Experience from PV system performance including comparison of on-roof and façade systems.
(Case study on BIPV systems.)

Vitezslav Benda
CTU Prague, Faculty of Electrical Engineering
Intelligent energy management in the household

„Zero energy“ house cannot operate without PV system
PV systems may be integrated into building construction

PV system output power depends on

• Irradiance
• Operating temperature
\begin{align*}
B(t) &= 1367 \times 0.7^{\sin \varphi(t)} \cos \varepsilon_v(t) \cos \varepsilon_h(t) \\
W_u &= \int_{SS}^{SR} 1367 \times 0.7^{\sin \varphi(t)} \cos \varepsilon_v(t) \cos \varepsilon_h(t) dt
\end{align*}
Radiation arriving on PV module

Clear sky

Cloudy sky increases portion of diffuse radiation

Reality:
In the year 2001, a 3kW_p demonstration, on-grid connected photovoltaic system has been built at the Czech Technical University in Prague on the roof of the Faculty of Electrical Engineering.
Installed peak power: 3320 W_p
Total module area: 26 m²
Number of modules: 30 (3 fields of 10)
Latitude: 50.07 °N
Altitude: 205 m

http://andrea.feld.cvut.cz/FVS
<table>
<thead>
<tr>
<th>PV field</th>
<th>Tilt angle</th>
<th>Module type</th>
<th>$P_m ,(W_p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45°</td>
<td>RADIX72-112</td>
<td>1120</td>
</tr>
<tr>
<td>2</td>
<td>variable</td>
<td>RADIX72-112</td>
<td>1120</td>
</tr>
<tr>
<td>3</td>
<td>90°</td>
<td>RADIX72-108</td>
<td>1080</td>
</tr>
</tbody>
</table>

Parameters of individual PV fields

Inverters: Fronius Sunrice Mini
A comparison of estimated and measured energy production in period from January 2002 to May 2007
Comparison of on-roof and façade PV field in the year 2006
The module efficiency depends on irradiance and solar cell operating temperature

Both fill factor and efficiency decrease with temperature

\[
\frac{\partial FF}{\partial T} < 0 \quad \frac{\partial \eta}{\partial T} < 0
\]

At crystalline silicon cells

\[
\frac{1}{\eta} \frac{\partial \eta}{\partial T} \approx 0.5\%K^{-1}
\]
This gives the efficiency decrease of about 0.6% per 1K, which is higher than supposed decrease of cell efficiency (about 0.4% per 1K).

It means that an increase of losses with increasing temperature in other parts of system cannot be neglected.
PV modules

Cell operating temperature

\[T_c = T_a + r_{thca} G_{ab} \]

\[r_{thca} = \frac{r_{thcaf} r_{thcab}}{r_{thcaf} + r_{thcab}} \]

\[r_{thcaf} = \frac{d_f}{\lambda_f} + \frac{1}{h_f} \quad r_{thcab} = \frac{d_b}{\lambda_b} + \frac{1}{h_b} \]

Module temperature \(T_{\text{mod}} \) can be measured on the rear of the module

\[T_c = T_{\text{mod}} + \Delta T \frac{G}{G_{SCT}} \]
Influence of temperature

Open circuit voltage V_{OC} depends on the cell temperature T_c

$$V_{OC}(T_c) = V_{OC}^* + (T_c - T_c^*) \frac{dV_{OC}}{dT_c}$$

$$T_c = T_m + \frac{G_{eff}}{G^*} \Delta T$$

Temperature of the back surface T_m

$$T_m = T_a + \frac{G_{eff}}{G^*} \left[T_1 \exp(b v_w) + T_2 \right]$$

v_w is the wind velocity

<table>
<thead>
<tr>
<th>Type</th>
<th>T_1 [°C]</th>
<th>T_2 [°C]</th>
<th>b</th>
<th>ΔT [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass/cell/glass</td>
<td>25.0</td>
<td>8.2</td>
<td>-0.112</td>
<td>2</td>
</tr>
<tr>
<td>Glass/cell/tedlar</td>
<td>19.6</td>
<td>11.6</td>
<td>-0.223</td>
<td>3</td>
</tr>
</tbody>
</table>
The cell temperature increase depends on the ambient temperature, the irradiance and the wind speed w

