively less satisfactory in use.

(I Law of Increasing Complexity: As an E-type sys-
tem is changed its complexity increases and
becomes more difficult to evolve unless work is
done to maintain or reduce the complexity.

(1) Law of Self-regulation: Global E-type system evo-
lution is feedback regulated.

(v) Law of Conservation of Organizational Stability:
The work rate of an organization evolving an E-
type software system tends to be constant over
the operational lifetime of that system or phases
of that lifetime.

(V) Law of Conservation of Familiarity: In general, the
incremental growth (growth ratio trend) of E-
type systems is constrained by the need to
maintain familiarity.

(V1) Law of Continuing Growth: The functional cap-
ability of E-type systems must be continually
enhanced to maintain user satisfaction over
system lifetime.

(VII) Law of Declining Quality: Unless rigorously
adapted and evolved to take into account
changes in the operational environment, the
quality of an E-type system will appear to be
declining.
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(v Law of Feedback System: E-type evolution pro-
cesses are multi-level, multi-loop, multi-agent
feedback systems.

Before proceeding with our study, we present a first apo-

dosis of the laws, taking into consideration both the

wording of the laws, but most importantly their accom-

panying explanations [9].

An E-Type software system continuously changes over time

(I) obeying a complex feedback-based evolution process

(vIII). On the one hand, due to the need for growth and

adaptation that acts as positive feedback, this process results

in an increasing functional capacity of the system (VI),

produced by a growth ratio that is slowly declining in the

long term (V). The process is typically guided by a pattern of
growth that demonstrates its self-regulating nature: growth
advances smoothly; still, whenever there are excessive devia-

tions from the typical, baseline rate of growth (either in a

single release, or accumulated over time), the evolution

process obeys the need for calibrating releases of perfective
maintenance, i.e., code restructuring and documentation for
better maintainability and comprehension (expressed via
minor growth and demonstrating negative feedback) to stop
the unordered growth of the system's complexity (Ill). On the
other hand, to regulate the ever-increasing growth, there is
negative feedback in the system controlling both the overall
quality of the system (VII), with particular emphasis to its
internal quality (II). The effort consumed for the above
process is typically constant over phases, with the phases
disrupted with bursts of effort from time to time (IV).

2.1. Lehman's laws and related empirical studies

Software evolution is an active research field for more than
40 years and concerns different levels of abstraction, including
the software architecture [11], design [12] and implementa-
tion [10]. Lehman's theory of software evolution is the
cornerstone of the efforts that have been performed all these
years. For a detailed historical survey on the evolution of
Lehman's theory and other related works the interested
reader can refer to [10]. Following, we briefly discuss the
milestones and key findings that resulted from these efforts.

Lehman's theory of software evolution was first introduced
in the 70s. Back then, the theory included the first three laws,
concerning the continuous change, the increasing complexity
and the self-regulating properties of the software evolution
process [7]. The experimental evidence that produced these
laws was based on a single case study, namely the OS/360
operating system. During the 70s and the 80s the formulation
of the first three laws has been revised, with respect to further
results and empirical observations that came up [13]. More-
over, Lehman's theory has been extended with the fourth and
the fifth law that concerned the issues of organizational
stability and conservation of familiarity [13]. In the 90s, based
on additional case studies, the laws have been revised again
and extended with the last three laws, referring to the
continuous growth, the declining quality and to the feedback
mechanism that governs the evolution process [14,8,15]. Leh-
man's theory did not grow since then, the set of laws has been

stabilized, and most of the activity around them concerned
moderate changes in their formulation, performed in the
00s [9].

During all these years there have also been studies by
other authors on the validity of the laws [16,17]. An interesting
finding uncovered from these efforts is that the behavior of
commercial software differs from that of academic and
research software, with the former kind being much more
faithful to the laws, compared to the latter two kinds. The
partial validity of the laws is also highlighted in [18], along
with the need for a more formal framework that would fac-
ilitate the assessment of the laws.

The diverse behavior of software concerning the valid-
ity of Lehman's laws is emphasized in subsequent studies
that investigated the evolution of open source software.
Most of these studies found only partial support for the
validity of the laws. The efforts in this line of research vary
from the pioneer studies of Godfrey and Tu [19,20],
focusing mainly on Linux, to large scale studies [21-24].
The common ground in all these studies is that they found
support for the laws of continuing change and growth.
Refs. [23,25] concluded in the validation of more laws,
including the ones of self-regulation and conservation of
familiarity. Moreover, [26] revealed that the laws may be
valid after a certain point in the software lifecycle. In
particular, taking a step further from the efforts of Godfrey
and Tu, [26] found that after a certain version the evolu-
tion of Linux follows, at least partially, most of the laws.

2.2. Empirical studies on database evolution

Being at the very core of most software, databases are also
subject to evolution, which concerns changes in their contents
and, most importantly, their schemas. Database evolution can
concern (a) changes in the operational environment of the
database, (b) changes in the content of the databases as time
passes by, and (c) changes in the internal structure, or schema,
of the database. Schema evolution, itself, can be addressed at
(a) the conceptual level, where the understanding of the
problem domain and its representation via an ER schema
evolves, (b) the logical level, where the main constructs of the
database structure evolve (for example, relations and views in
the relational area, classes in the object-oriented database
area, or (XML) elements in the XML/semi-structured area),
and (c) the physical level, involving data placement and
partitioning, indexing, compression, archiving, etc.

Interestingly, the related literature on the actual mechanics
of schema evolution includes only a few case studies, as the
research community would find it very hard to obtain access
to monitor database schemata for an in depth study over a
significant period of time. Despite the fact that in our work we
study schema evolution at the logical level of databases in open-
source software, here, we proceed to survey all the works we
are aware about in the broader area of schema evolution.

The first paper [1] discusses the evolution of the database
of a health management system over a period of 18 months,
monitored by a tool specifically constructed for this purpose.
A single database schema was examined, and the monitoring
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revealed that all the tables of the schema were affected and
the schema had a 139% increase in size for relations and 274%
for attributes. The consequences of this evolution were
significantly large as a cumulative 45% of all the names that
were used in the queries had to be deleted or inserted.

Fifteen years later, the authors of [3] made an analysis on
the database back-end of MediaWiki, the software that
powers Wikipedia. The study conducted over the versions of
four years, revealed a 100% increase in schema size, the
observation that around 45% of changes do not affect the
information capacity of the schema (but are rather index
adjustments, documentation, etc.), and a statistical study of
lifetimes, change breakdown and version commits. Special
mention should be made to this line of research [27], as it is
based on PRISM (recently re-engineered to PRISM+ + [28]), a
change management tool that provides a language of Schema
Modification Operations (SMO) (that model the creation,
renaming and deletion of tables and attributes, and their
merging and partitioning) to express schema changes. More
importantly, the people involved in this line of research
should be credited for providing a large collection of links”
for open source projects that include database support.

A work in the area of data warehousing [2] monitored the
evolution of seven ETL scripts along with the evolution of the
source data. The experimental analysis of the authors is based
in a six-month monitoring of seven real-world ETL scenarios
that process data for statistical surveys. The findings of the
study indicate that schema size and module complexity are
important factors for the vulnerability of an ETL flow to
changes. This work has been part of an effort to provide
what-if analysis facilities to the management of schema
evolution via the Hecataeus tool (see [29,30]).

Finally, certain efforts studied the evolution of databases,
while taking into account the applications that use them. In
particular, in [5] the authors considered 4 case studies of
embedded databases (i.e., databases tightly coupled with
corresponding applications that rely on them) and studied
the different kinds of changes that occurred in these cases.
Moreover, they performed a respective frequency and timing
analysis, which showed that the database schemas tend to
stabilize over time. In [4], the authors focused on two case
studies. The results of this effort revealed that database
schema changes and that the source code of dependent
applications does not always evolve in sync with changes to
the database schema. Ref. [4] further provides a discussion
concerning that the impact of database schema changes on
the application code. Ref. [6] takes a step further with an
empirical study of the co-evolution of database schemas and
code. This effort investigated ten case studies. The results
indicate that database schemas evolve frequently during the
application lifecycle, with schema changes implying a sig-
nificant amount of code level modifications.

2.3. Novelty with respect to the state of the art

Going beyond the related literature on software evolution,
in general, and database evolution, in particular, our CAiSE'14

2 http://yellowstone.cs.ucla.edu/schema-evolution/index.php/
Benchmark_Extension

paper [31] investigated for the first time patterns and
regularities of database evolution, based on Lehman's laws.
To this end, we conducted a large scale case study of eight
databases, that are parts open-source software projects. This
paper extends our prior work with further details concerning
the intuition and the relevance of the laws in the case of
databases, the metrics that have been used in the literature
for the assessment of the laws, and the metrics that we
employed in the case of databases. More importantly, we
provide detailed presentations of the results and thorough
discussions of our findings.

3. Experimental setup of the study

Datasets: We have studied eight database schemata from
open-source software projects. Fig. 1 lists the datasets along
with some interesting properties.

ATLAS® is a particle physics experiment at the Large
Hadron Collider at CERN, Geneva, Switzerland, with the
goal of learning about the basic forces that have shaped
our universe. ATLAS Trigger is the software responsible for
filtering the immense data (40 TB per second) collected by
the Collider and storing them in its Oracle database.

BioSQL* is a generic relational model covering sequences,
features, sequence and feature annotation, a reference taxon-
omy, and ontologies (or controlled vocabularies) from various
sources such as GenBank or Swissport. While originally
conceived as a local relational store for GenBank, the project
has since become a collaboration platform between the Open
Bioinformatics Foundation (OBF) projects (including BioPerl,
BioPython, BioJava, and BioRuby). The goal is to build a
sufficiently generic schema for persistent storage of sequ-
ences, features, and annotation in a way that is interoperable
between these Bio™ projects.

