Biomass: Basics, Bio-conversion, crop and sewage treatment

- Introduction
- Basics
- Multifunction of biogas
- Scheme of a biogas plant
- Types of digestion
- Operation, control & costs of plant
- Application of biogas
- Principle of the fermentation
- Impact parameters
- Literature

Dr. Spiros Alexopoulos
Summer School in RES, Patra 4.07.2012
Biomass feed stocks

Wood Residues
- Sawdust
- Wood chips
- Wood waste pallets
- Crate discards
- Wood yard trimmings

Agricultural Residues
- Corn stover
- Rice hulls
- Sugarcane bagasse
- Animal waste

Energy Crops
- Hybrid poplar
- Switchgrass
- Willow

Fuel Heating value
- biogas 6.0 kWh/m³
- wood 4.4 kWh/kg
- crop 4.2 kWh/kg

Fuel Heating value
- gas 8.3 kWh/m³
- oil 11.7 kWh/kg
- lignite 5.6 kWh/kg
Biomass transformation as energy

Direct Combustion

- Heat, Power Generation
 - (Fuel) Gas
 - Synthetic Gas
 - Liquid Fuel

Thermo chemical Transformation

- Gasification
- Thermal Cracking
- Direct Liquefaction
- Low Temperature Gasification
- Hydrogen, Methane

Biochemical Transformation

- Anaerobic Digestion
 - Methane
- Aerobic Pyrolysis
 - (Compost)
 - Ethanol
- Fermentation

Others

- RDF, Carbonization, Bio-Diesel

Introduction
Development of biogas plants

Introduction
Biogas industry in Germany

Introduction
Facts

- Total energy potential of Germany: 752 PJ
- Power production in 2005: 3.2 Mio. kWh
 650 MW\textsubscript{el} plants installed in Germany
- 2.5 Mio. tons CO\textsubscript{2} per year avoided
 resulting in 2020: 60 Mio. tons CO\textsubscript{2}
- World estimation for 2020: 15,000 MW
 Germany: 9,500 MW, 20 % electricity production
- Extra price for consumer max. 0.1 Cent/kWh
 Buyback price for a new plant: 15.5 Cent/kWh
Biomass potential of Greece

- Installed biogas plants (2008): 24 MW
- Planned biogas plants: 32 MW
- Estimation for 2010: 60 MW

Geographical Distribution of Agricultural Residues in Greece (2000)

Source: CRES 2003

Geographical Distribution of Animal Wastes in Greece (2000)
Examples of biogas plants in Greece

<table>
<thead>
<tr>
<th>Company</th>
<th>Activity</th>
<th>Electrical Installed Capacity (MW<sub>e</sub>)</th>
<th>Thermal Installed Capacity (MW<sub>e</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Entity Psytalia</td>
<td>Sewage treatment plant</td>
<td>7.37</td>
<td>2.7</td>
</tr>
<tr>
<td>Consortium (munic.+private) Liosia</td>
<td>Landfill gas</td>
<td>13.00</td>
<td>16.55</td>
</tr>
<tr>
<td>Munic. Ent. Volos</td>
<td>Sewage treatment plant</td>
<td>0.35</td>
<td>0.5</td>
</tr>
<tr>
<td>Munic. Ent. Heraklio</td>
<td>Sewage treatment plant</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>Munic. Ent. Chania</td>
<td>Sewage treatment plant</td>
<td>0.17</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Electrical Installed Capacity MW<sub>e</sub></th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tebloni, Corfu</td>
<td>4</td>
<td>Landfill gas</td>
</tr>
<tr>
<td>Thermi, Thessaloniki</td>
<td>8</td>
<td>Landfill gas</td>
</tr>
<tr>
<td>Liosia, Attiki</td>
<td>9.5</td>
<td>Landfill gas</td>
</tr>
<tr>
<td>Metamorfosi, Attiki</td>
<td>0.665</td>
<td>Sewage treatment biogas</td>
</tr>
<tr>
<td>Patra, Achaia</td>
<td>0.9</td>
<td>Sewage treatment biogas</td>
</tr>
<tr>
<td>Fillipiada, Preveza</td>
<td>4.09</td>
<td>Pig manure</td>
</tr>
</tbody>
</table>

