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1 Summary

The interaction of an externally applied electric field with a liquid can give
rise to interesting flow instabilities and pattern formation. For example, it
has been demonstrated that the application of an electric field to an initially
flat polymer-air or polymer-polymer interface may result in an electrohydro-
dynamic instability which leads to the formation of columnar structures. This
phenomenon could be exploited in order to form well-controlled patterns at the
microscale and nanoscale with many practical engineering applications. The
scope of the present research project is to achieve fundamental understanding
of the electrically-induced flow of viscoelastic liquid films and to investigate the
effect of various factors (e.g. the complex fluid rheology, the presence of surface
active materials or free charge along the liquid-air or liquid-liquid interfaces,
geometric configuration, etc) that may play an important role in such a process.

It is well known that the dynamics and stability of liquid films can be very
rich and it is characteristic that despite the fact that the first attempts to ad-
dress the stability of a simple system such as a clean (without surfactants)
Newtonian liquid film under the effect of gravity appear in the literature in the
late 50’s full understanding of the underlying mechanisms was not achieved until
recently. One of the goals of the present study was to expand our understand-
ing on the stability of the liquid films in the presence of surface active materials
(surfactants). The reason for this is threefold. On one hand, the interaction of
a surfactant-ladden film with an electric field is of interest for controlled pat-
tern formation at the micro- and nano-scale. For example, ionic surfactants
may interact with the electric field thereby affecting interfacial concentration
and imposing specific patterns in the liquid. On the other hand, surfactants at-
tribute non-Newtonian properties to the liquid, because the free surface attains
surface elasticity and surface viscosity. Also, at high surfactant concentrations,
micelles may form in the bulk and complicate its rheological behavior, render-
ing the solution viscoelastic. Finally, the governing equation that describes the
conservation of surfactant concentration along the interface is identical to the
equation that describes the conservation of free charge in the case of dielectric
materials. These systems share many similar characteristics and it is possible
to draw conclusions from the analogy between them. To this end, we formu-
lated the Orr-Sommerfeld equation for a surfactant-laden film with appropriate
boundary conditions, and solved it numerically for arbitrary disturbances and
analytically for long-wave disturbances. The results from our analysis demon-
strate the significant effect of surfactant solubility and sorption kinetics on the
stability characteristics and provided useful insight in the non-linear dynamics
of the flow. The results from this this work have been published to the Journal
of Fluid Mechanics. In a subsequent paper that has also been submitted for
publication to the Journal of Fluid Mechanics we have investigated the role of
surfactants on the mechanism of the long-wave instability in liquid film flows.
We have also made announcements to several local and international confer-
ences.

A second goal of this research project was to develop a robust numerical
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algorithm capable of handling the flow of viscoelastic material with large in-
terfacial deformations. To account for the viscoelastic effects the constitutive
model of choice was the Phan-Thien and Tanner (PTT), considerably more so-
phisticated than the linear models often used in the literature, which is based
on network theory. This differential model can predict normal stresses, a finite
extensional viscosity which is extensional hardening with increasing extension
rate followed by either a constant extensional viscosity, in the linear version of
the model, or extensional thinning in its exponential version and shear thinning.
All these effects are observed in the majority of viscoelastic fluids. One of our
aims was to make as less assumptions as possible, e.g. to avoid the use of lubri-
cation approximation often encountered in the literature, in order to describe
the flow dynamics as accurately as possible. To this end, we solve the governing
equations numerically in 2D and we discretize the momentum and continuity
equations using the finite element/Galerkin method while the constitutive equa-
tion for the stresses are discretized using the streamline upwind PetrovGalerkin
(SUPG) method. This scheme has been combined with an elliptic grid gener-
ator which is able to follow the large deformations of the flow domain in time.
This algorithm has been tested against standard benchmark problems (e.g. the
steady viscoelastic extrusion flow) and was proven very robust for single fluid
systems; as a side product we also examined the stability of this system and this
work has been submitted for publication in the Journal of Non-Newtonian Fluid
Mechanics. In order to include the effect of the electric field and the presence
of a second phase (i.e. to study the system of two liquids sandwiched between
to electrodes or a single liquid under air) we extended our numerical algorithm
by introducing two discrete physical domains (one for each phase) fully taking
into account the presence of a liquid-liquid interface and the discontinuity that
arises in the stress field and the electric displacement (in the presence of free
charge along the interface) between the two phases. The development of such
an algorithm is very important not only for the purposes of this research project
since it can also be used to study a wide variety of two phase flows with numer-
ous industrial and scientific applications. The code has been validated against
standard benchmark problems for case with and without the presence of electric
fields.

Using the numerical code that has been developed, we have carried out an ex-
tensive parametric analysis to determine the effects of the various geometric and
rheological parameters on the evolution of the interface and on the fabrication
limits of this process. We studied the flow of both Newtonian and viscoelastic
films under the action of homogeneous or heterogeneous electric fields imposed
by the presence of either flat or patterned electrodes. Attention was focused on
the non-linear dynamics of the flow, and it was interrogated in particular how
the dynamics is influenced by the rheological characteristics of the material and
how in turn it affects the fabrication limits of this process. We have shown that
a metastable state of finite amplitude interfacial deformation is possible before
eventually the perturbations grow until they reach the top electrode; during the
late stages of the flow a coarsening process also takes place. Our non-linear
simulations provide a better agreement with experimental observations for the
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amplitude of the pseudo-steady state in comparison to the earlier predictions of
linear theory.

We have shown that under the influence of a patterned electrode the effect
of elasticity is more involved than what is suggested by linear theory for the
case of an homogeneous electric field. We find that shear polymeric stresses are
destabilizing at early times, as predicted by linear theory, but become stabi-
lizing at later stages of the flow. Normal stresses, on the other hand, become
increasingly important as the liquid-air interface deforms, destabilizing the film.
Most of the research studies in the literature make use of the lubrication theory
which typically neglects the presence of normal stresses. However, we were able
to show that at late times normal stresses become dominant and cannot be ig-
nored for the accurate prediction of the flow dynamics, rendering the lubrication
approximation invalid. We also found that the fabrication limit on the period
of the electrode protrusions appears to depend on the elasticity of the material,
contrary to the predictions of linear theory of a constant most dangerous wave-
length in the case of a flat electrode (homogeneous electric field). this indicates
that for the proper design of suitable mask electrodes and in general for the
optimization of the fabrication process, it is important to take into account the
material elasticity. Finally, the amplitude of the pseudo-steady interfacial defor-
mations appears to be unaffected by the elasticity of the material and the same
is also true for the critical voltage below which these metastable states arise.
The results of this work have been published in the Journal of Non-Newtonian
Fluid Mechanics and we have also made announcements to several local and
international conferences.

Another part of our study was devoted to the study of the electrohydrody-
namic instability in a system of a trilayer of liquids. The first step of our work
was to develop an efficient numerical algorithm which is capable of simulating
multiple-phase flows of Newtonian or viscoelastic liquids inside a channel. To
this end, we developed a numerical code able to handle an arbitrary number
of phases which was validated against work previously published in the litera-
ture. We perform a parametric study to investigate the effect of surface tension,
applied voltage, the various rheological parameters such as the viscosity ratios
and elasticity of the materials and the various geometry characteristics of the
electrodes various rheological parameters. In the case of flat electrodes (homo-
geneous electric field), it has been found that viscoelasticity has a rather weak
effect even for high values of the Wi number (up to 10) and does not play an
important role in the deformation of the liquid-air and liquid-liquid interface.
We have also considered the case of patterned electrodes and this work is still
under progress. Preliminary results of this work have been presented at the
67th Annual Meeting of the APS Division of Fluid Dynamics in San Fransisco,
USA.

Finally, in order to study the three dimensional structures often seen in
experiments, it was found to be necessary to develop a different numerical al-
gorithm than the one described above, due to computational restrictions in 3D
configuration imposed by the use of a sharp interface model. In the literature
it has been shown that often in the case of 3D multiphase flows it is more ef-
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ficient to use a phase field model instead. Therefore, we have developed a 3D
model Navier-Stokes/Cahn-Hilliard (NS/CH) solver for the simulation of two-
phase flows in the presence of electric fields. We verified the accuracy of our
numerical code against standard benchmark tests for multiphase flows and also
compared against the two-dimensional (2d) results for two-phase flow of Newto-
nian film in the presence of a spatially periodic electric field using the previous
sharp-interface approach. In order to improve the efficiency of the present 2d/3d
diffuse interface model, the implementation of multigrid solvers, parallelization
(MPI, OpenMP), and adaptive mesh refinement have been implemented. A full
parametric study of the 3D problem is already under way and the outcome of
this work will be published in an international peer-reviewed journal.

In summary the work that has been done within the frame of this research
project resulted in the following publications in peer-reviewed international jour-
nals:

• G. Karapetsas and V. Bontozoglou, Non-linear dynamics of a viscoelastic
film subjected to a spatially periodic electric field J. Non-Newtonian Fluid
Mech. 217 (2015) 113

• G. Karapetsas and V. Bontozoglou, The role of surfactants on the mech-
anism of the long-wave instability in liquid film flows, J. Fluid Mech. 741
(2014) 139-155

• G. Karapetsas and V. Bontozoglou, The primary instability of falling films
in the presence of soluble surfactants, J. Fluid Mech. 729 (2013) 123-150

• G. Karapetsas and V. Bontozoglou, Non-linear dynamics of electric field
instabilities in liquid trilayers. to be submitted for publication

• C. Dritselis, G. Karapetsas and V. Bontozoglou, Development of Navier-
Stokes/Cahn-Hilliard (NS/CH) solver for the simulation of two-phase flows
in the presence of electric fields. to be submitted for publication

• D. Pettas, G. Karapetsas, Y. Dimakopoulos and J. Tsamopoulos, On the
origin of extrusion instabilities: linear stability analysis of the viscoelastic
die swell, accepted for publication in J. Non-Newt Fluid Mech.

• G. Karapetsas and J. Tsamopoulos, On the stick-slip flow from slit and
cylindrical dies of a Phan-Thien and Tanner fluid model . II. Linear
stability analysis, Phys. Fluids 25 (2013), 093105

the following papers published in conference proceedings:

• G. Karapetsas and V. Bontozoglou, Non-linear evolution of a viscoelastic
film under the influence of DC and AC electric fields, 10th Panhellenic
Scientific Chemical Engineering Congress, June 2015, Patras, Greece

• D. Pettas, G. Karapetsas, Y. Dimakopoulos and J. Tsamopoulos, Linear
stability analysis of the viscoelastic extrusion flow from a planar die, 10th
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Panhellenic Scientific Chemical Engineering Congress, June 2015, Patras,
Greece

• G. Karapetsas and V. Bontozoglou Non linear evolution of the electrohy-
drodynamic instability of a Newtonian or viscoelastic film under a spatially
periodic electric field FLOW 2014, December 2014, Athens, Greece

• D. Pettas, G. Karapetsas, Y. Dimakopoulos and J. Tsamopoulos Linear
stability of the viscoelastic extrusion flow from a slit die FLOW 2014,
December 2014, Athens, Greece

and the following announcements in international conferences

• G. Karapetsas and V. Bontozoglou, Non-linear dynamics of viscoelastic
liquid trilayers subjected to an electric field, 67th Annual Meeting of the
APS Division of Fluid Dynamics, November 2014, San Francisco, USA

• C. Dritselis, G. Karapetsas and V. Bontozoglou, Non-linear dynamics of
viscous bilayers subjected to an electric field: 3D phase field simulations,
67th Annual Meeting of the APS Division of Fluid Dynamics, November
2014, San Francisco, USA

• G. Karapetsas and V. Bontozoglou, Non-linear dynamics of the electro-
hydrodynamic patterning of viscoelastic materials EFMC10 European
Fluid Mechanics Conference, September 2014, Copenhagen, Denmark

• G. Karapetsas and V. Bontozoglou, The effect of soluble surfactants on the
linear stability of liquid film flow EFMC10 - European Fluid Mechanics
Conference, September 2014,Copenhagen, Denmark

• G. Karapetsas and V. Bontozoglou, A numerical study of electrohydrody-
namic patterning of viscoelastic materials, 7th Conference of the Interna-
tional Marangoni Association, June 2014, Vienna, Austria

• G. Karapetsas and V. Bontozoglou, The primary instability of falling films
in the presence of soluble surfactants, 10th HSTAM 2013 International
Congress on Mechanics, 25-27 May 2013, Chania, Greece

• G. Karapetsas and V. Bontozoglou, Linear stability of falling films in the
presence of soluble surfactants, 27th Conference of European Colloid and
Interface Society, 1-6 September 2013, Sofia, Bulgaria

• G. Karapetsas and V. Bontozoglou, The stabilizing mechanism of surfac-
tants in falling films, 66th Annual Meeting of the APS Division of Fluid
Dynamics, 24-26 November 2013, Pittsburgh, Pennsylvania, USA

• G. Karapetsas and J. Tsamopoulos, Linear stability analysis of the stick-
slip flow of a viscoelastic fluid following the Phan-Thien Tanner model,
66th Annual Meeting of the APS Division of Fluid Dynamics, 24-26 Novem-
ber 2013, Pittsburgh, Pennsylvania, USA
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• G. Karapetsas and V. Bontozoglou, Dynamics of a surfactant-laden falling
film, International Focus Workshop: Multiscale Complex Fluid Flows and
Interfacial Phenomena, 29 October-1 November 2012, Dresden, Germany

• A. Georgantaki, G. Karapetsas and V. Bontozoglou, Dynamics of an in-
clined film in the presence of soluble surfactants, 65th Annual Meeting of
the APS Division of Fluid Dynamics, 18-20 November 2012, San Diego,
California, USA

2 Flow stability of liquid films in the presence
of surface-active materials

2.1 Introduction

The stability of liquid films has attracted the interest of many researchers in the
past because of their importance in a broad range of engineering applications.
Extensive reviews on the rich dynamics of this system and main developments on
the field are given in [1, 2, 3, 4]. Predictions of the critical Reynolds number for
the onset of waves on a clean liquid film (without surfactant) were first provided
by [5] and [6], but a full understanding of the physical mechanism responsible
for this long-wave instability was achieved much later [7, 8], by extending an
argument originally proposed by [9]. It is notable that an unequivocal experi-
mental confirmation of the linear prediction was also significantly delayed [10],
and that an unexpected strong effect of the channel width was reported very
recently by [11] and [12].

It is well known that interfacial instabilities can be significantly affected by
the presence of surface-active materials or surfactants (see for example [13, 14]).
Wave formation in falling films is no exception and this has been known since
the ancient times. Early experimental studies (e.g. see [15, 16, 17]) showed that
the addition of even small amounts of surfactants can have a stabilizing influence
on the flow, dampening the waves that would otherwise arise on a falling liquid
film. The first attempts to investigate the mechanisms that are responsible for
the stabilization of the flow were made by [18] and [19] following different routes.
[18] treated the liquid-air interface as a two-dimensional Newtonian fluid and
examined the effect of various surface properties such as the surface viscosity,
surface elasticity and diffusion of surfactant at the interface from the bulk.
He presented numerical solutions of the Orr-Sommerfeld equation, albeit using
approximate boundary conditions, and concluded that elasticity, which was due
to surface tension gradients, was responsible for the stabilization of the liquid
film flowing down a vertical wall below a critical value of the Reynolds number,
in contrast to the case of clean liquids where the flow is unstable at all Reynolds
numbers. [20] and [21] later presented a perturbation solution of the same
problem in the limit of small wavenumbers. [19], on the other hand, considered
the interface as a 2D viscoelastic fluid and presented an analytical solution of
the Orr-Sommerfeld equation assuming long-wave disturbances. Despite the
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significant differences between the two approaches, in the case of an insoluble
surfactant the analytical prediction was found to be exactly the same, providing
a unambiguous confirmation that the elasticity is the mechanism responsible
for the stabilization of the flow. The asymptotic analysis for large values of the
elasticity parameter by [22] confirmed the findings of the previous works about
the existence of a critical Reynolds number and also showed that the presence
of surfactants results in the decrease of the growth rate and increase of the wave
length of the most unstable mode.

The theoretical results by [18] also suggested that the wave velocity should
increase with increasing elasticity of the interface. However, the experimental
work of [23] indicated that the free surface velocity actually decreases for in-
creased surfactant concentration and this was later confirmed experimentally
and theoretically by [24]. The latter work also noted that surface velocity de-
pends strongly on the surface elasticity and is only mildly affected by surfactant
diffusivity and interfacial mass transport.

More recently the linear stability for vertical film flows with diffusion to the
surface and desorption of the surfactant to the gas phase was also examined by
[25]. They were mostly interested in cases where surface instabilities could be
enhanced by the presence of surfactants and for the purposes of their analysis,
they have chosen to ignore the kinetics of adsorption and assumed that there
is equilibrium at the interface. Enhancement of instability was also shown by
[26] to be possible under conditions for evaporating thin films in the presence of
non-volatile soluble surfactants. [27] used lubrication theory to derive a reduced
order model and examined the linear stability of a similar system taking into
account the sorption kinetics at the interface. They were able to recognise four
new Marangoni-driven modes and it was shown that the observed modes depend
significantly on the sorption kinetics and much less on the equation of state for
surface tension.

The effect of insoluble surfactants on the linear stability of a film flowing
down a corrugated wall in the limit of vanishing Reynolds number was examined
by [28]. Subsequently, [29] presented a numerical solution of the Orr-Sommerfeld
eigenvalue problem for finite Reynolds numbers of a film laden with insoluble
surfactant flowing on an inclined plane and demonstrated the occurrence of the
usual interfacial mode along with a new mode associated to the spatial variation
of the surfactant concentration, while the mechanism responsible for the modi-
fied instability was investigated by [30, 31]. The same problem was also studied
by [32] who presented a systematic analysis of the Orr-Sommerfeld problem of
the full Navier-Stokes and concentration equations and also investigated the
non-linear dynamics in the unstable regime.

Despite the large number of studies on the role of surfactants on film flows
and the fact that this is a very old problem, it appears from the above review
that the effects of surfactant solubility and adsorption/desorption kinetics on the
primary instability and on the unstable dynamics have not yet been adequately
addressed. In addition, there is recent experimental activity that points to a
non-trivial influence of these parameters. For example, [33] performed a series of
experiments on inclined film flows to study the role of different agents that may
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have an important effect on the interfacial tension of water. For the purposes
of their study, Georgantaki et al. used aqueous solutions of Isopropanol (IP)
and Sodium Dodecyl Sulfate (SDS) and found that these two agents exhibit
a remarkably different influence on the flow. More specifically, it was shown
that, in the case of IP solutions, the inlet disturbances turned into solitary
humps preceded by capillary ripples, as would be expected for a clean fluid
with similar surface tension as the IP solution. On the contrary, when SDS
solutions were used, the dominant structures were sinusoidal travelling waves
of small amplitude. These structures were found to be extremely stable for a
wide range of frequencies and up to high Reynolds numbers. Also, with respect
to the primary instability, the same authors observed a strong stabilization of
water films by the addition of small amounts of SDS, whereas previous results
with IP solutions [11] had shown no difference in the critical Reynolds number
from that of other clear liquids with the same Kapitza number (the definition
of Ka is given in section 3 below).

Substances IP and SDS have very different properties, and in a sense repre-
sent two extreme examples of soluble agents that modify the surface properties
of water. IP is very soluble and decreases significantly the surface tension of its
solutions. However, it does not show any particular affinity for the liquid-air in-
terface, and thus may not formally be classified as a surfactant. In contrast, SDS
exhibits strong partitioning between the liquid-air interface and the bulk. The
behavior of these two agents brackets a whole range of additives that are moder-
ately soluble and show an increasing affinity for the interface, and a theoretical
treatment that recovers both limits is evidently welcome. The mechanisms that
are responsible for the transition from the behavior of IP to that of SDS are
not fully understood, and it is speculated that they may be an outcome of the
different solubility and/or sorption kinetics.

The scope of our study is to examine in detail the linear stability of a film
laden with a non-volatile, soluble surfactant and to reveal the role of a surfac-
tant of arbitrary solubility in the initiating and the growth mechanism of the
long-wave instability in liquid film flow. To this end we perform a systematic
analysis of the Orr-Sommerfeld eigenvalue problem of the full Navier-Stokes
and concentration equations, taking into account mass exchange by diffusion
and convection between the bulk and the interfaces, as well as the effect of sorp-
tion kinetics along the liquid-air interface and along the substrate. We focus
on surfactant concentrations below CMC and as a result, we ignore possible
effects of intrinsic surface viscosity [34], which might be non-negligible at higher
concentrations.

2.2 The primary instability of surfactant-laden films

2.2.1 Problem formulation

We consider the dynamics of liquid films flowing along an infinite planar wall,
inclined at an angle α with the horizontal plane (see Fig. 1). The film is laden
with a soluble, non-volatile surfactant which may adsorb at the liquid-air in-
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Figure 1: Schematic of a falling film in the presence of soluble surfactants

terface altering the surface tension, or it can exist in the bulk in the form of
monomers or it may adsorb at the liquid-solid interface. The fluid is Newto-
nian with density ρ, kinematic viscosity ν and surface tension σ; the density and
kinematic viscosity are considered constant whereas the surface tension depends
on the interfacial concentration of the surfactant.

In order to model two-dimensional dynamics, we use a Cartesian coordi-
nate system (x, z), with x pointing in the streamwise and z in the cross-stream
direction. The velocity field is u = (u,w), where u and w are the velocity
components in the streamwise and the cross-stream direction. The liquid-air
interface is located at z = h(x, t) and the liquid-solid interface at z = 0. The
flow is incompressible and governed by the momentum and mass conservation
equations, given below:

ut + u · ∇u +
1

ρ
∇p− ν∇2u− g = 0, (1)

∇ · u = 0, (2)

where p is the pressure, ∇ is the gradient operator and g = g(sinα,− cosα). Un-
less stated otherwise, the subscripts denote partial differentiation with respect
to x, z and time t.

Solutions of (1) and (2) are obtained subject to the following boundary con-
ditions: Along the free surface, the velocity field satisfies the local force balance
between normal and viscous stresses in the liquid. Taking the components of
this force balance tangential and normal to the free surface (z = h(x, t)) we
obtain

n · τ · t = t · ∇sσ, (3)

n · τ · n = −pair + 2κσ, (4)

where n = (−hx, 1)/(1 + h2
x)1/2 and t = (1, hx)/(1 + h2

x)1/2 denote respectively
the outward unit normal and unit tangential vectors on the interface; 2κ is
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the mean curvature of the free surface and ∇s is the surface gradient operator,
defined as

2κ = −∇s · n, ∇s = (I − nn) · ∇, (5)

and τ is the total stress tensor,

τ = −pI + ρν
(
∇u + (∇u)

T
)
, (6)

where I is the identity tensor.
In addition, along the moving interface (z = h(x, t)) we impose the kinematic

boundary condition,
ht + uhx = w. (7)

At the liquid-solid interface (z = 0), the usual no-slip, no-penetration conditions
are imposed,

u = 0, w = 0. (8)

To account for the presence of soluble surfactants, we utilize the surfactant
kinetic model of [35] and [36, 37] that allows in general for two surfactant species
in the bulk (monomers and micelle aggregates) and one at each interface. For the
present study we consider surfactant concentrations below the critical micelle
concentration and thereby we will not account for the presence of micelles but
will only consider monomers that may live in the bulk with concentration, c. The
concentrations of surfactant adsorbed at the liquid-air and liquid-solid interface
are denoted respectively by ca and cs, and they are connected to the local bulk
concentration of monomer according to the following kinetic laws

Sa + c
k1−⇀↽−
k2

ca, (9)

and

Ss + c
k3−⇀↽−
k4

cs. (10)

The terms Si (i = a, s for the interface and the substrate) represent the fraction
of the respective area that is not covered with monomer, and is thus available
for adsorption. They are defined as

Si = 1− ci
ci∞

(i = a, s), (11)

where ci∞ (i = a, s) are respectively the surfactant concentrations at the liquid-
air interface and at the substrate at maximum packing. Note that each ”reac-
tion” used for this model is characterized by a rate constant ki, with i = 1, 2, 3, 4.
The limitation set by the above kinetic laws on the amount of monomer that
can be adsorbed at each boundary leads to Langmuir adsorption isotherms [38].
Indeed, equating adsorption and desorption rates, and taking c as the bulk con-
centration close to the respective interface, we obtain the following expressions
for the interfacial concentrations

ca
ca∞

=
c

c+ (k2ca∞/k1)
,

cs
cs∞

=
c

c+ (k4cs∞/k3)
. (12)
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In the general case away from equilibrium, we use the above kinetic laws
to generate the following fluxes that determine how the surfactant transfers
between the different phases:

Jba = k1c|z=h
(

1− ca
ca∞

)
− k2ca, (13)

Jbs = k3c|z=0

(
1− cs

cs∞

)
− k4cs, (14)

where Jba and Jbs denote the flux of monomers from bulk to liquid-air and
liquid-solid interface, respectively.

The behaviour of the various surfactant species is modelled by the following
advection-diffusion equations:

ca,t +∇s · (usca) + ca (∇s · n) (u · n) = Da∇2
sca + Jba, (15)

ct + u · ∇c = Db∇2c, (16)

cs,t = Ds∇2
scs + Jbs, (17)

where us is the tangential velocity at the interface defined as us = (I − nn) · u
and Di (i = a, b, s) denote the diffusion coefficients of the monomers at the
liquid-air interface, in the bulk and at the substrate, respectively.