Ensembl is a joint scientific project between the Eur-
opean Bioinformatics Institute (EBI)° and the Wellcome
Trust Sanger Institute (WTSI)® which was launched in
1999 in response to the imminent completion of the
Human Genome Project. The goal of Ensembl was to
automatically annotate the three billion base pairs of
sequences of the genome, integrate this annotation with
other available biological data and make all this publicly
available via the web. Since the launch of the website,
many more genomes have been added to Ensembl and the
range of available data has also expanded to include
comparative genomics, variation and regulatory data.

MediaWiki’” was first introduced in early 2002 by the
Wikimedia Foundation along with Wikipedia, and hosts
Wikipedia's content since then. As an open source system
(licensed under the GNU GPL) written in PHP, it was also
adopted by many companies and is used in thousands of
websites both as a knowledge management system, and
for collaborative group projects.

3 http://atlas.web.cern.ch/Atlas/Collaboration/
4 http://www.biosql.org/wiki/Main_Page

> https://www.ebi.ac.uk/

6 https://www.sanger.ac.uk/

7 https://www.mediawiki.org/wiki/MediaWiki
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o .
Dataset Versions Lifetime gsl:frst 1;2:: Ag;‘:::tes Att@;i::;es * c:vri::\mts
change
ATLAS Trigger 84 2Y,7M,2D 56 73 709 858 82%
BioSQL 46 10Y,6M,19D 21 28 74 129 63%
Coppermine 117 8Y,6M,2D 8 22 87 169 50%
Ensembl 528 13Y,3M,15D 17 75 75 486 60%
MediaWiki 322 8Y,10M,6D 17 50 100 318 59%
OpencCart 164 4Y,4M,3D 46 114 292 731 47%
phpBB 133 6Y,7M,10D 61 65 611 565 82%
TYPO3 97 8Y,11M,0D 10 23 122 414 76%

Fig. 1. The datasets employed in our study.

Coppermine® is a photo gallery web application. OpenCart®
is an open source shopping cart system. PhpBB'’ (PHP Bulletin
Board) is an Internet forum package written in PHP. TYPO3"!
is a web content management framework based on PHP. All
these platforms are highly rated and used.

Dataset Collection and Processing: A first collection of
links to available datasets was made by the authors of
[3,27]'2; for this, these authors deserve honorable credit.
We isolated eight databases that appeared to be alive and
used (as already mentioned, some of them are actually
quite prominent). For each dataset, we have gathered the
schema versions (DDL files) that were available at June
2013, directly from public source code repositories (cvs,
svn, git) for the eight datasets listed in Fig. 1. We have
targeted main development branches and trunks to max-
imize the validity of the gathered resources. We are inte-
rested only on changes of the database part of the project as
they are integrated in the trunk of the project. Hence, we
collected all the commits of the trunk or master branch
that were available at the time, and ignored all other
branches of the project, as well as any commits of other
modules of the project that did not affect the database.

For all of the projects, we focused on their release for
MySQL (except ATLAS Trigger, available only for Oracle).
Those files were then renamed with their filenames
matching to the date (in standard UNIX time) the commit
was made. The files were then processed in sequential
pairs from our tool, Hecate, to give us in a fully automated
way (a) the differences between two subsequent commits
and (b) the measures we needed to conduct this study.
Attributes are marked as altered if they exist in both
versions and their type or participation in their tables's
primary key changed. Tables are marked as altered if they
exist in both versions and their contents have changed
(attributes inserted/deleted/altered).

8 http://coppermine-gallery.net/

9 http://www.opencart.com

10 https://www.phpbb.com/

1 http://typo3.org/

12 http://data.schemaevolution.org

All the datasets used, along with our tool-suite for
managing the evolution of databases can be found in our
group's git: https://github.com/DAINTINESS-Group.

4. Assessing the laws for schema evolution

The laws of software evolution where developed and
reshaped over forty years. Explaining each law in isolation
from the others is precarious, as it risks losing the deeper
essence and inter-dependencies of the laws [9]. To this
end, in this section, we organize the laws in three thematic
areas of the overall evolution management mechanism
that they reveal. The first group of laws discusses the
existence of a feedback mechanism that constrains the
uncontrolled evolution of software. The second group
discusses the properties of the growth part of the system,
i.e.,, the part of the evolution mechanism that accounts for
positive feedback. The third group of laws discusses the
properties of perfective maintenance that constrains the
uncontrolled growth, i.e., the part of the evolution
mechanism that accounts for negative feedback. To quan-
titatively support our study, we utilize the following
measures:

® Schema size of a version: The number of tables of a
schema version.

® Schema Growth: The difference between the schema
size of two (typically subsequent) versions (i.e., new-
old).

® Heartbeat: A sequence of tuples, one per transition,
with the count of the events that occurred during this
transition. In the context of this paper, for each transi-
tion between two subsequent versions, we produce a
tuple of measures including Table Insertions, Table
Deletions, Attribute Insertions, Attribute Deletions,
Attribute Alternations (change of data type), Attributes
Inserted at Table Formation, Attribute Deletions at
Table Removal. To clarify, Attribute Insertions concern
additions of attributes to an existing table, whereas
Attributes Inserted at Table Formation concern the
number of attributes generated whenever a new table
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is born. Attribute Deletions concern deletions from a
table that continues to exist, whereas Attribute Dele-
tions at Table Removal concern attributes that are
removed whenever their containing table is removed.
We sum up these measures per transition, to produce
the Heartbeat of the lifetime of the dataset.

We would like to remind the reader that we study the
evolution of the logical schema of databases in open-source
software. In all our deliberations, we take the above context as
granted and avoid repeating it for reasons of better presenta-
tion of our results.

4.1. Is there a feedback-based system for schema evolution?
4.1.1. Law of continuing change (Law I)

The first law argues that the system continuously
changes over time.

I. Skoulis et al. / Information Systems 53 (2015) 363-385

An E-type system must be continually adapted or else it
becomes progressively less satisfactory in use.

The main idea behind this law is simple: as the real world
environment evolves, the software that is intended to address
its problems has to evolve too. If this does not happen, the
system becomes less satisfactory.

Metrics for the assessment of the law's validity: To establish
the law, one needs to show that the software shows signs
of evolution as time passes. Possible metrics from the field
of software engineering [23] include (a) the cumulative
number of changes and (b) the breakdown of changes
over time.

Assessment: To validate the hypothesis that the law of
continuing change holds, we study the heartbeat of the
schema's life (see Figs. 2-4 for a combined demonstration
of heartbeat and schema size).

With the exception of BioSQL that appeared to be “sleep-
ing” for some years and was later re-activated, in all other
cases, we have changes (sometimes moderate, sometimes
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Fig. 4. Combined demonstration of heartbeat (continued).
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Fig. 5. Growth (tables) over version id for all the datasets.

even excessive) over the entire lifetime of the database
schema. An important observation stemming from the visual
inspection of our change-over-time data, is that the term
continually in the law's definition is challenged: we observe
that database schema evolution happens in bursts, in grouped
periods of evolutionary activity, and not as a continuous process!
Take into account that the versions with zero changes are
versions where either commenting and beautification takes
place, or the changes do not refer to the information capacity
of the schema (relations, attributes and constraints) but
rather, they concern the physical level properties (indexes,
storage engines, etc.) that pertain to performance aspects of
the database.

Can we state that this stillness makes the schema “unsa-
tisfactory” (referring back to the wording of the first law by

Lehman)? We believe that the answer to the question is
negative: since the system hosting the database continues to
be in use, user dissatisfaction would actually call for contin-
uous growth of the database, or eventual rejection of the
system. This does not happen. On the other hand, our
explanation relies on the reference nature of the database in
terms of software architecture: if the database evolves, the
rest of the code, which is basically using the database (and not
vice versa), breaks.

Overall, if we account for the exact wording of the law, we
conclude that the law partially holds.

4.1.2. Law of Self-regulation (Law III)
The third law of software evolution is known as the law
of “Self-regulation” and comes with a laconic definition.
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Global E-type system evolution is feedback regulated.

The main idea behind this law is that the system under
development is actually a feedback-regulated system: devel-
opment and maintenance take place and there is positive and
negative feedback to the system. As the clients of the system
request more functionality, the system grows in size to
address this demand; at the same time, as the system grows,
corrective and perfective maintenance has to take place to
remove bugs and improve the internal quality of the software
(reduced complexity, increased understandability) [8].

Thus, the system's growth cannot continually evolve
with the same rate; on the contrary, what one expects is to
see a typical “baseline” growth, interrupted with releases
of perfective maintenance. This trend is so strong, that, in
the long run, the system's size demonstrates what the
authors of [8] call “cyclic effects” and the authors of [9] call
“patterns of growth”.

Metrics for the assessment of the law's validity: Whereas
the law simply states that the evolution of software is
feedback regulated, its experimental validation in the area
of software systems is typically supported by the observa-
tion of a recurring pattern of smooth expansion of the
system's size that is interrupted with releases with size
reductions or abrupt growth. Moreover, due to a previous
wording of the law (e.g., see [8]) that described change to
follow a normal distribution, the experimental assessment
included the validation of whether growth demonstrates
oscillations around an average value [7-9]. The ripples in
the size of the system are assumed to indicate the exis-
tence of feedback in the system: positive feedback results
in the system's expansion and negative feedback involves
perfective maintenance coming with reduced rate of
growth (which is not due to functional growth but re-
engineering towards better code quality) - if not with
system shrinking (due to removal of unnecessary parts or
their merging with other parts).

Assessment: We organize the discussion of our findings
around size and growth, both of which demonstrate some
patterns, although not the ones expected by the previous
literature.

Size: The evolution of size can be observed in Figs. 2-4.
Concerning the issue of a recurring, fundamental pattern of
smooth expansion, interrupted with abrupt changes or, more
generally, versions of perfective maintenance, we have to say
that we simply cannot detect the behavior that Lehman did
(contrast Figs. 2-4 to the respective figures of articles [7,8]): in
sharp contrast to the smooth baseline growth that Lehman
has highlighted, the evolution of the size of the studied
database schemata provides a landscape with a large variety
of sequences of the following three fundamental behaviors.