Introduction
Composition of biogas

<table>
<thead>
<tr>
<th>Component</th>
<th>Symbol</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>CH₄</td>
<td>50 - 75 Vol.-%</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>CO₂</td>
<td>25 - 45 Vol.-%</td>
</tr>
<tr>
<td>Water vapor</td>
<td>H₂O</td>
<td>2 - 7 Vol.-%</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O₂</td>
<td>< 2 Vol.-%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N₂</td>
<td>< 2 Vol.-%</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
<td>< 1 Vol.-%</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>H₂</td>
<td>< 1 Vol.-%</td>
</tr>
<tr>
<td>Sulfide</td>
<td>H₂S</td>
<td>20 – 20,000 ppm</td>
</tr>
</tbody>
</table>

[ppm: Parts per Million]

Source: www.nachwachsende-rohstoffe.de

Basics
Importance of burning biogas

Bacteria digest organic compounds in oxygen free environments

Anaerobic digestion is a naturally occurring process

Methane 21x worse than CO₂ in causing global warming

Removing 1 ton methane from atmosphere = getting rid of 21 tons CO₂

Burning methane converts the methane to CO₂

CO₂ equivalent for methane is 1

Burning methane does not increase carbon in the carbon cycle.
Definition of cattle unit (GVE)

1 GVE produces 1.5 m³ biogas/day

One cattle unit (GVE) equals:

– one cow
– five calves
– six porks
– 250 chicken
Slower carbon cycle can increase atmospheric carbon for 20 to 50 years – Burning forest biomass is a slow cycle
CO₂ contemporary cycle

Contemporary Carbon Cycle

Atmosphere

CO₂

CH₄ + 2O₂ → CO₂ + 2H₂O

Methane

Burned

Carbon sources

Food wastes from meat or plant sources, decaying of organic material

Animal and plant respiration produces CO₂

Through Photosynthesis

Plants use CO₂ to make carbon compounds

Forest Fires

Burning of biomass

Plants consumed as food

Much of the carbon consumed ends up in manure

Much of the carbon consumed ends up in manure

Basic concepts

- CO₂ is a greenhouse gas.
- Plants absorb CO₂ through photosynthesis.
- Methane (CH₄) is produced by the burning of biomass.
- Animal and plant respiration also produce CO₂.
- Food wastes from meat or plants, decaying organic material, contribute to CO₂ emissions.

CO₂

Contemporary Carbon Cycle
A need for speed

A fast carbon cycle is important in order to prevent even temporary increase in CO₂

CO₂

In Atmosphere

Methane
Burned as fuel

Crops grown and harvested over several months
Carbon continually recycled

Grain, grass, food

Plants consumed as food

Food Waste

Manure

Digester
CO$_2$ and cycle of matter

CO$_2$ Cycle

- Fertilizer
- Heat
- Electricity
Cycle of matter

Sunlight

Photosynthesis

Necrosis

Manuring

Manure

Organic matter

Fermentation

Biogas

Electricity + Heat
Multifunction of biogas

- Power, heat & fuel
- Reduces pathogens
- Weed seed reduction
- Fly control
- Avoidance of methane
- Protects water resources
- Feeding gas into the distribution net
- Reduces odor from land application
- Strong industrial growth
- Saving of mineral manure

Multifunction of biogas
Biogas process

INPUT
- URBAN
- AGRICULTURE
- INDUSTRY

PRE-TREATMENT
- Mixing
- Macerating
- Hygienisation/ sterilisation
- +/- other pre-treatment: e.g. concentration

DIGESTION

POST-TREATMENT
- STORE
- Separate
- Upgrade

OUTPUT
- BIOGAS
- N - RICH FLUID
- P - RICH SOLIDS

After-treatment
- Land application
- Move and apply
- Transport market / or disposal

Scheme of a plant
Biogas plant design

Scheme of a plant
Scheme of a continuous biogas plant

Manure + biomass

Stirring device
mechanic or hydraulic

Condensate
separator

Filter

Gas pipe

Condensate
separator

Heating system

Digester
35 or 55 °C

Tank

Pump

Heating

Insulation

Manure end product

Storage
60-70% CH₄
30-35% CO₂
0 - 1% H₂S
0 - 1% H₂
0 - 1% O₂
0 - 3% N

Heating
Warm water
Drying
Electricity
Lightning
Transport

Scheme of a plant
Biomass energy in developing countries

Crop residue

Biogas from pig waste

Scheme of a plant
Dom biogas plant for developing countries

Scheme of a plant

Gas pipe
Clearance

Fermenter
(Dom)

Substrate

Digester

Scheme of a plant
Scheme of a plant:

- Graduated cylinder
- Fermenter
- Stirrer
- Gas storage
- Flask
- Burner
- Heating
Fermenter types

Complete stirring reactors

Advantages:
- cost-efficiency above 300 m³
- Variable operation
- Easy maintenance

Disadvantages:
- Huge plants need to be covered
- Bypass flow possible
- Swimming and sinking layers possible

Source: Weiland, FAL 2006
Fermenter types

Plug flow reactors

Advantages:
- Pumpable substrates
- Compact system
- Separation of digestion layers in the flow
- Avoidance of swimming and sinking layers
- Avoidance of bypass flow
- Small residence time
- Small heat losses

Disadvantages:
- Cost-effective only in small dimension
- Total emptying of the device needed

Source: Weiland, FAL 2006

Types of digestion
- Gas-proof cover with up to 34 m fermenter diameter
- Central stirring device not applicable

- Foil cover used by 50% of standing fermenters
- double foil used by 60%
- easy foil used by 40%

Source: Weiland, FAL 2006
Huge fermenter with central stirring

- Odor emission possible
- Use in huge fermenters (up to app. 4000 m³)

Source: Weiland, FAL 2006
Characteristics of the fermenter types

<table>
<thead>
<tr>
<th></th>
<th>Covered Lagoon</th>
<th>Complete Mix</th>
<th>Plug Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Technology</td>
<td>Low</td>
<td>Medium/High</td>
<td>Medium</td>
</tr>
<tr>
<td>Digestion Vessel</td>
<td>Deep lagoon</td>
<td>Round, square in/above ground</td>
<td>Rectangular in ground</td>
</tr>
<tr>
<td>Supplemental Heat</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Solids Concentration</td>
<td>0.5-2%</td>
<td>3-8%</td>
<td>6-11%</td>
</tr>
<tr>
<td>HRT (days)</td>
<td>45+</td>
<td>15+</td>
<td>15+</td>
</tr>
<tr>
<td>Optimum Location</td>
<td>Warm climates</td>
<td>All climates</td>
<td>All climates</td>
</tr>
</tbody>
</table>

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES | SOLAR-INSTITUT JÜLICH | HEINRICH-MUSSMANN-STR. 5 | 52428 JÜLICH | WWW.FH-AACHEN.DE
Relative frequency of fermenter types

- Submerged stirring: 60%
- Central stirring: 10%
- Form stirring: 20%
- Gas pressing: 5%
- n.n.: 5%

Types of digestion

Biogas plants after 2004

Source: Weiland, FAL 2006
Ways of charging: Two different processes

Batch process

- charging and discharging phases
- defined residence time
- no constant gas production

Interchangeable tank

- 2 tanks
- defined residence time
- uniform gas production
- Important for dry fermentation

Phase 1: discharging

Storage tank full → Fermenter empty → Storage tank full

Phase 1: fermentation

Slurry store → charging tank 1 → fermentation tank 2 → discharging storage tank

Phase 2: emptying tank 2

Slurry store → fermentation tank 1 → discharging → charging tank 2 → storage tank

Phase 3: fermentation

Slurry store → fermentation tank 1 → charging tank 2 → discharging storage tank

Phase 4: emptying tank 1

Slurry store → discharging tank 1 → fermentation tank 2 → charging storage tank

Operation
Continuous ways of charging

Flow-through Process
- one up to multiple daily charging
- Fermenter always filled
- uniform gas production
- Good load of the digester
- Danger of bypass

Combined Process
- Fermenter and storage tank covered
- Uniform gas production
- no defined residence time
- possibility of bypass

Storage Process
- Fermenter & storage tank combined and covered
- Complete discharging
- Slowly advancing continuous charging
- Less uniform gas production
- Longer residence time

Slurry store
Fermenter
Storage tank

Slurry store
Fermenter
Storage tank

Slurry store
Plant empty
Plant full
Dry fermentation

Biogas production

Fermenter 1
Fermenter 2
Fermenter 3
Fermenter 4

Time

Operation
Dry fermentation

Substrate → Fermenter

Mixer

Manure remainder → Solid separation → Process water

→ high capacity (> 20,000 t/a)

Biogas

Operation

Solid
Components of a biogas plant

Storage of 5000 t corn silage

Station for corn silage charging twice a day

Tank mixer for the homogenization of corn silage and manure

Continuous corn feeding in premixed tank (20 t/day)

Heat exchanger

Operation
Gas processing

Problem: Biogas is steam saturated and contains beside of CH$_4$ and CO$_2$ also small amounts of H$_2$S

\rightarrow H$_2$SO$_4$ corrodes components!

