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The autoantibody to aquaporin-4 (AQP4) is a marker and a pathogenetic factor in Neuromyelitis Optica
(NMO) (Devic’s syndrome). Our aimwas to identify B-cell antigenic linear epitopes of the AQP4 protein and
investigate similarities with other molecules. To this end, we screened sera from 21 patients positive for
anti-AQP4 antibodies (study group), from 23 SLE and 23 pSS patients without neurologic involvement
(disease controls) and from 28 healthy individuals (normal controls). Eleven peptides, spanning the entire
intracellular and extracellular domains of the AQP4molecule, were synthesized, and all serawere screened
for anti-peptide antibodies by ELISA. Specificity was evaluated by homologous inhibition assays. NMO
positive sera exhibited reactivity against 3 different peptides spanning the sequences aa1e22 (AQPpep1)
(42.9% of patients), aa88e113 (AQPpep4) (33%) and aa252e275 (AQPpep8) (23.8%). All epitopes were
localized in the intracellular domains of AQP4. Homologous inhibition rates were ranging from 71.1% to
84.3%. A 73% sequence homology was observed between AQPpep80 aa257e271, a 15-mer peptide part of
the AQPpep8 aa252e275, and the aa219e233 domain of the Tax1-HTLV-1 binding protein (TAX1BP1),
a host protein associated with replication of the Human T-Lymphotropic Virus 1 (HTLV-1). Antibodies
against the AQP4 and the TAX1BP1 15-mer peptides were detected in 26.3% (N ¼ 5) and 31.6% (N ¼ 6) of
NMO positive sera (rs ¼ 0.81, P < 0.0001). Healthy controls did not react with these peptides, while
homologous and cross-inhibition assays confirmed binding specificity. This first epitopemapping for AQP4
reveals that a significant proportion of anti-AQP4 antibodies target linear epitopes localized in the intra-
cellular domains of the channel. One of the epitopes displays high similarity with a portion of TAX1BP1
protein.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Neuromyelitis optica (NMO or Devic’s Disease) is a rare auto-
immune inflammatory demyelinating syndrome of the Central
Nervous System (CNS) that preferentially targets the optic nerves
and spinal cord [1]. Its course is usually relapsing, but without
marked remission between relapses, leading to rapid accumulation
of irreversible deficits [2]. The studies by Lennon et al. [3] have
provided unequivocal evidence that a specific autoantibody (NMO-
IgG) against aquaporin-4 (AQP4) is a marker for the disease and
differentiates neuromyelitis optica from multiple sclerosis [1].
Further studies have shown that anti-AQP4 antibodies are not only
detected in neuromyelitis optica, but also in patients with the
“NMO spectrum of diseases” [4] that includes limited forms of NMO
þ30 2107462664.

All rights reserved.
[5], optic-spinal MS [6], and demyelinating conditions accompa-
nying systemic autoimmune diseases, such as Systemic Lupus
Erythematosus and Sjögren’s Syndrome [5].

Aquaporin-4 belongs to a family of water channels (AQP0e12)
involved in water transport in different tissues [7]. It consists of 3
extracellular loops, 2 intracellular loops and the N- and C-terminal
regions of the protein, that connect 6 alpha helices spanning the
membrane [8]. It exists as heterotetramers composed by the M1

(M.W. 34 kDa) and M23 (M.W. 31 kDa) splice variants of aquaporin-
4, which differ in their first 22 amino acids [9]. AQP4 is the most
abundant water channel in the CNS and is highly expressed on the
astrocytic endfeet at the bloodebrain barrier (BBB), regulating
water transport between blood, brain and cerebrospinal fluid [10].

Autoantibodies to AQP4 appear to possess a pathogenetic role,
as shown by previous studies, since they induce surface re-
distribution and endocytosis of AQP4, complement activation,
water homeostasis and bloodebrain barrier disruption, leading
eventually to the recruitment of inflammatory cells [11].
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Furthermore, NMO-like disease was successfully induced after
passive transfer in animal models, following BBB breakdown
[12,13], or by direct intra-cerebral IgG injection [14].