® In all schemata, we can see periods of increase, espe-
cially at the beginning of their lifetime or after a large
drop in the schema size. This is an indication of positive
feedback, i.e., the need to expand the schema to cover
the information needs of the users — especially since
the overall trend in almost all of the studied databases
is to see an increase in the schema size as time passes.
® [n all schemata, there are versions with drops in schema
size. Those drops are typically sudden and steep and

usually take place in short periods of time. Sometimes,
in fact, these drops are of significantly larger size than
the typical change. We can safely say that the existence
of these drops in the schema size indicates perfective
maintenance and thus, the existence of a negative
feedback mechanism in the evolution process.

® [n all schemata, there are periods of calmness, i.e., periods
of non-modification to the logical structure of the schema.
This is especially evident if one observes the heartbeat of
the database, where changes are grouped to very specific
moments in time.

Growth and its oscillations: Growth (i.e., the difference
in the size between two subsequent versions) comes with
common characteristics in all datasets. In most cases,
growth is small (typically ranging within 0 and 1). As
Fig. 5 demonstrates, we have too many occurrences of zero
growth, typically iterating between small non-zero growth
and zero growth. Due to perfective maintenance, we also
have negative values of growth (less than the positive
ones). We do not have a constant flow of versions where
the schema size is continuously changing; rather, we have
small spikes between one and zero. Thus, we have to state
that the growth comes with a pattern of spikes. Due to this
characteristic, the average value is typically very close to
zero (on the positive side) in all datasets, both for tables and
attributes. There are few cases of large change too; we
forward the reader to Law V for a discussion and to Fig. 9
for a graphical depiction of their characteristics.

The oscillations of growth demonstrates other patterns
too: it is quite frequent, especially at the attribute level, to see
sequences of oscillations of large size: i.e., an excessive positive
delta followed immediately by an excessive negative growth
(see Fig. 9). We do, however, observe the oscillations between
positive and negative values (remember, the average value is
very close to zero), much more on the positive side, however,
with several occasions of excessive negative growth (clearly
demonstrating perfective maintenance).

We would like to put special emphasis to the observation
that change is small . In terms of tables, growth is mostly
bounded in small values. This is not directly obvious in the
charts, because they show the ripples; however, almost all
numbers are in the range of [—2..2] - in fact, mostly in the
range [0..2]. Few abrupt changes occur. In terms of attributes
(Fig. 6), the numbers are higher, of course, and depend on the
dataset. Typically, those values are bounded within [ —20,20].
However, the deviations from this range are not many.

In the course of our deliberations, we have observed a
pattern common in all datasets: there is a Zipfian model in
the distribution of frequencies. Observe Fig. 7 that comes
with two parts, both depicting how often a growth value
appears in the attributes of Ensemble. The x-axis keeps the
delta size and the y-axis the number of occurrences of this
delta. In the upper part we include zeros in the counting
(343 occurrences out of 528 data points) and in the lower
part we exclude them (to show that the power law does
not hold only for the most popular value). We observe that
there is a small range of deltas, between —2 and 4 that
takes up 450 changes out of the 528. This means that,
despite the large outliers, change is strongly biased
towards small values close to zero.
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Fig. 6. Growth (attributes) over version id for all the datasets; we measure attribute growth as the difference in the total number of attributes of all tables,

between two subsequent versions.

In fact, both phenomena observed here, i.e., (a) the bou-
nded small change around zero, (b) following a Zipfian
distribution of frequencies, constitute two of the patterns
that are global to all datasets and without any exceptions
whatsoever.

Despite the fact that change does not follow the pattern of
baseline smooth growth of Lehman and the fact that change
obeys a Zipfian distribution with a peak at zero, we believe
that the presence of feedback in the evolution process is
clear; thus the law holds.

4.1.3. Law of Feedback System (Law VIII)
The eighth law of software evolution is known as the
law of “Feedback System”.

E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems.

The main idea around this law refers to the fact that
original “observation has shown that the system behaves as
self-stabilizing feedback system” [14]. There is a big discussion
in the literature on various components and actors whose
interactions limit and guide the possible ways via which the
system can evolve. We refer the interested reader to [9] for
this. From our part, we do not presume to fully know the
mechanics that constraint the growth of a database schema.
However, we can focus to the part that there is indeed a
mechanism that stabilizes the tendency for uninterrupted
growth of the schema - and in fact we can try to assess
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whether this is a regressive mechanism whose behavior can
be generally estimated.

Metrics for the assessment of the law's validity: To
assume the law as valid we need to establish that it is
possible to simulate the evolution of the schema size via
an accurate formula. Following [8,15], we will perform
regression analysis to estimate the number of relations for
each version of the schema. We adopt the formulas found
at [8,15] on the relationship of the new size of the system
as a function of the previous size of it, adapted via an
“inverse square” feedback effect. The respective formula is

s o E
Si=Si_1 +=—
Si*l

E=avgE), i=1..n (1

where S refers to the estimated system size and E is a
model parameter approximating effort. Related literature
[8] suggests computing E as the average value of individual
E;, one per transition. To estimate these individual effort

approximations, E;, the authors of [8] suggest two alter-
native formulae:

E,»=(s,~fs,»,1)-sl»27] (2)
E,:is"_sl1 ©)
i—1
Z}:1¥

Assessment: We now move on to discuss what seems to
work and what not for the case of schema evolution. We will
use the OpenCart dataset as a reference example; however, all
datasets demonstrate exactly the same behavior.

The main challenge with formula (1) is the estimation
of E. As a first step, we have generalized the formulae (2)
and (3) via a parameterized expression:

Si—Sa
i-1 1

J=a 2
5

Ei= 4)
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where s; refers to the actual size of the schema at version i
and a refers to the version from which counting starts. The
model of [8] comes with two values for a, specifically (i)
a=i-1 for formula (2), and (ii) a=1 for formula (3). The
essence of the formula is that, to compute E; we use o
previous versions to estimate effort.

Then we began our assessment. First, we assessed the
formulae of [8]. In this case, we compute the average E of
the individual E; over the entire dataset. We employ four
different values for , specifically i—1 (last version), 1 (for
the entire dataset) and 5 and 10 for the respective past
versions. We depict the result in Fig. 8(top), where the
actual size is represented by the blue solid line. The results
indicate that the approximation modestly succeeds in
predicting an overall increasing trend for all four cases,
and, in fact, all four approximations targeted towards
predicting an increasing tendency that the actual schema
does not demonstrate. At the same time, all four approx-
imations fail to capture the individual fluctuations within
the schema lifetime.

Then, we tried to improve on this result, and instead of
computing E as the total average over all the values of the
dataset, we compute it as the running average (not
assuming a global average, but tuning the average effort
with every added release). In this case, depicted in Fig. 8
(middle), the results are less satisfactory than our first
attempt.

After these attempts, we decided to alter the computa-
tion of E again. A better estimation occurred when we
realized that back in 1997 people considered that the
parameter E was constant over the entire lifetime of the
project; however, later observations (see [9]) led to the
revelation that the project was split into phases. So, for
every version i, we compute E as an average over the last 7
Ej values, with small values for 7 (1/5/10) - contrast this to
the previous two attempts where E was computed as a
total average over the entire dataset (i.e., constant for all
versions) or a running average from the beginning of the
versions till the current one.

So, the main formula of the law is restated (and actually
generalized), by replacing a global parameter E with a
varying parameter E' that can change per version (thus the
superscript notation signifies the value of the effort
estimation at version i). The versions used for this calcula-
tion are within the range [7°, 7°]:

=i

§i2§i—1+Ta E =avgl_ . (E) (5)

For the three simulation attempts that we have run, we
have the following configurations:

Method Values for [7°,7¢]

Global average 1 'n
Running average 1 7% i-1
Last 7 vs. (T € {1,5,10}) -7 i—1

We also decided to use the last 5 or 10 versions to com-
pute E;, i.e.,, a is 5 or 10. This has already been used in the
past experiments too.

As we can see in Fig. 8(bottom), the idea of computing the
average E with a short memory of 5 or 10 versions produced
extremely accurate results. This holds for all datasets. This
observation also suggests that, if the phases that [9] men-
tioned actually exist for the case of database schema, they are
really small, or non-existent, and a memory of 5-10 versions
is enough to produce very accurate results. The fact that this
works with 7=1, and in fact, better than the other approx-
imations is puzzling and counters the existence of phases.

We do not have a convincing theory as to why the
formula works. We understand that there are no constants
in the feedback system and in fact, the feedback mechan-
ism needs a second feedback loop, with a short memory
for estimating the model parameter E. In plain words, this
signifies that both size and effort approximation are
intertwined in a multi-level feedback mechanism.

Overall, the evolution of the database schema appears to
obey the behavior of a feedback-based mechanism, as the
schema size of a certain version of the database can be
accurately estimated via a regressive formula that exploits
the amount of changes in recent, previous versions.

4.2. Properties of growth for schema evolution

Growth occurs as positive feedback to the system, in an
attempt to expand the system with more functionality, or
address new assumptions that make its operation accep-
table, e.g., new user requirements, and an evolving opera-
tional environment. In this subsection, we study the
properties of the growth.

4.2.1. Law of Continuing Growth (Law VI)
The sixth law of software evolution is known as the law
of “Continuing Growth”.

The functional capability of E-type systems must be
continually enhanced to maintain user satisfaction over
system lifetime.

The sixth law resembles the first law (continuing
change) at a fist glance; however, as explained in [8],
these two laws cover different phenomena. The first law
refers to the necessity of a software system to adapt to a
changing world. The sixth law refers to the fact that a
system cannot include all the needed functionality in a
single version; thus, due to non-elastic time and resource
constraints, several desired functionalities of the system
are excluded from a version. As time passes, these func-
tionalities are progressively blended in the system, along
with the new requirements stemming from the first law's
context of an evolving world. As [9] eloquently states “the
former is primarily concerned with functional and beha-
vioral change, whereas the latter leads, in general, directly
to additions to the existing system and therefore to its
growth”.