For the monomers in the bulk we apply the following boundary conditions
along the interface and the substrate

Jba = −Db (n · ∇c)z=h , (18)

Jbs = −Db (n · ∇c)z=0 . (19)

To complete the description, a constitutive equation that describes the de-
pendence of the interfacial tension on the surfactant concentrations is required.
To this end, we use the Sheludko equation of state [39, 40]:

σ = σc

(
1 +

ca
ca∞

[(
σc
σm

)1/3

− 1

])−3

, (20)

where σc and σm are the surface tensions of a surfactant-free fluid and that
of maximal surfactant concentration, respectively. This model is nonlinear and
asymptotes to a minimal surface tension, σm, at high concentrations of adsorbed
surfactant, which makes it appropriate for use at high surfactant concentrations,
approaching the critical micelle concentration.

The total mass of the surfactant added to the liquid film per unit width,
Mtot, is a conserved quantity, given by∫ L

0

∫ h

0

c dzdx+

∫ L

0

cadx+

∫ L

0

csdx = Mtot, (21)

where L is the length of the falling film.
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2.2.2 Scaling

The governing equations and boundary conditions are made dimensionless, using
the following scalings:

(x̃, z̃) = (x, z)/H, h̃ = h/H, t̃ = tU/H, ũ = u/U,

p = pair + ρgH sinαp̃, (c̃a, c̃s, c̃) =

(
ca
ca∞

,
cs
cs∞

,
c

ccmc

)
,(

J̃ba, J̃bs

)
=

(
Jba
ca∞

,
Jbs
cs∞

)
H

U
, σ̃ =

σ

σc
, M̃tot =

Mtot

HLccmc
,

(22)

where H = (3νQ/(g sinα))
1/3

is the height of the Nusselt flat film, Q is the im-
posed flow rate, U is the corresponding interfacial velocity, U = gH2 sinα/(2ν),
and ccmc is the critical micelle concentration. The tildes denote dimensionless
variables and are henceforth suppressed. Using this scaling, three dimensionless
numbers emerge, the Reynolds, Weber and surface Peclet number, respectively

Re =
χ

2
sinα, We =

Ka

χ2/3 sinα
, Pei = ReSci (i = a, s, b,m), (23)

where

χ =
gH3

ν2
, Ka =

σc
ρg1/3ν4/3

, Sci =
ν

Di
(i = a, b, s), (24)

correspond to a modified Reynolds number, the Kapitza number and the Schmidt
number, respectively. The parametrization shown in Eq. (24) is advantageous
for the study of our system since the modified Reynolds number, χ, is the only
parameter in Eq. (24) that depends on the film height, which is a measure of the
flow rate, whereas Ka and Sci (i = a, b, s) depend only on material properties.
For a given liquid and surfactant the only free parameters are χ and α while
the rest remain constant. This is very useful for our parametric study, and thus
parametrization according to Eq. (24) is preferred over that of Eq. (23), and
will be used extensively in the discussion of the results.

Substitution of these scalings into the momentum and mass conservation
governing equations yields

Re(ut + uux + wuz) + 2px − uxx − uzz − 2 = 0, (25)

Re(wt + uwx + wwz) + 2pz − wxx − wzz + 2 cotα = 0, (26)

ux + wz = 0. (27)

The behaviour of the surfactant monomers in the bulk is governed by the fol-
lowing dimensionless equations

ct + ucx + wcz = Pe−1
b (cxx + czz). (28)

The above set of equations are subject to the following boundary equations
along the interface (z = h(x, t))

−4uxhx + (uz + wx)(1− h2
x) = 2We σx

√
1 + h2

x, (29)
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p+
ux(1− h2

x) + (uz + wx)hx
1 + h2

x

= −We σ
hxx

(1 + h2
x)3/2

, (30)

ht + uhx = w, (31)

ca,t + uca,x +
ca

1 + h2
x

[(ux + hxwx) + hx(uz + hxwz)] =

=
1

Peca
√

1 + h2
x

[
ca,x√
1 + h2

x

]
x

+ Jba,
(32)

hxcx − cz
Peb

√
1 + h2

x

= βaJba, (33)

and along the wall(z = 0)
u = w = 0, (34)

cs,t = Pe−1
cs cs,xx + Jbs, (35)

cz
Peb

= βsJbs. (36)

The dimensionless expressions for the fluxes are shown below

Jba = ka (Rac|z=h (1− ca)− ca) , (37)

Jbs = ks (Rsc|z=0 (1− cs)− cs) , (38)

where the dimensionless parameters βi, ki and Ri (i = a, s) are given by

βa =
ca∞
Hccmc

, βs =
cs∞
Hccmc

, (39)

ka =
k2H

U
, ks =

k4H

U
, Ra =

k1ccmc
k2ca∞

, Rs =
k3ccmc
k4cs∞

. (40)

The dimensionless form of the Sheludko equation of state for the surface tension
is given by

σ =
[
1 + ca

(
Σ1/3 − 1

)]−3

, (41)

where Σ = σc/σm. One additional dimensionless parameter will appear in the
next section, as a result of the linearization of the equation of state around to
base flow. This parameter, the surface elasticity, Eo, is related to the derivative
of surface tension along the interface (Eq. (29)) and is formally defined by Eq.
(66).

At this point, it is instructive to attach physical significance to the various
dimensionless parameters just defined, and to draw attention to the ones that
will be used more extensively in the discussion of the results. Terms βi (i =
a, s) are ratios of maximum total amounts of surfactant in the different phases.
More specifically, they compare the maximum amount that can adsorb on each
boundary to the maximum amount that can reside in the bulk as monomer.
Terms Ri (i = a, s) are ratios of the maximum possible forward and backward
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reaction rates for each of the adsorption processes. Their physical significance
is further clarified by considering local equilibrium: For example, setting the
flux in Eq. (37) equal to zero, results in the expression ca = Rac/(1 + Rac).
For Ra ≤ O(1), we observe that ca < 1 even when c = 1, i.e. the interface
remains unsaturated at the maximum possible concentration of monomer in
the bulk (remember that c is nondimensionalized with ccmc, and ca with ca∞).
On the contrary, for Ra � O(1) the interface is practically saturated at bulk
concentration well below the critical for the formation of micelles.

Parameters βi and Ri may be combined as follows:

ξa = βaRa =
k1

Hk2
, ξs = βsRs =

k3

Hk4
. (42)

Terms ξi (i = a, s) are ratios of the kinetic constants of the forward and back-
ward reaction for each interface-bulk interaction, and thus provide a direct mea-
sure of the surfactant solubility in the bulk liquid [41]. For example, ξa << 1
signifies a highly soluble surfactant, whereas for ξa >> 1 the surfactant is virtu-
ally insoluble and is trapped at the interface. We note that most of the recent
theoretical literature refers to insoluble surfactants, and thus ξa >> 1 is a useful
limit for comparisons.

We will be making extensive use of the solubilities, ξi, in what follows, be-
cause some important aspects of the system behavior are not dictated by the
parameters βi and Ri independently, but only by their combination βiRi. This
is notably the case for the critical Reynolds number and for the concentration
for maximum stability (see Eq. (84) and (90) below).

Finally, parameters ki (i = a, s) are ratios of the time-scale of convection to
the time-scale of each of the reverse reactions. For example, ka << 1 means
that the desorption reaction is slow compared to convection, and thus a tem-
porary decrease of the bulk concentration near the interface will not lead to
significant desorption. Similar comparison for the forward reaction (e.g. extent
of adsorption resulting from a temporary local increase in the bulk concentra-
tion) is accomplished by the parameter kaβaRa = kaξa. Thus, an asymmetry in
the adsorption-desorption tendency may be dictated by the value of ξa, i.e. the
solubility of the surfactant. For example, a sparingly soluble surfactant could
have ka < 1 and kaξa > 1, and as a result, a temporary decrease of the bulk
concentration near the interface will not lead to significant desorption whereas
a temporary increase will lead to significant adsorption.

2.2.3 Linear stability analysis

2.2.3.1 Base state
The set of dimensionless equations and boundary conditions, derived in the

previous section, has a trivial solution corresponding to a flat film with uniform
surfactant concentration. In the case of a clean fluid, this is also known as the
Nusselt flat film solution and its dimensionless form is shown below

ho = 1, uo = 2z − z2, wo = 0, po = (1− z) cotα. (43)
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In order for the above solution to remain valid when a soluble surfactant is
present, the concentration of all the species should be uniform and at equilibrium

(ca, cs, c) = (cao, cso, co), (44)

where cao, cso, co denote the equilibrium values. The equilibrium surface tension
of the liquid-air interface,

σo =
[
1 + cao

(
Σ1/3 − 1

)]−3

, (45)

is also uniform and any variation in concentration would result in surface tension
gradients which would drive additional flows. At equilibrium the fluxes should
be Jba = Jbs = 0. Thus using Eq. (37) and (38) we get

cio =
Rico

1 +Rico
(i = a, s). (46)

We also know that the total mass of the surfactant is given by the following
equation

co + βacao + βscso = Mtot. (47)

The above equation can be solved numerically with respect to co for a given
value of Mtot. Below, we have derived an analytical solution for co and cao,
assuming that there is no adsorption of surfactant at the substrate, cso = 0

co =
−1− ξa +Mtot ξa/βa +

√
4Mtot ξa/βa + (1 + ξa −Mtot ξa/βa)

2

2ξa/βa
, (48)

cao =
−1− ξa +Mtot ξa/βa +

√
4Mtot ξa/βa + (1 + ξa −Mtot ξa/βa)

2

1− ξa +Mtot ξa/βa +

√
4Mtot ξa/βa + (1 + ξa −Mtot ξa/βa)

2
. (49)

The above solution is shown graphically in Fig. 2 as a function of the solubility
parameter ξa and for various values of βa and Mtot. As expected, we find that
for high values of ξa (low solubility) most of the surfactant lives at the interface
whereas for low values of ξa (high solubility) it prefers to live in the bulk.

In the case of an insoluble surfactant, we simply take

cao = M ′tot, (50)

where M ′tot = Mtot/βa and co is equal to zero.

2.2.3.2 Derivation of linearized equations and boundary conditions

We perform a linear stability analysis by perturbing the flow around the
Nusselt flat film solution. To this end we write all variables as the sum of the
base state and a small perturbation

φ = φo + φ, (51)
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Figure 2: Dependence of monomer surfactant concentration at the interface
(left) and in the bulk (right) on the parameter ξa for various values of βa and
Mtot. We assume that surfactant does not adsorb at the substrate (βs = Rs = 0)

18



and linearize the governing equations assuming φ << φo. We end up with the
following linearized disturbance equations

Re(ut +
(
2z − z2

)
ux + 2(1− z)w) + 2px − uxx − uzz = 0, (52)

Re(wt +
(
2z − z2

)
wx) + 2pz − wxx − wzz = 0, (53)

ux + wz = 0, (54)

ct +
(
2z − z2

)
cx = Pe−1

b (cxx + czz), (55)

and the following boundary conditions along the interface

−2h+ uz + wx = 2We σx, (56)

p+ ux − h cotα = −We hxxσo, (57)

ht + hx = w, (58)

ca,t + ca,x + caoux =
ca,xx
Peca

+ Jba, (59)

cz
Peb

= −βaJba, (60)

and along the wall
u = w = 0, (61)

cs,t =
cs,xx
Pecs

+ Jbs, (62)

cz
Peb

= βsJbs. (63)

The linearized perturbation fluxes are shown below

Jba = ka [Ra (c|z=h (1− cao)− coca)− ca] , (64)

Jbs = ks [Rs (c|z=0 (1− cso)− cocs)− cs] . (65)

It is worth noting the linearization of the equation of state for the surface ten-
sion around the base state, σ−σo = (dσ/dca)cao (ca−cao), or σ = (dσ/dca)cao ca.
The above derivative may be reframed in terms of the definition of the dimen-
sionless surface elasticity (scaled with surface tension of a clean fluid, σc), E(ca),

Eo = E(cao) = −
(

dσ

d lnca

)
cao

= −cao
(
dσ

dca

)
cao

, (66)

so that perturbations in surface tension are replaced by perturbations in surface
concentration:

σ = −Eo
cao

ca , σx = −Eo
cao

ca,x. (67)
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Figure 3: Dependence of surface tension and elasticity on the surfactant con-
centration for βa = 0.01.

Using the dimensionless equation of state, surface elasticity is expressed in
terms of the surface concentration by the expression,

Eo =
3cao

(
Σ1/3 − 1

)[
1 + cao

(
Σ1/3 − 1

)]4 . (68)

Fig. 3 shows respectively the functions σ(cao) and E(cao) and their dependence
on the interfacial concentration, cao, and the total amount of surfactant, Mtot.
It is evident that the Sheludko equation of state exhibits a smooth approach to
the limiting values for a clear and for a saturated interface, and that, in both
these limits, the surface elasticity increases smoothly until it saturates for high
amounts of surfactant.

The above set of equations is converted into the Orr-Sommerfeld problem
of the linearized Navier-Stokes and concentration equations by introducing the
following definition for the stream function

u = ψz, w = −ψx, (69)

and seeking disturbances in the form of normal modes. To this end, we write
all variables in the following way

ψ(x, z, t)
c(x, z, t)
ca(x, t)
cs(x, t)

 =


Ψ(z)
C(z)
Ca
Cs

 exp(λt+ ikx), (70)
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and end up with the following set of equations

Re
[(
λ+ ik

(
2z − z2

)) (
Ψzz − k2Ψ

)
+ 2ikΨ

]
= Ψzzzz − 2k2Ψzz + k4Ψ, (71)

Peb
[
λ+ ik

(
2z − z2

)]
C = Czz − k2C. (72)

These equations are subject to the following boundary conditions along the
interface

Ψzzz − 3k2Ψz −Re(λ+ ik)Ψz =

= ik
[
k2Weσo + cotα

] [
Ψzz + k2Ψ + 2ikWe

Eo
cao

Ca

]
,

(73)

(λ+ ik)

[
1

2

(
Ψzz + k2Ψ

)
+ ikWe

Eo
cao

Ca

]
+ ikΨ = 0, (74)

(λ+ ik +
k2

Peca
)Ca = −ikcaoΨz + ka [Ra (C(1− cao)− coCa)− Ca] , (75)

Cz
Peb

= −βaka [Ra (C(1− cao)− coCa)− Ca] , (76)

and along the wall
Ψz = 0, (77)

Ψ = 0, (78)

(λ+
k2

Pecs
)Cs = ks [Rs (C(1− cso)− coCs)− Cs] , (79)

Cz
Peb

= βsks [Rs (C(1− cso)− coCs)− Cs] . (80)

For the case of an insoluble surfactant (ξa >> 1) that does not adsorb to the
substrate, the above system readily reduces to the equations presented by [32].

2.2.3.3 Analytic predictions by long-wave expansion

For the case of a soluble surfactant and for no adsorption of the surfactant
at the substrate, it is possible to perform a long-wave expansion of the above
set of equation for k → 0. To this end, we follow a similar procedure as in [32]
and seek a solution of this formΨ

C
Ca

 =

Ψ0

C0

C0
a

λ0 +

Ψ1

C1

C1
a

λ1ik +

Ψ2

C2

C2
a

λ2k2 +O(k3). (81)

Substituting in Eq. (71)-(80) and assuming Cs = βs = ks = Rs = 0, we expand
the resulting equations in series of k and derive the following expression for the
eigenvalue of the most unstable mode

λ = −2ik +

(
8

15
Re− 6Ma

ξa(cao − 1)2

3ξa(cao − 1)2 + 4
− 2

3
cotα

)
k2, (82)
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where Ma is the Marangoni number defined as

Ma = EoWe = −cao
(
dσ

dca

)
cao

We =
3cao

(
Σ1/3 − 1

)[
1 + cao

(
Σ1/3 − 1

)]4 Ka

χ2/3 sinα
. (83)

The imaginary part of Eq. (82) gives the expected result that long-wave distur-
bances travel with phase speed equal to twice the free surface velocity. The real
part of (82) indicates that the onset of instability occurs when the coefficient of
k2 vanishes. Therefore the critical Reynolds number is given by the following
expression

Rec =
5

4
cotα+

15

4
Ma

3ξa(cao − 1)2

3ξa(cao − 1)2 + 4
(84)

where cao is given by Eq. (49). We note that Eq. (84) is implicit in Rec or χc,
because of the appearance of these dimensionless numbers in the definition of
Ma in Eq. (83). An explicit expression may be derived only for a vertical film,
and is as follows:

χc = 2Rec =

[
15

2
EoKa

3ξa(cao − 1)2

3ξa(cao − 1)2 + 4

]3/5

. (85)

In the limit of an insoluble surfactant (ξa = βaRa >> 1), Eq. (84) reduces
to

Rec =
5

4
cotα+

15

4
Ma (86)

in agreement with the expression given by [32]. For a clear liquid, Ma = 0, both
equations lead to Rec = (5/4) cotα, the well known prediction for a Newtonian
falling film [5, 6]. It is interesting to note that this prediction is also recovered in
the limit of an interface saturated with a mildly soluble surfactant (ca0 → 1, ξa
finite), as well as in the limit of a very soluble surfactant (ξa << 1). The latter
prediction is in agreement with the data of [33], who performed experiments
with the highly soluble Isopropanol and observed a behavior representative of a
clear liquid with reduced surface tension.

2.2.3.4 Numerical method for arbitrary wavelength

The Orr-Sommerfeld eigenvalue problem, which consists of equations (71)-
(80), cannot be solved analytically for arbitrary wavenumbers. The discretiza-
tion of the governing equations is performed using a finite-element/Galerkin
method, and we approximate all the variables through the use of quadratic La-
grangian basis functions φi. Applying the divergence theorem, the weak form
of the governing equations becomes∫ 1

0

[[
Re
[(
λ+ ik

(
2y − y2

)) (
Φy − k2Ψ

)
+ 2ikΨ

]
+ 2k2Φy − k4Ψ

]
φi+

+Φy
dφi
dy

]
dy − [Φyφi]

1
0 = 0,

(87)
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∫ 1

0

(
Φφi + Ψy

dφi
dy

)
dy − [Ψyφi]

1
0 = 0, (88)∫ 1

0

[(
Peb

[
λ+ ik

(
2y − y2

)]
+ k2

)
Cφi + Cy

dφi
dy

]
dy − [Cyφi]

1
0 = 0. (89)

Note that the fourth order partial differential equation for Ψ has been decom-
posed into two second order differential equations by introducing a new variable,
Φ = Ψyy. At the edge nodes we impose the boundary conditions that are given
by Eq. (73-80). The resulting system of algebraic equations is solved numer-
ically with the help of the LAPACK library. The computational domain is
discretized using 50 elements in all the computations presented in this paper;
numerical checks showed that increasing the number of elements further led to
negligible changes.

2.2.4 Discussion

2.2.4.1 The hydrodynamic instability mode

In the present section, we will examine the effect of various parameters con-
tained in our model of a soluble surfactant. Thus, we will identify the range
of physical phenomena that may be described by this model. In particular, we
wish to set the present flow in perspective with the two limiting cases of (a)
a clear liquid, and (b) a liquid doped with an insoluble surfactant. The latter
appears to have attracted most of the attention in the recent theoretical litera-
ture on film flow with surfactants, and as a result the extent and significance of
differences caused by surfactant solubility are presently unclear.

The effect of inertia on the stability of surfactant-laden falling films is demon-
strated in Fig. 4. The values of parameters used are mentioned in the caption,
and constitute a reasonable base case. In particular, we assume that the sur-
factant adsorbs only at the liquid-air interface and not on the solid substrate.
Shown in Fig. 4 is the dispersion relation for increasing values of the modified
Reynolds number, χ. Beyond a certain threshold, χc, the flow becomes unsta-
ble; below this threshold all modes are stable. For the case shown, the critical
χ is equal to 3.74.

It is evident from Fig. 4 that the instability is a long-wave one, and that, for
each unstable χ, a wavenumber with maximum growth rate (the most danger-
ous mode) may be identified. The variation with χ of the wavenumber and the
growth rate of the most dangerous mode at neutral stability is shown respec-
tively for various inclinations in Fig. 5a,b. The conclusion that the instability
is a long-wave one, magnifies the significance of the analytic result, Eq. (84).
Thus, we will be making frequent use of it in the subsequent discussion. How-
ever, the behavior of higher wavenumbers is still very important, because these
harmonics enter into mode interactions that dictate the non-linear evolution of
the interface.

To further examine the effect of inclination angle, we present in Fig. 6a
neutral stability curves for various inclinations. As expected the most unstable
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4.
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case is for α = 90o. For low values of α the flow remains stable up to rather
high values of the modified Reynolds number, χ, and the critical χ increases
abruptly with decreasing wavelength of the perturbations. Fig. 6b presents
the dependence of the critical Re, on inclination for k = 10−4. The agreement
with the analytical prediction, Eq. (84), serves as a check of the accuracy of
the numerical solution. Also shown in Fig. 6b is the prediction for a clear liq-
uid. With decreasing inclination, differences between the two liquids gradually
decrease, because the term (5/4) cotα grows in significance compared to the
Marangoni correction. Thus, hitherto we concentrate on the most interesting
case of a vertical film.

2.2.4.2 Parametric behavior of the critical conditions

We start by considering the critical conditions, which correspond to the
onset of long-wave disturbances, i.e. k → 0. A question of evident interest is
the effect on stability of the total amount of surfactant contained per unit area
of the channel. To this end, we present in Fig. 7a the critical χc as a function
of Mtot, for three different values of the solubility parameter, ξa. The lines
in this figure depict the analytical solution (Eq. 84) while the points depict
the numerical solution which is in very good agreement with analytical solution
testifying thus once again for its accuracy.
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It is notable that the dependence on Mtot is not monotonic, exhibiting max-
imum stabilization at an intermediate value Mtot,max, below the CMC. For very
small, as well as for large values of Mtot, the critical χc approaches the limit of
the clean fluid. This is somewhat counter-intuitive because one would expect
that the more surfactant is present in the system the more stable the system
would be. However, we should keep in mind that it is not the amount of sur-
factant that stabilizes the flow, but actually the Marangoni stresses, which are
related to the elasticity of the interface. When the surfactant exhibits signif-
icant solubility, the behavior is further complicated because of two competing
effects; with increasing amount of surfactant, the dimensionless elasticity, Eo,
grows as depicted in Fig. 3. At the same time, the growth in bulk concentration
provides higher driving force for mass transfer with the interface, leading to the
attenuation of surface tension gradients. As a result, when the adsorbed surfac-
tant at the liquid-air interface approaches saturation, surface tension gradients
decrease and therefore the Marangoni effects become less significant. This is
also reflected in Eq. (84) where the second term on the right hand side is pro-
portional to cao− 1; for an interface saturated with a soluble surfactant (ξa not
very large), the expression for the critical Reynolds reduces to the Newtonian
limit.

The parametric variation of the curves in Fig. 7a with ξa motivates inves-
tigation of two complementary issues: how does the location and how does the
magnitude of the maximum in the critical conditions depend on surfactant sol-
ubility. Thus, in the following, we study Mtot,max and χc,max as a function of
ξa. Starting with the former, we note that the value of Mtot,max can be easily
determined by solving the equation dχc/dMtot = 0, which for α = 90o and after
some manipulation results in the following expression

8Eo + (cao − 1)
[
3ξa(cao − 1)2 + 4

] dEo
dcao

= 0. (90)

The solution of Eq. (90) provides the surface concentration, cao,max, that results
in maximum stabilization, for a surfactant with solubility ξa. It is noteworthy
that cao,max depends solely on ξa, and not independently on βa and Ra. Ac-
cording to the model adopted for surface elasticity, (68), Eo is a function of cao
and Σ, so Eq. (90) needs to be solved numerically.

The variation of the value of cao,max with surfactant solubility is shown
in Fig. 7b. For an insoluble surfactant (ξa → ∞), the flow is most stable
with a saturated interface (cao → 1). This is readily explained by Eq. (86),
in combination with the monotonic dependence of Eo on cao. However, with
increasing surfactant solubility, mass trasfer between the bulk and the interface
(leading to attenuation of surface tension gradients) grows in significance, and,
as a result, maximum stabilization is achieved at lower values of cao,max. For
a highly soluble surfactant (ξa → 0), the most stable interfacial concentration
reaches a plateau cao,max ≈ 0.28.

An alternative way of plotting the above result, also shown in Fig. 7b, is in
terms of the rescaled total amount of surfactant, M ′tot,max = Mtot,max/βa. This
rescaling makes all data for different values of βa collapse on to the single curve
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shown. We note that Mtot and M ′tot represent the total amount of surfactant,
scaled respectively with the maximum capacity of the bulk and of the inter-
face. An interesting observation from Fig. 7b is that the amount of surfactant,
M ′tot,max, corresponding to χc,max is not a monotonic function of the solubility
ξa; a minimum arises for moderate values of ξa, which indicates that optimum
results may be achieved with smaller quantities of a slightly soluble surfactant
than with an insoluble one.

The variation in the magnitude of the maximum, χc,max, with surfactant
solubility is shown in Fig. 7c for three different values of parameter Σ, which is
a measure of the strength of the surfactant and its ability to decrease the surface
tension of the liquid-air interface. We note that χc,max represents the optimum
stabilization of the flow that can be achieved with surfactant of solubility ξa,
and corresponds to the addition of amount Mtot,max. It is observed that, for
soluble surfactants, χc,max increases with the decrease in solubility. However,
below a moderate solubility, the curves reach an asymptotic limit, indicating
that slightly soluble surfactants are equally efficient as insoluble ones.