Desulphurization:

biological:

$\text{H}_2\text{S} + \text{O}_2 + \text{Bacteria} \rightarrow \text{S}$

chemical:

$\text{H}_2\text{S} + \text{chemical additives} \rightarrow \text{Sulfides,..}$

Additives: e.g. caustic soda, iron chlorate

desulphurization und drying of the biogas!

Operation
Example

<table>
<thead>
<tr>
<th>Capacity:</th>
<th>32,000-35,000 tons & fermenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumetric capacity:</td>
<td>1000 m³</td>
</tr>
<tr>
<td>Biogas production:</td>
<td>485 Nm³/h</td>
</tr>
<tr>
<td>Treatment capacity per year:</td>
<td>approx. 3,9 Mio. Nm³ biogas</td>
</tr>
<tr>
<td>capacity per year:</td>
<td>approx. 40.000.000 kWh into gas net</td>
</tr>
<tr>
<td>Supply:</td>
<td>Gas net of Munich</td>
</tr>
<tr>
<td>Investment:</td>
<td>approx. 9,800,000 Euro</td>
</tr>
<tr>
<td>Start of Construction:</td>
<td>June 2006</td>
</tr>
<tr>
<td>Starting up:</td>
<td>December 2006</td>
</tr>
</tbody>
</table>

Source: www.biogas-netzeinspeisung.at/anlagenbeispiele
Solid biomass charging

Professional solids charging for daily rations from 10 - 50 tons/day

Operation
PC control of a biogas plant

- **Effective power**: 165 kW
- **Pressure**: 0.9 mbar
- **Gas amount**: 15996 qm
- **CH4 (Vol%)**: 50.56
- **H2S (ppm)**: 226
- **O2 (Vol%)**: 0.30
Example

<table>
<thead>
<tr>
<th>Construction</th>
<th>Dimension of Fermenter</th>
<th>460 m³</th>
<th>98,000 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>Residence time</td>
<td>50 d</td>
<td>3,000 €</td>
</tr>
</tbody>
</table>

Total Investment: 101,000 €

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amortisation</td>
<td>7,500 €</td>
<td>€/y</td>
</tr>
<tr>
<td>Interest</td>
<td>3,000 €</td>
<td>€/y</td>
</tr>
<tr>
<td>Insurance</td>
<td>500 €</td>
<td>€/y</td>
</tr>
<tr>
<td>Maintainance</td>
<td>3,000 €</td>
<td>€/y</td>
</tr>
<tr>
<td>Costs of labour</td>
<td>4,000 €</td>
<td>€/y</td>
</tr>
<tr>
<td>Electricity & ignition</td>
<td>2,500 €</td>
<td>€/y</td>
</tr>
</tbody>
</table>

Costs of operation: 20,500 €/y

<table>
<thead>
<tr>
<th>Utilizable energy production</th>
<th>122,000 kWh/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remuneration standard</td>
<td>11.5 cent/kWh</td>
</tr>
<tr>
<td>Remuneration bonus</td>
<td>6 cent/kWh</td>
</tr>
<tr>
<td>Remuneration CHP</td>
<td>2 cent/kWh</td>
</tr>
</tbody>
</table>

Gains: 22,000 €/y

Earnings: 1,500 €/y
Application of biogas

- Block heat and power block
- Micro turbines
- Fuel cells
- Gas supply net
- Fuel
- Power plants
biogas plant

- From 500 kg cow per day 1.5 m³ biogas
- From 1 ha grass 6,000 m³ biogas
- From 1 ha 12,000 m³ biogas
Process of fermentation

Hydrolysis

1. Protein, Carbohydrates, Fat

Decomposition of acid

2. Acetic acid, Acids, Alcohol

Methane production

3. Acetic acid

Biogas

CH\text{4}, CO\text{2}

Fermentative bacteria

1. 1

Acetogenic bacteria

2. 2

methanogenic bacteria

3. 3

Principle of the fermentation
Stage I

Hydrolysis

Polymers → Monomers

Protein → Amino acid
Protein → Fatty acids
Fat → Fatty acids
Carbohydrates → Saccharide

Intermediate products:
Acetic acid \(\text{CH}_3\text{COOH} \)
Alcohol

\[
\begin{align*}
\text{H}_2\text{O} & \quad \text{CO}_2 \\
\text{H}_2 & \quad \text{NH}_4
\end{align*}
\]