Despite the fact that anti-AQP4 antibodies have an established
role in the pathogenesis of neuromyelitis optica, their specificity
regarding antigenic epitopes has not yet been determined. Some
studies support the existence of conformation-dependent epitopes
[15,16], although others suggest the recognition of linear epitopes
in the denaturedmolecule [17]. The aim of the present study was to
identify the B-cell linear epitopes of the AQP4 protein and to
investigate antigenic similarities with other molecules.
2. Materials and methods

2.1. Patients and sera

We used sera from 21 patients positive for NMO IgG/anti-AQP4
antibodies, as detected by indirect immunofluorescence on mouse
brain tissue [3] (21/21 positive) and by a cell based assay usingM23-
transfected (M23-eGFP clones were a kind gift from Dr. P. Waters
and Prof. A. Vincent, University of Oxford) HEK293 cells [18] (16/21
positive). All patients belonged to the neuromyelitis optica spec-
trum of diseases [4] and presented active CNS involvement during
blood sampling, as attested by the clinical picture and MR Imaging.
Sera from 28 healthy subjects were used as normal controls. The
Fig. 1. (A) Schematic representation of the AQP4 monomer: 4 intracellular and 3 extracellula
secondary structure of the molecule is also depicted, as well as the regions corresponding to
extracellular domains of the protein. The asterisk corresponds to the AQPpep1 [aa1e22] tha
and their exact location within the protein are shown.
disease control group comprised of 23 patients with Systemic
Lupus Erythematosus (SLE) and 23 patients with primary Sjögren’s
Syndrome (pSS), without neurological involvement. All SLE
patients fulfilled the 1997 American College of Rheumatology
revised criteria for the classification of Systemic Lupus Eryth-
ematosus [19], while the pSS patients fulfilled the American-
European Consensus Group revised criteria [20].
2.2. Peptide synthesis

Eleven peptides, in the form of peptide dendrimers (multiple
antigenic peptides, MAP) were synthesized by Bio-synthesis Inc,
U.S.A. The peptides covered all the intracellular and extracellular
domains of both AQP4 isoforms (M1: UniProtKB accession number
P55087-1, M23: UniProtKB accession number P55087-2), and were
either single peptides or overlapping by 8 amino acids. The first 2
peptides (AQPpep1 and AQPpep2) covered the N-terminus intra-
cellular domain of the protein (Fig. 1). AQPpep1 was designed to
include the first 22 amino acids that are included only in the M1

isoform of the protein in a non-overlapping fashion with AQPpep2
that starts exactly at the N-terminus of M23 isoform. Peptides
AQPpep3eAQPpep7 corresponded to the three extracellular and
two intracellular loops of the protein and, finally, the C-terminus
intracellular domain of the protein was covered by four 24-mer
peptides, overlapping by 8 amino acids (Peptides AQPpep8,
r regions are connected with 6 trans-membrane a-helices (numbered from 1 to 6). The
each synthetic peptide. The synthetic peptides cover the entire length of the intra- and
t exists only in the M1 isoform of the AQP4 protein. (B) Sequences of the AQP4 peptides
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AQPpep9, AQPpep10 and AQPpep11). Two additional 15-mer
peptides corresponding to the [aa257e271] of the AQP4 protein
and the [aa219e233] of the TAX1BP1 (Tax1-HTLV-1 binding
protein, UniProtKB accession number Q86VP1) were also synthe-
sized (Table 1).

2.3. ELISA assays

All patients and controls were evaluated for the presence of
autoantibodies against the 11 peptides by ELISA assays. 96-well
microtitre plates were coated with 100 ml of peptide solution
(2.5 mg/ml in sodium carbonateesodium bicarbonate buffer, PH 9.8)
and kept at 4 �C overnight. Afterwards, the remaining binding sites
were blocked with 2% bovine serum albumin (BSA) in Phosphate
Buffered Saline (PBS) at room temperature for 1 h. After 3 washes
with PBS, sera were added in 1/150 in 2% BSA/PBS dilution. After
a 2-h incubation and 3 washes with PBS, alkaline phosphate
conjugated anti-human IgG, diluted 1/1200 in 2% BSA/PBS, was
added for 1 h at room temperature. After the addition of alkaline
phosphate substrate, color development was quantified at 405 nm.
The cutoff values for each peptide assay were determined using the
mean Optical Density (OD) plus 3 standard deviations of the sera
from the 28 healthy controls.