An interesting observation from Fig. 7c is that there is a maximum stabiliza-
tion that may be achieved, irrespective of the increase in Σ, which in the present
case (and for Ka = 3000) is approximately χc,max ≤ 200. This conclusion de-
pends on the specific model used for surface tension variation. The stability
problem for insoluble surfactant and a vertical film may be solved analytically
with the present model, and gives the result

χc,insoluble =

[(
45

2

)
Ka

Σ1/3 − 1[
1 +

(
Σ1/3 − 1

)]4
]3/5

for 1 < Σ < 64/27,

and

χc,insoluble =

(
1215

512
Ka

)3/5

for Σ > 64/27.

(91)

The above equation may be considered a special case of the general result for
an insoluble surfactant ([18]; [22]),

χc,insoluble =

(
15

2
KaEo

)3/5

. (92)

The aforementioned discussion, and the observation that the curves in Fig.
7a intersect, indicates that, for a specific total amount of surfactant, the de-
pendence of critical conditions on surfactant solubility may be non-monotonic.
Indeed, Fig. 8a shows the critical χ as a function of ξa for different values of Ra
and for Mtot = 0.1. In all shown cases, χc exhibits a strong maximum at moder-
ate values of ξa. Therefore, for a specific amount of surfactant, the moderately
soluble one appears more efficient in stabilizing the flow than the insoluble one.
Fig. 8b shows again the dependence of critical χ on ξa, keeping now constant
the value of βa. For small values of βa, we observe again a non-monotonic de-
pendence, whereas for larger values of βa the critical χ reaches a plateau in the
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limit of high ξa. This should come as no surprise because for large values of
βa the capacity of the interface to adsorb monomers is very large and for the
specific value of Mtot the resulting interfacial concentration is very small (see
also Fig. 2). The non-monotonic behaviour is recovered again when considering
higher values of Mtot.

2.2.4.3 Parametric behavior for disturbances of finite wavelength

Having analysed the limit k → 0, we now focus on the behavior of distur-
bances of finite wavelength. The addition of one more lengthscale complicates
significantly the dynamics. Among other effects, sorption kinetics -which is in-
cluded in the modelling but did not appear in the limit of infinite wavelength-
now becomes potentially important. Given the complexity of behavior, we first
perform an extensive parametric study and describe the results purely phe-
nomenologically. Then, we sketch the key physical mechanisms that we believe
determine the dynamics, and attempt some qualitative comparisons with avail-
able experimental observations.

2.2.4.3.1 Effect of the total amount of surfactant

Figs. 9a,b show the critical modified Reynolds number, χ, as function of
disturbance wavenumber for different amounts of surfactant, Mtot. Fig. 9a
is a magnification of Fig. 9b at small values of χ and k. It is evident that
the addition of a small amount of surfactant results in drastic stabilization of
practically all disturbances of finite length.

In the small wavenumber range, and with increasing amount of surfactant,
the neutral curves in Fig. 9a,b tend to accumulate around a rough asymp-
tote with slope ≈ 104. The variation at higher wavenumbers is more complex,
and eventually becomes non-monotonic. More specifically, an inflection point
appears, which above Mtot = 0.3 leads to a local maximum in χ; a possible
mechanism for this behavior is described in section 2.2.4.4, below. Further in-
crease in the amount of surfactant renders higher wavenumbers progressively
less stable.

Fig. 9c presents the dispersion curves for the same values of Mtot as in
Fig. 9a,b, and for a specific value of χ = 50. We observe that the addition of
relatively small amounts of surfactant affects drastically the stability of the film,
decreasing significantly the growth rate of the disturbances, as well as the range
of the unstable modes. This result indicates that, in the presence of surfactants,
instabilities will need considerably longer time to develop. The non-monotonic
effect of Mtot that was discussed in Fig. 7 is also apparent here. For the given
value of χ, the growth rate of the disturbances (and in particular the most
dangerous one) decreases for small values of Mtot, reaches a minimum around
Mtot = 0.5 and increases again for larger values of Mtot. Similar is also the
behaviour of the wavenumbers of the most dangerous mode and of the cut-off.
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Finally, Fig. 9d presents the wave velocity of the marginally unstable mode
at neutral stability as a function of the wavenumber and for different amounts
of surfactant. In agreement with previous experimental and theoretical studies
[23, 24], we find that the addition of surfactant decreases the wave velocity,
and more so the higher the wavenumber. It is also notable that the variation
with Mtot is strictly monotonic, reaching an asymptotic limit for high surfactant
concentrations. Therefore, the wave velocity appears to depend directly on the
surface concentration of the soluble surfactant, and not on the surface elasticity,
as determined by the combination of stretching and diffusion/convection, which
was discussed extensively in relation to Fig. 7 and 8.

2.2.4.3.2 Effect of surface tension and surfactant strength

In Fig. 10a neutral curves are presented for various values of Σ to examine
the effect of Marangoni stresses. This parameter can be seen as a measure
of the strength of the surfactant. Increasing Σ, while keeping Ka (i.e. σc)
constant means that the difference σc − σm increases and therefore the surface
tension gradients become stronger. The increase of the elasticity of the interface
due to the induced Marangoni stresses stabilizes the flow and the critical χc
increases. For low and moderate values of Σ, χc increases monotonically with
the wavenumber of the disturbance. We find, though, that for large Σ this is not
always the case. Fig. 10b shows the phase velocity of the marginally unstable
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Figure 11: Neutral curves for different values of Ka. The rest of the parameters
remain the same as in Fig. 4.

mode, and indicates that it decreases drastically with the increase of Σ. In
combination with Fig. 9d, we conclude that the amount and the strength of the
surfactant have a similar effect on the phase speed of the disturbances.

Fig. 11 shows the effect of Kapitza number for a surfactant-laden liquid,
along with the corresponding neutral curves of a clean liquid. Though the
values of Ka plotted are high (and thus the effect of capillary forces on the
stabilization of finite wavenumber disturbances in a clean liquid is significant),
we note that, with the addition of surfactant, the critical χ rises by more than
an order of magnitude. Another interesting observation is that the dependence
of critical χ on Ka persists even for k = 0 (see the insert of Fig. 11 for a
zoom close to zero k), although it is well known that for a clean fluid and for
k = 0 the critical Reynolds number is independent of Ka (Rec = 5

4 cotα). This
observation is in agreement with the analytic result, see Eq. (84). One way
to see why the value of Ka has such a strong impact on the stability of the
surfactant-laden flow is by considering that increasing Kapitza number is like
increasing the surface tension of the clean fluid, σc. For a given value of Σ (in
our case Σ = 2) this would mean that the difference in surface tensions between
a clean interface and a fully contaminated one would increase proportionally
and therefore the Marangoni effects would become more important. This trend
is in agreement with theoretical studies in the literature for insoluble surfactants
[29, 32] where it was shown that the critical Reynolds number is proportional
to the Marangoni number.

2.2.4.3.3 Effect of surfactant solubility

In Fig. 7 and 8, we have examined the role of surfactant solutility, ξa, in the
limit k → 0. Presently, we want to examine its effect for non-zero wavenumbers.
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Figure 12: Neutral curves for different values of ξa for a) βa = 0.01 and b)
βa = 1. The rest of the parameters remain the same as in Fig. 4.

To this end, we keep constant the total amount of surfactant (Mtot = 0.1) and
the value of βa, which is a measure of the amount of surfactant that can be
adsorbed at the interface, and vary the value of ξa to examine the effect of
surfactant solubility. For βa = 0.01 (shown in Fig. 12a), the effect of ξa on
critical χ appears to be rather complex for finite wavelengths. More specifically,
we observe that for the lowest value of ξa = 0.001 (Ra = 0.1), the critical χ
remains fairly constant for a wide range of wavenumbers, apart from a small
region close to k = 0. Increasing the value of ξa to 0.01 (Ra = 1) the flow
significantly stabilizes for short wavelength disturbances. Futher increase of ξa
may lead to situations where the system can be more stable to large wavelength
disturbances and at the same time less stable to short wavelenths (e.g. compare
neutral curves for ξa = 0.01 and ξa = 0.1). For even higher values of the
solubility parameter, ξa, the critical χ decreases significantly and for the highest
value of ξa the system behaves as a clean liquid; the neutral curves for ξa =
100 and that of a clean fluid coincide, for the range of wavenumbers shown
in the figure, but are not shown here for clarity. This happens because for
ξa = 100 (and for the specific amount of surfactant, Mtot = 0.1) the interface
becomes saturated with surfactant (see also Fig. 2) and therefore the induced
surface tension gradients are not important; this result is in agreement with
the predictions of our analytical expression in the limit of k → 0 (see Eq. 84
and relevant discussion above). For βa = 1 (shown in Fig. 12b) the picture is
somewhat simpler, because the dependence of critical χ on ξa is in this range
monotonic. Nevertheless, we should note that the non-monotonic dependence
is recovered again for higher values of Mtot.
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2.2.4.3.4 Effect of sorption kinetics at the liquid-air interface

Next, we consider the role of sorption kinetics at the liquid-air interface,
which is potentially of central importance, and which has typically been ne-
glected in simplified treatments of the problem. Thus, in Fig. 13 we examine
the parametric effect of ka on the curves of neutral stability for the reference
case of Fig. 4. It is expected that for long-wave perturbations (k << 1) the
kinetics will not be very important because there will always be enough time
for the different species to reach equilibrium around the interface. Indeed, as it
can be seen in Fig. 13, for k = 0 the critical χ is the same for all values of ka.
This result is in direct agreement with the analytical expression that has been
derived in the limit of k → 0 (see Eq. 84), where there is no dependence of the
critical Re on the value of ka.

However, we see that, for disturbances with larger wavenumbers, this is
clearly not the case. In particular, we plot in Fig. 13 the result for an insoluble
surfactant, and observe that, for the lowest value of ka shown, the neutral curve
for the soluble surfactant follows it very closely, for all wavenumbers except for
a very narrow range around zero. We should note at this point that to enable
such a comparison between a soluble and an insoluble surfactant we have selected
two cases with identical levels of interfacial concentration, cao. The similarity
between the case of a soluble and an insoluble surfactant for large wavenumbers
may be readily understood by considering that, when the kinetics are relatively
slow and the disturbances have short wavelength, there will not be enough time
for the species to approach equilibrium, and the system will behave as though
the monomers that have been adsorbed at the liquid-air interface are isolated
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from the monomers in the bulk. The general trend with faster kinetics is for
the soluble surfactant to become less stabilizing than the insoluble one for all
wavenumbers. It is noteworthy however that, there exists a range of moderate
kinetics for which high-wavenumber disturbances are stabilized more efficiently
with soluble than with the insoluble surfactant (see ka = 0.01 and k > 0.03).

2.2.4.3.5 Effect of surfactant adsorption at the solid substrate

Next we examine how the adsorption of surfactant at the solid substrate may
affect the stability of the flow. To this end, we vary the relevant parameters
that control the behavior of the substrate. The effect of soprtion kinetics, ks, is
examined in Fig. 14a and shown to be negligible. On the contrary, the variation
of βs, which is shown in Fig. 14b, appears to have significant impact on the
flow stability. These two figures indicate that the substrate acts as a surfactant
reservoir, and its dynamics are relatively unimportant.

For the specific parameters that have been used in Fig. 14b, increasing the
value of βs, (i.e. increasing the capacity of the substrate to adsorb surfactant)
leads to stabilization of the flow. This behavior may be understood by consid-
ering that the surfactant that adsorbs at the substrate is subtracted from the
total amount residing in the bulk and at the liquid-gas interface. We already
know, however, that in the absence of adsorption at the substrate, the stabil-
ity of our system depends non-monotonically on the total amount of surfactant
(see Fig. 7 and the relevant discussion for the effect of Mtot). Since this total
amount of surfactant varies with the adsorbability of the substrate, we deduce
that different substrates may also affect the flow stability in a non-monotonic
way.

This is confirmed in Fig. 14c, where we have plotted the critical χ as a
function of the parameter βs. For all values of ξs (which expresses the relative
solubility in the bulk with respect to adsorption on the substrate), the flow ac-
quires maximum stability for intermediate values of βs. For low values of βs,
critical χ tends to the limit of no adsorption at the substrate, whereas for high
βs the capacity of the substrate to adsorb surfactant increases drastically and
this leads to a decrease of χc as a large amount of surfactant is essentially re-
moved from the system. It is noted in particular, that the decline of χc occurs
at roughly constant βs (βs ≈ 10−1), and is steeper the higher the value of ξs.
These observations indicate that, when surfactants are to be used in order to
stabilize the flow in various applications, it is also very important to pay special
attention to the affinity of the selected surfactant with the substrate in hand.

2.2.4.3.6 Effect of surfactant diffusivity

Finally, Fig. 15 presents neutral curves for various values of the Schmidt
number Sca and Scb. It is evident that the effect of diffusion does not play any
important role in the stability of the flow.
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Figure 14: Effect of the adsorption of surfactant at the substrate. Neutral
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for ks = 0.1, Rs = 1. c) Critical χ as a function of βs for various ξs for ks = 0.1.
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Figure 15: Neutral curves for different values of a) Sca and b) Scb. The rest of
the parameters remain the same as in Fig. 4

2.2.4.4 Postulation of mechanisms and interpretation of experiments

We conclude the above presentation of the effect of various system parame-
ters with a discussion of possible mechanisms that operate in the case of soluble
surfactants. Then, we attempt to interpret recent experimental observations
that motivated this study, in the light of the present findings. With respect to
potential mechanisms, we identify four key components: (i) The effect of solu-
bility in enhancing mass exchange between the interface and the bulk. It appears
that this mechanism determines the critical conditions that correspond to very
long waves, and may lead to optimal behavior of moderately soluble surfactants.
(ii) The direct effect of disturbance wavenumber. With increasing wavenumber,
gradients in surface concentration of surfactant are expected to intensify, be-
cause variations take place on a shorter lengthscale. In addition to this, mass
exchange -which mitigates gradients according to (i)- is weakened, because there
is less time for the approach to equilibrium. (iii) The effect of disturbance phase
velocity. We have observed that surfactant decreases drastically the phase ve-
locity at high wavenumbers. Though we do not have a full understanding of the
mechanism by which the flow stabilizes, we may plausibly assume that, as the
wave moves downstream, it continuously sweeps surfactant by convection, thus
inducing stabilizing surface tension gradients. This effect is expected to weaken
by the decrease in phase velocity. The above components (ii) and (iii), that op-
erate at high wavenumbers, have a competing effect, and their interplay could
be responsible for the non-monotonic dependence of the critical conditions on
wavenumber, which was observed at high amount/strength of surfactant (see
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Fig. 9b and 10a). (iv) The effect of phase shift between disturbances at the
interface. An understanding of the interaction between disturbances in height,
velocity, surface concentration and shear stress would probably help unify the
above components and delineate the complete stabilization mechanism. Work
will be undertaken in this direction, following the approach of [8].

Returning to the experiments by [11] and [33], and in particular to the
effect of soluble surfactant SDS, we note the following: Strong stabilization of
liquid film flow was observed by the addition of small amounts of SDS, and the
effect maximized at concentrations in the order of 10% of the critical micelle
concentration, and then gradually receded. This behavior agrees qualitatively
with the prediction for the critical conditions of a moderately soluble surfactant,
as exhibited for example by Fig. 7a.

The dominant structures observed, even deep in the unstable regime, were
sinusoidal travelling waves of small amplitude. Only at very high Re in combi-
nation with very low-frequency inlet forcing, were non-sinusoidal structures ob-
served, and these differed in shape from the solitary waves encountered in clean
liquids. These observations are in accord with the predictions of the present
study. In particular, it was shown that small amounts of soluble surfactant de-
crease drastically both the range and the growth rate of unstable wavenumbers
(Figs. 9a,c). Smaller growth rate means that energy input from the mean flow
to the unstable wavenumbers will be slower. This effect will further intensify, as
the experimental inlet frequency remains constant while the cut-off frequency
decreases. In addition, higher harmonics (which are sustained by energy input
from the dominant mode through non-linear coupling, and which contribute to
the shape of the final free-surface structures) have typical ampitudes of order
inversly proportional to their damping rates. Thus, with the displacement of the
entire dispersion curve to lower values, the magnitude of higher harmonics de-
clines as well. The combination of all these effects, explains the experimentally
observed persistence of nearly sinusoidal waves.

2.2.5 Conclusions

We investigated the linear stability of a film flowing down a solid substrate in
the presence of a soluble surfactant. We used a detailed surfactant model, which
considers monomers dissolved in the bulk and adsorbed with Langmuir kinetics
at the gas/liquid and the solid/liquid interfaces. The Navier-Stokes equations
for the liquid motion and the advection-diffusion equations for surfactant con-
centrations were linearized around the base flow, resulting in an Orr-Sommerfeld
eigenvalue problem that was solved analytically in the limit of long-wave distur-
bances, and numerically for arbitrary wavelength using a finite element method.

The instability was shown to be a long-wave one, and the derived analytic
solution for k → 0 indicated that, among all the model parameters, critical
conditions depend only on the solubility of the surfactant and on its interfacial
concentration. An interesting finding was that, for a given total amount of
surfactant, a moderately soluble one may produce stronger stabilization than
the insoluble one. Optimum conditions were also found to vary with solubility,
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the insoluble surfactant maximizing its performance at the tightest interfacial
packing, whereas the soluble one at a fraction of it. These observations were
explained by the competing effect of mass exchange between the interface and
the bulk, which short-circuits surface tension gradients, and thus attenuates
Marangoni stresses.

Disturbances of finite wavelength were considered next, and the additional
lengthscale was observed to cause an escalation in complexity. Small amounts
of soluble surfactant stabilize drastically the entire spectrum by shrinking the
unstable range of wavenumbers, and by decreasing their growth rate and phase
velocity. However, the effect maximizes at intermediate amounts and then drops
again. For a fixed amount of surfactant, the role of solubility was shown to
be highly non-trivial, and to depend strongly on the relative capacity of the
interface and the bulk, βa. Sorption kinetics at the gas-liquid interface was
found to play a key role at finite wavelengths, with very slow kinetics leading to
a virtually frozen interface and an insoluble-like behavior. Finally, it was shown
that the adsorption capacity of the solid substrate may also have a significant
effect.

In an attempt towards mechanistic understanding of the stabilization offered
by a soluble surfactant, some factors contributing to the magnitude of interfa-
cial gradients of surfactant concentration were proposed. These include mass
exchange with the bulk, and wavelength and phase velocity of travelling distur-
bances. Finally, predictions by the present study appear to interpret convinc-
ingly some recent experimental observations on the effect of soluble surfactant
SDS.

2.3 The role of surfactants on the mechanism of the long-
wave instability in liquid film flows

2.3.1 Problem formulation and scaling

We study the dynamics of liquid films flowing along an infinite planar wall, in-
clined at an angle α with the horizontal plane (see Fig. 16). The film is laden
with a soluble, non-volatile surfactant which may adsorb at the liquid-air inter-
face altering surface tension, or it can exist in the bulk in the form of monomers.
The fluid is Newtonian with constant density ρ and kinematic viscosity ν, and
with surface tension, σ, which depends on the interfacial concentration of sur-
factant, Γ, through a constitutive equation σ = σ(Γ). For the present purposes
of a linear analysis, we do not have to consider a specific constitutive law for
surface tension. We define, however, the surface elasticity E(Γ)

E(Γ) = − dσ

d (lnΓ)
. (93)

which contains the dependence of surface tension on interfacial surfactant con-
centration; a specific expression for E(Γ) can be derived once the constitutive
equation is specified.
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Figure 16: Schematic of a falling film in the presence of soluble surfactants.

In order to model two-dimensional dynamics, we use a Cartesian coordinate
system (x, z), with x pointing in the streamwise and z in the cross-stream di-
rection. The velocity and pressure fields are respectively u = (u,w) and p.
The liquid-air interface is located at z = h(x, t) and the liquid-solid interface
at z = 0. The flow is governed by the continuity and momentum conservation
equations, subject to the zero-velocity boundary condition at the solid wall and
the kinematic and dynamic boundary conditions at the free surface. The latter
includes both a normal contribution due to surface tension and a tangential one
due to the variation of surface tension along the free surface.

To account for the presence of soluble surfactants, we utilize a simplified ver-
sion of the kinetic model of [35] and [36, 37]. Surfactant partitioning between
the bulk concentration, c, and the interfacial one, Γ, is described by a Lang-
muir model, with Γ∞ the interfacial concentration at maximum packing and
k1, k2 the constants of the first-order adsorption and desorption kinetics. Mass
conservation of adsorbed and dissolved surfactant is modelled by two advection-
diffusion equations, one for the interface and one for the bulk. The net flux of
monomer between interface and bulk is given by the kinetic model, and appears
as a term in the equation of the interface and as a boundary condition in the
equation of the bulk. The above physical model is the same as in [42], where
we refer the reader for a more detailed description.

The governing equations and boundary conditions are made dimensionless,
using the following scaling:

(x̃, z̃) = (x, z)/H, h̃ = h/H, t̃ = tU/H, ũ = u/U,

p = pair + ρgH sinα p̃, (Γ̃, c̃) = (Γ, Hc) /Γ∞,

J̃ba = Jba
H

UΓ∞
, σ̃ =

σ

σc
, M̃tot =

Mtot

LΓ∞

(94)

Jba denotes the net flux of surfactant at the interface and Mtot is the total
amount of surfactant that is present in our system. As a characteristic length
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we use the height of the Nusselt flat film, H = (3νQ/(g sinα))
1/3

, where Q
denotes the imposed flow rate. The velocities are scaled with the corresponding
interfacial velocity, U = gH2 sinα/(2ν), and σc = σ(Γ = 0) is the surface ten-
sion of the clean liquid. Tildes denote dimensionless variables and are henceforth
suppressed.

Introducing the above scaling, the continuity and momentum conservation
equations become,

ux + wz = 0. (95)

Re(ut + uux + wuz) + 2px − uxx − uzz − 2 = 0, (96)

Re(wt + uwx + wwz) + 2pz − wxx − wzz + 2 cotα = 0, (97)

where Re = gH3 sinα
2ν2 is the Reynolds number. Unless stated otherwise, the

subscripts denote partial differentiation with respect to x, z and time t.
The components of the dynamic boundary condition tangential and normal

to the free surface are respectively

−4uxhx + (uz + wx)(1− h2
x) = 2We σx

√
1 + h2

x, (98)

p+
ux(1− h2

x) + (uz + wx)hx
1 + h2

x

= −We σ
hxx

(1 + h2
x)3/2

, (99)

where We = σc
ρgH2 sinα is the Weber number. In addition, we impose at the

liquid-solid interface (z = 0), the usual no-slip, no-penetration conditions, u =
w = 0, and along the moving interface (z = h(x, t)) the kinematic boundary
condition ht + uhx = w.

The dimensionless form of surfactant conservation in the bulk becomes

ct + ucx + wcz = Pe−1
b (cxx + czz), (100)

where Peb = Re ν
Db

is the Peclet number in the bulk, with Db the surfactant
diffusivity in the bulk. The above equation is subject to the following boundary
conditions, along the interface (z = h(x, t))

hxcx − cz
Peb

√
1 + h2

x

= Jba, (101)

and along the wall(z = 0)
cz = 0. (102)

Surfactant conservation at the interface is modelled by the following advection-
diffusion equation

Γt + uΓx + Γ∇s · u =
∇2
sΓ

Pea
+ Jba, (103)

where Pea = Re ν
Da

is the interfacial Peclet number, with Da the surfactant
diffusivity at the interface, and ∇s is the surface gradient, defined as ∇s =
(I − nnT ) · ∇. It is noted that the derivation of Eq. (103) involves some subtle
points related to the movement of the interface and the definition of the time
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derivative [43]. Another version of this equation has been repeatedly quoted
incorrectly in the literature but as was shown by [43] Eq. (103) is actually more
appropriate.

Finally, the dimensionless expression for the net adsorption flux in Eqs. (101)
and (103) is

Jba = ka [ξac|z=h (1− Γ)− Γ] . (104)

where ka = k2H
U and ξa = k1

k2H
. The physical significance of these parameters

is as follows: Term ka is the ratio of the time-scale of convection to the time-
scale of desorption. For example, ka << 1 means that the backward reaction
is slow compared to convection, and thus a temporary decrease of the bulk
concentration near the interface will not lead to significant desorption. Term ξa
is the ratio of the kinetic constants of the forward and backward reaction for
the interface-bulk interaction, and thus provides a direct measure of surfactant
solubility in the bulk [41]. More specifically, ξa << 1 signifies a highly soluble
and ξa >> 1 a sparingly soluble surfactant.

2.3.2 Linearization and normal mode analysis

The above set of governing equations and boundary conditions has a trivial
solution corresponding to a flat film with uniform surfactant concentration. In
the case of a clean fluid, this is also known as the Nusselt flat film solution and
its dimensionless form is shown below

h̄ = 1, ū = 2z − z2, w̄ = 0, p̄ = (1− z) cotα, (105)

where an overbar denotes the base state. In order for the above solution to
remain valid when a soluble surfactant is present, the concentrations should be
uniform and at equilibrium. Imposing these conditions leads to,

c̄ =
Γ̄

ξa
(
1− Γ̄

) , (106)

and given that the total mass of the surfactant, Mtot, is conserved and evaluated
by the following expression

c̄+ Γ̄ = Mtot, (107)

it is possible to derive an analytical expression for c̄ and Γ̄ as function of the
parameters Mtot and ξa [42].

