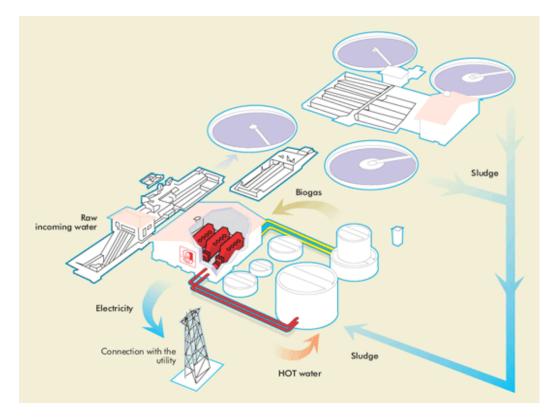
CASE-BASED REASONING CONTROL OF BIOLOGICAL WASTE WATER TREATMENT INTENDED TO BIOGAS PRODUCTS

Assoc. Prof. Dr. ATANAS ATANASSOV

University of Chemical Technology and Metallurgy – Sofia Department of Computer Science

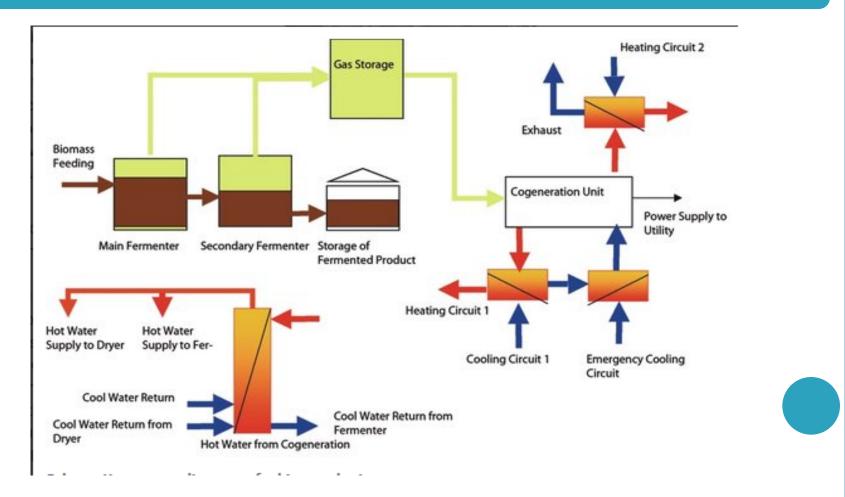
MAIN TOPICS


- Introduction
- Biogas from wastewater products
- Control of wastewater treatment plants (WWTP)
- Case-Based Reasoning /CBR/ approach
- Application of CBR for supervisory control of WWTP
- Conclusions

INTRODUCTION

- According to EU directives up to year 2020 in Bulgaria 16% of the energy must be produced by RES.
- The Co-generation installations using Biogas and sludge are of the promising potential sources.
- Supervisory control of wastewater facilities becomes of great importance, both for quality waste water cleaning and for sludge products used as sources for biogas.
- Current presentation describes the application of Case-Based Reasoning Supervisory Control of wastewater treatment plant.

BIOGAS FROM WASTEWATER PRODUCTS


Stages of wastewater treatment

- Mechanical treatment
- Chemical treatment
- Biological treatment (anaerobic)
- Sludge treatment in fermenters
- Using biogas in Cogeneration unit for electricity and hot water production

BIOGAS FROM WASTEWATER PRODUCTS AND BIOMASS

Stages of biomass treatment

BIOGAS FROM WASTEWATER PRODUCTS

TEDOM Co-generation Unit

- Technical data:
- Gas internal combustion engine with 6 cilinders.
- 160 kW electricity power
- 177 kW thermal power
- maximum gas consumption – 65 m³/h