$$r_{thca_b} = \frac{d_b}{\lambda_b} + \frac{1}{h_b} \quad r_{thca_f} = \frac{d_f}{\lambda_f} + \frac{1}{h_f} \quad h_k = A_k (w)^{3/4}$$
Temperature distribution over the PV field areas

45°

90°
Temperature distribution over the PV field areas

The module temperature distribution is position sensitive
The cell operating temperature in the case of building integration

The building surface should be thermally isolated

Placing PV modules directly on the thermally isolated surface results in one-side cooling and consequently, in a higher operating temperature

\[
T_c = T_a + r_{\text{thca}} G_{ab}
\]

\[
r_{\text{thca}} = \frac{r_{\text{thcaf}} r_{\text{thcab}}}{r_{\text{thcaf}} + r_{\text{thcab}}}
\]

\[
r_{\text{thcaf}} = \frac{d_f}{\lambda_f} + \frac{1}{h_f}
\]

\[
r_{\text{thcab}} = \frac{d_b}{\lambda_b} + \frac{1}{h_b}
\]

\[
r_{\text{thcab}} \gg r_{\text{thcaf}} \implies r_{\text{thca}} \approx r_{\text{thcaf}}
\]

Cooling the back surface of PV modules is very important
Non-uniform temperature distribution on a back-ventilated PV façade

- south-west oriented, 3 independent PV fields (E1, E2, E3), 2 separated parts
- 176 c-Si PV modules Solartec SI72 110 W_p / 24 V, 18.66 kW_p in total, 166.3 m^2
- 100 mm wide naturally ventilated air gap between PV modules and insulated wall

- geometry of the PV facade -
- photo of the PV facade -
Temperature distribution

- daily peak temperatures at 1630 (30 min after irradiance peak)
- ambient conditions ($G_{\text{hor}} = 675$ W/m2, $G_{\text{in-plane}} = 644$ W/m2, amb. temp. 24.4 °C)
- the temperature distribution is highly non-uniform along the height
The string is operating at MPP \(I = I_{mp} \)

Experimentally found \(I_{mp} \) practically independent on temperature

\[
P_{mp} = I_{mp} \sum_{i=1}^{n} V_{mp}(T_i) = nI_{mp} V_{mp}(T_{AV})
\]

\(T_{AV} \) is average cell temperature in the string
Strings in parallel

It is impossible to operate both in parallel connected cells (strings) of different temperatures in maximal power points (MPP) at the same time.

The efficiency decrease due to in parallel connection of cells with different temperature was about 0.15% per °C in comparison with cells operated on the same (average) temperature.
Measured vs. calculated profiles of conversion efficiency and DC output power for the façade PV field in the period of the highest temperature non-uniformity.

\[\eta_{\text{conv}} = \eta_{\text{STC}} \cdot (1 + \gamma(T_{\text{cell}} - T_{\text{cell,STC}})) \]

\[\eta_{\text{conv}} = \eta_{\text{STC}} \cdot (1 + \alpha I(T_{\text{cell}} - T_{\text{cell,STC}}) \cdot (1 + c_1 \cdot \ln(G/G_{\text{STC}}) + c_2 \cdot (\ln(G/G_{\text{STC}}))^2 + \beta V(T_{\text{cell}} - T_{\text{cell,STC}})) \]
100 mm wide naturally ventilated air gap between PV modules and the roof thermal isolation
Conclusions

- Facade PV system applications can produce about 66% of electrical energy produced by the roof (45° tilted) one
- Efficiency of PV systems is strongly influenced by temperature
- PV field constructions should allow an effective cooling of PV modules
- In parallel should be connected the module strings with the same average temperature