We perform a linear stability analysis by perturbing the flow around the
above flat film solution. To this end we write all variables as the sum of the
base state and a small perturbation

φ = φ̄+ φ′, (108)

and linearize the system assuming φ′ << φ̄. We also apply the relevant bound-
ary conditions around the mean elevation of the interface, z = 1, by expanding
the variables in Taylor series as follows

φ|z=h = φ̄|z=h + φ′|z=h =

(
φ̄|z=1 + h′

∂φ̄

∂z
|z=1

)
+ φ′|z=1 +O(h′2). (109)
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The set of linearized equations and boundary conditions is analysed by con-
sidering the normal modes:

h′(x, t)
u′(x, z, t)
w′(x, z, t)
p′(x, z, t)
c′(x, z, t)
Γ′(x, t)
J ′ba(x, t)


=



ĥ
û(z)
ŵ(z)
p̂(z)
ĉ(z)

Γ̂

Ĵba


exp[ik(x− Ct)], (110)

where k = 2πH/λ is the dimensionless wavenumber of the disturbance with
wavelength λ, and C is the complex eigenvalue, C = Cr + iCi, with Cr the
dimensionless phase velocity scaled with the Nusselt film surface velocity U and
kCi the growth rate. The final system of normal-mode disturbance equations is

Re[ik(ū− C)û+ ūzŵ] + 2ikp̂+ k2û− ûzz = 0, (111)

ikRe(ū− C)ŵ + 2p̂z + k2ŵ − ŵzz = 0, (112)

ikû+ ŵz = 0, (113)

Pebik(ū− C)ĉ+ k2ĉ− ĉzz = 0, (114)

and the following boundary conditions are applied along the mean interfacial
elevation (z = 1)

ûz(1) + ikŵ(1) + ūzz(1)ĥ+ 2ikWe
Ē

Γ̄
Γ̂ = 0, (115)

p̂(1)− ĥ cotα+ ikû(1)− k2We σ̄ĥ = 0, (116)

ik[ū(1)− C]ĥ− ŵ(1) = 0, (117)

(ū(1)− C)ikΓ̂ + Γ̄ikû(1) +
k2Γ̂

Pea
− Ĵba = 0, (118)

Ĵba =
−ĉz(1)

Peb
= ka

[
ξa

[
(1− Γ̄)ĉ(1)− c̄Γ̂

]
− Γ̂

]
, (119)

and along the wall (z = 0)
û(0) = ŵ(0) = 0, (120)

ĉz(0) = 0. (121)

In the above σ̄ denotes the surface tension that corresponds to the base state
surface concentration Γ̄ and

Ē = −Γ̄

(
dσ̄

dΓ̄

)
Γ̄

. (122)

44



2.3.3 Long-wave expansion

2.3.3.1 Initiating mechanism

The physical system considered has been shown [42] to be susceptible to a
long-wave instability. The mechanism for this instability can be identified in
the ordered problems that arise from a regular expansion of the normal-mode
amplitudes in the limit k → 0. More specifically, we posit

û = u0 + ku1 + k2u2 +O(k3), (123)

ŵ = kw1 + k2w2 +O(k3), (124)

p̂ = p0 + kp1 + k2p2 +O(k3), (125)

C = C0 + kC1 + k2C2 +O(k3), (126)

ĉ = c0 + kc1 + k2c2 +O(k3), (127)

Γ̂ = Γ0 + kΓ1 + k2Γ2 +O(k3), (128)

Ĵba = Jba,0 + kJba,1 + k2Jba,2 +O(k3), (129)

ĥ = h0 + kh1 + k2h2 +O(k3), (130)

We are interested in the ’interfacial mode’ that is triggered by a deflection of
the free surface, and which is known to be the unstable one [29, 32]; the afore-
mentioned papers have shown for an insoluble surfactant that a ’concentration
mode’ also exists, which is stable and actually not related to the surfactant
property (see Appendix). Thus, we normalize the system of equations by as-
suming that h0 = 1 and h1 = h2 = 0, implying that all perturbation amplitudes
to be subsequently calculated are proportional to the amplitude, h0, of the free
surface deformation. The lack of an O(k0) term in the expansion of ŵ in the
long-wave limit is a direct consequence of continuity, Eq. (113).

At order O(k0), we combine the normal mode momentum equations, the
force balance at the interface and the wall boundary condition,

u0zz = 0 , u0(0) = 0 , u0z(1) = −ūzz(1) = 2 , p0z = 0 , p0(1) = cotα, (131)

and obtain the well-known leading order perturbation to the base flow,

u0(z) = 2z , p0(z) = cotα. (132)

As explained by [7] and [8], when the interface deforms, a nonzero shear stress,
ūzz(1)h′, results from the base flow because of the local curvature of its velocity
profile at the interface. Therefore, a perturbation shear stress develops that
exactly cancels the above, and this drives the longitudinal flow perturbation
u0(z).
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In order to solve for the concentrations, we combine at order O(k0) mass
conservation in the bulk and at the interface, and no-penetration at the wall,
and obtain

c0zz = 0 , c0z(0) = 0 ,
c0z(1)

Peb
= −Jba,0. (133)

Therefore,

c0(z) =
Γ0

ξa(1− Γ̄)2
= constant. (134)

Eqs. (133) and (134) state that, at zero order, convection is negligible and
the interface is in equilibrium with the bulk. This is reasonable, given that in
the limit k → 0 variations along the wavelength become very slow, and the
resistance to mass transfer in the cross-stream direction diminishes.

It is also notable that the concentrations are not fully determined at order
O(k0). This happens because the initial deformation of the interface does not
trigger by itself any change in the concentration of surfactant (the dilation of the
interface is second-order in the deformation amplitude, i.e. linearly negligible).
As will be shown next, it is actually the leading order flow perturbation, u0(1),
that disturbs the interfacial concentration, and this occurs through a convective
contribution that appears at order O(k1).

Next, we consider the normal mode, mass conservation equations at order
O(k1) and obtain,

Peb i(ū− C0)c0 = c1zz , c1z(0) = 0 ,
c1z(1)

Peb
= −Jba,1, (135)

and

(ū(1)− C0)iΓ0 + iΓ̄u0(1) = −c1z(1)

Peb
. (136)

The leading order wave velocity, C0, is derived from the kinematic boundary
condition, Eq. (117),

i(ū(1)− C0) = w1(1) ⇒ C0 = ū(1) + iw1(1). (137)

From continuity, Eq. (113), we obtain

w1z + iu0 = 0 ⇒ w1(z) = −iz2, (138)

and therefore we deduce that
C0 = 2. (139)

Integrating Eq. (135), we obtain the O(k1) amplitude of the bulk concentra-
tion perturbation

c1(z) = i c0

[
Peb

(
3

4
− z2 +

z3

3
− z4

12

)
+

4

3(1− Γ̄)kaξa
− i Γ1

Γ0

]
. (140)
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Eq. (136) may now be solved, using (134), (139) and (140), to obtain the
zero-order perturbation in the interfacial concentration of surfactant,

Γ0 = 2Γ̄

(
3ξa(1− Γ̄)2

3ξa(1− Γ̄)2 + 4

)
, (141)

and, through Eq. (134), also the zero-order perturbation to the bulk concentra-
tion.

Analysis of Eq. (136) provides an understanding of the initiating mechanism
of concentration perturbation. We focus first on the two terms on the lhs,
which balance exactly in the case of an insoluble surfactant. The second term
represents convective transport of the mean interfacial concentration because
of the variation along the wave of the leading order flow perturbation, u0(1).
This term disrupts the uniform interfacial concentration; more specifically, it
produces a flux that is maximum at the back node and minimum at the front
node (“back“ and “front“ are in reference to the crest of surface displacement),
and as a result, it moves surfactant away from the trough and towards the
crest. Thus, a perturbation Γ0 with maximum at the crest and minimum at the
trough arises, whose convective transport by the mean flow is expressed by the
first term on the lhs of Eq. (136). The perturbation in Γ is such that the two
convective fluxes, combined with mass exchange with the bulk (the rhs term),
balance. We should note at this point that in the case of insoluble surfactants,
the concentration was shown by [31] to be in-phase with the surface displacement
and we see that, at leading order, this is true for soluble surfactants as well.

Equivalently, we may consider a reference frame that renders the wave sta-
tionary, and in this case the interfacial velocity is given by

u|z=h − C0 = [ū(1)− C0] + u′(1), (142)

and since u′(1) = û(1)h′ = u0(1)h′ +O(k2) and u0(1) = 2 we obtain

u|z=h − C0 = −1 + 2h′ +O(k2). (143)

Therefore, the interfacial streamwise velocity has a magnitude which is maxi-
mum at the trough and minimum at the crest of the interfacial displacement
(see Fig. 17). Given that the system is at steady state in this reference frame
(and thus the flux of surfactant is the same at every streamwise location), we
conclude that the interfacial concentration varies inversely to the interfacial
velocity, i.e. it is maximum at the crest and minimum at the trough.

It is noted that the three fluxes in Eq. (136) have the same phase, which lags
90o behind the displacement (as it will be shown below, c1(z) is pure imaginary).
Therefore, the perturbation in surfactant concentration is at leading order in-
phase with the interface displacement, a result that is directly evident from
Eq. (141); as will be shown later, the phases start to deviate at order O(k1).
Eq. (141), also indicates that the leading order effect of surfactant solubility is
to decrease the magnitude of concentration perturbation at the interface (it is
recalled that ξa >> 1 corresponds to a sparingly soluble, and ξa << 1 to a
highly soluble surfactant).
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Figure 17: A disturbance to the free surface. The dotted arrows depict the
direction and magnitude of the interfacial velocity at various positions, assuming
a moving frame of reference that renders the wave stationary. The long-dash
line is the undisturbed free surface position and the line arrows depict the mean
velocity profile in this reference frame.

The effect of surfactant solubility becomes more evident by evaluating di-
rectly the rate of mass transfer between the bulk and the interface, i.e. the rhs
of Eq. (136). Using Eq. (140), we obtain

Jba,1 = −c1z(1)

Peb
=

i 8Γ̄

3ξa(1− Γ̄)2 + 4
(144)

We observe that the transfer rate of surfactant is 90o out of phase with the dis-
placement (see Fig. 18), i.e. at the front node (with respect to the crest) transfer
of surfactant is from the interface towards the bulk, and at the back node it is
from the bulk towards the interface. This is precisely the opposite effect from
the convective transport by the leading order flow perturbation, as described
above. Thus, exchange with the bulk opposes transport by the flow perturba-
tion, and therefore diminishes the perturbation in interfacial concentration of
surfactant. In the limit of a highly soluble surfactant (ξa → 0) Jba,1 = i 2Γ̄ and
Γ0 = 0, i.e. the two fluxes become exactly equal and opposite, and as a result
interfacial gradients (and Marangoni stresses) disappear altogether.

2.3.3.2 Effect of surfactant on the growth mechanism

We proceed to calculate the O(k1) longitudinal velocity perturbation, u1(z),
which is evaluated from the x-momentum Eq. (111)

u1zz = 2ip0 +Re[i(ū− C0)u0 + ūzw1] , (145)

subject to the boundary conditions of zero velocity at the wall, u1(0) = 0, and
tangential force balance at the interface,

u1z(1) = −2i
We Ē

Γ̄
Γ0. (146)

Eqs. (145) and (146) contain the essence of the growth mechanism. Fol-
lowing [8], we recall that Eq. (145) represents a balance between viscous stress
gradient, u1zz, and the pressure and inertial stresses that contribute to the flow
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Figure 18: Spatial wave forms of the film height, h′, interfacial flux, J ′ba, inter-
facial concentration, Γ′, and concentration in the bulk, c′.

u1. Term p0 = cotα is positive, thus pressure is in-phase with interface defor-
mation i.e. maximum below the crest and minimum below the trough. This
distribution is stabilizing, draining liquid away from the crests and towards the
troughs. On the contrary, the two inertial stresses, representing advection of
flow perturbations by the base state velocity relative to the moving disturbance,
are negative and therefore destabilizing. In particular, the dominant negative
contribution, −ReC0u0, corresponds to temporal acceleration by the wave mo-
tion, whereas the remaining terms represent convective acceleration and sum
up to a slightly stabilizing contribution. Thus, the unsteadiness associated with
the moving disturbance is the cause of the instability.

The role of surfactant is given by the boundary condition (146), which rep-
resents the contribution to the flow u1 due to Marangoni stresses. More specif-
ically, integration of (145) subject to (146) gives

u1(z) = i

[
Re

(
z4

6
− 2z3

3
+

4z

3

)
− cotα

(
2z − z2

)
− 4We Ē

(
3ξa(1− Γ̄)2

3ξa(1− Γ̄)2 + 4

)
z

]
,

(147)
which indicates that the O(k1) longitudinal velocity perturbation is 90o out of
phase with the displacement, attaining extrema at the nodes of the travelling
wave. The last term on the rhs of Eq. (147) represents the additional flow
perturbation caused by the Marangoni stresses at the interface. Its coefficient
is negative, and thus it is maximum at the front node and minimum at the
back node with respect to the crest, i.e. it drives liquid away from the crest
This is the expected effect of the Marangoni stresses that are induced by the
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Figure 19: A disturbance to the free surface. The line-arrow depicts the action
of Marangoni stresses (stabilizing), the dash-arrow depicts the action of pressure
(stabilizing) and the dot-arrow depicts the action of inertia terms (destabilizing)
in Eq. (147). The long-dash line is the undisturbed free surface position.

leading order perturbation in Γ, Eq. (141), given that Γ0 is in-phase with surface
displacement, i.e. maximum at the crests and minimum at the troughs. The
action of each of the terms of Eq. (147) is depicted schematically in Fig. 19.

The contribution to the complex eigenvalue at order O(k1) is determined
from the kinematic boundary condition (117) at order O(k2)

C1 = iw2(1). (148)

The cross-stream velocity w2 is calculated by integration of the continuity equa-
tion, w2z + iu1 = 0, subject to w2(0) = 0. Substituting u1 from Eq. (147), we
obtain,

w2(z) = cotα

(
z3

3
− z2

)
+Re

(
2z2

3
− z4

6
+
z5

30

)
−2We Ē

(
3ξa(1− Γ̄)2

3ξa(1− Γ̄)2 + 4

)
z2.

(149)
Combining Eqs. (148) and (149), we obtain

C1 = i

[
−2

3
cotα+

8

15
Re− 2We Ē

(
3ξa(1− Γ̄)2

3ξa(1− Γ̄)2 + 4

)]
. (150)

Therefore, the growth rate of the disturbance is -to this order- equal to

kCi =
8

15
k2

[
Re− 5

4
cotα− 15

4
We Ē

(
3ξa(1− Γ̄)2

3ξa(1− Γ̄)2 + 4

)]
, (151)

and the critical condition for instability, determined by setting Ci = 0, is found
to be

Rec,0 =
5

4
cotα+

15

4
We Ē

(
3ξa(1− Γ̄)2

3ξa(1− Γ̄)2 + 4

)
, (152)

a result originally derived by [42]. In the limit of an insoluble surfactant (ξa >>
1) Eq. (152) is in agreement with the expression given by [30, 32].

It is interesting to note that, for typical constitutive models σ = σ(Γ),
the last term on the rhs of Eq. (152) is in general a non-monotonic function
of Γ̄. Thus, moderately soluble surfactants exhibit maximum stabilization at
intermediate concentrations. Using as an indicative example the Sheludko model
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Figure 20: Dependence of the critical Reynolds number on the interfacial con-
centration, Γ̄ for different values of ξa. The dependence of surface tension on
the interfacial concentration was modelled using the equation of state sug-

gested by [39]; σ̄ =
[
1 + Γ̄

(
Σ1/3 − 1

)]−3
; in this case Ē is given by Ē =

3Γ̄
(
Σ1/3 − 1

) [
1 + Γ̄

(
Σ1/3 − 1

)]−4
. The rest of the parameters are: α = 90o,

Ka = 3000, Σ = 2; Σ = σc/σm, where σc and σm denote the surface ten-
sions of a surfactant-free fluid and that of maximal surfactant concentration,
respectively.

[39] and a vertical wall (cotα = 0), we find that the dependence of critical
Re on surface concentration of surfactant varies parametrically with surfactant
solubility as shown in Fig. 20. At small values of ξa, the maximum in Recr
occurs around Γ̄ ≈ 0.27, whereas with increasing ξa (decreasing solubility), the
maximum gradually drifts towards Γ̄ = 1.

2.3.3.3 Higher-order terms

2.3.3.3.1 Interfacial concentration for non-zero wavenumbers

The above procedure may be continued to higher orders, at the expense
of rapidly increasing algebraic complexity. For example, integrating the O(k2)
terms of (114) and combining with the boundary conditions (118) at order O(k2)
and (119) at order O(k1), we obtain the first order amplitude of the interfacial
concentration, Γ1

Γ1 = −iΓ
2
0

Γ̄

[
8

9kaξ2
a(1− Γ̄)3

+
1

(1− Γ̄)2ξa

(
1

2Peb
+

37

105
Peb

)
+

1

2Pea
−(

1

90(1− Γ̄)2ξa
− 7

120

)
Re+

ĒWe

3(1− Γ̄)2ξa + 4
− cotα

12

]
= −iΓ

2
0

Γ̄
f(κ, µ),

(153)
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Figure 21: Dependence of the function f(κ, µ) on the value of µ for various
values of κ. Typical values have been used for the rest of the dimensionless
parameters: Re = 100, We = 100, Peb = 100, Pea = 1000, Ē = 0.3, α = 90o

where the terms in the squared brackets have been grouped in the function
f(κ, µ), with κ = 3kaξa(1− Γ̄) and µ = 3ξa(1− Γ̄)2. The parametric variation of
the function f(κ, µ) is presented in Fig. 21 for typical values of the dimensionless
parameters and for the case of a vertical wall. Eq. (153) indicates that the effect
of adsorption modelling at order O(k1) and beyond is conveniently described by
the parameters κ and µ, which are related respectively to the speed of adsorption
kinetics and to the solubility of the surfactant. (In particular, we recall from
Eq. (104) that kaξa = k1/U , therefore, kaξa >> 1 means that the interface is
always at equilibrium with the bulk, and kaξa << 1 means that the exchange
between interface and bulk is negligible, i.e. the interfacial concentration is
”frozen”). With appropriate selection of the ranges of these parameters, one
may examine various particular cases. For example, for an insoluble surfactant
(κ ∼ O(1), µ >> O(1)), we obtain the expression,

Γ1 = −iΓ̄
(

7

30
Re+

2

Pea
− 1

3
cotα

)
(154)

We note from Eqs. (153) and (154) that Γ1 is purely imaginary, and -
according to Eq. (140)- so is c1(z) and in particular c1(1). Thus, the phases
of the adsorbed and free concentrations at the interface, start at order O(k1)
to deviate from the phase of the interface deformation. More specifically, the
phases of the interfacial and bulk concentration, up to this order, are given by
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the expressions:

tanφΓ =
Im[Γ̂]

Re[Γ̂]
=
−ikΓ1

Γ0
+O(k2), (155)

tanφc =
Im[ĉ]

Re[ĉ]
=
−ikc1(1)

c0
+O(k2). (156)

The direction in which the maximum in Γ′ moves depends on the sign of Γ1.
For an insoluble surfactant, Eq. (154) shows that Γ1 is negative for all cases
of practical interest, therefore the maximum moves ahead of the deformation
crest. The same holds also for the general result, Eq. (153), which also contains
negative terms. Indeed, the parametric variation of f(κ, µ) depicted in Fig.
21 shows that for all values of κ, f(κ, µ) > 0 and the maximum in surface
concentration precedes the deformation crest.

Using Eq. (140), we can readily show that the phase of the concentration in
the bulk is related to that of the interfacial concentration by

tanφc = tanφΓ +
4k

3(1− Γ̄)kaξa
+O(k2) = tanφΓ +

4k

κ
+O(k2). (157)

Therefore, c is in-phase with Γ when the adsorption kinetics are fast enough
(κ >> 1), but lags behind it for moderate and slow kinetics. An example of the
latter case is provided by the time traces of deformation, flux and concentrations
depicted in Fig. 18.

2.3.3.3.2 Wave velocity and growth rate for non-zero wavenumbers

Next, we calculate an improved prediction for the phase velocity, Cr, valid
up to order O(k2). By using the kinematic boundary condition, Eq. (117), at
order O(k2), we obtain an expression for C2, which is real and thus contributes
only to Cr. The final result is

Cr = 2−k2

[
2 +

32

63
Re

(
Re− 5

4
cotα

)
+WeĒ

Γ0

Γ̄

(
Γ0

Γ̄
f(κ, µ)− 19

20
Re

)]
+O(k4)

(158)
In the limit of a clean liquid (Ē = 0), Eq. (158) agrees with the result by [44]. In
the limiting case of an insoluble surfactant, Eq. (158) may be further simplified,
and after some algebra we obtain,

Cr = 2−k2

[
2 +

32

63
Re

(
Re− 5

4
cotα− 15

4
WeĒ

)
+WeĒ

(
5

21
Re+

2

Pea
− cotα

3

)]
(159)

It is concluded from Eq. (159) that for vertical films disturbances of finite wave-
length travel slower than the long-wave ones. In particular, it is noted that,
from the two terms in parentheses inside the brackets, the first one contains
Re−Rec,0 and is thus positive beyond the primary threshold, and for α = 90o

the second contains only two positive terms (5Re/21 and 2/Pea).
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We follow a similar procedure at order O(k3) and evaluate C3, which is
purely imaginary and contributes only to the growth rate. Since the growth
rate to this order is given by kCi ≈ C1k

2 + C3k
4, we determine the critical

condition for instability for non-zero wavenumbers (k 6= 0) by setting Ci = 0.
As the resulting expression is implicit in Re, we derive an analytic solution by
positing the expansion

Rec = Rec,0 + k2Rec,2. (160)

The result in the general case of a surfactant of arbitrary solubility is very
cumbersome and will not be presented here. Instead, we quote only the limiting
case of a vertical wall (α = 90o) and an insoluble surfactant:

Rec,0 =
15

4
WeĒ, (161)

and

Rec,2 =
5σ̄

4
We+

(
4825

1344
− 1

Pe2
a

)
Rec,0 +

5

6Pea
Re2

c,0 +
3637

30888
Re3

c,0. (162)

For a clean fluid (Ē = 0), this expression reduces to Rec = 5
4Wek2 in agree-

ment with what we know from literature [44]. With the addition of surfactant,
Rec,0 increases from zero and, for typical examples, may eventually reach values
of order 102. Thus, the last three terms on the rhs of Eq. (162) (and in par-
ticular the third) dominate the first one, and dictate the behavior at non-zero
wavenumbers. As a consequence, we expect short wave disturbances to stabilize
drastically in comparison to the clean fluid.

2.3.4 Conclusions

We extended the analysis for the physical mechanism proposed by [7] and [8] for
the initiation and growth of a long-wave instability in liquid film flow, in order
to account for the presence of a surfactant of arbitrary solubility in the bulk.
The zero order, longitudinal flow perturbation (which is known to result from
the perturbation shear stress which develops along the deformed interface) was
shown to produce a convective flux that disrupts the uniform interfacial concen-
tration of surfactant. As a consequence of mass conservation, this convective
flux builds up an interfacial concentration gradient that, at leading order, is
in-phase with the deformation of the interface. The stabilizing effect of the re-
sulting Marangoni stresses appears in the first order flow perturbation, as an
additional term assisting gravity in draining fluid from the deformation crest.

The effect of surfactant solubility is apparent in the analytic expression de-
rived for the critical conditions, and indicates that the interfacial concentration
gradient, which is responsible for the Marangoni stresses, decreases with increas-
ing solubility. This behavior is explained by considering mass exchange between
the interface and the bulk, which at first order is 90o out of phase with the de-
formation, and contributes a flux that opposes the effect of the zero order flow
perturbation. More specifically, it drains surfactant from the node preceding
the deformation crest and brings surfactant to the node following it.
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It is observed that, for a specific surfactant (constant value of the solubility
parameter, ξa), the extent of flow stabilization is a non-monotonic function
of surfactant concentration at the interface, i.e. the critical Reynolds, Rec,0
number attains maxima at intermediate values of Γ. This is explained in terms
of the aforementioned mass exchange with the bulk solution, which intensifies
as the amount of surfactant increases.

Higher-order terms are calculated (at the expense of rapidly escalating al-
gebraic complexity) and provide information on the effect of disturbances of
finite wavelength. Apart from surfactant solubility, which remains of central
importance, the speed of adsorption/desorption at the interface starts to play a
role. This is clearly an effect of finite wavelength, given that for disturbances of
infinite length there is always enough time for the bulk to reach equilibrium with
the temporally varying interfacial concentration. As the disturbance becomes
shorter, the bulk concentration may lag in phase with respect to the interface.
The magnitude of this lag depends exclusively on the dimensionless parameter
ξaka, which is the ratio of the characteristic times of convection and adsorption.

Finally, the first correction due to finite wavelength is calculated for the
phase velocity of the disturbance and for the critical Reynolds number of the
primary instability. The expressions are very cumbersome, and are presented
and discussed mainly for the case of an insoluble surfactant. Compared to the
results at this order for a clean liquid, the phase velocity is found to decrease
with wavenumber, and the critical Reynolds is found to increase strongly.

3 Non-linear dynamics of a viscoelastic film sub-
jected to a spatially periodic electric field

3.1 Indroduction

The interaction of an externally applied electric field with a liquid can give rise
to interesting flow instabilities and pattern formation [45]. The work of Russel
and co-workers [46, 47, 48, 49, 50] has demonstrated that the application of an
electric field to an initially flat polymer-air or polymer-polymer interface results
in an electrohydrodynamic (EHD) instability leading to the formation of colum-
nar structures. These instabilities can be used in order to form well-controlled
patterns at the microscale and nanoscale with many practical engineering ap-
plications.