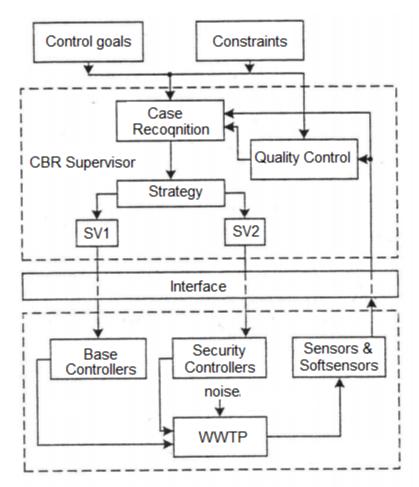
CONTROL OF WWTP

• Problems that arise in the control of wastewater treatment plants (WWTP) are constantly subject to disturbances of different nature, namely

• external:

- resulting in changes in the debit and composition of the incoming water,
- caused by the way of living and climate impacts,

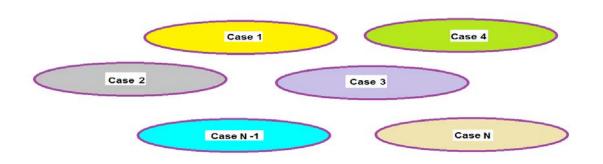
• and internal:


- as operator errors,
- technical errors,
- and equipment failure.

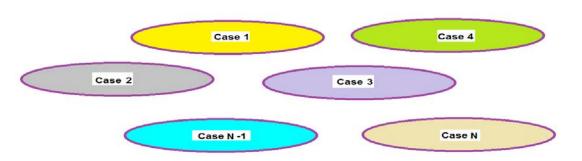
CONTROL OF WWTP

- Optimal control of WWTP requires for the particular condition of the disturbing inputs to minimize material and energy costs and maintenance, in compliance with legal requirements for the quality of the treated water.
- In supervisory process control the implementation of iterative procedures for finding optimal control is not recommended due to the possibility of falling into local extreme or uncertainty in terms of completion of iterative procedures.
- For the purposes of supervisory control of biological wastewater treatment in this work is proposed an approach based on precedents (Case-Based Reasoning (CBR)

CONTROL OF WWTP


CBR Supervisory Control

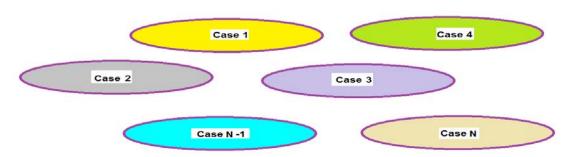
- High level (Goals and Constraints
- CBR Supervisor Unit
- Interface
- WWTP with SCADA system including:
 - Sensors
 - Base Controllers
 - and Security Controllers


CASE-BASED REASONING (CBR)

The Basics of CBR

- The method of precedents (CBR) is a method of Artificial Intelligence.
- The basic idea of CBR is that "in similar situations we take similar decisions".
- In its classic form, it is a method of non-model control and is based on the accumulated expertise. It allows the presentation and retrieval of the best solutions for specific process control.

What are the CBR cases ?

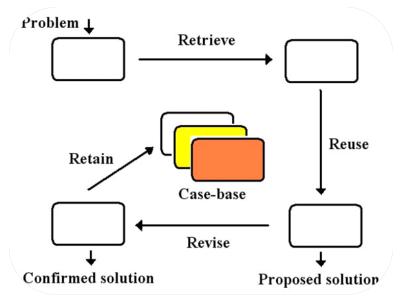

•Cases are the main object in CBR systems.

•They can be represented as free text or in structural type when the cases are represented as a parts of data base (case base).

•All structural cases are described as a pair of problem-solution. The problem $p_i = (a_i, v_i)$ is a structure of attributes and values, described by the 2 vectors:

 $\mathbf{o}\mathbf{a}_{i} = (\mathbf{a}_{i1}, \mathbf{a}_{i2}, \dots, \mathbf{a}_{ir})$ - attribute vector $\mathbf{o}\mathbf{v}_{i} = (\mathbf{v}_{i1}, \mathbf{v}_{i2}, \dots, \mathbf{v}_{ir})$ - value vector.

