
Organic Semiconductor-based Plastic Solar Cells 
OPVs  

http://www.teipat.gr/


Advantages of Organic PVs (OPVs) 
  -Processed easily over large area using 
      -spin-coating 
      -doctor blade techniques (wet-processing) 
      -evaporation through a mask (dry processing) 
      -printing 
  -Low cost 
  -Low weight 
  -Mechanical flexibility and transparency 
  -Band gap of organic materials can be 
   easily tuned chemically by incorporation 
   of different functional group 

Why OPVs? 
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Cost-efficiency analysis for first-, second-, and third-generation PV technologies 
( labeled 1, 2, and 3, respectively). Region 3-1 depicts very-high-efficiency devices that 
require novel mechanisms of device operation. Region 3-2 (the region in which organic 
PV devices lie) depicts devices with moderate efficiencies and very low costs. 

The concept of third-generation PV 
technologies, originally developed by 
Martin Green of the University of New 
South Wales 

1: PV cell based on silicon wafers 
2: thin-film technology  
3: high-efficiency thin-film 
technology using concepts such as 
hot carriers, multiple electron–
hole pair creation, and 
thermophotonics 
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Why OPVs? (Applications) 
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Why OPVs? (Applications) 
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Requirement of OPVs 
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History of OPVs 
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 Light is absorbed in the polymer layer 

 Absorption creates a bound electron-   
hole pair (exciton) 

 Exciton is split into separate charges 
which are collected at contacts 

 Exciton must be separated so that a photocurrent can be collected. 

 Excitons dissociated by electron transfer to an acceptor material, or 
hole transfer to a donor. 

 Simplest approach is to make a donor-acceptor heterojunction 

PV effect in conjugated polymer 

http://www.teipat.gr/


Critical Steps in organic Photovoltaics 
1. Photon Absorption (Band gaps, e.g. 1.3-2.0 eV on earth). 
2. Exciton Diffusion (D/A interface within 10-70nm). 
3. Charge separation (orbital offsets) 
4. Charge transportation (morphology) 

5. Charge collection at electrodes.  

Key Loses of OPVs 
1. Photon loss (light wavelength/spectra vs Band Gap) 
2. Exciton Loss (D/A domain size/morphology/Energy Levels) 
3. Carrier Loss (Transport Pathway/Morphology/ 
                            Molecular Packing/Collection at Electrodes). 
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Key role of the morphology ! 
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Device architecture 

Single-layer PV cell Bilayer PV cell Bulk heterojunction PV cell 
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I.  Organic or polymer single-layer PVs 

Disadvantage 
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 Charge transfer can occur between two semiconductors with offset energy 
levels. 
 Excitons can diffuse approximately 10 nm to an interface. (less than 20 nm) 
 A film thickness of approximately 100 nm is needed to absorb most of the 
light. 
 Polymer bilayer cell showed 1.9 % energy conversion efficiency. 
 Small molecule bilayer cell showed 3.6 % power conversion efficiency with 3 
layers. 

II.      Organic or polymer bilayer PVs 
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Device geometries 
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Limitation of organic or polymer bilayer PVs 
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III.   Bulk heterojunction (BHJ) PVs 
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Donor-acceptor bulk heterojunction devices 

Al cathode 

Donor-Acceptor blend: 

e.g. polymer / fullerene, 

polymer / nanocrystal, 

polymer / polymer 

ITO anode 

Glass substrate 

h+ e- 

• Both components deposited from same solution 
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1. Conjugated polymer with low band gap 

  Maximum photon flux of sun = 700 nm 

  Eg= 1.24 / 0.7= 1.77 [eV] 

  Maximum absorption of photon of sun 

2. Bulk heterojunction morphology 

exciton diffusion length of conjugated 
polymer   = below 20 nm 

3. High carrier mobility 

electron and hole mobility of conjugated 
polymer 

Isc: tuning of the transport property 
(mobility); Optimization of cell 
geometry in dependence of the cell 
thickness 

Voc: tuning of the electronic energy 
level of the donor-acceptor system; Voc 
of ~2 V observed in polymeric donor- 
acceptor system 

F.F: tuning of the contacts and 
morphology: lowering of serial 
resistance 

Optimization for high efficiency 
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Materials for BHJ organic solar cell 

C60 
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      Polymer/PCBM interpenetrating system 
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Production  
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Film preparation 
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Film preparation 

http://www.teipat.gr/


http://www.teipat.gr/


Materials issue - matching the solar emission 

The flexibility in chemical tailoring is necessary for matching the absorption of 
the PV material to the solar emission spectrum. 
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Bandgap engineering 

< The parameters determining the bandgap of conjugated polymers > 

EROT : the energy contribution from bond length 

alternation  

RE : the resonance energy 

EI : the energy caused by the inter ring torsion 

angle  

ESUB : the influence of the substituents.  

EG = EI + RE + EROT + ESUB 

1. Aromatic form shows higher stabilization energy and therefore the higher bandgap. 
2. Resonance energy leads to an energy stabilization and so to an increased splitting of 

the HOMO-LUMO energy. 
3. Torsion between the ring plain interrupts the conjugation and therefore increases 

the bandgap. 
4. Electron donating groups raise the HOMO level and electron withdrawing groups 

lower the LUMO. 
5. In the solid phase, additional intermolecular effects between the chains have to be 

taken into account, which generally leads to broader bands and a lower bandgap. 
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Materials 
• Up to now, polymers for PVs have  
largely been taken into account for optimum 
results and maximum efficiency  
• Too much work   has been done to develop 
new polymers optimized to absorb solar 
radiation 
• Materials optimized for electron or hole 
transport 

Device Architecture 
• Morphology of polymer blend 
crucial to determining device 
performance 
• Morphology can be controlled 
through careful processing, surface 
treatment and materials design 

Summary: optimization 
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Think green with cheap materials 
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