Metrics for the assessment of the law's validity: Possible
metrics for the sixth law that come from the software
engineering community [23] include LOC, number of
definitions (of types, functions and global variables) and
number of modules. We express again a point of concern
here: it is impossible to discern, from this kind of “black-
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box” measurements, the percentage of change that per-
tains to the context of the law of continuing growth.
Ideally, one should count the number of recorded “ToDo”
functionalities blended within each version. However, we
do recognize that this task is extremely hard to automate
at a large scale. In our case, as we mainly refer to info-
rmation capacity rather than physical level schema proper-
ties, we can utilize the schema size as a safe measure of
observing “additions to the existing system”.

Assessment: In all occasions, the schema size increases
in the long run (Figs. 2-4). We frequently observe some
shrinking events in the timeline of schema growth in all
datasets. However, all datasets demonstrate the tendency to
grow over time.

At the same time, we also have differences from tra-
ditional software systems: as with Law I, the term “con-
tinually” is questionable. As already mentioned (refer to
Law III and Figs. 2-4), change comes with frequent (and
sometimes long) periods of calmness, where the size of the
schema does not change (or changes very little). Calmness
is clearly a phenomenon not encountered in the study of
traditional software systems by Lehman and acquires extra
importance if one also considers that in our study we have
isolated only the commits to the files with the database
schema and not the commits to the entire information
system that uses it: this means that there are versions of
the system, for which the schema remained stable while
the surrounding code changed.

Therefore we can conclude that the law holds (the info-
rmation capacity of the database schema is enhanced in the
long run), albeit modified to accommodate the particularities
of database schemata (changes are not continuous but rather,
they come within large periods of calmness).

4.2.2. Law of Conservation of Familiarity (Law V)
The fifth law of software evolution is known as the law
of “Conservation of Familiarity”.

In general, the incremental growth (growth ratio trend)
of E-type systems is constrained by the need to main-
tain familiarity.

As the system evolves, all the stakeholders that are
associated to it (developers, users, managers, etc.) must
spend effort to understand and actually, master its content
and functionality. Whenever there is excessive growth in a
version, the feedback mechanism tends to diminish the
growth in subsequent versions, so that the change's con-
tents are absorbed by people. Interestingly, whereas the
original form of the law refers to a constant (statistically
invariant) rate, the new version of the law is accompanied
by explanations strongly indicating a “long term decline in
incremental growth and growth ratio ... of all release-based
systems studied” [9]. This result came as experimental
evidence from the observation of several systems, accom-
panied by the anecdotal evidence of a growing imbalance
in volume in favor of corrective versus adaptive mainte-
nance. Refs. [23,15] also give a corollary of the law stating
that versions with high volume of changes are followed by
versions performing corrective or perfective maintenance.

Metrics for the assessment of the law's validity: Ref. [9]
gives a large list of possible metrics: objects, lines of code,
modules, inputs and outputs, interconnections, subsys-
tems, features, requirements, and so on. Ref. [23] proposes
metrics that include (i) the growth of the system, (ii) the
growth ratio of the system, and (iii) the number of changes
performed in each version. We align with these tactics and
use the schema growth of the involved datasets.

To validate the law we need to establish the following
facts:

® The growth of the schema is not increasing over time;
in fact, it is — at best - constant or, more realistically, it
declines over time/version. A question, typically
encountered in the literature, is: “What is the effect of
age over the growth and the growth ratio of the
schema?” Is it slowly declining, constant or oblivious
to age? To address this question, we produce a linear
interpolation of the growth per dataset to show its
overall trend (Fig. 5).

® Another question of interest in the related literature is:
“What happens after excessive changes? Do we observe
small ripples of change, showing the absorbing of the
change's impact in terms of corrective maintenance
and developer acquaintance with the new version of
the schema?” In this case, the pattern we can try to
establish is that abrupt changes are followed by ver-
sions where developers absorb the impact of the
change and produce minor modifications/corrections,
thus resulting in versions with small growth following
the version with significant difference in size.

Assessment: Before proceeding, we would like to rem-
ind the reader on the properties of growth, discussed in
Law III of self-regulation: the changes are small, come with
spike patterns between zero and non-zero deltas and the
average value of growth is very close to zero (from the
positive side).

Concerning the ripples after large changes, we can
detect several patterns. Observe Fig. 9, depicting attribute
growth for the MediaWiki dataset. Due to the fact that this
involves the growth of attributes, the phenomena are
amplified compared to the case of tables. Reading from
right to left, we can see that there are indeed cases where
a large spike is followed by small or no changes (case 1).
However, within the small pool of large changes that exist
overall, it is quite frequent to see sequences of large
oscillations one after the other, and quite frequently being
performed around zero too (case 2). In some occurrences,
we see both (case 3).

Concerning the effect of age, we do not see a diminish-
ing trend in the values of growth; however, age results to a
reduction in the density of changes and the frequency of non-
zero values in the spikes. This explains the drop of the growth
in almost all the studied datasets (Fig. 5): the linear
interpolation drops; however, this is not due to the dec-
rease of the height of the spikes, but due to the decrease of
their density.

The heartbeat of the systems tells a similar story: typically,
change is quite more frequent in the beginning, despite the
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fact that existence of large changes and dense periods of
activities can occur in any period of the lifetime. Figs. 2-4
clearly demonstrate this by combining schema size and
activity. This trend is typical for almost all of the studied
databases. phpBB is the only exception, demonstrating incre-
ased activity in its latest versions with the schema size
oscillating between 60 and 63 tables, which is actually a very
small difference (as all figures are fitted to show the lines as
clearly as possible, they can be deceiving as to the amount of
change - phpBB is such a case).

Concerning the validity of the law, we believe that the law
is possible but not confirmed. The law states that the growth is
constrained by the need to maintain familiarity. However, the
peculiarity of databases, compared to typical software sys-
tems, is that there can be other good reasons to constrain
growth, such as the high degree of dependence of other
modules from the database. Therefore, conservation of famil-
iarity, although important, cannot solely justify the limited
growth. The extent of the contribution of each reason is
unclear.

4.2.3. Law of Conservation of Organizational Stability (Law
V)

The fourth law of software evolution is known as the
law of “Conservation of Organizational Stability” also
known as law of the “invariant work rate”.

The work rate of an organization evolving an E-type
software system tends to be constant over the opera-
tional lifetime of that system or phases of that lifetime.

This is the only law with a fundamental change between
the two editions of 1996 and 2006. The previous form of the
law did not recognize phases in the lifetime of a project (the
average effective global activity rate in an evolving E-type
system is invariant over product lifetime). Plainly put, the law
states that the impact of any managerial actions to improve
productivity is balanced by the increasing complexity of
software as time passes as well as the role of forces external
to the software (availability of resources, personnel, etc.).

Metrics for the assessment of the law's validity: As [23]
excellently states, it is very hard to assess effort from the
data that we can typically acquire from a project, as “effort
does not equate progress”. Therefore, we can only approx-
imate the work rate by observing the published versions of
a system. Possible metrics [23] include (i) the number of
changes per version, (ii) the average number of changes
per day, and (iii) change and growth ratios.

To validate the law of conservation of organizational
stability, we need to establish that the project's lifetime is
divided into phases, each of which (a) demonstrates a
constant growth and (b) is connected to the next phase
with an abrupt change. Moreover, abrupt changes should
occur from time to time and not all the time (resulting in
extremely short phases).

Assessment: If we focus on the essence of the law, we can
safely say that it does not hold. The heartbeats of Figs. 2-4
and the arbitrary sequencing of spikes and calmness
(Figs. 5, 9) make it impossible to speak about constant
growth, even in phases. The open-source nature of our
cases plays a role to that too [23].

4.3. Perfective maintenance for schema evolution

Lehman has indicated the battle between two antagoniz-
ing processes over a fixed amount of resources for the
maintenance of software [14]: on the one hand, the need to
evolve the system (system growth) and on the other the
“anti-regressive” effort to attack the growing complexity of
the system. To achieve this, perfective maintenance must be
performed from time to time, in order to remove redundant
code, to restructure code for better maintainability and
comprehension, to document the code, etc. As [9] puts it:
“these activities have minor or no impact in functionality,
performance or other properties of the software in execution”.
In this subsection, we are interested in the perfective main-
tenance part and we adopt the [32] definition (emphasis is
ours): “modification of a software product after delivery to
provide enhancements for users, improvement of program
documentation, and recoding to improve software performance,
maintainability or other software attributes”.

4.3.1. Law of Increasing Complexity (Law II)
The second law of software evolution is known as the
law of “Increasing Complexity”.

As an E-type system is changed its complexity increases
and becomes more difficult to evolve unless work is
done to maintain or reduce the complexity.

The law states that complexity increases with age, unless
effort is taken to prevent this. The rationale behind verifying
the law dictates the observation of (a) an increasing trend in
complexity of a software system, battled by (b) a perfective
maintenance activity that attempts to reduce it and demon-
strated by drops in the system size and rate of expansion.

Metrics for the assessment of the law's validity: Since we will
ultimately resort to measurements for verifying the law,
before proceeding further, we need to confront a fundamental
problem: the law's definition — as it stands — requires a more
precise definition of complexity. Unfortunately, complexity is a
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meta-property, practically involving a wide spectrum of
specific measurable properties of software. To give an exam-
ple, Fenton and Pfleegler [33] mention four kinds of complex-
ity: (i) problem complexity (computational complexity of the
underlying problem), (ii) algorithmic complexity (of the algo-
rithm eventually implemented to solve the problem),
(iii) structural complexity (typically measured as the control
flow or class hierarchy or modularity structure) and (iv)
cognitive complexity (measuring the effort required to under-
stand the software). Lehman and Ramil [9] take a more
process-oriented approach and refer to application and func-
tional complexity, specification and requirements complexity,
architectural complexity, design and implementation complexity
and structural complexity.