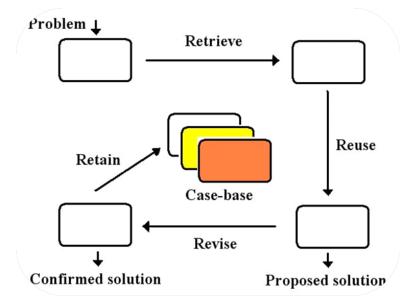
What are the CBR cases ?


•The solution s_i is represented as vectors, defined by the specific tasks. In multidimensional supervised control tasks, the decision includes two vectors:

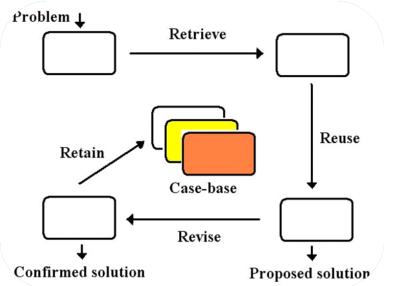
• $s_i = (sp_i, pr_i)$, where the first vector

 $osp_i = (sp_{i1}, sp_{i2},...,sp_{iq})$ consists of set-points of the controllers on first hierarchical level, and the second

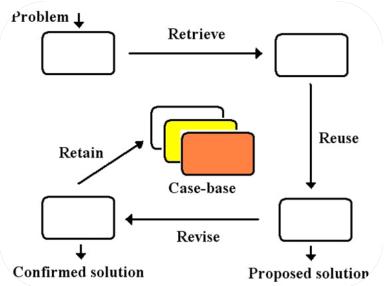
 $\mathbf{opr}_i = (\mathbf{pr}_{i1}, \mathbf{pr}_{i2}, \dots, \mathbf{pr}_{im})$ – values of the target parameters, corresponding to the set-points.


Case-Based Reasoning Stages (CBR – R4 circle)

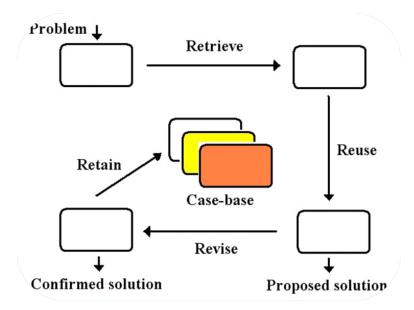
- **Retrieve** process of extraction of one (nearest neighbor) or a group of cases (k-nearest neighbors) having closest definition to the current problem.
- The global similarity between the problems of these cases (the new **p**_{new} and the one in the case base **p**_j) is presented by following expression:


$$sim(p_{new}, p_j) = \sum_{i=1}^{n} w_i sim_i(p_{newi}, p_{ji})$$
, and

Case-Based Reasoning Stages (CBR – R4 circle)


Where \mathbf{w}_i is the weight of i-th attribute $0 \le w_i \le 1$ and $sim(p_{newi}, p_{ji})$ is the local similarity between i-th attributes in the case base DB. $sim(p_{new}, p_j) = \sum_{i=1}^{n} w_i sim_i(p_{newi}, p_{ji})$ $\sum_{i=1}^{n} w_i = 1$

Case-Based Reasoning Stages (CBR – R4 circle)


- **Reuse** reuse of the solutions of chosen in the first step one or k-nearest neighbors.
- When only one nearest case is chosen, the solution of the new problem $\mathbf{s_{new}}$ will be the solution of the chosen case $\mathbf{s_{NN}}$.
- When k-nearest neighbors are chosen, the solution of the new case is calculated on the base of adaptation of k-nearest neighbors' solutions

Case-Based Reasoning Stages (CBR – R4 circle)

- **Revise** decision propriety and utility verification, made on the Reuse stage.
- This verification is mostly done by an expert or it is made based on simulation researches if there is a mathematical model available.

Case-Based Reasoning Stages (CBR – R4 circle)

• **Retain** – saving (retaining) the new solution in the case base for future use, if it is successful.