Homologous inhibition experimentswere performed, in order to
evaluate the specificity of the potential epitopes. Sera from 3 NMO
positive patients, as well as a pSS and an SLE patient, that exhibited
high reactivity against the peptides, were selected. Serum was
pretreated in 1/300 dilution with increasing concentrations (0
mg/ml, 10 mg/ml and 40 mg/ml) of peptides AQPpep1, AQPpep4,
AQPpep8 (being the 3 most reactive peptides) and control peptide
(Ctrl-Pep), and incubated overnight at 4 �C. Peptide AQPpep9
was chosen as a control, since it exhibited low reactivity during the
first series of experiments. Subsequently, all sera dilutions were
tested by ELISA for reactivity against the peptides. Inhibition
percentages were calculated as (([OD 0 mg/ml] � [OD 40 mg/ml])/
[OD 0 mg/ml])� 100% for each serum. All the steps of the assaywere
as described in Section (2.3), apart from the incubation of the sera
dilutions that lasted 1 h instead of 2.

2.4. Homology search

The antigenic peptide sequences were compared against the
UniProtKB database (version 2010_10). The similarity search was
performed using the NCBI BLASTP (ver. 2.2.17) algorithm and scored
with PAM30 matrices. A 73% sequence similarity was observed
between AQPpep8 (amino acids 257e271) EFKRRFKEAFSKAAQ and
the aa219e233 domain of the human protein TAX1BP1 (EFKKRFS-
DATSKAHQ) (Table 1). None of the other peptides showed any
similarity with non-related to aquaporin human, bacterial or viral
proteins.

2.5. ELISA assays to examine the potential cross-reactivity between
AQP4 and TAX1BP1 15-mer peptides and heterologous inhibition
assays

19 NMOpositive patients and 19 normal controls were tested for
the binding of autoantibodies against the two 15-mer peptides
Table 1
Homologous sequences of the AQP4 and TAX1BP1 15-mer peptides.

Origin Sequence Amino acids

AQPpep8 (AQP4 protein) EFKRRFKEAFSKAAQ [aa6e20]
EFK RF þA SKA Q

TAX1BP1 protein EFKKRFSDATSKAHQ [aa219e233]

“þ” symbol indicates conservative changes in amino acid sequence.
(AQPpep80 [aa257e271] of the AQP4 protein and TAX1BP1pep
[aa219e233] of the TAX1BP1) on plates coated with 5 mg/ml of each
peptide in sodium carbonateesodium bicarbonate buffer, PH 10.5.
ELISA was performed as described above, Section (2.3). In order to
investigate whether the two 15-mer peptides could cross-inhibit
one another, a second series of inhibition assays was performed in
liquid phase. 3 selected NMO positive sera that exhibited high
reactivity against the 2 peptides were pretreated in dilution 1/400
overnight at 4 �C with increasing concentrations of each peptide
separately, as well as control AQPpep9 (0 mg/ml, 10 mg/ml,
40 mg/ml). Subsequently, all sera were tested by ELISA as in Section
(2.3), with the sole exception of incubation of the sera dilutions that
lasted 50min.

2.6. Statistical analysis

All comparisons between groups of sera were performed using
Fisher’s exact test.

Spearman’s rank correlation coefficient (rs) was used to assess
statistical dependence between reactivity rates of NMO positive
sera against the two 15-mer peptides.

3. Results

3.1. Identification of the antigenic sites and inhibition assays

Peptides AQPpep1, 2, 4, 5 and 8 were identified as being the
most reactive ones in an initial epitope mapping experiment in
which all 11 peptides were tested. The ELISA assay was performed
using sera from ten NMO positive patients and eight healthy
controls. Sera fromhealthy donors showed no reactivity against any
of the peptides. Subsequently, all sera from NMO positive patients
(N ¼ 21) and healthy controls (N ¼ 28) were tested against the
peptides, which exhibited the highest reactivity in the initial
experiment (AQPpep1, 2, 4, 5 and 8). Peptides AQPpep1, AQPpep4
and AQPpep8 contained the epitopes that were mostly recognized
by the NMO positive sera, reaching reactivity levels of 42.9%, 33.3%
and 23.8% of patients, respectively (Fig. 2A). 5 sera (23.8%) were
positive for antibodies against all 3 peptides, 2 (9.5%) were positive
for antibodies against peptides 1 and 4, and 2 more sera were
positive for antibodies only against peptide 1.