Unfortunately, all the above are very hard to define and
measure, especially if measurement is to be performed on
evidence automatically extracted from electronic logs or
version management systems. The automatic isolation of
the subset of changes that pertain to perfective maintenance
is an interesting and vast topic of research; for the moment,
however, it appears that we will have to resort to approxima-
tions. Related literature is based on such approximations (see
for example, [34]). Notably, in the latest of Lehman's series of
papers, the law is supported via rationalization: the complex-
ity increase that age brings to a system is considered
responsible for the decline of the growth ratio over time
(laws V and VI).

To surpass all these difficulties, we will try to assess the
validity of the law based on the combination of the following
observations:

First, we will focus on the essence of the law: ultimately,
the law requires identifying releases or versions where
perfective maintenance is performed. To actually achieve with
100% certainty would require some project management
documentation that this is performed. Thus, we resort to
the closest possible approximation and try to detect versions
with drops in the size and the growth of the system. Assuming
that the overall trend of the system is to grow, the existence
of such points from time to time will give a strong indication
of the law.

A second indication for the validity of the law is the
respect of the VIII law of feedback, i.e., the existence of a
regressive formula to which the size of the system con-
forms. The validity of this law would strongly insinuate the
existence of a feedback-based system and therefore, the
existence of negative feedback as discussed in this second
law of evolution.

Third, we take a definition already found in Lehman [7,34]
and attempt to approximate the measurement of complexity as
the fraction of the evolution-affected relations (i.e., the number of
relations modified or added to the schema) between two
subsequent versions of the schema over the difference in the
number of relations of the involved versions. This formula
approximates how much effort has been invested in expand-
ing the system over the actual difference achieved (large
values demonstrate too much effort for too small change). So,
for each transition, we approximate the complexity of the
original schema by dividing the extent of the involved
changes over the actual increment of the schema size. To
understand this better, assume that we compare two transi-
tions with the same denominator (i.e. difference in the

number of relations); if one transition had more relations
updated than the other, it means we paid more effort for this
transition, and thus, we assume that the starting complexity
is higher. More precisely, we divide the effort (number of
relations that we modified in any way in a revision), by the
growth (size of the result in that revision). In case the
denominator is zero, we have no escape than to define
complexity as zero (which is another approximation we
cannot avoid).

relations handled

complexity; ~ S 51|
1 1—

(6)

Assessment: Related literature typically speaks for increas-
ing complexity [7-9,23], although there have been counter-
arguments for the case of open source software [35]. In our
case, in all the datasets but phpBB, complexity, as defined in the
previous paragraph, does not increase' (see Fig. 10, where a
linear interpolation of complexity is also depicted). The
phenomenon must be coupled with the drop in change
density (Law V) and although we cannot provide undispu-
table explanation, we offer the synergy of two causes: (a) the
increasing dependence of the surrounding code to the data-
base that makes developers more cautious to perform schema
changes as they incur higher maintenance costs and (b) the
success of the perfective maintenance, which results in a
clean schema, requiring less corrective maintenance in the
future.

Although we cannot confirm or disprove the law based on
undisputed objective measurements, we have indications that
the second law partially holds, albeit with completely differ-
ent connotations than the ones reported by Lehman for
typical software systems: in the case of database schemata,
complexity, when measured as the fraction of expansion
effort over actual growth, drops.

4.3.2. Law of Declining Quality (Law VII)
The seventh law of software evolution is known as the
law of “Declining Quality”.

Unless rigorously adapted and evolved to take into
account changes in the operational environment, the
quality of an E-type system will appear to be declining.

The main idea behind this law concerns the fact that the
software will each time be based on assumptions on the user
requirements or the real world environment that will pro-
gressively be invalid. As assumptions are invalidated, action
must be undertaken to maintain the affected software parts in
order to reflect the actual user needs. Thus, the aging of the
system, along with the increase in complexity, also calls for a
reestablishment of assumptions and functionalities to serve
the users' needs. Ref. [14] specifically refers to the external
quality of a software system, practically expressing a system's
quality as ‘user satisfaction’. However, this point of view is
drastically different in [9], where the viewpoint on quality is
generalized to all possible kinds of quality an organization
might deem necessary (based on the viewpoint of users,

13 In our CAISE'14 paper [31], we erroneously refer to BioSQL instead
of phpBB.
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managers, developers, each carrying his own interpretation
and measures).

Metrics for the assessment of the law's validity: Possible
metrics [23] for the internal quality of typical software
systems include (i) the number of known defects asso-
ciated with each version, (ii) defect density for each
version, (iii) percentage of modules whose bodies have
been changed. Much like the authors of [23], however, we
are not really in a position to fully automate the accurate
measurement of external quality as perceived by the end
users, the management, etc. It is noteworthy that Lehman
and Fernandez-Ramil [15,9] avoid giving any other support
to the law than a logical proof: as the system expands over
time, its complexity rises and thus the addressing of user
requirements and removal of defects becomes more and
more difficult, unless work is done to confront the phe-
nomenon (the decline in software quality with age appears
to relate to a growth in complexity that must be associated
with aging).

Assessment: We follow [9] and use logical induction to
assess whether the law holds; specifically, we can assume
that the law holds if it is strongly established that the laws of
feedback (Il1, VIII) and complexity (II) hold.

We have already demonstrated that the rationale behind
complexity increase is not supported by our observations. At
the same time, we cannot assess schema quality with
undisputed means. Therefore, we cannot confirm or disprove
the law based on undisputed objective measurements.

4.4. Threats to validity

In this subsection, we discuss threats to the validity of our
conclusions. We structure our deliberations around three

& Coppermine:
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kinds of validity threats, specifically, construct validity, asses-
sing the appropriateness of our measures, internal validity,
assessing the possibility that cause—effect relationships are
produced on an erroneous interpretation of causality, and
external validity, assessing the extent to which our results can
be generalized.

4.4.1. Construct validity

Construct validity concerns the appropriateness of the
employed measures for the theoretical constructs they
purportedly assess. In our case, to assess construct validity,
we review the appropriateness of the metrics used for
each law, also with a view to the metrics used in the
studies of software evolution. Fig. 11 summarizes our
assessment.

I. Continuing change: As the goal is to establish the
continuity of change, the usage of the (accurately mea-
sured) heartbeat raises no concern about its appropriate-
ness and the validity of our results.

I. Increasing complexity: The main metric to assess this
law is the schema complexity. As we mentioned before, we
do not have a way to accurately measure the complexity of a
database schema as similar studies have done with software's
complexity. We approximate the complexity with the effort
spent between two schema versions divided by the increment
in size between those versions. The later can be accurately
measured but this is not the case with the effort. Effort cannot
be measured from the data that we have extracted for the
databases that we studied. The only accurate way to measure
effort would be to have the actual man-hours that every
developer has spent in the development of the database.
Moreover, given the fact that databases are parts of larger
software ecosystems, the possibility of accurately assessing

Ensembl: complexity

0

Fig. 10. Complexity for Coppermine and Ensembl (over version-id, concealed for clarity).

Law Measuredvia ... Appropriateness
I.  Continuing Change Heartbeat Appropriate for detecting change events
II. Increasing Complexity — Complexity Approximation via change ratio

III.  SelfRegulation Size, Growth

IV.  Conserv. Org. Stability  Size
V. Conserv. Familiarity Growth
VI.  Continuing Growth Size
VIL.  Declining quality Rationalization

VIII.  Feedback System Regr. Formula

Appropriate for finding recurring patterns
Approximation of work rate

Appropriate for growth rate and oscillations
Appropriate for seeing schema expansion
Insufficient metrics for quality

Appropriate, typically used in the past

Fig. 11. Summary of measures employed per law and their appropriateness.
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effort would require a measure able to differentiate the work
done on the database and the work pertaining to the rest of
the software system - a possibility which we dim quite slim,
in fact. On the other hand, the reasoning behind the formula
used makes sense and it is consistent with the related
literature. Overall, the complexity, as we approximate it, poses
a threat to our construct validity that we cannot ignore; to a
large extent, this is also due to the abstract wording of the
law. This is also the reason why we are very skeptic towards
verifying the validity of the law in the case of schema
evolution. Future work needs to be invested in the area for
a more solid grounding of automated complexity assessment.

III. Self regulation: To assess this law, we used schema size
and growth as measures. Both metrics can be accurately
measured. The usage of the measure is consistent with the
bibliography and the intuition behind the law.

IV. Conservation of organizational stability: The involved
metric in order to assess this law is the work rate (and the
existence of periods during which it remains constant). As
previously mentioned, work rate cannot be easily measured,
based on the available information. To this end, we primarily
use schema growth as an approximation of output, and
secondarily the heartbeat as an approximation of activity,
both of which are accurate. Overall, we are satisfied with our
choice, as it appears that this is the best possible approxima-
tion we can get from automatically extracted data; at the
same time, we have to acknowledge that it is an approxima-
tion and not an undisputed measurement of the work rate.

V. Conservation of familiarity: The metric used for the
assessment of this law is growth, which is accurately mea-
sured. On the other hand, we have no way to indisputably
know the exact mechanics behind the observations; hence,
despite the accuracy of the observations, the law requires
further elaboration.

VL. Continuing growth: For this law, we employed schema
size again, which is accurately extracted by our tools and fit
for assessing the law.

VIIL. Declining quality: As schema quality is not clearly
defined in the area of databases, the assessment of quality
via metrics requires specific studies on the topic, before we
are able to converge to a widely accepted solution. Ratio-
nalization about the law has typically been used in the
related literature as a solution to the problem.

VIII. Feedback system: The main measure we used for
assessing this law is the estimated size of the database sch-
ema. This measure has previously been used in the case of
software evolution, again with an approximation for the
measurement of effort. However, the regression formula used
is consistent with its usage in the bibliography (albeit with
novelty in terms of the memory of the feedback) and all the
results in all datasets are surprisingly consistent. Therefore,
we believe that the specific formulae used pose no threat to
validity, although a better understanding of the mechanics
behind the feedback mechanism have to be part of future
studies.