Case structure in wastewater supervisory control

 $\circ~$ Each case c_i here can be presented as a structure of "problem-solution-forecast and economic efficiency"

•
$$\mathbf{c}_i = (\mathbf{p}_i, \mathbf{s}_i, \mathbf{pr}_i, \mathbf{ee}_i)$$

Ο

- The problem **p**_i = (**a**_i, **v**_i) consists of attributes and values vectors, as given above.
- The solution $s_i = (sp_{i1}, sp_{i2},...,sp_{iq})$ consists of set-points of the controllers on first hierarchical level, and the second
- $\mathbf{pr}_i = (\mathbf{pr}_{i1}, \mathbf{pr}_{i2}, \dots, \mathbf{pr}_{im})$ values of the target parameters, corresponding to the set-points.
- Vector of indices characterizing the economic efficiency of the ith case is denoted by ee_i = (ee_{i1},eer_{i2},...,ee_{ip})

Attributes describing the problem for the specific task

• The successful implementation of supervisory control setting is the ability to measure the concentrations of the most important components in the process of biological treatment. As attributes of the problem are selected variables that in modern WWTP are measured continuously.

 $\mathbf{a} = (Q_{in}, SNH_{in}, SNO(2), SNH(2), MLSS)$

 $\mathbf{Q}_{\mathbf{in}}$ marked fuel inlet water purification,

 SNH_{in} is the concentration of ammonia nitrogen in the incoming water, and its concentration is SNH(2) output of denitrification,

SNO(2) is the concentration of nitrate nitrogen output of nitrification and **MLSS** is concentration of suspended solids in the tank floor.

Attributes describing the solutions (decisions)

• Decision are the set-points of controllers in the first hierarchy:

$$\mathbf{s} = (\mathbf{DO}^0, \mathbf{Q}_{\mathrm{a}}, \mathbf{Q}_{\mathrm{r}}, \mathbf{Q}_{\mathrm{w}}, \mathbf{Q}_{\mathrm{carb}})$$

- **DO**⁰ is the concentration of dissolved oxygen,
- $\mathbf{Q}_{\mathbf{a}}$ is the internal recycle,
- $\mathbf{Q}_{\mathbf{r}}$ is recycle of the activated sludge,
- $\circ \mathbf{Q}_{\mathbf{w}}$ is excessive sludge and
- $\mathbf{Q}_{\mathbf{carb}}$ of external carbon.

Target variables

• Target variables in the treated water that match attribute values and assignments to regulators and is expected to be achieved by appropriate control are:

$\mathbf{pr} = (COD_e, BOD_e, TN_e, SNO_e, SNH_e, HRT, SRT)$

Variables with index "e" refer to the composition of the treated water at the outlet of the WWTP, namely: COD_e is chemical oxygen demand, BOD_e is biological oxygen demand, TN_e is the concentration of total nitrogen, SNO_e - of nitrate and nitrite nitrogen and SNH_e ammonium nitrogen. HRT and SRT are the times to stay relevant in the biological stage of water and sludge.

Indicators of economic performance

• Indicators of economic performance are:

• Ee = (EQ, z)

- $EQ = E_{aer} / Q_{in}$ is the energy consumption for aeration E_{aer} relative to the cost of wastewater treatment Q_{in}
- z is an expert assessment of the costs of chemicals, which varies in the range 0 <= z <= 1.

Generation of Case Base with optimal cases

1.To generate the initial DB with optimal precedent the following procedure was developed:
1.Mathematical model of biological treatment, including a description of the processes in the bioreactor according to mathematical models ASMs and in the secondary clarifier is adapted to the specific WWTPs sizes and parameters in the mathematical models on which they are most sensitive.
2.Using historical process data we choose a number of different

precedents represented by attribute values, complemented by expert generated precedents in areas where there is not enough information.