Principle of the fermentation
Stage II

Decomposition of acid

Products

H₂O
H₂
CO₂

Brew end product CH₃COOH

Principle of the fermentation
Stage III

Methane production

Acetic acid from stage I → CH$_4$ H$_2$ H$_2$S NH$_3$

Acetic acid from stage II → CH$_4$ H$_2$ H$_2$S NH$_3$

Principle of the fermentation
Ecology of the Methanogens

- Methanogens require **anaerobic conditions**
- In the digestive systems of herbivores, marshes or lake bottoms.
- Many require **warm conditions** to work best.
- They are associated with a **source of organic matter** (e.g. plant remains or sewage) and with **heterotrophic bacteria**
- The heterotrophs break down this organic matter to release compounds such as ethanoic acid (acetic acid or vinegar) and hydrogen
- The ethanoate ions are a substrate for the methanogens
Biochemistry of the methanogens

- Methanogens are **chemoautotrophs**
- Methanogens produce methane:
 - Using ethanoate (acetate) that may be derived from the decomposition of cellulose:
 \[
 \text{CH}_3\text{COO}^+ + \text{H}^- \rightarrow \text{CH}_4 + \text{CO}_2 + 36 \text{ kJ mol}^{-1}
 \]
 - Or using hydrogen and carbon dioxide produced by the decomposers:
 \[
 4 \text{H}_2 + \text{CO}_2 \rightarrow \text{CH}_4 + 2 \text{H}_2\text{O} + 130.4 \text{ kJ mol}^{-1}
 \]
Impact parameters

- Substrate form
- Concentration of organic dry matter
- pH
- Temperature
- Digestion time (residence time in the fermenter)
- Substrate charging
Substrate

- must be degradable
- must/should be available at a constant mass/volume flow
- should have a nearly constant composition
- Concentration of organic dry matter should be higher than 2%
- should be a liquid slurry
- Digester volume should be more than 100 m³
Composition of manure

Biogas potential: total organic solids (%)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Waste water, municipal</th>
<th>Waste water, food industry</th>
<th>Sewage sludge</th>
<th>Cow manure</th>
<th>Pig manure</th>
</tr>
</thead>
<tbody>
<tr>
<td>m³ CH₄/m³</td>
<td>0.05</td>
<td>0.15</td>
<td>2</td>
<td>8</td>
<td>6 to 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 to 10</td>
<td>20 to 30</td>
<td>30 to 50</td>
</tr>
</tbody>
</table>

Carbohydrates

<table>
<thead>
<tr>
<th></th>
<th>Pig manure [%]</th>
<th>Cow manure [%]</th>
<th>Chicken manure [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>38</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

Fat

<table>
<thead>
<tr>
<th></th>
<th>Pig manure [%]</th>
<th>Cow manure [%]</th>
<th>Chicken manure [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Protein

<table>
<thead>
<tr>
<th></th>
<th>Pig manure [%]</th>
<th>Cow manure [%]</th>
<th>Chicken manure [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>19</td>
<td>15</td>
<td>29</td>
</tr>
</tbody>
</table>

Crude fiber

<table>
<thead>
<tr>
<th></th>
<th>Pig manure [%]</th>
<th>Cow manure [%]</th>
<th>Chicken manure [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude fiber</td>
<td>20</td>
<td>40</td>
<td>15</td>
</tr>
</tbody>
</table>

Ash

<table>
<thead>
<tr>
<th></th>
<th>Pig manure [%]</th>
<th>Cow manure [%]</th>
<th>Chicken manure [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash</td>
<td>19</td>
<td>21</td>
<td>27</td>
</tr>
</tbody>
</table>

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES | SOLAR-INSTITUT JÜLICH | HEINRICH-MUSSMANN-STR. 5 | 52428 JÜLICH | WWW.FH-AACHEN.DE 4.6.2012 | 51
Fertility and retention time

<table>
<thead>
<tr>
<th>Material</th>
<th>Biogas m^3/kg ODM</th>
<th>Retention time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>0.367</td>
<td>78 Days</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>0.501</td>
<td>14 Days</td>
</tr>
<tr>
<td>Haulm</td>
<td>0.606</td>
<td>53 Days</td>
</tr>
<tr>
<td>Corn</td>
<td>0.514</td>
<td>52 Days</td>
</tr>
<tr>
<td>Clover</td>
<td>0.445</td>
<td>28 Days</td>
</tr>
<tr>
<td>Grass</td>
<td>0.557</td>
<td>25 Days</td>
</tr>
</tbody>
</table>