The 3 most reactive peptides (AQPpep1, AQPpep4 and AQP-
pep8), are part of the intracellular regions of the molecule (Fig. 2B).
These peptides were further tested against 23 SLE and 23 pSS
disease controls, in order to assess the specificity of their recogni-
tion. SLE patients were found positive for antibodies against
peptides AQPpep1, AQPpep4 and AQPpep8 in 13%, 4.3% and 8.7%,
respectively, while 8.7%, 4.3% and 8.7% of pSS patients also recog-
nized peptides AQPpep1, AQPpep4 and AQPpep8.

The proportion of NMO positive sera binding against peptides
AQPpep1, AQPpep4 and AQPpep8 was statistically significantly
higher than the proportion in healthy control individuals (P< 0.05).
Antibodies against AQPpep1 and AQPpep4 also binded in a statis-
tically significant manner in comparison to sera from disease
controls (Fig. 3). The specificity of binding was assessed by
homologous inhibition assays, which produced high inhibition
rates in NMO positive sera that reached 84.3%, 71.1% and 84% for
peptides AQPpep1, AQPpep4 and AQPpep8, respectively. Average
inhibition rates, at 40 mg/ml of inhibitor, were 71.2% for AQPpep1,
67.9% for AQPpep4 and 66.9% for AQPpep8. On the other hand,
inhibition rates with the control peptide (AQPpep9) were signifi-
cantly lower, ranging from 11% to 45.3% (Fig. 4). Inhibition assays
using disease control sera showedminimal inhibition rates, ranging
from 3% to 15.1%, that were similar to the ones produced when the
control peptide was used (3.1e9.3%).



Fig. 3. Prevalence of positivity against peptides AQPpep1, AQPpep4 and AQPpep8 for
all groups (NMO patients, disease controls and healthy controls) is presented. Dotted
lines represent the cutoff value for each peptide that was determined using the mean
Optical Density (OD) plus 3 standard deviations of the sera from the 28 healthy
controls. The statistical significance of comparisons between NMO positive sera and
disease control sera, as well as between NMO positive and normal sera, is also pre-
sented (cutoff for significance P < 0.05).

Fig. 2. (A) Prevalence of the NMO positive and healthy control sera who were positive
for antibodies against peptides AQPpep1, AQPpep2, AQPpep4, AQPpep5 and AQPpep8.
(B) The exact location of the 3 immunodominant AQP4 peptides on the tertiary
structure of the AQP4 protein is shown. The three-dimensional structure of
the molecule is represented as ribbons, whose color is gradually changing from blue (at
the N-terminus) to red (at the C-terminus of the protein). The tertiary structure of the
N- and C-terminus of AQP4 (aa1e30 and aa255e323, respectively) has not yet been
solved and is therefore represented as two boxes containing straight lines.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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3.2. Sequence similarities of the immunodominant epitopes

The identification of the 3 most reactive peptides, which are
therefore potential linear antigenic epitopes of the AQP4 molecule,
enabled the search of protein databases to identify similar
sequences with other unrelated proteins. A 73% sequence similarity
was observed between AQPpep8 (amino acids 257e271) EFKRRF-
KEAFSKAAQ, and the [aa219e233] domain of the human protein
TAX1BP1 (EFKKRFSDATSKAHQ) (Table 1), which is involved in the
replication of the HTLV-1 virus, the etiological agent of HTLV-
1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).

3.3. Reactivity of the patients’ sera against the AQP4 and the
TAX1BP1 15-amino acid peptides and inhibition experiments

These observations prompted us to design two 15-mer peptides
containing the previously mentioned sequences (Table 1), and test
them against the NMO positive sera and sera from healthy controls.
Reactivity against the AQPpep80 and the TAX1BP1pep peptide was
detected in 26.3% (N ¼ 5) and 31.6% (N ¼ 6) of NMO positive sera,
respectively. All NMO-IgG-positive sera that were positive for
antibodies against the AQPpep80, were also positive for antibodies
against the TAX1BP1pep, while one patient was positive for anti-
bodies against the TAX1BP1pep (Fig. 5A). Spearman’s rank
correlation coefficient was high (rs¼ 0.081, P< 0.0001). None of the
normal controls exhibited any reactivity against any of the 2
peptides.