Generation of Case Base with optimal cases

3.Off-line solution of the problem of static optimal control of biological treatment, which is worded as follows:

For known values of attributes of a particular precedent to find optimal values of the control outputs on supervisory level that are set-points of the controllers of first hierarchical level, so as to satisfy the optimality criterion:

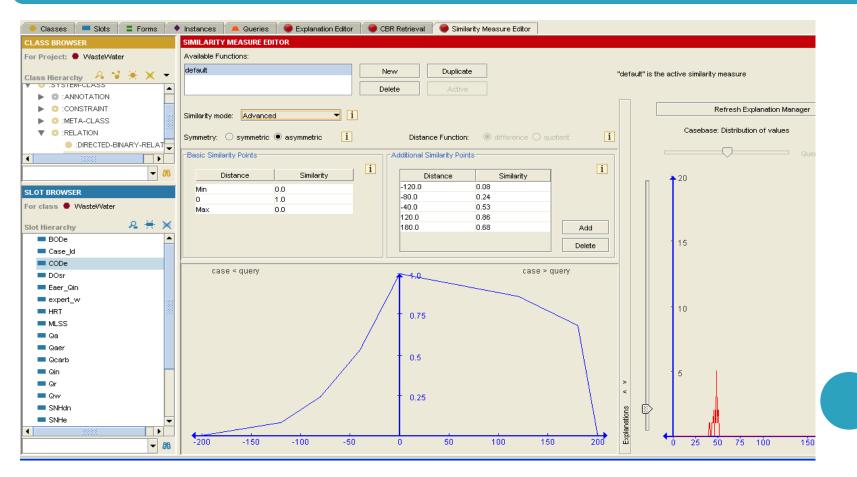
minimum energy consumption for aeration $E_{\tt aer}$ / $Q_{\tt in}$

and / or a minimum consumption of chemicals (z),

wherein subject to the restrictions on the concentrations of the components in the purified water, level of sludge in the secondary clarifier and the concentration of dissolved oxygen.

1. Definition of the WasteWater Class Attributes

🔏 WasteWater Protégé 3.4.4 🛛 (file:\G:\te	stow%20cbr\WasteWater.pprj, Protégé Files (.pont a	nd .pins))	
<u>File Edit Project Window Code MyCBR</u>	Collaboration Tools <u>H</u> elp		
	ı ⊿ <i>\ \</i>		4
New Project			<u> </u>
🔶 Classes 🛑 Slots 🚍 Forms 🔶 Instar	nces 📃 🔺 Queries 🛛 🥮 Explanation Editor 👘 🔮 CBR Retrieval	Similarity Measure Editor	
SLOT BROWSER	SLOT EDITOR		
For Project: 🗢 WasteWater	For Slot: FM_cod (instance of :STANDARD-SLOT)		
Slot Hierarchy 🔒 🗮 💌	Name	Documentation	Template Values
BODe			
BODin			
CaseStr	Value Type		
CODe	Float		Default Values
Code			Default Values
CODin		Cardinality	
DOsr		required at least	
FM_cod HRT			
		multiple at most 1	Domain
PO4 Pe		Inverse Slot 🔗 😤 📑 🖃	WasteWater
■ Qa	Minimum Maximum		
Ccrab	0.0 100.0		
■ Qf			
Qin			
Qr			
■ Qw			
Sludg_age			
SNHe			
SNHin			
SNOe Ssin			
TNe			
TPe			
TPin			
T 550			
✓ 88			