The electrically-induced flow of thin liquid films has attracted the interest
of many theoretical studies. More specifically, Schaffer et al. [47] used the
lubrication approximation to determine the dependence of the fastest growing
linear mode on system parameters for a polymer-air interface. Lin et al. [48]
conducted experimental as well as theoretical work to study the dependence
of pattern wavelength on the viscosity ratio in two-layer polymeric systems.
Their modelling study predicts the wavelength to be independent of the viscosity
ratio for perfect dielectric fluids. Pease & Russel [51] considered the stability
of the interface between a leaky dielectric liquid and air and showed that the
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presence of conductivity exerts a destabilizing influence leading to patterns of
smaller wavelength and much larger growth rates. Shankar & Sharma [52] also
conducted a linear stability analysis using lubrication theory and their results
indicate that, in contrast to the perfect dielectric case, for leaky dielectrics,
increasing the viscosity ratio has a profound influence on the pattern wavelength.

More recently, Heier et al. [53] were interested in systems with heterogeneous
electric fields and showed through experiments that it is possible to achieve a
steady state with finite interfacial deformation when Maxwell stresses in the
fluids and surface tension are balanced. They also developed a linear model
and were able to derive an expression for the critical voltage beyond which
the amplitude grows exponentially in qualitative agreement with their experi-
ments. However, it should be noted that according to Heier et al. [53] linear
theory severely underestimates the amplitude of the steady finite deformations
in comparison with experimental observations.

The nonlinear evolution of two leaky dielectric layers in a homogeneous elec-
tric field was examined by Craster & Matar [54] showing that initially small
perturbations grow under the action of the destabilizing electrical forces and
eventually their amplitude saturates in the non-linear regime to give rise to
spatially periodic patterns. Two-dimensional numerical simulations using the
lubrication theory helped in elucidating the interfacial evolution, the role of the
initial thickness ratio and the effect of patterned ”masks” on the observed three-
dimensional patterns [55, 56, 57, 58]. Several studies have also been devoted
in the investigation of the stability and dynamics of bilayers under air or an-
other viscous liquid [59, 60, 61, 62, 63]. Finally, the effect of AC fields has been
taken into account through linear stability analysis and non-linear simulations
by Roberts & Kumar [64] and Gambhire & Thaokar [65].

As discussed above, the surface instability of a Newtonian fluid under the
effect of electric field has been studied extensively by several researchers and it
is now well understood. The dynamics of fluids with complex rheology, however,
has received much less attention in the literature. The first attempt to take into
account the polymer viscoelasticity in electrically-induced flows was made by
Wu & Chou [66]. These researchers used the lubrication theory and performed
a linear stability analysis of a initially static thin polymer film underneath a
flat electrode using the Oldroyd-B consitutive equation for the elastic stresses.
Their results have shown that the polymer elasticity destabilizes the system and
when the Deborah number is large enough, a resonant phenomenon appears as
a result of the interaction between the two destabilizing mechanisms (the elec-
trostatic force and the polymer elasticity). Later on, Tomar et al. [67] used a
linear constitutive equation for the stresses (Jeffreys model) and presented a lin-
ear stability analysis taking also into account the effect of inertia. Interestingly,
they found that in the presence of a small amount of inertia the wavelength of
the fastest growing mode (i.e. the dominant lengthscale of the instability) is
independent of the rheological properties such as relaxation time and solvent
viscosity whereas the growth rate is affected significantly. Their findings were
confirmed recently by Espin et al. [68] using an asymptotic expansion. The
latter authors also examined the viscoelastic effects under the influence of AC
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fields and found that the impact is largest when the relaxation time and os-
cillation time scale are comparable. In the case of AC fields, it is shown that
the wavelength is also affected contrary to the predictions of linear theory for
the case of DC fields [67]. The rheological characteristics of the fluid were also
shown to play a role in the case of trilayers, indicating that its effect on the evo-
lution of two coupled interfaces is more involved than a purely kinetic role [69].
It should be noted here that the aforementioned studies for viscoelastic fluids
considered homogeneous electric fields (flat electrodes) and the linear stability
analysis was performed around a quiescent base state. However, in the case of a
patterned mask the field becomes heterogeneous and growth generates a time-
dependent base state for which linear or weakly non-linear stability analysis is
difficult necessitating the use of time-dependent simulations.

As was noted above, most of the research studies in the literature employ
linear theory, which is valid only for small disturbances. One crucial issue,
however, is not only to predict the band of unstable wavenumbers in the linear
regime but also to determine accurately the behavior of the system in the non-
linear regime. For the latter, the majority of the research groups make use of
the lubrication theory in order to interpret experimental results. Pease & Russel
[70, 71] argued, however, that in many cases the experiments were carried out for
conditions under which the lubrication approximation is not strictly valid. They
compared the predictions of a generalised model with those of lubrication theory
against experimental results and found a better agreement with the former. Very
recently, a detailed comparison was also presented by Gambhire & Thaokar [65]
for both DC and AC fields, which indicated large deviations for the predicted
wavelength. Moreover, in the case of viscoelastic fluids, the deficiencies of the
lubrication approximation are expected to be enhanced due to the significant
underestimation of normal stresses and to the fact that non-linear viscoelastic
effects are not taken into account.

Examples of fully non-linear simulations without making use of the lubri-
cation approximation are the works of [72, 73, 74, 75] who studied primarily
cases involving heterogeneous electric fields. Yang et al. [74], motivated by the
work of Heier et al. [53], considered a sinusoidally patterned top electrode and
performed non-linear simulations using a bounary/finite element method to de-
termine the critical parameters for instability of the liquid film. Their results
indicate that linear analysis can significantly over-predict the critical voltage for
instability. Li et al. [75] were also interested in heterogeneous electric fields and
investigated the effect of various geometric features of the patterned electrode to
determine the fabrication limits of this process using a diffuse interface method.

The scope of this work is to investigate the non-linear dynamics of a vis-
coelastic material under the influence of an heterogeneous electric field taking
fully into account the viscoelastic effects. We avoid making any assumptions,
such as using lubrication approximation, in order to describe the flow dynam-
ics as accurately as possible. We perform two-dimensional transient numerical
simulations, using the finite element method combined with an elliptic grid gen-
eration scheme for the determination of the unknown position of the interface.
The viscoelasticity of the polymeric film is taken into account using the affine
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Figure 22: Schematic of the flow geometry

Phan-Thien Tanner model. We perform an extensive parametric analysis to
determine the effects of the various geometric and rheological parameters on
the evolution of the interface and on the fabrication limits of this process. Our
results indicate that the elasticity of the material does not affect the critical
voltage for instability but affects the fabrication limit on the period of the top
electrode protrusions. We also discuss about the validity of lubrication theory
in the case of viscoelastic materials.

The remainder of this chapter is organized as follows. In Section 3.2, we
describe the system of governing equations and outline the numerical method
used for its numerical solution. The results are presented and discussed in
Section 3.3. Finally, the concluding remarks are given in Section 3.4.

3.2 Problem formulation

We consider the dynamics of two perfect dielectric fluids sandwiched between
two rigid, and impermeable electrodes. The electrodes can be either flat or
periodically patterned as shown in Fig. 42; w and p denote the width and the
height of the protrusions, respectively, and s denotes the spacing between the
protrusions. The bottom fluid is considered to be a polymeric viscoelastic film
surrounded by a Newtonian liquid, with initial thickness, d. Both fluids, which
are initially stationary, are taken to be incompressible with the lower (upper)
fluid having a density ρ1 (ρ2), dielectric constants ε1 (ε2); these properties are
assumed to be constant. The viscosity of the upper fluid is also constant and
denoted by µ2. The viscoelastic fluid has a zero-shear viscosity µ1 = µs + µp,
where µs and µp are the viscosities of the solvent and the polymer, respectively,
and relaxation time λ. The surface tension of the liquid-liquid interface, σ,
is assumed to be constant. The top and bottom electrodes are maintained at
constant potentials φ2(y = H(x)) = U and φ1(y = 0) = 0, respectively.

We scale all lengths with the maximum distance between the top and bottom
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electrodes, Hm, velocities with V ∗ = εoU
2/(µ1Hm), pressure and stresses with

µ1V
∗/Hm and electric potential with the potential difference U . Substituting

this scaling into the governing equations and boundary conditions, the dimen-
sionless groups that emerge are the Reynolds number, Re = ρ1V

∗Hm/µ1, the
Stokes number, St = ρ1gH

2
m/(µ1V

∗), the capillary number, Ca = µ1V
∗/σ, the

Weissenberg number, Wi = λV ∗/Hm, which is a measure of the elasticity of the
polymeric liquid, the density ratio, Di = ρi/ρ1, the viscosity ratio, Mi = µi/µ1,
and the solvent viscosity ratio of the polymer liquid, β = µs/µ1.

Inserting the previously defined characteristic quantities into the momentum
and mass conservation equations, we obtain:

DiRe

(
∂vi
∂t

+ vi · ∇vi

)
−∇ · Ti + Stez = 0, (163)

∇ · vi = 0, (164)

where ∇ denotes the gradient operator, subscript i indicates the corresponding
fluid, vi is the velocity vector and Ti is the total stress tensor given by

Ti = −PiI + τi +mi. (165)

Here Pi denotes the pressure, I is the identity tensor and τi the extra stress
tensor

τ1 = τp,1 + 2βM1γ1, (166)

τ2 = 2M2γ2. (167)

Note that for the viscoelastic material the extra stress tensor is split into a
purely viscous part, 2βM1γ1, and a polymeric contribution, τp,1. γi denotes the
rate of strain tensor

γi =
1

2

(
∇vi +∇vTi

)
. (168)

The Maxwell stress tensor, denoted by mi, describes the interaction of fluid
i with the electric field, Ei, and is defined as

mi = εiEiEi −
1

2
εiEi ·EiI. (169)

Note that due to the absence of free charge from the bulk of the fluid and since ε1
and ε2 are spatially independent, ∇·mi = 0. Therefore it becomes evident that
Maxwell stresses will not have any contribution in eq. (202) but nevertheless
enter the problem through the interfacial boundary conditions. The Maxwell
stresses depend on the local intensity of the electric field. Under the electrostatic
approximation and for an electrically neutral fluid, Maxwell’s equations reduce
to the following set of equations

∇ · (εiEi) = 0, (170)

∇×Ei = 0. (171)
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Since the electrical field is irrotational, we can define a potential function φi
such that

Ei = −∇φi. (172)

By combining eq. (209) and eq. (211) we get the following equation

∇ · (εi∇φi) = 0. (173)

To complete the description, a constitutive equation that describes the rhe-
ology of the viscoelastic material is required in order to determine the polymeric
part of the extra stress tensor. As such, we use the following differential model
that has been proposed by [76]

Y (τp,1)τp,1 + Wiτ̂p,1 = 2(1− β)M1γ1. (174)

The symbolˆover the viscoelastic stress denotes the Gordon-Schowalter deriva-
tive defined as

X̂ =
∂X

∂t
+ v1 · ∇X − (∇v1 − ξsγ1)T ·X −X · (∇v1 − ξsγ1), (175)

where X is any second order tensor. Two forms of the PTT model are in
common use, the linearised form [76], where the function Y (τp,1) is

Y (τp,1) = 1 +
aPTTWi

(1− β)M1
tr(τp,1), (176)

and the exponential form [77]

Y (τp,1) = exp

[
aPTTWi

(1− β)M1
tr(τp,1)

]
. (177)

In the present study we have used the exponential form of the PTT model.
Both versions of the PTT model have two parameters, ξs and aPTT . The first
one is related to the non-affine motion of the polymer chains with respect to
the macroscopic motion of the continuum. By setting ξs equal to zero no such
motion or slip is allowed; for the rest of the paper ξs will be considered to be
zero. The Gordon-Schowalter derivative reduces to the upper convective one and
the fluid model is referred to as the affine PTT model. The second parameter,
aPTT , imposes an upper limit to the elongational viscosity, which increases as
this parameter decreases, while it introduces elongational thinning. Moreover
aPTT is related to the shear-thinning behavior of the model. The predictions
for the elongational and shear viscosity of this model for various values of aPTT
appear in Fig. 9 of [42]. By setting both aPTT = 0 and ξs = 0, the PTT model
reduces to the Oldroyd-B model. Retaining the zero values for aPTT and ξs and
additionally setting β = 0, the PTT model reduces to the UCM model.

In order to solve accurately and efficiently the flow inside the viscoelastic
material we employ the elastic viscous split stress EVSS-G formulation [78, 79].
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This method consists of splitting the polymeric part of the extra stress tensor
into a purely elastic and a viscous part

τp,1 = Σ + 2(1− β)M1γ1. (178)

Moreover, an independent interpolation of the components of the velocity gra-
dient tensor is introduced

G = ∇v1. (179)

The former splitting ensures the elliptic nature of the momentum equations
even in the absence of a solvent (β = 0), while the latter substitution makes the
approximations in the constitutive equation of the elastic stress and the velocity
gradient compatible to each other. This scheme has been used with success in
the past [42, 80, 81] permitting the calculations up to very high Weissenberg
numbers.

3.2.1 Boundary conditions

Solution of the above set of equations is determined subject to the following
boundary conditions.

On the solid walls we apply the usual no-slip and no-penetration boundary
conditions while on the two edges of the physical domain (x = 0, L) we apply
periodic conditions.

Along the liquid-liquid interface the velocity is continuous

v1 = v2, (180)

and the flow field satisfies the local interfacial force balance between the stresses
in both liquids

n · T1 = n · T2 +
2Hn

Ca
, (181)

where n denotes the unit normal pointing towards the upper liquid, 2H is the
mean curvature of the interface

2H = −∇s · n, (182)

and ∇s is the surface gradient operator, defined as

∇s = (I − nn)∇. (183)

In addition, along the moving interface we impose the kinematic boundary con-
dition,

∂f

∂t
+ vi · ∇f = 0, (184)

where f describes the position of the interface. A balance of the normal and
tangential component of the electric field gives the continuity of the potentials
and the electric displacement across the interface

φ1 = φ2, (185)

61



n · (ε1∇φ1) = n · (ε2∇φ2). (186)

Finally to complete our model we have to set a datum pressure and as such, we
impose a zero value to the pressure at a node of the top electrode, P (x = 0, y =
1) = 0. Initially the film is considered to be static and the liquid-air interface
is flat; no initial perturbation is applied.

3.2.2 Elliptic grid generation

The above set of equations is combined with an elliptic grid generation scheme
capable of following the deformations of the physical domain. This method has
been successfully applied in flows that exhibit large deformations in steady state
[80] and transient calculations [82, 83, 84]. The grid generation scheme consists
of a system of quasi-elliptic partial differential equations, capable of generating
a boundary fitted discretization of the deforming domain occupied by the liquid.
With this scheme the physical domain (x, y) is mapped onto a computational
one (η, ξ). A fixed computational mesh is generated in the latter domain while,
through the mapping, the corresponding mesh in the physical domain follows
its deformations. The mapping is based on the solution of the following system
of quasi-elliptic partial differential equations

∇ · (α · ∇η) = 0 (187)

∇ ·

[(
δ

√
x2
ξ + y2

ξ

x2
η + y2

η

+ (1− δ)

)
∇ξ

]
= 0 (188)

where

α =

(
1 0
0 a

)
, a ≥ 1. (189)

The subscripts denote differentiation with respect to the indicated variable. The
parameter a forces the ξ-coordinate lines to be equidistant in the y-direction and
δ is a parameter that controls the smoothness of the mapping relative to the
degree of orthogonality of the mesh lines. These parameters are adjusted by trial
and error; here we set a = 100 and δ = 0.1. For a more detailed description of
this method the interested reader may refer to [85, 86, 87].

In order to solve the above system of differential equations, appropriate
boundary conditions must be imposed. On the fixed boundaries, we impose the
equations that define their position, and the remaining degrees of freedom are
used for optimally distributing the nodes along these boundaries. Along the
moving liquid-liquid interface we simply impose the kinematic equation.

We should note here that special care was taken for the mesh near the
interface. In order to resolve adequately the flow, a more refined mesh around
this region is needed. To this end, we have introduced a local refinement scheme
using the h-method [88]. In order to illustrate the quality of the resulting mesh
produced following our method we present in Fig. 43 a typical grid; here we
show for clarity the domain 1 < x < 3.
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Figure 23: (Color online) Typical grid with 3 levels of local refinement adjacent
to the liquid-liquid interface for Wi = 0, Ca = 30, d = 0.3, s = 0.8, p = 0.2,
w = 0.2, L = 4 at time t = 26.04.

In order to solve numerically the governing equations along with the elliptic
grid equations, we used the mixed finite element method; this numerical scheme
has been used with success in the past [82, 80, 81, 83, 42]. Detailed information
about the weak formulation of all the equations is given in the 3.5. Finally, the
set of algebraic equations is integrated in time with the implicit Euler method
introducing an automatic adaptation of the time step for ensuring the conver-
gence of the above iteration scheme and optimizing code performance.

3.3 Results

As shown in Fig. 42 we consider a periodically patterned electrode as a mask
to induce the fabrication of similar structures in the liquid. For the purposes
of this study we will consider that the width and the height of the protrusions
are w = 0.2 and p = 0.2, respectively. Since the effect of these geometric
characteristics have been discussed in detail for the case of a Newtonian liquid by
[75], we will keep these values constant and focus our attention on the remaining
parameters of our model. The size of the domain will be considered to be
L = 4(s + w) unless stated otherwise. For the rest of the paper we will also
consider creeping flow conditions and set Re = 10−5, ignore gravitational effects,
St = 0, and consider density and viscosity ratios typical of liquid-air systems,
D2 = 0.001, M2 = 0.001.

3.3.1 Newtonian fluid

To set the stage for the discussion that follows, it is useful to examine first the
case of a Newtonian fluid (Wi = 0). In Fig. 24 we present contour plots for the
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(c) (d)

Figure 24: (Color online) Contour plots of (a) vx, (b) vy, (c) P and (d) electric
potential at t = 26.04 for Wi = 0, Ca = 30, ε1 = 2.5, ε2 = 1, d = 0.3, s = 0.8,
p = 0.2, w = 0.2, L = 4.
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(a) (b)
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Figure 25: (a) Evolution of the amplitude for various Ca. (b) Time that is
needed for hmax − hmin = 0.4 as a function of the Ca number. Dependence
of (c) hmax − hmin on Ca at t = 100 for various Wi and (d) the dimensionless
amplitude Z on ετ/(1 − τ2). The remaining parameters are Wi = 0, ε1 = 2.5,
ε2 = 1, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 4

velocity field, pressure and electric potential at t = 26.04 for Ca = 30, d = 0.3
and s = 0.8; for clarity we present here only part of our computational domain
(1 ≤ x ≤ 3). The liquid film is initially flat and quiescent. Upon the application
of voltage the liquid experiences non-uniform electrostatic forces, due to the
spatial heterogeneity of the electric field that is created by the top electrode,
and liquid is drawn towards the protrusions, destabilizing the liquid-air interface.
The flow field appears to be symmetric around the protrusions giving rise to
symmetric structures that follow closely the geometrical characteristics of the
top electrode. The pressure varies mainly inside the liquid phase (see Fig. 24c)
and becomes minimum at the crest, whereas in the gas phase it remains almost
constant (approximately equal to the datum pressure) due to the fact that the
viscosity of the gas is very small. The contour lines of the electric potential are
depicted in Fig. 24d. The deflection of the equipotential lines at the liquid-air
interface is due to the difference of dielectric properties of the materials.
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For the given set of parameters the height of the interface below the pro-
trusions increases continuously until the liquid comes into contact with the top
electrode; the simulation is stopped before we actually reach that point. Heier
et al. [53] have shown that by manipulating the combined effect of Maxwell
stresses and surface tension it is possible to achieve a steady state interfacial
deformation avoiding contact with the top electrode. In order to investigate
this possibility, we examine in Fig. 25a the parametric effect of the capillary
number, Ca, in the temporal evolution of the maximum amplitude of the inter-
facial perturbation. Recall that Ca compares electric to capillary stresses. For
the lowest Ca we confirm that the amplitude initially grows and then saturates,
indicating that electric and capillary forces balance exactly. This situation evi-
dently corresponds to a static equilibrium, as there is no driving force for flow.
The equilibrium amplitude increases with Ca as depicted in Fig. 25c, and its
maximum values are in the order of 10% of the electrode spacing.

According to the linear theory developed by Heier et al. [53] the dimension-
less amplitude Z = ζ0

√
k2(1− d+ d/εp)/Ca, where ζ0 = (hmax − hmin)/2 and

k = 2π/(s+ w) should depend linearly on ετ/(1− τ2), where ε = p/[2(1− d+
d/εp)] and τ = (1− 1/εp)

√
Ca/[k2(1− d+ d/εp)3]. Heier et al. [53] correlated

experimental data of Z by a power-law dependence on ετ/(1 − τ2), and found
that the exponent is not equal to one -as expected from their linear theory-
but actually is much higher, approximately equal to 4.5. The results of our
non-linear calculations, plotted in terms of the above dimensionless parameters,
are shown in Fig. 25b. We observe that the correlation by a power-law is not
completely satisfactory, as the slope in log-log coordinates gradually increases.
However, an approximate value for the exponent is 3.2, which is significantly
higher than the linear prediction and a bit lower than the experimental value.

The long-time results depicted in Fig. 25a indicate that the equilibrium
state is not stable but is eventually destroyed and some peaks reach the upper
electode. The process by which the interface disintegrates is shown in Fig. 26
for Ca = 8 and involves loss of the spatial periodicity imposed by the elec-
tode spacing. We note however that the time-scale for this process is at low
Ca an order of magnitude higher than the time-scale for growth of the equi-
librium amplitude. Thus, the equilibrium state may actually be considered as
metastable.

Increasing the Ca number, the effect of surface tension becomes less signif-
icant and the destabilization of the interface takes place sooner. Plotting the
time that is needed for hmax − hmin = 0.4 (a convenient arbitrary criterion)
it is possible to evaluate the threshold in the Ca number beyond which the
metastable state is not observed (see Fig. 25b) and we find that for the given
set of parameters it is approximately equal to Ca ≈ 10. According to linear
theory [53, 74] the critical Ca can be evaluated using the following expression

Cacr = k2 [εp(1− p/2− d) + d]
3

εp(εp − 1)2
, (190)

where k is the wavenumber of the interfacial perturbation which is assumed
to largely follow the pattern of the top electrode. For the given set of parameters
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Figure 26: Profiles of the liquid-air interface for Ca = 8 at t=100,400,500.
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Figure 27: Long time profiles of the liquid-air interface for various Ca and for
Wi = 0, ε1 = 2.5, ε2 = 1, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 4

and assuming that the dimensionless wavelength of the initial disturbance is
approximately equal to s + w, we get Cacr = 40.89. It appears that linear
theory significantly over-predicts the critical voltage and this was also found to
be true in the non-linear simulations presented by [74].

The loss of interfacial periodicity that is observed in the evolution of the
metastable equilibrium appears to be a more general characteristic of the present
problem. In support of this argument, we present in Fig. 27 the long-time
profiles of the liquid-air interface for three different values of the Ca number.
We observe that for values higher than the ’critical’ Ca the deformation of
the interface remains periodic, following closely the spatial periodicity imposed
by the top electrode, during the entire evolution toward formation of columnar
structures. On the other hand, for low Ca the spatial periodicity of the interface
is eventually destroyed, despite the initial periodicity of the metastabe state.
The evolution is always a coarsening process similar to the one described in
[89]. More specifically, some pillars expand at the expense of shrinkage of their
neighbours and this is essentially an Ostwald ripening phenomenon.
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Figure 28: Long time profiles of the liquid-air interface for different sizes of the
computational domain for Wi = 0, Ca = 10, ε1 = 2.5, ε2 = 1, d = 0.3, s = 0.8,
p = 0.2, w = 0.2

The mechanism responsible for the ripening process can be rationalized as
follows. Initially, the wavelength of the interface perturbation is imposed by
the pattern of the electrode which induces non-uniform Maxwell stresses to the
interface. Note that for the parameters that have been used in this study the
wavelength is 2-5 times smaller than the wavelength of the fastest growing mode
which is predicted by linear theory for flat electrodes. Even though this repre-
sents a barrier which is set by the effect of surface tension it can be overcome due
the effect of the heterogeneous electric field. For cases that growth is sufficiently
fast, the mode which is imposed by the patterned electrode will dominate and
the pattern of the electrode will be replicated in the film retaining its periodic
structure. On the other hand, if growth is relatively slow or the system reaches
equilibrium the mode of the natural wavelength, which is dominated by the
effect of surface tension, is given the time to grow and eventually dominate the
flow.

One question that arises is whether these non-periodic solutions are physi-
cally meaningful or are affected in any way by the size of our domain and the
application of periodic conditions at the edges. To investigate this, we have
repeated the calculations for Ca = 10 doubling the size of the computational
domain and the long-time profile of the interfacial height is presented in Fig. 28.
Note that the solution for the short domain have been extended periodically in
the x-direction. Comparing the results for the two domains we find that, al-
though the profiles present some similarities, they are far from identical. Never-
theless, we observe that in both cases the structures evolve by a rough doubling
of the spatial periodicity that results from merging of neighbouring crest, with
the growing hump “hesitating” between the respective electrode protrusions.
Still, we are unable to conclude if the evolution by period-doubling is a general
trend or is dictated by the imposed periodic boundary conditions. For Ca = 20
the solutions using the sort or long domain are identical and are not presented
here for conciseness.
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Figure 29: Flow map for Wi = 0, Ca = 20, ε1 = 2.5, ε2 = 1, p = 0.2, w = 0.2,
L = 4(s+ w).