The potential of anti-AQPpep80 antibodies to cross-recognize
the TAX1BP1pep was explored by homologous and cross-inhibition
experiments. Pretreatment of the NMOpositive serawith AQPpep80

and TAX1BP1pep resulted in a 60.1% and 36% inhibition of antibody
binding to the AQPpep80 peptide (homologous and heterologous
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Fig. 5. (A) Reactivity levels of NMO positive sera are similar between peptides
AQPpep80 and TAX1BP1pep (Spearman’s rank correlation coefficient (rs) ¼ 0.81,
P < 0.0001). (B) Homologous and heterologous inhibition assays reveal cross-reactivity
of the two 15-mer peptides. Homologous inhibition rates were higher than heterolo-
gous ones for both peptides, while pretreatment with Ctrl-Pep did not inhibit either
AQPpep80 or TAX1BP1pep binding. (Concentration of the inhibitor was 40 mg/ml).

Fig. 4. Homologous inhibition assays with each specific peptide produced high inhi-
bition rates while pretreatment with the control peptide (Ctrl-Pep), led to minimal
inhibition rates. 3 representative patients are depicted in the figure (with inhibition
rates ranging from 71.1% to 84.3%).
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inhibition, respectively). On the other hand, binding to TAX1BP1-
pep, was reduced by 70% after pretreatment with the TAX1BP1pep,
and by 58.5% after pretreatment with AQPpep80. By contrast,
control peptide (AQPpep9) did not inhibit AQPpep80 and
TAX1BP1pep binding (Fig. 5B).

4. Discussion

Since the discovery of anti-AQP4 antibodies as markers and
pathogenetic factors in NMO, a great variety of methods have been
developed for measuring anti-AQP4 antibodies in NMO patients
with differences in sensitivity and specificity. This diversity denotes
differences to the nature of the antigen used for detection.

The original and most commonly used detection method is the
indirect immunofluorescence assay (IIF) against mouse brain
sections in which the antigen is presumably in its native form [3].
Certain studies report that the autoantibodies target epitopes on
the extracellular regions of the AQP4 molecule in a conformation-
dependent manner, since they recognize AQP4 only in the form of
orthogonal arrays of particles (OAPs) [15]. In other studies, using
ELISA and western blots that utilize denatured proteins as
substrates, it is linear structures that are mainly detected [17].
Therefore, it is highly likely that both conformational and linear
epitopes are targets of a polyclonal response against the aquaporin-
4 autoantigen, as described for the majority of the autoantibodies
[21].

In order to identify the fine specificity of autoantibodies tar-
geting aquaporin-4, we used overlapping synthetic peptides
covering all the extracellular and intracellular domains of the
molecule. Such peptides can effectively mimic linear and partially
conformational epitopes and have been used in the past to map the
specificity of autoantibodies found in different autoimmune
diseases, including anti-Sm [22], anti-U1 snRNP [23], anti-Ro/SSA
[24], anti-La/SSB [25], antibodies against citrullinated a-enolase
[26], and against anti-glutamic acid decarboxylase (GAD) 65 [27].11
peptides were synthesized, covering all the intracellular and
extracellular potential binding sites of the anti-AQP4 antibodies.
Screening the NMO-IgG-positive sera for antibodies against these
peptides, identified 3 dominant epitopes on the N-terminus, the
first intracellular loop and the C-terminus part of the protein.
Disease control sera exhibited only minimal reactivity against the
peptides. This reactivity can be attributed to humoral polyreactivity
commonly observed in the sera of patients with autoimmune
diseases. As 42.9% of the NMO positive sera recognized at least one
of the 3 peptides, a large body of specific autoantibodies is probably
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directed against linear epitopes of the AQP4 protein. The inhibition
assays, verified the specificity of the recognition.