2. Creation of a Class and adding Attributes to the Class

🍕 WasteWater Protégé 3.4.4 🛛 (file:\G:\tes	stow%20cbr\WasteWater.pprj, Proté	gé Files (.pont and	l .pins))		
Eile Edit Project Window Code MyCBR C	Collaboration Tools <u>H</u> elp				
😑 Classes 🛛 💻 Slots 🗧 Forms 🔶 Instanc	ces 🛛 🔺 Queries 🛛 🥮 Explanation Editor	🔘 CBR Retrieval	🥮 Similarity Measure Editor		
CLASS BROWSER	CLASS EDITOR				
For Project: 🕈 WasteWater	For Class: VasteWater (instance of	STANDARD-CLASS)			
Class Hierarchy 🛛 🔒 🤘 💥 👻 👻	Name		Documentation	Constraints	
	WasteWater		bocumentation	Constraints	
V O :SYSTEM-CLASS					
ANNOTATION	Role				
CONSTRAINT	Concrete 😑	•			
O :META-CLASS					
V O:RELATION	Template Slots				P P.
DIRECTED-BINARY-RELATION	Name	Cardinality	Туре	Other Facets	
WasteWater	BODe	single	Float	mi⊓imum=0.0, maximum=50.0	
	BODin	-	Integer	minimum=0, maximum=500	
	CaseStr	-	String		
	CODe	-	Float	minimum=0.0, maximum=200.0	
	Code	-	Integer	minimum=1, maximum=1000	
	CODin DOsr	-	Integer	minimum=1, maximum=800	
	FM cod	-	Float Float	minimum=0.0, maximum=100.0 minimum=0.0, maximum=100.0	
		-	Float	minimum=0.0, maximum=150.0	
	MLSS	2	Integer	minimum=100, maximum=10000	
	PO4_Pe	-	Float	mi⊓imum=0.0, maximum=100.0	
	Qa	single	Float	minimum=0.0, maximum=5000.0	
	🔲 💻 Qcrab	single	Float	minimum=0.0, maximum=100.0	
	🔲 🖬 Qf	single	Float	mi⊓imum=0.0, maximum=100.0	
▼ 88	💻 Qin	single	Float	minimum=200.0, maximum=1800.0	
	🔲 Qr	single	Float	minimum=0.0, maximum=5000.0	
Superclasses e	Qw Qw	-	Float	minimum=0.0, maximum=5000.0	
• :RELATION	Sludg_age	-	Float	minimum=0.0, maximum=100.0	
	SNHe	-	Float	minimum=0.0, maximum=10.0	
	SNHin SNHin	single	Float	minimum=0.0, maximum=100.0	

3. Definition of Local Similarity Function of DOsr Attribute

🔍 Classes 🛛 💻 Slots 🔹 Forms 📢) Instances 🔼 Queries 🔴 Explanation Editor 🛛 📵 CBR Retrieval 🖉 \varTheta Similarity Measure Editor
CLASS BROWSER	SIMILARITY MEASURE EDITOR
For Project: 鱼 WasteWater	Available Functions:
Class Hierarchy 🔏 💙 🔆 🗙 👻	default New Duplicate "default" is the active similarity measure Delete Active
V O:SYSTEM-CLASS	Refresh Explanation Manager
	Similarity mode: Standard i
O :CONSTRAINT O :META-CLASS	Symmetry: O symmetric @ asymmetric 1 Distance Function: @ difference O quotient 1 Casebase: Distribution of values Oc
V O :RELATION	O Step at: 0.0 O Step at: 0.0 I
:DIRECTED-BINARY-RELAT	
WasteWater	Polynomial with: 1.0 Polynomial with: 1.0
 	Smooth-Step at: 50.0 Smooth-Step at: 50.0
SLOT BROWSER	O Constant: 1.0 I
For class WasteWater Slot Hierarchy BODe	case < query case > query 1.0 case > query 15
Case_ld	0.75
DOsr	
Eaer_Qin	0.5
expert_w	
HRT I	
MLSS Qa	0.25
Qaer	
	-100 -75 -50 -25 0 25 50 75 100 • 12.5 37.5 62.5 87.5

