We develop a classification of perfectly transmitting resonances occurring in effectively one-dimensional optical media which are decomposable into locally reflection symmetric parts. The local symmetries of the medium are shown to yield piecewise translation-invariant quantities, which are used to distinguish resonances with arbitrary field profile from resonances following the medium symmetries. Focusing on light scattering in aperiodic multilayer structures, we demonstrate this classification for representative setups, providing insight into the origin of perfect transmission. We further show how local symmetries can be utilized for the design of optical devices with perfect transmission at prescribed energies. Providing a link between resonant scattering and local symmetries of the underlying medium, the proposed approach may contribute to the understanding of optical response in complex systems.