In practice in order to produce well-ordered polymeric micro-structures over
large distances it is important to operate in conditions where the induced struc-
tures are periodic. Apart from using the applied voltage to control the induced
patterns, as shown above, it is also possible to tune the film thickness and the
geometrical characteristics of the top electrode such as the periodicity of the
protrusion as well as their width and depth. In Fig. 29 we depict a flow map to
investigate the various flow patterns that may arise for various distances of the
protrusions and different mean initial thickness of the polymer. Our calculations
indicate the existence of two different regimes. The circles denote the regime
where the induced structures are periodic whereas the triangles correspond to
non-periodic solutions. These are separated by a curve with filled circles which
is used to indicate near critical conditions. To determine whether the pattern is
periodic or not, we evaluate the standard deviation of the position of each peak
from the mean value, h̄p, when the highest peak has reached h = 0.7. If the
standard deviation is lower than 0.001 then the structure is considered periodic
whereas for higher values the structure is considered to be non-periodic. From
fig. 29 we deduce that increasing the initial film thickness, d, the minimum
distance of the protrusions decreases significantly and therefore the fabrication
limit of the induced patterns decreases as well. A similar configuration to ours
was studied recently by Li et al. [75] using a diffuse interface method and it
would be useful to compare their predictions for the period limit of the protru-
sions against our calculations using the sharp interface approach. For the fluid

70



(a) (b)

(c) (d)

Figure 30: (Color online) Contour plots of (a) vx, (b) vy, (c) P and (d) electric
potential at t = 28.44 for Wi = 2, Ca = 20, β = 0, aPTT = 0.05, ε1 = 2.5,
ε2 = 1, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 4.

properties (σ = 0.038 N/m) and applied voltage (70 V) that were used by Li et
al. [75] we deduce that Ca ≈ 11.4. For this set of parameters we get that the
predicted critical distance between the electrode protrusions is approximately
equal to s = 0.85 which is in very good agreement with the predictions presented
by these authors.

3.3.2 Viscoelastic fluid

Next we proceed with our investigation taking into account the effect of vis-
coelasticity of the polymeric film by studying the case of a PTT fluid. To start
with, we present in Fig. 30 contour plots for the velocity field, pressure and
electric potential at t = 28.44 for Wi = 2, Ca = 20, d = 0.3 and s = 0.8; for
clarity we present here only part of our computational domain (1 ≤ x ≤ 3). As
in the case of the Newtonian fluid for the given set of parameters we end up
with a symmetric flow field around the protrusions and the induced structures
are also symmetric. The velocity in the normal direction at the crest is higher
and as a result the crest reaches the same height sooner for the case of the
viscoelastic fluid than a Newtonian fluid with similar surface tension. Though
this trend agrees with the findings of linear theory (which suggests that the
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(c)

Figure 31: (Color online) Contour plots of (a) τp,xx, (b) τp,yy and (c) τp,xy at
t = 28.44 for Wi = 2, Ca = 20, β = 0, aPTT = 0.05, ε1 = 2.5, ε2 = 1, d = 0.3,
s = 0.8, p = 0.2, w = 0.2, L = 4.

growth rate increases with the elasticity of the material [66, 67]), the behavior
at finite deformations is presently interpreted differently in terms of the normal
and shear stresses.

Iso-contours of the polymeric part of the stress components at an advanced
stage of interfacial deformation is depicted in Fig. 31. The values of these
components along the interface are plotted in Fig. 32 for two different times,
corresponding to early (linear) and advanced (nonlinear) stage of the pillar
growth. (We note that the contour lines given here and subsequently in this
paper have been derived from the raw data without any post-processing for
smoothing them. In spite of the sharp variations of stress components near the
crests of the film, these contour lines remain smooth throughout the simulations.
Apparently τp,xx and τp,yy develop boundary layers on the front, the accurate
resolution of which required the local mesh refinement described earlier.)

As intuitively expected -and also concluded from Fig. 31b- the normal stress,
τp,yy, is extentional in the core of the crest and thus resists elongation of the
pillar. However, Fig. 32 indicates that the relative intensity of this resistance
decreases with deformation, as τp,yy is proportional to deformation at the linear
stage but strongly displaced towards lower values later. The explanation of this
relaxation is provided by the behavior of the normal stress τp,xx, which retains
negative -i.e. compressive- values along the core of the pillar. The compressive
x-component acts to thin the pilar and thus relaxes polymeric stresses in the y-
direction. Finally, the shear component τp,xy also resists deformation according
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Figure 32: Interface height disturbance and profiles of τp,xy, τp,xx and τp,yy
along the interface at (a) t = 0.0027 (b) t = 24.3. The remaining parameters
are the same as in Fig. 30.
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Figure 33: (a) Evolution of the amplitude for various Ca and for Wi = 5. (b)
Time that is needed for hmax − hmin = 0.4 as a function of the Ca number for
various Wi. (c) Dependence of the dimensionless amplitude Z on ετ/(1 − τ2).
The remaining of the parameters are β = 0, aPTT = 0.05, ε1 = 2.5, ε2 = 1,
d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 4.

to Fig. 31c, and thus has a stabilizing role for highly deformed pillars.
It is noteworthy that according to Wu & Chou [66], who employ the lubri-

cation approximation for analysis of the initial stages of deformation growth,
the xy-component is the only one that survives in the linear limit and has a
destabilizing effect. As it is shown in Fig. 32, this is actually true only at the
very early stages of the flow. The magnitudes in Fig. 31c indicate that at fi-
nite growth normal stresses are dominant, being roughly two times larger than
the xy stress component. Thus, the usual assumption of reduced order models
based on the lubrication approximation -according to which the normal stresses
are negligible- is clearly not valid at the late stages of the flow.

In Fig. 33a we examine the effect of the capillary number, Ca, and present the
evolution of the maximum amplitude of the interfacial perturbation for Wi = 5.
Similarly to the case of a Newtonian fluid, for low Ca numbers we find that the
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amplitude initially grows and reaches a metastable state of a quasi-static low
amplitude deformation, before eventually the pillars start growing again and
reach the top electrode ; as in the case of Newtonian fluids, the amplitude is
found to increase with Ca (see Fig. 33c). We note that the power-law exponent
of the dependence of the dimensioless amplitude Z on ετ/(1−τ2) is not affected
by the elasticity of the material. This indicates that the difference with the
experimental value found in [53] should perhaps be attributed to the presence
of free charge along the liquid-air interface which is not taken into account by
our model. For higher values of the Ca number, the amplitude continuously
grows until the liquid reaches the protrusions.

In Fig. 33b, we evaluate the threshold in the Ca number for the appearance
of the metastable states for three different values of the Wi number in a similar
manner to Fig. 25b. We find that the time spent in the metastable state is
not affected by the elasticity of the material and this is also reflected in the
value of the ’critical’ Ca number which is Ca ≈ 10 independent of the value of
the Wi number. On the other hand, we find that for high Ca the time that
is needed to achieve hmax − hmin = 0.4 decreases considerably with Wi; This
characteristic growth time is further reduced with increase of Ca as the role of
surface tension becomes less significant. The above behavior is probably due to
the effect of shear and elongational thinning which is attributed to the PTT fluid
by the finite value of the parameter aPTT . When the capillary number is well
beyond its critical value, the growth rate of the disturbances is large, resulting
in high rates of deformation. High deformation rates render the effect of shear
and elongational thinning -which facilitate growth of the pillars- gradually more
significant.

The effect of the Ca number on the induced structures for the case of a
viscoelastic fluid with Wi = 1 is presented in Fig. 34 where we plot the long-
time profiles of the liquid-gas interface. Clearly, we find that decreasing the
value of Ca and as the critical Ca for destabilization is approached the spatial
periodicity of the structures is lost similarly to the case of a Newtonian fluid (see
Fig. 27). Next, we keep the Ca number constant and vary the value of Wi. In
the case of the Newtonian fluid the interface exhibits a periodic structure with
pillars of equal size. With increasing Wi number a coarsening process takes
place with the central pillars growing faster drawing fluid from their neighbours.
It appears therefore that the bulk elasticity of the viscoelastic material has a
similar effect to surface tension, which can also be interpreted as the elasticity of
the interface, and does not affect only the growth rate but also the wavelength
of the disturbances. However it should be noted that the effect of the bulk
elasticity appears to be much weaker that the effect of surface tension. Our
simulations indicate that the effect of elasticity becomes larger for Ca numbers
close to the ’critical’ value whereas its effect decreases for high values of Ca.

As was noticed above, in order to produce well-ordered polymeric micro-
structures over large distances it is important to know under which conditions
it is possible to get periodic structures. To examine the effect of elasticity on
the fabrication limits of this process we produced the map shown in Fig. 36.
Here each point in the graph represents a simulation for the given value of
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Figure 34: Long time profiles of the liquid-air interface for various Ca and for
Wi = 1, β = 0, aPTT = 0.05, ε1 = 2.5, ε2 = 1, d = 0.3, s = 0.8, p = 0.2,
w = 0.2, L = 4.
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Figure 35: Long time profiles of the liquid-air interface for various Wi and for
Ca = 15, β = 0, aPTT = 0.05, ε1 = 2.5, ε2 = 1, d = 0.3, s = 0.8, p = 0.2,
w = 0.2, L = 4.
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Figure 36: Flow map for Ca = 20, β = 0, aPTT = 0.05, ε1 = 2.5, ε2 = 1,
d = 0.3, p = 0.2, w = 0.2, L = 4(s+ w).

the distance between the protrusions, s, and the corresponding Wi number.
The open circles denote the case where we find solutions preserving the spatial
periodicity whereas the triangles correspond to non-periodic solutions. The
solid circles on the other hand denote near critical conditions; we used the same
criterion for critical conditions as described in Fig. 29. From this figure we
deduce that the spacing between the protrusions, s, that results in periodic
structures increases significantly with Wi; this effect appears to saturate for
high values of the Wi number. The critical s will impose a fabrication limit on
the width of the channels that can be manufactured, and it appears from the
above that the more elastic the material, the higher the minimum width of the
channels that can be achieved.

At this point, we should note that early studies using linear theory for ho-
mogeneous electric fields were suggesting that viscoelasticity affects the growth
rate but leaves unaffected the wavelength of the most dangerous mode. We
find this to be true also for heterogeneous electric fields at early times when
the amplitude of the disturbances is small. However, as the amplitude becomes
larger and non-linear effects come into play this is no longer true for the case of
heterogeneous electric fields. Viscoelasticity does affect the wavelength of the
induced structures and needs to be taken into account for designing the process
efficiently.
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(a) (b)

Figure 37: Evolution of the disturbance amplitude for (a) β = 0 and various
aPTT , (b) aPTT = 0.05 and various β. The remaining parameters are Ca = 20,
ε1 = 2.5, ε2 = 1, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 4

3.3.3 Effect of rheological parameters aPTT and β and dielectric con-
stant, ε1

We continue our study by investigating the effect of the rheological parame-
ters of the Phan-Thien Tanner model. Parameter aPTT controls the level of
the elongational viscosity, and as it approaches zero the elongational viscosity
increases to infinity. The influence of this parameter is more involved because
it also affects the shear viscosity of the fluid. The predictions of the model for
various values of this parameter can be found in [42]. To examine the effect of
aPTT , we have plotted in Fig. 37 the evolution of the amplitude of the maxi-
mum peak with time for two values of Wi and for various values of aPTT . For
Wi = 1 the curves are found to be identical for all three values of aPTT , which
suggests that shear and elongational thinning do not have a significant effect
in this case. On the other hand, for Wi = 5 the dynamics are slightly affected
with regards to the time that exponential growth is initiated. Nevertheless, the
long-time profiles are not affected significantly and remain almost identical for
all values of aPTT ; not shown here for conciseness. This is a clear indication
that shear and elongational thinning may affect to some extent the dynamics
of the flow but do not have any significant effect on the induced structures and
therefore do not have to be taken into account in the design process.

The ratio of the solvent viscosity to the total viscosity, β, is also an important
parameter because it also influences the level of viscoelasticity in the momentum
balance. The effect of β is examined in Figs. 37b and 38. As it is shown, the
solvent viscosity has a significant impact on the flow dynamics and for low
values of β leads to an acceleration of the pillar growth. However, increasing
further β, the Newtonian contribution increases considerably with respect to
the polymeric one and the behaviour of the film approaches the Newtonian
limit. The inset in Fig. 37b depicts the early time dynamics where it is clearly
shown that the growth rate for small disturbances depends monotonically on β
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Figure 38: Long time profiles of the liquid-air interface for two different values
of β and for Wi = 5, Ca = 12, aPTT = 0.05, ε1 = 2.5, ε2 = 1, d = 0.3, s = 0.8,
p = 0.2, w = 0.2, L = 4.

in agreement with the results of linear theory presented in [67]. As it is shown
in Fig. 38, for β = 0 and for the particular choice of the remaining parameters,
the film deviates from the Newtonian case. The addition of some Newtonian
contribution reduces the levels of elasticity in the fluid decreasing in turn the
fabrication limit on the period of the protrusions of the top electrode.

Finally, the effect of the dielectric constant, ε1, is depicted in Fig. 39 where
we have plotted the liquid-interface profiles at the time instant for each case
that the height of the pillars becomes equal to 0.5. It is found that the pillars
grow faster with increasing ε1 due to the higher intensity of the electric field
that the liquid experiences. Regarding the shape of the formed pillars we find
that with increasing ε1 the pillars become thinner at the peaks and flatter at
the troughs; the pillars acquire a quasi triangular shape for the highest value of
ε1 = 5.

3.3.4 AC electric field

We continue our study with an investigation of the effect of an AC electric field
on the flow dynamics. The effect of AC field is introduced into our model by
imposing the following boundary condition at the top electrode

φ2(t) = 1 +AC [cos(ωt)− 1] (191)

where AC and ω are the amplitude and oscillation frequency of the electric field,
respectively. In Figure 40 we examine the effect of the oscillation amplitude, AC
on the evolution of the height of the columns of the viscoelastic layer. For zero
value of AC the electric field is DC and we observe a monotonic increase of the
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Figure 39: Profiles of the liquid-air interface for three different values of ε1 and
for Wi = 2, Ca = 20, aPTT = 0.05, β = 0, ε2 = 1, d = 0.3, s = 0.8, p = 0.2,
w = 0.2, L = 4.

columnar height. For finite values of the electric field oscillation amplitude, AC,
though we find that the liquid-air interface oscillates following the oscillation of
the electric field. Increasing the value of AC the oscillation amplitude of the
interfacial disturbances increases as well resulting in turn in the increase of the
number of cycles and the overall time that is needed for the columns to reach
the top electrode.

Recently, Espin et al [68] performed a linear stability analysis for a similar
system, using the Jeffreys viscoelastic model and have shown that besides the
effect on the growth rate, the presence of an AC field may also affect the dis-
turbance wavelength of the viscoelastic film. In order to investigate this effect
in the non-linear regime we prepared fig. 41 where we depict the shape of the
liquid-air interface at large times for two different values of the parameter AC
which correspond to the case of a DC (AC = 0) and an AC (AC = 0.1) electric
field. Interestingly, we find that in the case of the AC field the liquid-air inter-
face follows more closely the structure of the top electrode suggesting that it is
possible to decrease the fabrication limit of this process by using AC instead of
DC electric fields.

3.4 Conclusions

We carried out a numerical investigation of the flow of both a Newtonian and
a viscoelastic film under the action of an heterogeneous electric field imposed
by the presence of a patterned electrode. The mixed finite element method
was used combined with a quasi-elliptic mesh generation scheme, which allows
an accurate description of the large deformations of the liquid-air interface.
The viscoelastic behaviour of the polymeric film was modelled using the PTT
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Figure 40: Evolution of the interfacial height disturbance amplitude for various
amplitudes of the AC electric field for Ca = 20, Wi = 10 and ω = 1. The
remaining parameters are aPTT = 0.05, β = 0, ε1 = 2.5, ε2 = 1, d = 0.3,
s = 0.8, p = 0.2, w = 0.2, L = 4.
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Figure 41: Profiles of the liquid-air interface for two different values of the
amplitude of the AC field and for Ca = 20, Wi = 10 and ω = 1. The remaining
parameters are aPTT = 0.05, β = 0, ε1 = 2.5, ε2 = 1, d = 0.3, s = 0.8, p = 0.2,
w = 0.2, L = 4.

constitutive law. Simulations up to high Weissenberg numbers were successful
by using the EVSS-G/SUPG formulation for the numerical discretization and
weighting of the constitutive equations. Attention was focused on the non-linear
dynamics of the flow, and it was interrogated in particular how the dynamics is
influenced by the rheological characteristics of the material and how in turn it
affects the fabrication limits of this process.

We have shown that for low values of the Ca number a metastable state
of finite amplitude interfacial deformation arises before eventually the pertur-
bations grow until they reach the top electrode; during the late stages of the
flow a coarsening process also takes place. Our non-linear simulations provide
a better agreement with experimental observations for the amplitude of the
pseudo-steady state in comparison to the earlier predictions of linear theory
[53]. We have shown that under the influence of a patterned electrode the effect
of elasticity is more involved than what is suggested by linear theory for the
case of an homogeneous electric field. We find that shear polymeric stresses are
destabilizing at early times, as predicted by linear theory, but become stabi-
lizing at later stages of the flow. Normal stresses, on the other hand, become
increasingly important as the liquid-air interface deforms, destabilizing the film.
It is shown that at late times normal stresses become dominant and cannot be
ignored, as it is usually done under the lubrication approximation, for the ac-
curate prediction of the flow dynamics. We also find that the fabrication limit
on the period of the electrode protrusions appears to depend on the elasticity
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of the material, contrary to the predictions of linear theory of a constant most
dangerous wavelength in the case of a flat electrode (homogeneous electric field).
Finally, the amplitude of the pseudo-steady interfacial deformations appears to
be unaffected by the elasticity of the material and the same is also true for the
critical voltage below which these metastable states arise.

3.5 Appendix: Finite element formulation

The physical domain was discretized using triangular elements. We approxi-
mate the velocity vector, the position vector and the potential with six-node
Lagrangian basis functions, ψj , and the pressure, the elastic stresses, as well as
the velocity gradients with three-node Lagrangian basis functions, χj .

For the momentum, mass balances and the Laplace equation for the poten-
tial, we employ the finite element/Galerkin method, which after applying the
divergence theorem results in the following weak forms:∫

V

[
DiRe

(
∂vi
∂t

+ vi · ∇vi

)
ψj − P∇ψj +∇ψj · Σ + 2∇ψj · γi+

Stψjez
]
dV −

∫
S

[n · Ti]ψjdS = 0, (192)

∫
V

[∇ · vi]χjdV = 0, (193)∫
V

[
εi∇φi · ∇ψj

]
dV −

∫
S

[n · ∇φi]ψjdS = 0. (194)

where dV and dS are the differential volume and surface area, respectively. The
surface integral that appears in the momentum equation is split into as many
parts as the number of boundaries of the physical domain and the relevant
boundary condition is applied therein.

The weak form of the mesh generation equations is derived similarly by
applying the divergence theorem:∫

V

[α · ∇η] · ∇ψjdV = 0, (195)

∫
V

[(
δ

√
x2
ξ + y2

ξ

x2
η + y2

η

+ (1− δ)

)
∇ξ

]
· ∇ψjdV = 0. (196)

The continuous approximation for the components of the velocity gradient
tensor is written as ∫

V

[G−∇v1]χjdV = 0. (197)
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The constitutive equation due to its hyperbolic character is discretized using
the streamline upwind Petrov-Galerkin (SUPG) method proposed by [90]∫

V

[
Y (τp,1)Σ + WiΣ̂ + 2Wi(1− β)M1Π̂

−2(1− β)(1− Y (τp,1))M1Π]ωjdV = 0, (198)

where Π = 1/2(G+GT ) and the definition of the Gordon-Schowalter derivative
is given by

X̂ =
∂X

∂t
+ v1 · ∇X − (∇v1 − ξsΠ)T ·X −X · (∇v1 − ξsΠ). (199)

The weighting function ωj is formed from the finite element basis function for
the elastic stress components according to

ωj = χj +
h

|v1|
∇χj , (200)

where |v1| is the mean velocity and h is a characteristic length in each element.
The mean velocity |v1| in an element is defined as the mean value of the velocity
at the vertices of the corresponding element. As a characteristic length, h, we
used the square root of the area of each triangular element.

4 Non-linear dynamics of electric field instabil-
ities in liquid trilayers

4.1 Indroduction

The interaction of an externally applied electric field with a liquid can give rise
to interfacial instabilities. Such instabilities can be exploited to provide a simple
and versatile method for the fabrication of well-ordered polymer structures at
the microscale and nanoscale with many technological applications. Naturally,
this problem has attracted the interest of many experimental and theoretical
studies; much of this research is summarized by Wu & Russel [91].

The electrically induced flow of single liquid films have been studied exten-
sively [46, 47, 48, 49, 51, 50, 52, 54, 53, 74, 75] and is now well understood. It
has been shown, though, that it is possible to produce more complex structures
when applying the electrohydrodynamic process to polymer bilayers with an air
gap between the bilayer and the mask. Morariu et al. [50] performed experi-
ments on a polymer/polymer/air (PMMA/PS/air) trilayer and showed that the
primary structures arise at the PS/air interface which destabilizes much faster
than the PMMA/PS interface; the dynamics of the latter interface are affected
significantly by the presence of highly viscous materials on both sides of the
interface. In these experiments the intermediate layer deforms and pillars are
formed while later the bottom layer encapsulates those pillars forming core-shell
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structures [50, 92]. On the other hand, as was shown by Leach et al. [93] it
is also possible to produce closed-cell structures when the electric effects are
combined with dewetting forces.

From a theoretical point of view, Bandyopadhyay et al. [59] made the first
attempt to investigate the stability of a viscous bilayer under air. Their work
was followed by a more general paper by Bandyopadhyay et al. [60] who per-
formed a linear stability analysis along with time-dependent simulations using
the lubrication approximation. In the case of viscous bilayers, it was shown that
two different modes of interfacial evolution are possible: (a) in phase bending
and (b) antiphase squeezing; the mode type can be switched by tuning the di-
electric properties of the films. The case of elastic solid bilayers has also been
examined [60, 94]. The influence of topography of the electrode patterns was
investigated by Reddy et al. [61] who also examined the conditions for the
formation of ordered core-shell structures by performing 2D and 3D transient
simulations using the lubrication approximation. The same authors extended
their work by considering the general case of a trilayer substituting the top layer
of air with another liquid [63]. Their results suggest that variation in the ki-
netics parameters such as the ratio of the viscosities of the films can also affect
the modes of evolution and morphologies at the interfaces. Roberts & Kumar
[62] employed the leaky dielectric model to investigate the effect of interfacial
charge accumulation and AC electric fields on the dynamics and stability of the
system through a linear stability analysis. It was shown that AC fields can be
used to control the location of free charge drastically affecting system stability
and enabling the creation of smaller pillars than possible with DC electric fields.

The majority of the aforementioned works has focused on the flow of Newto-
nian fluids which is now well understood. In the case of single film systems, the
first attempt to take into account the complex rheology of a polymeric liquid,
which are often used in this process, was made by Wu & Chou [66]. These au-
thors performed a linear stability analysis for initially static thin polymeric films
underneath a flat electrode and considered the case of a Maxwell liquid. Their
results suggested that the polymer elasticity destabilizes the system and that
for large enough Deborah number, a resonant phenomenon appears as a result
of the interaction between the two destabilizing mechanisms (the electrostatic
force and the polymer elasticity). Tomar et al. [67], though, recognised that
the presence of even a small amount of inertia removes the singularity and leads
to finite but large growth rates for all values of Deborah number. Moreover, it
was found that in the linear regime the wavelength of the fastest growing mode
(i.e. the dominant lengthscale of the instability) is independent of the rheo-
logical properties such as relaxation time and solvent viscosity. Their findings
were confirmed by Espin et al. [68] using an asymptotic expansion. The latter
authors also examined the viscoelastic effects under the influence of AC fields
and noticed that the impact is largest when the relaxation time and oscillation
time scale are comparable. In the case of AC fields, it is shown that the wave-
length is also affected contrary to the predictions of linear theory for the case
of DC fields [67]. Very recently, Karapetsas & Bontozoglou [95] examined the
non-linear dynamics of a viscoelastic material under the influence of a spatially
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periodic electric field. They performed two-dimensional transient numerical sim-
ulations and their results suggest that the effect of elasticity is more involved
than what is suggested by linear theory for the case of an homogeneous electric
field. Elasticity is destabilizing at early times, as predicted by linear theory,
but actually retards the flow at later stages as the liquid-air interface deforms.
Moreover, in the case of spatially periodic electric field, elasticity appears to
affect both the critical voltage for instability and the fabrication limit on the
period of the top electrode protrusions.

As noted above, most of the previous studies on bilayers considered either
purely viscous or purely elastic films. An exception to this is the work of Bandy-
opadhyay et al. [69] who considered viscoelastic bilayers composed either of
Maxwell fluids or soft elastic solids obeying the Kelvin-Voigt model. These
authors performed a linear stability analysis and found that in the case of vis-
coelastic liquid (Maxwell fluid) the length and time scale was shown to depend
significantly on the relaxation time of the films even in the case of flat electrodes,
in contrast to the single film systems. These results indicate that in the case
of bilayers the effect of the rheological characteristics on the evolution of two
coupled interfaces is more involved than a purely kinetic role.