Optimum substrate with:
- 70% manure
- 30% biomass

Impact parameters
Negative und optimum impact parameters

Substances with antibacterial impact:
– Heavy metals
– Mediums for the disinfection of stables
– Antibiotics for the animals

Optimum impact parameters:
Dry substance concentration: 3 % -10 %
pH-value: 6.5-7.2
Temperature impact on gas production

- **Mesophile**
- **Thermophile**

Temperature in digester

Gas amount per kg org. dry mass

Impact parameters

Temperature in digestor
Residence time

Biogas production

Impact parameters

Optimum

Mesophile bacteria: 20-25 days

Thermophile bacteria: 3-10 days
Substrate supply

\[R_b = \frac{\dot{m}_{Su} C_{ODM}}{V_R} \]

- \(R_b \): volume load
- \(m_{Su} \): mass of substrate
- \(V_{Su} \): volume of substrate
- \(V_R \): reactor volume
- \(C_{ODM} \): concentration of organic dry mass

\(R_b \) indicates quantity in kg of organic dry matter loaded per day

- Complete digestion requires long residence time in the fermenter
- Long residence time require huge fermenters

\[V_R \approx V_{Su} \]

\[C_{ODM} = \frac{m_{ODM}}{m_{Su}} = \frac{V_{ODM} \rho_{ODM}}{V_{Su} \rho_{Su}} \]

Impact parameters
Substrate supply

\[t_{Vw} = \frac{V_{Su}}{\dot{V}_{Su}} = \frac{m_{Su}}{\dot{m}_{Su}} \]

\[t_{Vw} \approx \rho_{Su} \frac{C_{ODM}}{R_{b}} \]

Example: \(C_{ODM} = 0.08 \) substrate density: \(1000 \text{ kg/m}^3 \)
residence time of the substrate: 20 days

\[
R_{b} = \rho_{Su} \frac{C_{ODM}}{t_{Vw}} = 1000 \cdot \frac{0.08}{20} = 4 \text{ kg ODM / m}^3
\]
Parameters of the biogas production

Cumulative production

Gas output

Volume load

Gas output

Cumulative production m³/kg ODM

Residence time \(v_w \)

Cumulative production

[Graph showing parameters of biogas production]
Stirring device

Why stirring is necessary in the digester:

– Prevents sinking layers on the bottom of the fermenter
– Prevents swimming layers on the surface of the substrate
– Secures uniform temperature distribution
– Supplies bacteria uniformly with nutrients
Requirements

- A fermenter, supplied with bacteria (methanogens and decomposers)
- Moisture & anaerobic conditions
- Optimum uniform temperature of 35°C
- Optimum pH of 6.5 to 8
- Organic uniform waste (biomass) charging e.g. sewage, wood pulp
- C:N:P:S-ratio:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow Dirt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittsburgh Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methanogens and the greenhouse effect

• Half of the methane produced by methanogens is used up as an energy source by other bacteria
• Half is lost to the atmosphere (600 M tonnes/a) where it acts as an important greenhouse gas
• As more land is converted to rice paddy fields and pasture for grazing animals more methane will be produced
Global warming

- As global warming progresses the permafrost with thaw in the tundra regions
- Tundra contains frozen peat
- As the peat warms and melts, it will provide a huge source of material for methanogens
- Methanogens will produce high amounts of methane
- Increase of methane in the atmosphere
- Further increase of global warming

UNEP
Impact parameters
Literary sources

M. Kleemann; M. Meliß: Regenerative Energien, Springer Verlag, 1993
M. Meliß: Regenerative Energien – Praktikum, Springer Verlag, 1997
Biogas: Strom und Wärme aus Gülle, Energieagentur NRW
Landwirtschaftliche Biogasanlagen Energie, Wärme und Dünger in
der Kreislaufwirtschaft, C.A.R.M.E.N
Biogas – das Multitalent für die Energiewende, Fachverband Biogas e.V.,
März 2006

www.nrel.gov
www.fromwastetoenergy.com
www.ypan.gr
P. Billet: Methanogens and biogas, ucla genomics
D. Jones: Anaerobis Digestion The basics, Ag and Biological Engineering,
2006
M. Zarhadoula: Biomass Overview in Greece, CRES 2003