4. Definition of Local Similarity Function of CODe Attribute

5. Definition of Global Similarity Function for WasteWater

🔴 Classes 🛛 💻 Slots 🛛 🚍 Forms 👘	🔶 Instances 🛛 🔺 Queries 🚺	Explanation Editor	🔘 CBR Retrieval	🧶 Similarity M	leasure Editor		
CLASS BROWSER	SIMILARITY MEASURE EDITO	R					
For Project: 曼 WasteWater	Available Functions:						
	default		New	Duplicate		"default" is the active simila	ritu maacura
Class Hierarchy 🛛 🔏 🔰 🔆 🗙 👻							nty mediatric
:THING			Delete	Active			
V O:SYSTEM-CLASS							
ANNOTATION	Similarity mode: Standard	▼ 1					
CONSTRAINT							
► O :META-CLASS	Attributes (Slots):						
V O :RELATION	attribute		discriminant		weight	Local SMF	comment
DIRECTED-BINARY-RELAT	BODe	100%				1 Active SMF	no local similarity measure :
	CODe	100%	✓			1 Active SMF	
WasteWater	Case_ld	100%	✓			1 Active SMF	
	DOsr	100%	✓			1 Active SMF	
- 88	Eaer_Qin	100%	•			1 Active SMF	
	HRT	100%	~			1 Active SMF	
SLOT BROWSER	MLSS	100%	~			1 Active SMF	
For class 💂 WasteWater	Qa	100%	>			1 Active SMF	
	Qaer	100%	>			1 Active SMF	
Slot Hierarchy 🖉 🗎 🗙	Qcarb	100%	>			1 Active SMF	
BODe	Qin	100%	>			1 Active SMF	
	Qr	100%				1 Active SMF	
Case_ld	QW	100%				1 Active SMF	no local similarity measure :
CODe	SNHdn	100%				1 default	
DOsr 200	SNHe	100%				1 Active SMF	
🗖 Eaer_Qin	SNHin	100%	>			1 default	
expert w	SNOdn	100%	•			1 default	
HRT	SNOe	100%				1 Active SMF	no local similarity measure :
MLSS	SRT SolutionStr	100% 30%				1 Active SMF	no local similarity measure :
	TNe	100%				1 Active SMF	no local similarity measure :
a Qa	expert_w	100%				1 Active SMF 1 Active SMF	no local similarity measure :
🔲 Qaer 🗸		100%				TACIVE SWF	
		ed Sum O Minimum an O Maximum					

6. Creating Cases (instances of a Class) via Instance Editor

W	nsteWater Protégé 3.4.4	(file:\G:\testow	%20cbr\WasteWater.ppr	j, Protégé Files (.pont a	and .pins))			
File	<u>E</u> dit <u>P</u> roject <u>W</u> indow Coc	le MyCBR Collabo	oration Tools <u>H</u> elp					
	68 48) X è c	5 4 %					< protégé
•	Classes 💻 Slots 🛢 Form	ns 🔶 Instances	🔺 Queries 🛛 🥮 Explanati	on Editor 🛛 🥮 CBR Retrieva	l 🛛 🧶 Similarity Measure Editor			
C	INSTANCE BROWSER	INSTANCE EDITOR						
For F	For Class: 😑 WasteWater	For Instance: 🔶 V	VasteVVater_Class10003 (ins	tance of WasteWater)				\times \otimes \times
8	₽ \$ ¥ ★ * X +	Qin	CODin	FM Cod	DOsr	Qa	SNHe	SNOe
O :T	♦ WasteWater_Class0 ▲	496.1	223	0.106	2.93	2305.8	0.97	10.0
▼ (WasteWater_Class1000							
1	WasteWater_Class1000	BODin	Ssin	MLSS	Qr	Qw	TSSe	TNe
1	WasteWater_Class1000	113	40.0	4710	768.6	16.0	10.7	12.7
1	WasteWater_Class1000	TNin	SNHin	Sludg Age	Qcrab	Qf		
1	 WasteWater_Class1000 WasteWater_Class1000 	32.0	20.0	6.0	15.0	0.0	ТРе	BODe
	WasteWater_Class1000 WasteWater_Class1000	32.0	20.0				0.0	2.33
	♦ WasteWater_Class1000	TSSin		HRT				
	◆ WasteWater_Class2000	114		14.78			CODe	
	WasteWater_Class2000						45.1	
	♦ WasteWater_Class2000	TPin	PO4 Pe					
		1.0	1.0					
	- 89							
	Types 📑 🖷	Code		Ci	aseStr			
	WasteWater	5		TE	XT FOR CASE specific data or links			
• •								
88								
]	ļ							