The scope of this work is to investigate the effect of viscoelasticity on the
non-linear dynamics of a polymeric bilayer under the influence of an electric field.
We avoid to make any assumptions, such as using lubrication theory, in order
to describe the flow dynamics as accurately as possible; as was shown by [95]
lubrication approximation is not valid at late stages of the flow. We perform two-
dimensional transient numerical simulations, using the finite element method
combined with an elliptic grid generation scheme for the determination of the
unknown position of the interface. The viscoelasticity of the polymeric bilayer is
taken into account using the affine Phan-Thien Tanner model. We investigate
the effects of the various rheological parameters on the dominant wavelength
and non-linear dynamics of the two interfaces.

The remainder of this chapter is organized as follows. In Section 4.2, we
describe the system of governing equations and outline the numerical method
used for its numerical solution. The results are presented and discussed in
Section 4.3. Finally, the concluding remarks are given in Section 4.4.

4.2 Problem formulation

We consider the dynamics of three perfect dielectric fluids sandwiched between
two rigid, flat and impermeable electrodes (see Fig. 42). The bilayer consists of
two immiscible polymeric viscoealstic liquids and is considered to be surrounded
by a Newtonian liquid. All fluids, which are initially stationary, are taken to
be incompressible with the lower (’1’), middle (’2’) and upper fluid (’3’) having
density ρi and dielectric constants εi, (i = 1− 3); these properties are assumed
to be constant. The viscosity of the upper fluid is also constant and denoted by
µ3. The viscoelastic liquids of the bilayer (fluids ’1’ and ’2’) have a zero shear
viscosity µi = µs,i+µp,i where µs,i and µp,i are the viscosities of the solvent and
the polymer, respectively, and relaxation time λi, (i = 1, 2). The surface tension
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of the liquid-liquid interface (’12’), σ12, and the liquid-air interface (’23’), σ23,
are assumed to be constant. The top and bottom electrodes are maintained at
constant potentials φ2(y = H) = U and φ1(y = 0) = 0, respectively.

We scale all lengths with the distance between the top and bottom electrodes,
H, velocities with V ∗ = εoU

2/(µ1H), pressure and stresses with µ1V
∗/H and

electric potential with the potential difference U . Substituting this scaling into
the governing equations and boundary conditions, the following dimensionless
groups emerge

Re =
ρ1V

∗H

µ1
, St =

ρ1gH
2

µ1V ∗
, Wii =

λiV
∗

H
, Cai =

µ1V
∗

σi

Di =
ρi
ρ1
, Mi =

µi
µ1
, βi =

µs,i
µ1

(201)

Inserting the previously defined characteristic quantities into the momentum
and mass conservation equations, we obtain:

DiRe

(
∂vi
∂t

+ vi · ∇vi

)
−∇ · Ti + Stez = 0, (202)

∇ · vi = 0, (203)

where ∇ denotes the gradient operator, subscript i indicates the corresponding
fluid, vi is the velocity vector and Ti is the total stress tensor given by

Ti = −PiI + τi +mi. (204)

Here Pi denotes the pressure, I is the identity tensor and τi the extra stress
tensor

τi = τp,i + 2βiMiγi, (i = 1, 2) (205)

τ3 = 2M3γ3. (206)
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Note that for the viscoelastic materials the extra stress tensor is split into a
purely viscous part, 2βMiγi, and a polymeric contribution, τp,i. γi denotes the
rate of strain tensor

γi =
1

2

(
∇vi +∇vTi

)
. (207)

The Maxwell stress tensor, denoted by mi, describes the interaction of fluid
i with the electric field, Ei, and is defined as

mi = εiEiEi −
1

2
εiEi ·EiI. (208)

Note that due to the absence of free charge from the bulk of the fluid and since
εi, (i = 1 − 3) are spatially independent, ∇ · mi = 0. Therefore it becomes
evident that Maxwell stresses will do not have any contribution in eq. (202) but
will nevertheless enter the problem through the interfacial boundary conditions.
The Maxwell stresses depend on the local intensity of the electric field. Under
the electrostatic approximation and for an electrically neutral fluid, Maxwell’s
equations reduce to the following set of equations

∇ · (εiEi) = 0, (209)

∇×Ei = 0. (210)

Since the electrical field is irrotational, we can define a potential function φi
such that

Ei = −∇φi. (211)

By combining eq. (209) and eq. (211) we get the following equation

∇ · (εi∇φi) = 0. (212)

To complete the description, a constitutive equation that describes the rhe-
ology of the viscoelastic material is required in order to determine the polymeric
part of the extra stress tensor. As such, we use the following differential model
that has been proposed by [76]

Y (τp,i)τp,i + Wiiτ̂p,i = 2(1− βi)Miγi, (i = 1, 2). (213)

The symbolˆover the viscoelastic stress denotes the Gordon-Schowalter deriva-
tive defined as

X̂ =
∂X

∂t
+ vi · ∇X − (∇v1 − ξs,iγi)T ·X −X · (∇vi − ξsiγi), (i = 1, 2), (214)

where X is any second order tensor. In the present study we have used the
exponential form of the PTT model [77]

Y (τp,i) = exp

[
aPTT,iWii
(1− β)Mi

tr(τp,i)

]
, (i = 1, 2). (215)
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This model has two parameters, ξs,i and aPTT,i. The first one is related to
the non-affine motion of the polymer chains with respect to the macroscopic
motion of the continuum. By setting ξs,i equal to zero no such motion or slip is
allowed; for the rest of the paper ξs,i will be considered to be zero. The Gordon-
Schowalter derivative reduces to the upper convective one and the fluid model
is referred to as the affine PTT model. The second parameter, aPTT,i, imposes
an upper limit to the elongational viscosity, which increases as this parameter
decreases, while it introduces elongational thinning. Moreover aPTT,i is related
to the shear-thinning behavior of the model. The predictions for the elongational
and shear viscosity of this model for various values of aPTT,i appear in Fig. 9
of [42]. By setting both aPTT,i = 0 and ξs,i = 0, the PTT model reduces to the
Oldroyd-B model. Retaining the zero values for aPTT,i and ξs,i and additionally
setting βi = 0, the PTT model reduces to the UCM model.

In order to solve accurately and efficiently the flow inside the viscoelastic
material we employ the elastic viscous split stress EVSS-G formulation [78, 79].
This method consists of splitting the polymeric part of the extra stress tensor
into a purely elastic and a viscous part

τp,i = Σi + 2(1− βi)Miγi. (216)

Moreover, an independent interpolation of the components of the velocity gra-
dient tensor is introduced

Gi = ∇vi. (217)

The former splitting ensures the elliptic nature of the momentum equations
even in the absence of a solvent (β = 0), while the latter substitution makes the
approximations in the constitutive equation of the elastic stress and the velocity
gradient compatible to each other. This scheme has been used with success in
the past [42, 80, 81] permitting the calculations up to very high Weissenberg
numbers.

4.2.1 Boundary conditions

Solution of the above set of equations is determined subject to the following
boundary conditions.

On the solid walls we apply the usual no-slip and no-penetration boundary
conditions while on the two edges of the physical domain (x = 0, L) we apply
periodic conditions.

Along the liquid-liquid (y = h1) and the the liquid-air (y = h2) interfaces
the velocity is continuous

v1 = v2 at y = h1, (218)

v2 = v3 at y = h2, (219)

and the flow field satisfies the local interfacial force balance between the stresses

n12 · T1 = n12 · T2 +
2H12n12

Ca12
at y = h1 (220)
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n23 · T2 = n23 · T3 +
2H23n23

Ca23
at y = h2 (221)

where n12 and n23 denote the unit normal pointing towards the middle and
upper liquid, respectively, and 2Hi is the mean curvature of the corresponding
interface

2Hi = −∇s,i · ni, i = 12, 23, (222)

and ∇s,i is the surface gradient operator, defined as

∇s,i = (I − nini)∇, i = 12, 23. (223)

In addition, along the moving interface we impose the kinematic boundary con-
dition,

∂fi
∂t

+ v2 · ∇fi = 0, i = 12, 23, (224)

where fi describes the position of corresponding the interface. A balance of the
normal and tangential component of the electric field gives the continuity of the
potentials and the electric displacement across both interfaces

φ1 = φ2, n12 · (ε1∇φ1) = n12 · (ε2∇φ2) at y = h1, (225)

φ2 = φ3, n23 · (ε2∇φ2) = n23 · (ε3∇φ3) at y = h2, (226)

Finally to complete our model we have to set a datum pressure and as such, we
impose a zero value to the pressure at a node of the top electrode, P (x = 0, y =
1) = 0.

4.2.2 Elliptic grid generation

The above set of equations is combined with an elliptic grid generation scheme
capable of following the deformations of the physical domain. This method
has been successfully applied in flows that exhibit large deformations in steady
state [80] and transient calculations [82, 83, 84, 95]. The grid generation scheme
consists of a system of quasi-elliptic partial differential equations, capable of
generating a boundary fitted discretization of the deforming domain occupied
by the liquid. With this scheme the physical domain (x, y) is mapped onto a
computational one (η, ξ). A fixed computational mesh is generated in the latter
domain while, through the mapping, the corresponding mesh in the physical
domain follows its deformations. The mapping is based on the solution of the
following system of quasi-elliptic partial differential equations

∇ · (α · ∇η) = 0 (227)

∇ ·

[(
δ

√
x2
ξ + y2

ξ

x2
η + y2

η

+ (1− δ)

)
∇ξ

]
= 0 (228)

where

α =

(
1 0
0 a

)
, a ≥ 1. (229)
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Figure 43: (Color online) Typical grid with 2 levels of local refinement adjacent
to the liquid-liquid and liquid-air interfaces for Wi1 = Wi2 = 0, Ca1 = 10,
Ca2 = 20, d1 = d2 = 0.2, s = 0.8, p = 0.2, w = 0.2 at time t = 11.83.

The subscripts denote differentiation with respect to the indicated variable. The
parameter a forces the ξ-coordinate lines to be equidistant in the y-direction and
δ is a parameter that controls the smoothness of the mapping relative to the
degree of orthogonality of the mesh lines. These parameters are adjusted by trial
and error; here we set a = 100 and δ = 0.1. For a more detailed description of
this method the interested reader may refer to [85, 86, 87].

In order to solve the above system of differential equations, appropriate
boundary conditions must be imposed. On the fixed boundaries, we impose the
equations that define their position, and the remaining degrees of freedom are
used for optimally distributing the nodes along these boundaries. Along the
moving interfaces we simply impose the corresponding kinematic equation. We
should note here that special care was taken for the mesh near the interface. In
order to resolve adequately the flow, a more refined mesh around this region is
needed. To this end, we have introduced a local refinement scheme using the
h-method [88]. In order to illustrate the quality of the resulting mesh produced
following our method we present in Fig. 43 a typical grid; here we show for
clarity the domain 0.8 < x < 2.4.

In order to solve numerically the governing equations along with the elliptic
grid equations, we used the mixed finite element method and detailed informa-
tion about the weak formulation of all the equations is given in the 4.5.

4.3 Results

Figure 44 shows a 2D non-linear simulation of a liquid bilayer under air in
the case of flat electrodes. The instability starts as a bending mode of the
interfaces with a larger deformation at the liquid-air interface. As the evolution
progresses, the liquid-air interface develops into columnar structures. At the late
evolution stages, the lower layer also grows stronger toward the top electrode
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Figure 44: Evolution of the shapes of the liquid-air and liquid-liquid interfaces
with time for Wi1 = 0, Wi2 = 10, Ca1 = 0.74, Ca2 = 31.6, aPTT = 0.05, β = 0,
ε1 = 3, ε2 = 2, ε3 = 1, d1 = 0.15, d2 = 0.1, L = 42.3.

Figure 45: Long time shapes of the liquid-air and liquid-liquid interfaces with
time for Newtonian liquids taken from Bandyopadhyay et al. [60]. The remain-
ing paarmeters are the same with Fig. 44
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Figure 46: Evolution of the disturbance amplitude of the liquid-air interface for
(a) Wi1 = Wi2 = 0 and (b) Wi1 = 0, Wi2 = 10. The remaining parameters are
Ca1 = 0.74, Ca2 = 31.6, aPTT = 0.05, β = 0, ε1 = 3, ε2 = 2, ε3 = 1, d1 = 0.15,
d2 = 0.1, L = 42.3.

and, consequently, forms columnar structures. The final morphology shows an
array of concentric columnar structures with a lower layer core and an outer-
shell composed of the upper layer liquid. These findings are in accordance
with the results of Bandyopadhyay et al. [60] who employed the lubrication
approximation and examined the case of a viscous bilayer (see Fig. 45 for a case
of a viscous bilayer). We note that the differences in the resulting morphology
of the columns between the case of a viscous bilayer and the viscoelastic bilayer
are very small indicating that the effect of elasticity is rather small in the case
of a homogeneous electric field. This is also reflected on the overall time that
is needed for the columns to grow which is not affected significantly with the
elasticity of the middle layer (see Fig. 46).

We continue our study with by focusing on the more interesting case of
patterned electrodes. In this case and assuming that both liquids that form
the bilayer are Newtonian (Wi1 = Wi2 = 0) the presence of a heterogeneous
electric field destabilizes the interfaces sooner and the process takes significantly
less time. In Fig. 47 we present contour plots for the velocity field, pressure and
electric potential at t = 12.03; for clarity we present here only part of our
computational domain (1 ≤ x ≤ 3). Both liquid films are initially flat and
quiescent. Upon the application of voltage the liquid experiences non-uniform
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(a) (b)

(c) (d)

Figure 47: (Color online) Contour plots of (a) vx, (b) vy, (c) P and (d) electric
potential at t = 12.03 for Wi1 = Wi2 = 0. The remaining parameters are
Ca1 = Ca2 = 20, aPTT = 0.05, β = 0, ε1 = 2, ε2 = 3, ε3 = 1, d1 = 0.2, d2 = 0.2,
s = 0.8, p = 0.2, w = 0.2, L = 4.
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electrostatic forces, due to the spatial heterogeneity of the electric field that
is created by the top electrode, and liquid is drawn towards the protrusions,
destabilizing the liquid-liquid and liquid-air interfaces. The flow field appears
to be symmetric around the protrusions giving rise to symmetric structures
that follow closely the geometrical characteristics of the top electrode. The
pressure varies mainly inside the liquid phases (see Fig. 47c) whereas in the gas
phase (top layer) it remains almost constant (approximately equal to the datum
pressure) due to the fact that the viscosity of the gas is very small. The contour
lines of the electric potential are depicted in Fig. 47d. The deflection of the
equipotential lines at the liquid-air interface is due to the difference of dielectric
properties of the materials.

4.4 Conclusions

We have developed a robust numerical algorithm for the study of systems with
multiple phases under the presence of electric fields. To this end, we combined
the mixed finite element method with a quasi-elliptic mesh generation scheme,
which allows an accurate description of liquid-air and liquid-liquid interfaces
that may undergo large deformations. The viscoelastic behaviour of the poly-
meric film was modelled using the PTT constitutive law. This scheme is quite
robust for modelling viscoelastic flows and simulations up to high Weissenberg
numbers were successful by using the EVSS-G/SUPG formulation for the nu-
merical discretization and weighting of the constitutive equations.

We validated the code against earlier results in the literature and carried
out a numerical investigation of the flow of both a Newtonian and a viscoelastic
bilayer under the action of a homogeneous or a heterogeneous electric field
imposed by the presence of either a flat or patterned electrode. Attention is
focused on the non-linear dynamics of the flow, and the investigation of how
the dynamics are influenced by the rheological and electrical properties of the
materials and how in turn these may affect the morphological characteristics
and the fabrication limits of this process. This work is still in progress.

4.5 Appendix: Finite element formulation

The physical domain was discretized using triangular elements. We approxi-
mate the velocity vector, the position vector and the potential with six-node
Lagrangian basis functions, ψj , and the pressure, the elastic stresses, as well as
the velocity gradients with three-node Lagrangian basis functions, χj .

For the momentum, mass balances and the Laplace equation for the poten-
tial, we employ the finite element/Galerkin method, which after applying the
divergence theorem results in the following weak forms:∫

V

[
DiRe

(
∂vi
∂t

+ vi · ∇vi

)
ψj − P∇ψj +∇ψj · Σ + 2∇ψj · γi+

Stψjez
]
dV −

∫
S

[n · Ti]ψjdS = 0, (230)
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∫
V

[∇ · vi]χjdV = 0, (231)∫
V

[
εi∇φi · ∇ψj

]
dV −

∫
S

[n · ∇φi]ψjdS = 0. (232)

where dV and dS are the differential volume and surface area, respectively. The
surface integral that appears in the momentum equation is split into as many
parts as the number of boundaries of the physical domain and the relevant
boundary condition is applied therein.

The weak form of the mesh generation equations is derived similarly by
applying the divergence theorem:∫

V

[α · ∇η] · ∇ψjdV = 0, (233)

∫
V

[(
δ

√
x2
ξ + y2

ξ

x2
η + y2

η

+ (1− δ)

)
∇ξ

]
· ∇ψjdV = 0. (234)

The continuous approximation for the components of the velocity gradient
tensor is written as ∫

V

[Gi −∇vi]χ
jdV = 0. (235)

The constitutive equation due to its hyperbolic character is discretized using
the streamline upwind Petrov-Galerkin (SUPG) method proposed by [90]∫

V

[
Y (τp,i)Σi + WiiΣ̂i + 2Wii(1− βi)MiΠ̂i

−2(1− βi)(1− Y (τp,i))M1Πi]ω
jdV = 0, (236)

where Πi = (Gi+GTi )/2 and the definition of the Gordon-Schowalter derivative
is given by

X̂ =
∂X

∂t
+ vi · ∇X − (∇vi − ξs,iΠi)

T ·X −X · (∇vi − ξs,iΠi). (237)

The weighting function ωj is formed from the finite element basis function for
the elastic stress components according to

ωj = χj +
h

|vi|
∇χj , (238)

where |vi| is the mean velocity in fluid i and h is a characteristic length in each
element. The mean velocity |vi| in an element is defined as the mean value of
the velocity at the vertices of the corresponding element. As a characteristic
length, h, we used the square root of the area of each triangular element.
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5 Development of Navier-Stokes/Cahn-Hilliard
(NS/CH) solver for the simulation of 3D two-
phase flows in the presence of electric fields

5.1 Introduction

The development of a Navier-Stokes/Cahn-Hilliard (NS/CH) solver for the sim-
ulation of two-phase flows in the presence of electric field is described. The
governing equations and numerical methods are presented, including the pro-
jection scheme, time-stepping algorithms and spatial discretization. Represen-
tative results obtained from several verification tests are shown, such as damped
oscillations of a capillary wave between two superposed viscous fluids with the
same dynamic viscosity, Rayleigh-Taylor instability, the rise of a gas bubble in
air, and the two-dimensional (2d) and three-dimensional (3d) two-phase flow of
Newtonian film in the presence of a spatially periodic electric field.

5.2 Navier-Stokes Solver

5.2.1 Equations for constant density and variable viscosity

The flow governing equations for constant density ρ and variable viscosity η in
non-dimensional form are:

∇ · v = 0 (239)

vt + v · ∇v = −∇p+
1

Re
∇ ·
[
η(c)

(
∇v +∇vT

)]
(240)

η = η′/η∗ = c+ (1− c)λη, (241)

where v is the fluid velocity, p is the fluid pressure, ρ∗, η∗, V ∗, L∗ are the ref-
erence values of the fluid density, the kinematic viscosity, and the characteristic
velocity and length, respectively, and Re = ρ∗V ∗L∗/η∗. The kinematic viscosity
η depends on the concentration field c, where λη is the viscosity ratio between
the two phases.

5.2.2 Equations for variable density and variable viscosity

The governing equations for variable density and variable viscosity are:

vt + v · ∇v = −1

ρ
∇p+

1

ρRe
∇ ·
[
η(c)

(
∇v +∇vT

)]
(242)

ρ = ρ′/ρ∗ = c+ (1− c)λρ, (243)

where the fluid density ρ also depends on the concentration field c, ρ∗ is the
reference value of the fluid density, and λρ is the density ratio between the two
phases.
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5.2.3 Numerical methods

4.2.3.1 Time-stepping algorithms - Constant density, constant or variable
viscosity

The numerical algorithm used to solve the NS equations (239)-(241) is based
on a semi-implicit, fractional step method. All spatial derivatives are discretized
using a second-order central differencing scheme on a staggered grid. The
time integration scheme CNRK2 incorporates an implicit second-order Crank–
Nicolson method for the diffusion terms, and an explicit third-order Runge–
Kutta method for the convection terms and the external body forces. The time
integration is performed in three time steps n − 1, n and n + 1. The first step
n is

ûki − uni
∆t

= γkHn
i + ρkHn−1

i +
αk

2Re
Ljj(û

k
i + uni )− αkGi(pnσ1) (244)

where γ, ρ, α, σ1 are the constants of the low storage third-order Runge–Kutta
method ρ1 = 0, ρ2 = −17/60, ρ3 = −5/12, γ1 = 8/15, γ2 = 5/12, γ3 = 3/4,
σ1 = 1, Hi are the nonlinear convection terms written in conservative form and
the external Lorentz force, Ljj is the Laplacian operator, and Gi indicates the
discrete pressure gradient operator, and k is the intermediate time step between
n and n + 1. Equation (244) can be rewritten for the difference of the fluid
velocities ∆ui = (uk − un)i

∆ui − βkLjj∆ui = (γkHn
i + ρkHn−1

i − αkGipnσ1)∆t+ 2βkLjju
n
i (245)

where βk = (αk/(2Re)). The intermediate velocity fluid velocity field at k-time
step is globally divergence-free but it does not satisfy the continuity mass locally.
In the second step, a globally and locally divergence-free fluid velocity field is
predicted. This is achieved by using a scalar quantity φ (pseudo-pressure),
which permits the evaluation of the fluid velocity at n + 1 time step through
the equation

un+1
i − ûki

∆t
= −αkGiφσ2 (246)

If the discrete divergence operator is applied in Equation (246) and impose the
mass continuity for the fluid velocity field at n + 1 time step, Diu

n+1
i = 0, an

elliptic partial equation which permits the calculation of the pseudo-pressure φ
is obtained

Ljjφ =
σ2

αk∆t
Diû

k
i (247)

By solving numerically Equation (247) and substituting the quantity φ in Equa-
tion (246) the new fluid velocity field at n+1 time step is obtained, which satisfies
the fluid mass continuity equation.

In the previous procedure, the knowledge and therefore the calculation of
the fluid pressure were not necessary. However, in cases for which the knowledge
of the pressure is required, the pressure can be determined by using the pseudo-
presssure φ

pn+1 = pn + φ− βLjjφ (248)
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and, therefore, the pressure gradient in Equation (244) is

−Gi
[
pn(σ1 − σ2) + pn+1σ2

]
(249)

In the case for which the time integration is based on 2nd order Adams-Bashforth
method, the procedure is the same as that described above, with the exception
that only two intermediate steps are needed and the constants ρ and γ are:
ρ1 = −0.5, ρ2 = 0, ρ3 = 0, γ1 = 1.5, γ2 = 0, γ3 = 0. If σ1 = σ2 = 1, the pres-
sure gradient is evaluated at n+ 1 time step, on the other hand for σ1 = 1 and
σ2 = 1/2, the pressure gradient is evaluated at n+ 1/2 time step. In the former
case, the accuracy is O(∆t), while in the latter is O(∆t2). It has been found
that the reduced accuracy gives a more stable scheme and it is more appropriate
for time dependent simulations.

4.2.3.2 Approximate factorization technique

If the right hand side of Equation (245) is indicated for simplicity by RHSi,
it becomes [

1− βk(Li1 − Li2 − Li3)∆ui
]

= RHSi (250)

The approximate factorization technique consists of the replacement of the left
hand side by the product of three matrices. By defining Aij = βkLjj , Equation
(250) becomes

(1−Ai1)(1−Ai2)(1−Ai3)∆ui = RHSi (251)

It can be shown that, at order ∆t3, the left hand side of Equation (251) approx-
imates the large sparse matrix in Equation (250). This approximation leads to
the advantage of inverting tridiagonal matrices. Equation (251) can be written
as

(1−Ai1)∆u∗∗i = RHSi (252)

(1−Ai2)∆u∗i = ∆u∗∗i (253)

(1−Ai3)∆ui = ∆u∗i (254)

where ∆u∗∗i and ∆u∗i are intermediate quantities without any physical meaning.