4.4.2. Internal validity

Internal validity refers to the case where a conclusion on
the behavior of a dependent variable is made as a cause-
effect relationship with an independent variable. We are very
careful to treat our observations only as such and avoid

relating the observed phenomena with specific causes with-
out supporting evidence.

Having said that, we extend the discussion, as the obser-
vant reader might be tempted to introduce a cause-effect
relationship between age (as a cause) and the following
phenomena: (a) dropping density of change, (b) dropping
complexity, and (c) size growth in the long run. We con-
jecture (but cannot prove) that we could attribute the
behavior of density and complexity to the existence of a
confounding variable: schema quality, improving over time
due to perfective maintenance and causing the observed
behavior. Still, this remains to be proved with undisputed
data and metrics. For size, the confounding variable is user
requirements for more information capacity; although rea-
sonable enough (in our minds, practically certain), this is also
a topic to be proved indisputably by dedicated studies.

4.4.3. External validity

External validity refers to the possibility of generalizing the
findings of a study to a broader context. Concerning the
external validity of our study, we repeat that its context
concerns the study of the evolution of the logical schema of
databases in open-source software. We avoid generalizing our
findings to databases operating in closed environments and
we stress that our study has focused only on the logical
structure of databases, avoiding physical properties (let alone
instance-level observations).

Concerning the validity of our study within this con-
text, we believe we have provided a safe, representative
experiment. In this study, we have targeted a significant
number of database schemas that serve different purposes
in the real world and come with a quite broad range of
time spans. Concerning the time span, the schemas col-
lected had an adequate number of versions from rather
few (40) to quite many (500+ ). Despite these degrees of
variability, our findings are consistent in practically all of
the datasets (with few exceptions that we mentioned).
Thus we believe that the case of logical database schema in
open source software is well represented.

On the other hand, we would be hesitant to generalize our
findings in databases in closed software or outside the scope
of the logical schema. Open-source software comes with a
larger development community, and less control on the
development effort. This is not the case for closed software,
especially when dealing with mission critical components like
databases. At the same time, we have not worked with the
information concerning the physical schema or the extension
of the studied databases and thus, we would take the
opportunity to warn the reader not to generalize the results
outside the scope of a schema's information capacity as
expressed by the logical-level schema.

5. Discussion

In this section, we summarize fundamental observations
and patterns that have been detected in our study. We
intentionally avoid the term law, as we do not have unshake-
able evidence for their explanation: apart from the empirical
grounding, due to a very large amount of datasets that obey
the same patterns (which we believe we have fairly attained),
we would require an undisputed rationalized grounding, i.e., a
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clear explanation of the underlying mechanism that guides
them, also established on measured, undisputed facts.

In case the reader has skipped our discussion of threats to
validity, we clarify once more that the context under which
our observations are made concerns the study of the evolution
of the logical schema of databases in open-source software. In
all our subsequent deliberations, we take the above context as
granted and avoid repeating it for reasons of better presenta-
tion of our results.

Before proceeding, however, to our conclusions, we
devote the first part of this subsection to a discussion on
the validity of the problem per se.

5.1. Does the problem make sense in the first place?

We start with a fundamental inquiry: Is it meaningful to
try assessing Lehman's laws for schema evolution in the
first place? Does it make sense to try to observe evolu-
tionary patterns in the way schemata evolve by following
Lehman's method and laws?

Surely, there are fundamental differences between the
general case of E-type software systems and databases in
open-source systems. First, whereas software systems
export functionality to their users, databases, on the con-
trary, export information capacity, i.e., the ability to store
data and answer queries. Second, databases are not com-
plete and independent software systems but parts of larger
information systems. Is it then meaningful to pursue this
research?

Again, let us revisit the fundamental lesson learned by
Lehman's laws: software systems are complex, multi-level
systems, involving several stakeholders, that have to
evolve or face eviction; this evolution is governed by the
antagonism between (a) positive feedback, pushing the
system to adapt to new environments and add new
functionalities according to the wusers’ needs and
(b) negative feedback, that constrains the uncontrolled
growth and complexity of the system, by imposing per-
fective maintenance actions that result in an improved,
more maintainable internal structure of the system.

Can we replace the term ‘software systems’ with
‘database’ in the above wording? We believe we can,
and the fundamental reason is that the antagonism
between positive and negative feedback is there too. On
the one hand, a database schema has to obey the part of
the positive feedback and its moderators need to adapt,
tune and expand it over time (and this concerns all kinds
of databases, as well as the ones involved in open-source
software). This concerns both the expansion due to user
requirements concerning the availability of information
and the adaptation to new environments. At the same
time, growth cannot be unconstrained: developers of
open-source software are highly sensitive and attentive
when it comes to database-related code, as changes in the
database can incur both syntactic and semantic failures.
Thus, it would be reasonable to expect that leaving the
schema grow without any complexity control, especially
in an open-source environment where developers are not
organized in a strict hierarchy, can result to maintenance
nightmares. The a posteriori observations verify this
intuition: we do observe schema size contractions, where

renamings, restructurings and removal of tables and
attributes are evident in an attempt to keep schemata
clean, understandable and well-structured.

Are databases, then, mini E-type systems with a life of
their own? We should be clear that we do not postulate
that databases can be completely isolated from the rest of
their surrounding ecosystem. Still, studying schema evolu-
tion in an attempt to discover regularities and patterns is
certainly worth the effort, given the high degree of
dependence of the rest of the code over the database
structure. With the benefit of the hindsight, we do believe
that considering the laws of Lehman as a starting point for
the study of schema evolution has been a legitimate and
rewarding effort as it revealed both commonalities (mainly
due to the same fundamental feedback mechanism) and
differences (due to the specificities of the database case)
with the general theory of Lehman's laws.

5.2. Major findings

In this section, we provide a critical discussion of our
findings, accompanied by concise summaries, where we
also annotate each of our observations with reference to
the law where we have discussed it in detail. Fig. 12 further
distils these findings in a single table.

5.2.1. Is the process of schema evolution behaving like a
feed-back based system? (hypothesis of the feedback-based
process)

We believe that we can indeed claim that schema evolu-
tion is guided by a feedback based mechanism. Positive
feedback brings the need to increase the information
capacity of the database, resulting in expansion of the
number of relations and attributes over time. At the same
time, there is negative feedback too, from the need to do
some house-cleaning of the schema for redundant attri-
butes or restructuring to enhance schema quality. We have
also observed that the inverse square models for the
prediction of size expansion holds for all the eight sche-
mata that we have studied. However, we do not come with
a good explanation as to why this holds. The supporting
observations in this context can be listed as follows:

® As an overall trend, the information capacity of the
database schema is enhanced - i.e., the size grows in
the long term (VI).

® The existence of perfective maintenance is evident in
almost all datasets with the existence of relation and
attributes' removals, as well as observable drops in
growth and size of the schema (sometimes large ones).
In fact, growth frequently oscillates between positive
and negative values (III).

® The schema size of a certain version of the database can
be accurately estimated via a regressive formula that
exploits the amount of changes in recent, previous
versions (VIII).

As in all feedback-based systems, the negative feedback
prevents the uncontrolled growth and retains the quality
of the schema at a high level, allowing thus the subsequent
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LAW & RESEARCH QUESTIONS MEASURES FINDINGS & COMMENTS DATASETS
I Continuing change All datasets abide by the law, with two
The schema is continually adapted Heartbeat The schema is adapted in the long run, albeit not continually, but in exceptions: Y .
focused periods of modification - BioSQL, with a “sleep” of some years
- phpBB with a turbulence period
I Self-regulation
- Schema size expands with recurring patterns - Patterns of change include (a) expansion, (b) shrinking and (c)
of smooth expansion, interrupted by abrupt stability; differently from the expression of the law
change Size - Perfective maintenance is evident All datasets without exceptions
- Existence of shrinking versions (negative P
feedback)
- Change normally distributed around an Growth - Growth is small, typically close to zero, following a Zipfian model

average value

- Oscillations of large size do exist

VIII Feedback System
We can estimate the schema size via regressive  Regression

Size estimation can be achieved; out of the different alternatives for

All datasets without exceptions

formula analysis effort estimation, the ones with small time window work better
VI Continuing growth
The schema size is increasing in the long run Size Size increases in the long run, indeed, albeit not continually, butin All datasets without exceptions
focused periods of modification
V' Conservation of familiarity

- The average growth between versions is Heartbeat, Size

slowly declining

- What happens after excessive changes? Growth

- The linearinterpolation of growth typically drops or stays stable; ~ All datasets except for Atlas and BioSQL
importantly, the frequency of change declines

(with some extra activity in the end of
their lifetimes)

- Spikes are followed by all possible combinations (calmness, other
spikes, large oscillations around zero)

All datasets exhibit various patterns

IV Invariantwork rate

Avg. work-rate is constant within phases of (approximate)

There is are no phases of constant growth; albeit periods of stability
smooth growth, connected with bursts of effort  Heartbeat& Size  connected via focused periods of modifications

All datasets without exceptions

Increasing complexity

Complexity increases over time (approximate) Complexity drops All datasets except for phpBB (having a
Schema turbulence period in the end)
Complexity
VII Declining Quality
Quality declines over time Conjecture by Impossible to hold as valid, as complexity (albeit approximated)

logical induction  seems to drop

Fig. 12. Summary of research questions, findings and validity over the datasets.

releases to operate smoothly. This is a true sign of stability
: the system is maintained adequately to minimize the
effects of its unavoidable subsequent modifications and
continue evolving smoothly.

Overall, we can state: Schema evolution demonstrates
the behavior of a stable, feedback-regulated system, as the
need for expanding its information capacity to address user
needs is controlled via perfective maintenance that retains
quality; this antagonism restrains unordered expansion and
brings stability.

5.2.2. Hypothesis of schema size expansion (and properties
of its growth)

The size of the schema expands over time, albeit with
versions of perfective maintenance due to the negative
feedback. As already mentioned, the inverse square model
seems to work.