7. Case Retrieval (Query to Case Base database)

WasteWater	Protégé 3.4.4 (file:\G:	\testow%20cbr\WasteWater.pprj, Prote	égé Files (.pont and	.pins))			
le <u>E</u> dit <u>P</u> roject	: <u>W</u> indow Code MyCBR	Collaboration Tools <u>H</u> elp					
	~ E É X	è là 🗳 👳					protég
🗕 Classes 🛛 💻	Slots 🗧 Forms 🔶 In:	stances 🛛 📥 Queries 🖌 🥮 Explanation Editor	CBR Retrieval	Similarity Measure Editor			
ETAILS AND QUER							QUERY RESULTS
							1 WasteWater 0.94
VasteVVater 💌	🛃 Retrieve 🛛 💕 Load 🔰	🎙 Save X Clear 🛛 🍮 Reset			< Previous 🔷 > Ne	ext	2 WasteWater 0.93
							3 WasteWater 0.93
	Query	WasteWater_Class40001	/WasteWa	ter_Class20003	WasteWater_Class20001		4 WasteWater 0.92
		1	⇔	2 ⇔	3	\Rightarrow	5 WasteWater 0.92
1		0.94		0.93	0.93	6	6 WasteWater 0.92
BODe	_undefined_	2.54	3.09	3.08			7 WasteWater 0.92
BODin	300	215	0.92 206	0.91 206		0.91	8 WasteWater 0.92
CODe	_undefined_	47.2	50.0	49.9			WasteWater 0.92
CODin	400	425	0.97 408	0.99 408		0.99	10 VVasteVVater 0.92
CaseStr	_undefined_	_undefined_	_undefined_		lefined_	ŀ	11 WasteWater 0.91
Code	_undefined_	17	13	11		į	12 WasteWater 0.91
DOsr	_undefined_	1.45	1.89	1.91			13 WasteWater 0.91
FM_cod	0.5	0.277	1 0.335	1 0.32			14 WasteWater 0.91
HRT	_undefined_	10.68	8.19	8.63			15 WasteWater 0.86
MLSS	3500	3719	0.98 4900	0.86 4870	1	b ool 1	16 WasteWater 0.85
PO4_Pe	_undefined_	1.0	1.0	1.0			17 WasteWater 0.85
Qa	_undefined_	2305.8	2305.8	WasteWater_Class20003			18 WasteWater 0.83
Qorab	_undefined_	10.0	10.0	MLSS = 4900 => similarity =	0.86		19 WasteWater 0.83
Qf	_undefined_	0.0	0.0	0.0			20 WasteWater 0.82
Qin	1000.0	686.7	0.8 894.9	0.93 849.3	9	0.91	
Qr	_undefined_	768.6	638.6	558.	6		
QW	_undefined_	16.0	16.0	15.0			
SNHe	_undefined_	1.54	1.92	2.0			
SNHin	35.0	35.5	1 30.2	0.95 30.2		0.95	
SNOe	_undefined_	9.55	9.57	9.53			
Sludg_age	_undefined_	5.21	4.08	4.02			
Ssin	_undefined_	84.2	63.6	63.6			
TNe	undefined	12.9	13.6	13.6			
TNin	undefined_	61.8	54.4	54.4			
TPe	_undefined_	0.0	0.0	0.0			•
TPin	undefined	1.0	1.0	1.0			
TSSe	_undefined_	12.2	14.3	14.3			Start: 3:40:17
TSSin	_undefined_	233	236	236			Finish: 3:40:17
				200			Finish: 3:40:17

CONCLUSIONS

- An approach for supervisory control of biological purification of waste water is developed.
- The approach is based on a combination of offline solving the optimization problem in order to form the initial Case Base and optimal real-time control using (Case Based Reasoning).
- For software implementation is used myCBR a plug-in of ontology editor Protégé.
- If for new specific case the realized control output is optimal, this precedent (case) is added to the Case Base database with which it is updated continuously.

CONCLUSIONS

- Proposed CBR solution for optimal WWTP control guarantee the quality of purified water and biogas parameters (65% methane).
- It is applied in Co-generation units with max electricity/thermal power of 160/177 kW in town of Sliven, Varna, etc.
- Similar CBR control can be applied to Cogeneration power stations, as well in other installations related to specific RES.
- For example CBR recommender systems for selecting optimal places or prices for building PV plants.

THANK YOU FORYOUR ATTENTION!