Interestingly, the most reactive of the 3 epitopes corresponded
to the first 22 amino acids of the AQP4, which exist only in the M1
and not in the M23 isoform of the protein, suggesting that the M1
isoform exhibits definite antigenic sites. This finding agrees with
Marnetto et al. [17] who showed, using western blot, that the major
target of anti-aquaporin-4 antibodies in NMO is the linear AQP4-M1
isoform. Our observation also supports the recent finding of two
different missense allelic mutations at Arg19 (R19I and R19T),
which enhance susceptibility to NMO and are located within the
first 22 residues of the N-terminus of the protein, unique to the
AQP4-M1 [28]. The M1 isoform of AQP4 seems to be important for
NMO, since it is preferentially expressed in the optic nerve and
spinal cord, where NMO lesions are usually found [29]. However, in
another study, the M23 isoform has been proposed as a major target
of anti-aquaporin-4 antibodies [15]. In this report an OAP-related,
quaternary structure epitope, was identified on the surface of living
cells selectively transfected to express M23 isoform. Since native
aquaporin-4 assemblies as heterotetramers of M1 and M23 splice
variants forming intermediate size OAPs, the artificial enlargement
of the OAPs caused by the over-expression of M23 isoform could
enhance the avidity of autoantibody binding due to their potential
to allow the bivalent binding of autoantibodies. Although this can
be an advantage for the diagnostic detection of anti-AQP4 anti-
bodies, it does not imply that all NMO autoantibodies bind only
M23.

All 3 B-cell epitopes identified in our study were surprisingly
located in the intracellular domains of the molecule. The mecha-
nisms of recognition of intracellular epitopes are more complex,
and to a great extend unknown. Many autoantibodies directed
against intracellular antigens, including anti-U1RNP, anti-dsDNA,
anti-Ro/SSA, anti-La/SSB, anti-Hu and others, have the potential to
penetrate cells [30e33], in vivo [34,35]. Alternatively, the priming
of the autoimmune response can follow apoptosis and release of
intracellular epitopes or internalization. In the case of NMO, the
polyclonal response we describe could be following astrocytic
damage. A recent studywas able to pinpoint CD4þ T-cell epitopes of
the AQP4 protein in its intracellular domains (in C57BL/6 and SJL/J
mice) [36], suggesting that T-cell assistance may be also necessary
to mount an efficient immune response against intracellular frag-
ments of aquaporin. In contrast to our finding, Hinson et al. [10],
based on the observation that anti-AQP4 antibodies bind to the
surface of AQP4-transfected cells in the absence of conditions
allowing membrane permeability, proposed that the epitopes are
located in the extracellular regions of the protein. Several other
studies have also focused only on the extracellular regions rather
than the intracellular domains of aquaporin-4. Tani et al. [16],
constructed amino acid substitution mutants in the extracellular
domains of mouse M23-AQP4 and after comparisons of immunos-
taining intensity between human wild-form, mouse and rat AQP4,
suggested that the third extracellular loop (E-loop) of AQP4 is
a major epitope for the AQP4 antibodies.

A search of protein databases led to the detection of a 73%
sequence similarity between AQP4 [aa257e271] and a 15-mer
peptide from TAX1BP1 protein. TAX1BP1 is a human protein
involved in Human T-cell Leukemia Virus type 1 (HTLV-1) replica-
tion [37,38]. HTLV-1 is the causative agent of HTLV-1-associated
myelopathy or tropical spastic paraparesis (HAM/TSP) [37],
a condition that shares some common clinical characteristics with
neuromyelitis optica. A putative association between HTLV-1
infection and NMO has been previously reported by two study
groups, which showed active HTLV-1 infection related to longitu-
dinal extensive transverse myelitis (LETM, an NMO spectrum
disorder) accompanied by anti-AQP4 antibodies [39].
In our study, NMO positive sera were examined for their reac-
tivity against the two homologous 15-mer peptides (derived from
AQP4 and TAX1BP1, respectively), revealing a high concordance of
positivity. The specificity of the reaction as evaluated by the ability
of the 2 peptides to cross-inhibit one another led to high inhibition
rates for both peptides. Whether the cross-reactivity of anti-AQP4
antibodies with domains of the TAX1BP1 protein suggests
a potential link between NMO and neurotropic retroviruses or it is
an epiphenomenon, remains to be determined.

In summary, this is the first B-cell epitope mapping of the
autoantigen AQP4. A proportion of anti-AQP4 antibodies target
certain linear epitopes, located in the intracellular domains of the
molecule. Our study does not address the conceivable pathogenic
role of these specific antibodies but rather raises important ques-
tions about the generation of the immune response. One of the 3
epitopes identified in our study, presents high similarity with the
human TAX1BP1 protein, which is involved in the pathogenesis of
HAM/TSP, a disease that shares common clinical features with
neuromyelitis optica. Future studies in our laboratory aim to
determine the pathogenic relevance of these findings.
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