The growth of the database schema does not follow a
pattern of smooth growth - even considering the amendment
where phases of constant growth are assumed. The expansion
is mainly characterized by three kinds of phases, including (i)
abrupt change (positive and negative), (ii) smooth growth,
and (iii) calmness (meaning large periods of no change, or
very small changes). We observe that in the case of schema
evolution, the schema's growth (ie. its change from one
version to the following) mainly occurs with spikes oscillating
between zero and non-zero values. The changes are typically
small, following a Zipfian distribution of occurrences, with
high frequencies in deltas that involved small values of
change, close to zero.

At the same time, in contrast to the case of software
systems, we observe a very strong inclination to avoid changes to
the database schema. Change in the database impacts sur-
rounding code, so the change is constrained by the need to

minimize this impact. So, we frequently see versions with no
change to the information capacity of the schema and large
time periods where the schema is still (or almost still). Bear in
mind that we monitor only the subset of versions that pertain
to the database schema and ignored any versions where the
information system surrounding the database changed while
the schema remained the same. This enforces our argument
for the tendency towards stillness.

Although we do not believe conservation of familiarity
to be the only cause, we see that the feedback mechanism
of the evolution demonstrates a reduction in the density of
changes as the schema ages. We also observe unexpected
patterns of changes with sequences of high spikes, some-
times oscillating around zero. Such patterns require
further investigation for their verification and explanation.
The average growth is close to zero, and with the tendency
to drop as time passes, not due to the diminishing of the
(already small) deltas, whenever they occur, but mainly
due to the diminishing of their density.

Concerning the size of the system, our supporting evidence
has been already summarized via laws VI and VIII (see the
previous paragraph). Concerning the heartbeat of the system,
our supporting evidence for the above statements can be
listed as follows:

® The database is not continuously adapted, but rather,
alterations occur from time to time (I).

® Change does not follow patterns of constant behavior (IV).

® Age results in a reduction of the density of changes to
the database schema in most cases (V).

Concerning the growth of the system, our supporting
evidence for the above statements can be listed as follows:
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® Growth is typically small in the evolution of database
schemata, compared to traditional software systems (III).
The distribution of occurrences of the amount of schema
change follows a Zipfian distribution, with a predominant
amount of zero growth in all datasets. Plainly put, there is
a very large amount of versions with zero growth, both in
the case of attributes and in the case of tables. The rest of
the frequently occurring values are close to zero, too.

® The average value of growth is typically close to zero
(although positive) (IlI) and drops with time, mainly
due to the drop in change density (V).

5.2.3. Hypothesis of perfective maintenance to fight
complexity and user dissatisfaction

We also believe that there is sufficient evidence to
support the claim that perfective maintenance is part of the
process. This is mainly demonstrated by the drops in the
schema size as well as the drops in activity rate and growth
with age. In fact, growth frequently oscillates between
positive and negative values (III). Thus, based on simple
reasoning, one can accept the wording of Lehman's laws
on negative feedback, as they both state that quality
(internal and external) declines unless confronted.

However, despite the adoption of the hypothesis for a
feedback-based mechanism, we cannot adopt the corroborat-
ing observations of the related literature for software systems
that accompany the two laws of negative feedback (Il and VII).
In the systems we have studied we observe that age results in
a reduction of the complexity to the database schema (II),
although we need to remember that the measurement of
complexity is an approximation. The interpretation of the
observation is that perfective maintenance seems to do a
really good job and complexity drops with age (in sharp
contrast to what is observed in the related literature for
software systems where more and more effort is devoted to
battle complexity). Also, in the case of schema evolution,
activity is typically less frequent with age. Although one can
attribute this to the inefficacy of the approximating measure,
we anticipate that it should mainly be attributed to the truth
lying in the essence of law II: “complexity increases unless
work is done to reduce it”. We conjecture that due to the
criticality of the database layer in the overall information
system, this process is done with care and achieves the
reduction of complexity over time, coming hand in hand with
the strong tendency towards minimum or no changes to the
schema.

As for law VII, as already mentioned, we are even more
hesitant to adopt it, as we are already in doubt towards
internal quality and have no actual evidence as to what
happens with external quality.

Overall: although our research seems to keep the negative
feedback laws in place in the case of schema evolution, this is
done with (a) a degree of uncertainty and (b) with the strong
indication of fundamental differences with E-type program
evolution. We would not be surprised if future research
establishes with more certainty that the feedback mechanism

for schema evolution improves the quality and complexity of
a database as time passes.

5.3. Opportunities for future work

There are several opportunities for follow-up work. As one
would normally expect, verifying the findings of this study
with more datasets can further solidify our confidence to
them. The extension of this work to evolution histories of
proprietary databases in closed environments, over large
periods of time, would be of extreme value; albeit one can
only be pessimistic on the possibility of obtaining such data
and being able to publish them. Novel developments in
database technology allow the extension of this kind of study
to non-relational data too. This includes all kinds of semi-
structured data (evolution of XML data alone is a vast area of
research, where the nesting of the elements provides trans-
formations of the schema that are not present in the relational
case), but also, the so-called “NoSQL” data, where structures
like graphs and text evolve over time. In the latter case, the
identification of patterns in the evolution of the data at the
instance level is clearly a challenging topic of research.

A second large area of research concerns the identification
of patterns in the correlation of the evolution of the database
and the evolution of the surrounding applications. This invo-
lves both the alignment of the application code to the new
schema and, as a reviewer of this paper has pointed out,
possible workarounds in the code to avoid modifying the
database. Even more challenging is the relationship of user
requirements to database evolution. Remember that in order
to be able to come up with results in long histories with many
versions, automated processing of the available data is para-
mount. The possibility of automating the processing of tickets,
bug reports and to-do lists in a way that can be correlated to
the subsequent evolution of the database is a topic with a
significant amount of technical challenge.

At the same time, the techniques used in this study
provide opportunities for improvement. A first area of future
research concerns the findings of aging and complexity (Law
II). We need to establish better measures for complexity of
database schemata and see how this complexity behaves over
time. Similar considerations hold for estimating effort and
work-rate by exploiting the available information in the sof-
tware repositories as automatically as possible.

Finally, one should also recognize that the search for more
patterns than the ones offered by Lehman's laws, via tradi-
tional or novel pattern detection mechanisms, is another
important possibility for future work. Already, the observation
of patterns of growth (Laws III and V), or patterns in the
heartbeat of the evolution, are open issues worth investigat-
ing. Going further than that, identifying which tables are more
liable to change in the future and how, or how the effort
around schema evolution can be planned in advance by
studying the available data are research questions with great
value both for developers, who can tailor the code to be as
loosely coupled as possible to the most unstable parts of the
database, and project managers, who can estimate where
change will be directed. We hope that in the context of such
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endeavors, the publicly available datasets of this paper
(https://github.com/DAINTINESS-Group) can serve the rese-
arch community.
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Visual Maps for Data-Intensive Ecosystems
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Abstract. Data-intensive ecosystems are conglomerations of one or
more databases along with software applications that are built on top of
them. This paper proposes a set of methods for providing visual maps
of data-intensive ecosystems. We model the ecosystem as a graph, with
modules (tables and queries embedded in the applications) as nodes and
data provision relationships as edges. We cluster the modules of the
ecosystem in order to further highlight their interdependencies and re-
duce visual clutter. We employ three alternative, novel, circular graph
drawing methods for creating a visual map of the graph.

Keywords: Visualization, data-intensive ecosystems, clustered graphs.

1 Introduction

Developers of data-intensive ecosystems construct applications that rely on un-
derlying databases for their proper operation, as they typically represent all the
necessary information in a structured fashion in them. The symbiosis of applica-
tions and databases is not balanced, as the latter act as “dependency magnets”
in these environments: databases do not depend upon other modules although
being heavily depended upon, as database access is performed via queries specif-
ically using the structure of the underlying database in their definition.

On top of having to deal with the problem of tight coupling between code
and data, developers also have to address the disperse location of the code with
which they work, in several parts of the code base. To quote [2] (the emphasis is
ours): “Programmers spend between 60-90% of their time reading and navigating
code and other data sources ... Programmers form working sets of one or more
fragments corresponding to places of interest ... Perhaps as a result, programmers
may spend on average 35% of their time in IDEs actively navigating among
working set fragments ..., since they can only easily see one or two fragments
at a time.”

The aforementioned two observations (code-data dependency and contextual-
ized focus in an area of interest) have a natural consequence: developers would
greatly benefit from the possibility of jointly exploring database constructs and
source code that are tightly related. E.g., in the development and maintenance
of a software module, the developer is interested in a specific subset of the
database tables and attributes, related to the module that is constructed, modi-
fied or studied. Similarly, when working or facing the alteration of the structure
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Fig. 1. Alternative visualizations for Drupal. Upper Left: Circular layout; Upper Right:
Concentric circles; Lower Left: Concentric Arches. Lower Right: zoom in a cluster of
Drupal.

of the database (e.g., attribute deletions or renaming, table additions, alteration
of view definitions), the developer would appreciate a quick reference to the set
of modules impacted by the change.

This locality of interest presents a clear call for the construction of a map of the
system that allows developer to understand, communicate, design and maintain
the code and its internal structure better. However, although (a) circular graph
drawing methods have been developed for the representation general purpose
graphs [11], [10], [6], and, (b) visual representations of the structure of code have
been used for many decades [7], [4], [2], [3], the representation of data-intensive
ecosystems has not been adequately addressed so far.

The research question that this paper addresses is the provision of a visual map
of the ecosystem that highlights the correlation of the developed code to the un-
derlying database in a way that supports the locality of interest in operations like
program comprehension, impact analysis (for potential changes at the database
layer), documentation etc.

Our method visualizes the ecosystem as a graph where all modules are mod-
eled as nodes of the graph and the provision of data from a database module
—e.g., a table- to a software module is denoted by an edge. To automatically



Visual Maps for Data-Intensive Ecosystems 387

detect “regions” of the graph with dense interconnections (and to visualize them
accordingly) we cluster the ecosystem’s nodes. Then, we present three circular
graph drawing methods for the visualization of the graph (see Fig. 1). Our first
method places all clusters on a embedding “cluster” circle, our second method
splits the space in layers of concentric circles and our last method employs con-
centric arcs. In all our methods, the internal visualization of each cluster involves
the placement of relations, views and queries in concentric circles, in order to
further exploit space and minimize edge crossings.

2 Graph Layout Methods for Data-Intensive Ecosystems

The fundamental modeling pillar upon which we base our approach is the Archi-
tecture Graph G(V, E) of a data-intensive ecosystem. The Architecture Graph
is a skeleton, in the form of graph, that traces the dependencies of the applica-
tion code from the underlying database. In our previous research [9], we have
employed a detailed representation of the queries and relations involved; in this
paper, however, it is sufficient to use a summary of the architecture graph as a
zoomed-out variant of the graph that comprises only of modules (relations, views
and queries) as nodes and edges denoting data provision relationships between
them. Formally, a Graph Summary is a directed acyclic graph G(V, E) with V
comprising the graph’s module nodes and FE comprising relationships between
pairs of data providers and consumers.

In terms of visualization methods, the main graph layout we use is a circular
layout. Circular layouts are beneficial due to a better highlight of node similarity,
along with the possibility of minimizing the clutter that is produced by line
intersections. We place clusters of objects in the periphery of an embedding
circle or in the periphery of several concentric circles or arches. Each cluster
will again be displayed in terms of a set of concentric circles, thus producing a
simple, familiar and repetitive pattern.

Our method for visualizing the ecosystem is based on the principle of clustered
graph drawing and uses the following steps:

1. Cluster the queries, views and relations of the ecosystem, into clusters of
related modules. Formally, this means that we partition the set of graph
nodes V' into a set of disjoint subsets, i.e., its clusters, C1,Cs, ..., C,.

2. Perform some initial preprocessing of the clusters to obtain a first estimation
of the required space for the visualization of the ecosystem.

3. Position the clusters on a two-dimensional canvas in a way that minimizes
visual clutter and highlights relationships and differences.

4. For each cluster, decide the positions of its nodes and visualize it.

2.1 Clustering of Modules

In accordance with the need to highlight locality of interest and to accomplish
a successful visualization, it is often required to reduce the amount of visible
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elements being viewed by placing them in groups. This reduces visual clutter and
improves user understanding of the graph as it applies the principle of proximity:
similar nodes are placed next to each other. To this end, in our approach we use
clustering to group objects with similar semantics in advance of graph drawing.

We have implemented an average-link agglomerative clustering algorithm [5]
of the graph’s nodes, which starts with each node being a cluster on its own and
iteratively merges the most similar nodes in a new cluster until the node list is
exhausted or a sued-defined similarity threshold is reached.

The distance function used in our method evaluates node similarity on the
grounds of common neighbors. So, for nodes of the same type (e.g., two queries,
or two tables), similarity is computed via the Jaccard formula, i.e., the fraction
of the number of common neighbors over the size of the union of the neighbors of
the two modules. When it comes to assessing the similarity of nodes of different
types (like, e.g., a query and a relation), we must take into account whether
there is an edge among them. If this is the case, the nominator is increased by 2,
accounting for the two participants. Formally, the distance of two modules, i.e.,
nodes of the graph, M;, M; is expressed as:

[neighbors; N neighbors,| ) .
Ed
|neighbors; U neighbors;|’ if A Edge(i.j)
dist(M;, M;) =1 — (1)
|neighbors; N neighbors;| +2 o
1 Ed
|neighbors; U neighbors;| if ge(i.)

2.2 Cluster Preprocessing

Our method requires the computation of the area that each cluster will possess
in the final drawing. In our method, each cluster is constructed around three
bands of concentric circles: an innermost circle for the relations, an intermediate
band of circles for the views (which are stratified by definition, and can thus, be
placed in strata) and the outermost band of circles for the queries that pertain to
the cluster. The latter includes two circles: a circle of relation-dedicated queries
(i.e., queries that hit a single relation) and an outer circle for the rest of the
queries. This heuristic is due to the fact that in all the studied datasets, there
was a vast majority of relation-dedicated queries; thus, the heuristic allows a
clearer visualization of how queries access relations and views.

In order to obtain an estimation of the required space for the visualization of
the ecosystem, we need to perform two computations. First, we need to determine
the circles of the drawing and the nodes that they contain (this is obtained via
a topological sort of the nodes and their assignment to strata, each of which is
assigned to a circle), and second, we need to compute the radius for each of these
circles (obtained via the formula R; = 3 x log(nodes) + nodes). Then, the outer
of these circles gives us the space that this cluster needs in order to be displayed.
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Fig. 2. Circular cluster placements (left) and the BioSQL ecosystem (right)

2.3 Layout of Cluster Circle(s)

We propose three alternative circular layouts for the deployment of the graph
on a 2D canvas.

Circular Cluster Placement with Variable Angles. In this method, we use
a single circle to place circular clusters on. As already mentioned, we have already
calculated the radius r of each cluster. Given this input, we can also compute R,
the radius of the embedding circle. We approximate the contour of the inscribed
polygon of the circle, computed via the sum of twice the radius of the clusters by
the perimeter of the embedding circle, which is equal to 27 x R (Fig. 2). We take
special care that the layouts of the different clusters do not overlap; to this end,
we introduce a white space factor w that enlarges the radius R of the cluster
c
circle (typically, we use a fixed value of 1.8 for w). Then, R = g 227:(*@;)
C is the set of clusters, and p; the radius of cluster i. As the grg around which
each cluster will be placed is expanded, this leaves extra whitespace between the
actually exploited parts of the clusters’ arcs. Given the above inputs, we can
calculate the angle ¢ that determines the sector of a given cluster, as well as its
center coordinates (cg, ¢y) via the following equations:

2% R* - 0° ¢ (¢
¢—2*arccos< 9 4 B2 ),CI—COS(Q)*R*U), cy—sm(2>*R*w (2)

, where

Concentric Cluster Placement. This method involves the placement of clus-
ters to concentric circles. Each circle includes a different number of segments,
each with a dedicated cluster. The proposed method obeys the following steps:
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1. Sort clusters by ascending size in a list L¢
2. While there are clusters not placed in circles
(a) Add a new circle and divide it in as many segments as S = 2¥, with k
being the order of the circle (i.e., the first circle has 2 segments, the
second 22 and so on)
(b) Assign the next S fragments from the list L to the current circle and
compute its radius according to this assignment
(¢) Add the circle to a list L of circles
3. Draw the circles from the most inward (i.e., from the circle with the least
segments) to the outermost by following the list L.

Practically, the algorithm expands a set of concentric circles, split in fragments
of powers of 2 (Fig. 3). As the order of the introduced circle increases, the
number of fragments increases too (S = 2¥), with the exception of the outermost
circle, where the segments are equal to the number of the remaining clusters.
By assigning the clusters in an ascending order of size, we ensure that the small
clusters will be placed on the inner circles, and we place bigger clusters on outer
circles since bigger clusters occupy more space.

Radius Calculation. We need to guarantee that clusters do not overlap. This
can be the result of two problems: (a) clusters of subsequent circles have radiuses
big enough, so that they meet, or, (b) clusters on the same circle are big enough
to intersect. To solve the first problem, we need to make sure that the radius of a
circle is larger than the sum of (i) the radius of its previous circle, (ii) the radius
of its larger cluster, and (iii) the radius of the larger cluster of the current circle.
For the second problem, we compute R; as the encompassing circle’s periphery
(27 R;) that can be approximated the sum of twice the radiuses of the circle’s
clusters. Then, to avoid the overlapping of clusters, we set the radius of the circle
to be the maximum of the two values produced by the aforementioned solutions
and we use an additional whitespace factor w to enlarge it slightly (typically, we
use a fixed value of 1.2 for w).

Ri1+bi—1+b;

R; = w * max ] (3)

1
x> 05
Vs ]gl J
where (a) by is the rad of biggest cluster of circle «, and (b) g;: is the rad of
cluster ¢; which is part of C, where C is the set of clusters of circle 4.

Clusters on Concentric Arches. It is possible to layout the clusters in a set of
concentric arcs, instead of concentric circles (Fig. 3). This provides better space
utilization, as the small clusters are placed upper left and there is less whitespace
devoted to guard against cluster intersection. Overall, this method is a combina-
tion of the previous two methods. Specifically, (a) we deploy the clusters on con-

T
centric arches of size o’ to obtain a more compact layout, and (b) we partition
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Fig. 3. Concentric cluster placement for BioSQL: circles (left), arcs (right)

each cluster in proportion to the cluster’s size by applying the method expressed
by equation (2).

2.4 Layout of Nodes inside a Cluster

The last part of the visualization process involves placing the internals of each
cluster within the area designated to the cluster from previous computations. As
already mentioned, each cluster is aligned in terms of several concentric circles:
an innermost circle for relations, a set of intermediate circles for views and one
or more circles for queries, as we previously stated at section 2.2. Now, since
the radiuses of the circles have been computed, what remains to be resolved
is the order of nodes on their corresponding circle. We order relations via a
greedy algorithm that promotes the adjacency of similar relations (i.e., sharing
the large amount of views and queries). Once relations have been laid out, we
place the rest of the views and queries in their corresponding circle of the cluster
via a traditional barycenter-based method [1] that places a node in an angle that
equals the average value of the sum of the angles of the nodes it accesses.

3 To Probe Further

The long v. of our work [8] contains a full description of our method, along
with its relationship to aesthetic and objective layout criteria and related exper-
iments. Naturally, a vast area of research issues remains to be explored. First,
alternative visualization methods with improved space utilization is a clear re-
search area. Similarly, the application of the method to other types of data sets
is also necessary. The relationship of graph metrics to source code properties po-
tentially hosts interesting insights concerning code quality. Navigation guidelines
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(e.g., via textual or color annotation, or an annotated summary of the clusters
of the graphs) also provide an important research challenge.
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