4.2.3.3 Projection - Pressure and velocity correction

The fluid velocity field must satisfy the fluid mass continuity equation in
every time step. The equation for the pseudo-pressure φ is

Ljjφ =
σ2

αk∆t
Diû

k
i (255)

or
(L11 + L22 + L33)φijl =

σ2

αk∆t
Λijl (256)
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where Λijl

Λijl =
∂ûk

∂x

∣∣∣
i+ 1

2 ,j+
1
2 ,l+

1
2

+
∂v̂k

∂y

∣∣∣
i+ 1

2 ,j+
1
2 ,l+

1
2

+
∂ŵk

∂z

∣∣∣
i+ 1

2 ,j+
1
2 ,l+

1
2

(257)

Equation (257) in discretized form using second-order central finite differ-
ences for the second derivatives becomes

φi+ 3
2 ,j+

1
2 ,l+

1
2
− 2φi+ 1

2 ,j+
1
2 ,l+

1
2

+ φi− 1
2 ,j+

1
2 ,l+

1
2

∆x2
+

φi+ 1
2 ,j+

3
2 ,l+

1
2
− 2φi+ 1

2 ,j+
1
2 ,l+

1
2

+ φi+ 1
2 ,j−

1
2 ,l+

1
2

∆y2
+

φi+ 1
2 ,j+

1
2 ,l+

3
2
− 2φi+ 1

2 ,j+
1
2 ,l+

1
2

+ φi+ 1
2 ,j+

1
2 ,l−

1
2

∆z2
=

σ2

αk∆t

(
ûi+1,j+ 1

2 ,l+
1
2
− ûi,j+ 1

2 ,l+
1
2

∆x
+

v̂i+ 1
2 ,j+1,l+ 1

2
− v̂i+ 1

2 ,j,l+
1
2

∆y
+

ŵi+ 1
2 ,j+

1
2 ,l+1 − ŵi+ 1

2 ,j+
1
2 ,l

∆z

)

(258)

Due to the periodicity, Fourier series can be used in the x and z directions
for the φ and Λ quantities

φi,j,l =

N1/2+1∑
k1=−N1/2

N3∑
k3=0

φ̂(k1, j, k3)e
t2πk1x
Lx e

t2πk3z
Lz =

N1/2+1∑
k1=−N1/2

N3∑
k3=0

φ̂(k1, j, k3)e
t2πk1i
N1 e

t2πk3i
N3

(259)

Λi,j,l =

N1/2+1∑
k1=−N1/2

N3∑
k3=0

Λ̂(k1, j, k3)e
t2πk1x
Lx e

t2πk3z
Lz =

N1/2+1∑
k1=−N1/2

N3∑
k3=0

Λ̂(k1, j, k3)e
t2πk1i
N1 e

t2πk3i
N3

(260)

Equation (258) finally becomes

N1/2+1∑
k1=−N1/2

N3∑
k3=0

φ̂(k
′2
1 , j, k

′2
3 ) = Λ̂(k′1, j, k

′
3)e

t2πk1i
N1 e

t2πk3i
N3 (261)

where k
′2
1 , k

′2
3 are the modified wavenumbers due to the use of the central finite

differences for the second derivate
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k
′2
1 =

2
(
cos( 2πk1

N1
− 1
)

∆x2
1

, k
′2
3 =

2
(
cos( 2πk3

N3
− 1
)

∆x2
3

(262)

The Poisson equations for the pseudopressure is solved with FFT in the
periodic directions and tridiagonal matrix inversion in the direction normal to
the walls. The Poisson equation for the electric potential is solved in a similar
manner.

4.2.3.4 Time-stepping algorithms - Variable density, variable viscosity

The projection method in the case with variable density and variable vis-
cosity (Equations 242-243) is similar to that described above in Section 4.2.3.1.
The first step for the Adams-Bashforth/Crank-Nikolson (CNAB2) scheme is

ûki − uni
∆t

=
1

ρn+1/2
H
n+1/2
i +

αk

2Re
Ljj(µ

k, uni )+

αk

2Re
Ljj(u

n
i , µ

n)− αkGi(pn−1/2σ1)

(263)

where Hi denotes the discrete convection operator and Ljj the discrete diffusion
operator. The intermediate velocity is corrected according to

un+1
i − ûki

∆t
= −αkGiφσ2/ρ

n+1/2 (264)

The pressure is obtained from the requirement that the velocity field at time
step n+ 1 is divergence-free constraint, i.e.,

Di(Giφ/ρ
n+1/2
i ) =

σ2

αk∆t
Diû

k
i (265)

The pressure is obtained by

pn+1/2 = pn−1/2 + φ (266)

The Poisson equation (265) is solved numerically by the succesive over-
relaxation method (SSOR). In order ot speed up the convergence rate, the
relaxation coeeficient is set larger than unity. All spatial discretizations are
central finite difference schemes on a staggered grid.

4.2.3.5 Summary of the time-stepping algorithms

The NS/CH code implements the following different time-stepping algo-
rithms:

– CNFE1 or SBDF1: 1st-order Crank-Nicolson, Foward-Euler or 1st-order
Semi-implicit Backward Differentiation Formula. This algorithm is extremely
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simple and needs no initialization need, but its 1st-order error scaling makes it
practically worthless, except for initializing other algorithms.

– CNAB2 2nd-order Crank-Nicolson, Adams-Bashforth. A popular algo-
rithm, but higher-frequency modes are poorly damped. It requires one initial-
ization step.

– CNRK2: a three-substep, 2nd-order semi-implicit Crank-Nicolson/Runge-
Kutta algorithm. It has 3rd-order scaling when applied to low-viscosity flows,
even though it is theoretically 2nd-order. It requires no initialization.

– SBDF2: 2nd order, Semi-implicit Backward Differentiation Formulae, re-
quiring 1 initialization step.

All the verification tests have been performed using the CNRK2 scheme. In
the case of the two-phase flow of Newtonian film in the presence of a spatially
periodic electric field, the SBDF2 scheme was also used.

5.3 Cahn-Hilliard Solver

5.3.1 Equations

The flow of two incompressible immiscible fluids (A and B) of different den-
sity and viscosity is considered here. Assuming that the fluid components are
incompressible, the non-dimensional CH equation based on concentration c for-
mulation is

ct + v · ∇c =
1

Pe
∇ · [M(c)∇µ] (267)

where µ and M are the chemical potential and the mobility given by

µ = f(c)− Cn∆c (268)

M(c) = c(1− c) (269)

Cn is the Cahn number and Pe is the Peclet number defined as

Cn = ε2/µ∗ (270)

Pe = L∗V∗/(M∗µ∗) (271)

where f(c) = F ′(c) is the quartic free energy F (c) = c2(c− 1)2/4.

5.3.2 Numerical methods

4.3.2.1 Time integration

4.3.2.1.1 Explicit schemes of the CH solver

In the explicit schemes, the following equation is numerically solved

cn+1 − cn

δt
=

(
−uj

∂c

∂xj

)n+1/2

+
1

Pe

(
∂

∂xj
M

∂µ

∂xj

)n+1/2

(272)
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where all the terms at the n+ 1/2 time step are explicitly calculated based on
the values at the time steps n and n− 1 using the Adams-Bashforth (CHAB2)
scheme or the 3rd order Runge-Kutta (CHRK2) scheme, similarly to the time
integration schemes of the NS solver.

4.3.2.1.2 Semi-implicit schemes of the CH solver

In the semi-implicit schemes, the following equation is numerically solved

3
2c
n+1 − 2cn + 1

2c
n−1

δt
=

(
−uj

∂c

∂xj

)n+1/2

+

1

Pe

∂

∂xj

[
M

∂

∂xj

(
F ′ − Cn2 ∂2c

∂xi∂xj

)]n+1/2

−

1

Pe

∂

∂xj

[
M

∂

∂xj

(
Cn2 ∂2c

∂xi∂xj

)]n+1

(273)

where all terms at n + 1/2 time step are explicitly calculated either using the
Adams-Bashforth scheme (CHSIAB2) or the 3rd order Runge-Kutta scheme
(CHSIRK2). Equation (273) is solved based on an iterative SSOR solver. In
order to speed up the convergence rate, the relaxation coeeficient is set larger
than unity. In general, a significanlty larger time time step ∆t can be used when
solving the semi-implicit formulations of the CH solver as compared with the
fully explicit schemes.

4.3.2.2 Spatial discretization

All terms related with chemical potential µ are descritized spatially based
on second order central finite difference scheme. The convection terms can be
discretized based on the 2nd order central finite differences (CD2), the 2nd order
TVD upwind scheme (TVD2) and the 5th order WENO scheme (WENO5).

4.3.2.2.1 TVD upwind scheme

The TVD method for the advection of φ (or c) using the upwind scheme
together with a piecewise linear reconstruction can be summarized as follows:
A piecewise linear reconstruction is made:

Φ(x, y) = Φi,j + sxi,j(x− xi,j) + syi,j(y − yi,j) (274)

The slopes sxi,j and syi,j are calculated by:

sxi,j = Lim(
Φi+1,j − Φi,j

∆x
,

Φi,j − Φi−1,j

∆x
) (275)
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syi,j = Lim(
Φi,j+1 − Φi,j

∆x
,

Φi,j − Φi,j−1

∆y
) (276)

where Lim(x, y) defines the limiter. The Superbee limiter is defined as:

Lim(x, y) =


sign(x)max(|x|, |y|) if |x| ≤ |y| ≤ 0 and xy > 0

2sign(x)min(|x|, |y|) if |x|/2 ≥ |y|or |y| ≥ 2|x| and xy > 0

0 if xy < 0

(277)
The fluxes F = uc and G = vc are approximated using the upwind scheme

for the linear reconstruction defined by the

Fi+ 1
2 ,j

= max(ui+ 1
2 ,j
, 0)Φ−

i+ 1
2 ,j

+ min(ui+ 1
2 ,j
, 0)Φ+

i+ 1
2 ,j

(278)

Gi,j+ 1
2

= max(vi,j+ 1
2
, 0)Φ−

i,j+ 1
2

+ min(vi,j+ 1
2
, 0)Φ+

i,j+ 1
2

(279)

where

Φ−
i+ 1

2 ,j
= Φi,j +

∆x

2
sxi,j , Φ−

i,j+ 1
2

= Φi,j +
∆y

2
syi,j (280)

Φ+
i+ 1

2 ,j
= Φi+1,j +

∆x

2
sxi+1,j , Φ+

i,j+ 1
2

= Φi,j+1 +
∆y

2
syi,j+1 (281)

4.3.2.2.2 5th order WENO scheme

In the 5th order WENO scheme, the numerical fluxes F = uc (or uφ) and
G = vc (or vφ) are defined as

Fi+ 1
2 ,j

=

∫ y
i,j+1

2

y
i,j− 1

2

ui+ 1
2 ,j
φi+ 1

2 ,j
dy

Gi,j+ 1
2

=

∫ x
i+1

2
,j

x
i− 1

2
,j

vi,j+ 1
2
φi,j+ 1

2
dx

(282)

A numerical approximation for the fluxes (282) can be written:

Fi+ 1
2 ,j
≈

{
ui+ 1

2 ,j
φ̄+
i− 1

2 ,j
, if ui+ 1

2 ,j
> 0

ui+ 1
2 ,j
φ̄−
i+ 1

2 ,j
, if ui+ 1

2 ,j
< 0

Gi,j+ 1
2
≈

{
vi,j+ 1

2
φ̄+
i,j− 1

2

, if vi,j+ 1
2
> 0

vi,j+ 1
2
φ̄−
i,j+ 1

2

, if vi,j+ 1
2
< 0

(283)

where

φ±
i+ 1

2 ,j
=

3∑
k=1

ωkφ
±,k
i+1/2,j (284)
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and

φ±,1i+1/2,j = +
1

3
q±1 −

7

6
q±2 +

11

6
q±3

φ±,2i+1/2,j = −1

6
q±2 +

5

6
q±3 +

1

3
q±4

φ±,3i+1/2,j = +
1

3
q±3 +

5

6
q±4 −

1

6
q±5

(285)

and
qk+ = φ̄i−4+k,jq

k
− = φ̄i+5+k,j (286)

The coefficients ωk are a convex combination (ω1 + ω2 + ω3 = 1) and are com-
puted for ω± by the following expression of α±

ω±k = α±k /

3∑
i=1

α±i (287)

with the αk defined as

α±1 =
1

10

(
1

ε+ IS±1

)2

α±2 =
6

10

(
1

ε+ IS±2

)2

α±3 =
3

10

(
1

ε+ IS±3

)2

(288)

where ε ensures the denominator to be different from zero and the IS some Level
Set ”regularity” given by:

IS±1 =
13

12
(q±1 − 2q±2 + q±3 )2 +

1

4
(q±1 − 4q±2 + 3q±3 )2

IS±2 =
13

12
(q±2 − 2q±6 + q±4 )2 +

1

4
(q±2 − q

±
4 )2

IS±3 =
13

12
(q±3 − 2q±4 + q±5 )2 +

1

4
(3q±3 − 4q±4 + q±5 )2

(289)

Another possible choice would be the so-called ”optimum” WENO, where
the ωk are fixed to the values (ω1, ω2, ω3) = (0.1, 0.6, 0.3).

4.3.2.3 Surface tension force formulation

The following three models of surface tension force have been included in
the NS/CH solver:

Fst =
σα

ε
µ∇c (Model-1) (290)

Fst = −σα
ε
c∇µ (Model-2) (291)

Fst = −σ∇ ·
(
∇c
|∇c|

)
εα|∇c|2 ∇c

|∇c|
(Model-3) (292)

where α = 6
√

2, ε is a small positive parameter and σ is the surface tension
coefficient.
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5.4 Code validation

5.4.1 Verification test #1

The governing equation in the absence of flow is the Cahn-Hilliard equation:

∂c(x, t)

∂t
= ∇ · [M(c(x, t))∇µ(c(x, t))] (293)

where c is the mass concentration, M is the variable mobility, and µ is the
chemical potential given by:

µ(c(x, t)) = F ′(c(x, t))− ε2∆c(x, t) (294)

where ε is a positive constant and F (c) is the Helmholtz free energy given by

F (c) =
1

4
c2(1− c)2 (295)

The initial data is

c0(x, y) = 0.5 + 0.12cos(2πx)cos(2πy) + 0.2cos(2πx)cos(3πy) (296)

Equations (293) and (294) are solved on a square domain [0, 1]×[0, 1] using a
uniform mesh of 33×33 grid points (h = 1/32). The time step is ∆t = 5×10−6

and ε = 0.01. Zero Neumann boundary conditions are imposed at x = 0, 1, and
y = 0, 1. A constant mobility M is considered. Figure 48 shows a comparison
of the present model against the results of Kim et al. [96] based on a mesh of
256×256 grid points. It can be seen that the energy is non-increasing and tends
to a constant value. The concentration phase separates and depletes the center
region of the domain. The phase accumulates at the y boundaries, which then
straighten to lower the energy and to subsequently form two horizontal bands.

5.4.2 Verification test #2

In this verification test, Equations (293) and (294) are solved together with the
following flow equations:

∇ · v = 0 (297)

vt + v · ∇v = −∇p− We−1
s

ε
c∇µ+

1

Re
∇ ·
[
η(c)

(
∇v +∇vT

)]
(298)

where the extra stress due to the concentration gradients (i.e., interfaces) is
−We−1

s /εc∇µ, Re is the Reynolds number, Wes is proportional to We number
given by

We = Wes/

∫ 1

0

√
2F (c)dc (299)

and η is the non-dimensional viscosity, which is assumed to depend on the mass
concentration c. The same initial concentration as in Eq. (296) is considered,
while the initial velocity is taken to be:

u(x, y) = −sin2(πx)sin(2πy) (300)
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Figure 48: Time evolution of energy predicted by the present model (a) com-
pared with the results of Kim et al. [96] (b).

Figure 49: Time evolution of the total energy in the presence of flow predicted
by the present model (a) compared with the results of Kim et al. [96] (b).

v(x, y) = sin2(πy)sin(2πx) (301)

The viscosity η is constant and Re = 100, and Wes = 100, which corresponds
to the physical Weber number We = 848.5. No-slip boundary conditions are
imposed at the boundaries of the domain. Figure 49 shows the time evolution
of the total energy predicted by the present model and by Kim et al. [96]. The
total energy is decreased to a constant value.

5.4.3 Verification test #3: Surface tension force formulation

In this verification test, a drop placed within another fluid. The concentration
is defined as

c(x, y) =
1

2
(1 + tanh

1−
√
x2 + y2

2
√

2ε
) (302)

107



Figure 50: Contours plot of the pressure field obtained by the Model-1 (a),
Model-2 (b) and Model-3 (c) of the surface tension force formulation compared
with the results of Kim et al. [96] (d).

In the equilibrium state of the droplet, the velocity vanishes and therefore
the pressure gradient should balance the surface tension force:

∇P = Fst,i (303)

By taking divergence operator to Eq. (303), the resulting equation is solved
numerically by with R = σ = 1, 256 × 256 mesh, the computational domain
[4, 4] × [4, 4], and ε = 0.03. Figure 50 shows the isocontours of the pressure
field (at p = 0.1, 0.3, 0.5, 0.7, 0.9) along with the concentration (solid circles)
at c = 0.1 and 0.9 obtained by the the three models of surface tension force
formulation. It can be seen that the pressure changes within interface region
and Laplace law is well verified for all models, in agreement with the numerical
results of Kim [97].

5.4.4 Verification test #4: Capillary wave, matched density ρ1 = ρ2

case

The capillary wave problem was used as a verification test. The lighter fluid
(fluid A) resides in the top half of the domain, and the heavier fluid (fluid B)
is in the bottom half of the domain, g denotes the magnitude of the gravita-
tional acceleration, which points downward, σ denotes the surface tension, and
ν denotes the kinematic viscosity of the two fluids. The two fluids may have
different densities and dynamic viscosities, but must have the same kinematic
viscosity. In this case, Prosperetti [98] obtained an exact standing-wave solution
to the initial-value problem associated with the small-amplitude waves on the
interface between two incompressible viscous fluids in an infinite domain.

The computational domain is Ω = {(x, y) : 0 ≤ x ≤ 1,−1 ≤ y ≤ 1}. The
equilibrium position of the fluid interface coincides with the x-axis, and the
capillary wavelength equals the dimension of the domain in x-direction. The
initial amplitude of the perturbation wave is H0 = 0.01. Zero initial velocity is
assumed and the initial phase concentration is given by the following hyperbolic
tangent function:

c(x, y) =
1

2

(
1− tanhy − 0.5− 0.01cos(2πx

2
√

2ε

)
(304)
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Figure 51: Capillary wave with matched density ρ1 = ρ2 = 1. Comparison of
time histories of capillary wave amplitude obtained by different computational
meshes (32× 32 solid line, 64× 64 dashed line) against the capillary-wave exact
solution by Prosperetti [98] (taken from Gueyffier et al. [99]).

Two uniform computational meshes of 32× 32 and 64× 64 grid points were
used. Periodic conditions were imposed along the x-direction for both the veloc-
ity and the concentration. In the y-direction, no-slip conditions for the velocity
and zero Neumann for the concentration were imposed at the walls y = 0, 1.
A case with matched density for the two fluids, ρ1 = ρ2 = 1 was assumed,
µ1 = µ2 = ρ1ν = ρ2ν = 0.01. A constant mobility of M = 10−5 was used, while
g = 0, σ = 1, and ε = 0.02 (32× 32) and ε = 0.01 (64× 64).

Figure 51 shows a comparison of the present model against the analytical
results for the two meshes. A good agreement can be seen.

5.4.5 Verification test #5: Rayleigh-Taylor instability

The Rayleigh–Taylor instability would occur for any perturbation along the
interface between a heavy fluid (A) on top of a lighter fluid (B), and is charac-
terized by the density difference between the two fluids. The density difference
is represented by the Atwood ratio At = (ρA−ρB)/(ρA+ρB). The initial growth
and long-time evolution of Rayleigh-Taylor instability has been investigated by
Tryggvason [100] for inviscid incompressible flows with zero surface tension at
At = 0.50. Guermond et al. [101] studied this stability problem at the same
value of At but accounted for viscous effects.

The governing equations are:

∂C

∂t
+ v · ∇C − 1

Pe
∇ · (M∇φ) = 0 (305)

φ =
δF

δC
= ε−1σαψ′(C)− εσα∆C (306)

∇ · v = 0 (307)
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Figure 52: Rayleigh-Taylor instability simulation at t = 1.5 produced by the
present model (a) compared with the results of Ding et al. [102].

ρ

[
∂v

∂t
+ v · ∇v

]
= −∇p+

1

Re
∇ ·
[
µ(∇v +∇vT )

]
+ f̄ (308)

f̄ =
φ∇C
ReCa

(309)

ρ̄ = ρ/ρA = C + (1− C)λρ (310)

µ̄ = µ/µA = C + (1− C)λµ (311)

where the density ratio and viscosity ratio are ρ = ρA/ρB and µ = µA/µB ,
respectively, Re = ρALU/µA is the Reynolds number, Ca = µAU/σ is the
capillary number, Pe = LU/(Mcφc) is the Peclet number, and Cn = ε/L is
the a Cahn number, where L is a global characteristic length scale and U is a
characteristic velocity, and Mc and φc are the characteristic values of mobility
and chemical potential.

The same case as in Guermond et al. [101] and Ding et al. [102] is considered,
i.e., at At = 0.5 and Re = 3000, with the initial interface being located in
a rectangular domain [0, L] × [0, 4L] at y(x) = 2L + 0.1Lcos(2πx/L), which
represents a planar interface superimposed by a perturbation of wave number
k = 1 and amplitude 0.1L. In the present case of zero surface tension, the
Cahn-Hilliard equation is used for interface tracking only. The simulation is
carried out on 100 × 400 grid points, the Cahn number is proportional to the
mesh size h as Cn = 0.3h = 0.003 and the time step ∆t = 3.5× 10−6.

Figure 52 shows the interface at t = 1.5. A good agreement with the results
of Ding et al. [102] is observed.

Figure 53 shows the effect of grid size on the numerical solution. Three
meshes were examined 32 × 64 (Cn = 0.009375), 64 × 128 (Cn = 0.0046875),
128×256 (Cn = 0.00234375) and in a smaller rectangular domain [0, L]×[0, 2L].
The advection terms were discretized based on WENO5 scheme. It can be seen
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Figure 53: Rayleigh–Taylor instability simulation at t = 1.75 produced by the
present model based on 32× 64 (a), 64× 128 (c), 128× 256 (e) mesh, compared
with the results of Tryggvason [100] on 32× 64 (b), 64× 128 (d) mesh.

Figure 54: Rayleigh–Taylor instability simulation at t = 1.75 produced by the
present model based on WENO5 scheme (a), TVD2 upwind scheme (b), and
2nd order central finite differences (c).

that as the grid size gets finer, more detailed structures appear. The present
results are also in good qualitative agreement with those of Tryggvason [100]
using level set method.

Figure 54 shows the effect of the spatial discretization of the advection terms
of the CH equation. It can be seen that WENO5 scheme is slightly better than
TVD2 upwind scheme, and both are significantly better than 2nd order central
finite differences. The simulations were conducted on a 64 × 128 mesh in a
smaller rectangular domain [0, L]× [0, 2L].

5.4.6 Verification test #6: Rising bubble

The rise of a gas bubble in a liquid is computed in order to validate the capabil-
ity of the NS/CH solver to simulate high density and viscosity ratio two-phase
flows. The bubble radius is R, the densities of air and water are ρair and
ρwater, respectively. The viscosities are ηair and ηwater. The non-dimensional
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Figure 55: Evolution of a rising bubble with Re = 100, B = 200, a mesh
128×256, h = π/128, ε = 0.015, density ratio ρwater/ρair = 1000, and viscosity
ratio ηwater/ηair = 100, at times t = 0, 2.1, and3, compared with the results of
Kim [97].

Figure 56: Comparison of the present results with diffuse interface (a) with
those produced with level set method Sussman et al. [103].

parameters are the Bond number B = 4ρwatergR/σ and the Reynolds num-
ber Re = (2R)3/2g1/2ρwater/ηwater, and g represents a unit gravitational force.
Figure 55 shows the evolution of a rising bubble with Re = 100, B = 200, a
mesh 128 × 256, h = π/128, ε = 0.015, density ratio ρwater/ρair = 1000, and
viscosity ratio ηwater/ηair = 100. The present results with diffuse-interface
model qualitatively compares well to the results from Kim [97].

Figure 56 shows a comparison of the present results with diffuse-interface
model those produced using level set method by Sussman et al. [103] at non-
dimensional time t = 3.2. The mesh size is 41×41 while it is 141×141 in Sussman
et al. (1988). Once again, a reasonably acceptable agreement is observed.

5.4.7 Verification test #7: 2D Newtonian film in the presence of a
spatially periodic electric field

.
Figure 57 shows the geometry and flow configuration of the problem un-

der investigation, consisting of two perfect dielectric fluids between two rigid,
and impermeable electrodes. w and p denote the width and the height of the
protrusions, respectively, and s denotes the spacing between the protrusions.
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Figure 57: Geometry and flow configuration of the verification test #7.

The bottom fluid is considered to be a water film surrounded by air, with ini-
tial thickness, d. Both fluids, which are initially stationary, are taken to be
incompressible with the lower (upper) fluid having a density ρ1 (ρ2), dielectric
constants ε1 (ε2), and viscosity µ1 (µ2). The surface tension of the water-air
interface, σ, is assumed to be constant. The top and bottom electrodes are
maintained at constant potentials V (y = H(x)) = U and V (y = 0) = 0, respec-
tively.

The governing equations are:

∇ · (ε0εr(C)∇V ) = 0 (312)

∂C

∂t
+ v · ∇C − 1

Pe
∇ · (M∇φ) = 0 (313)

φ = F ′(C)− Cn2∇2C (314)

∇ · v = 0 (315)

ρ

[
∂v

∂t
+ v · ∇v

]
= −∇p+

1

Re
∇ ·
[
µ(∇v +∇vT )

]
+ f̄ (316)

f̄ =
φ∇C
ReCa

− 1

2
ε0E

2∇εr(C)

or

f̄ = − 1

ReCa
∇ ·
(
∇c
|∇c|

)
εα|∇c|2 ∇c

|∇c|
− 1

2
ε0E

2∇εr(C)

(317)

ρ̄ = ρ/ρ1 = C + (1− C)λρ (318)

µ̄ = µ/µ1 = C + (1− C)λµ (319)

ε̄ = ε/ε1 = C + (1− C)λε (320)

All quantities are scaled using as characteristic length the maximum dis-
tance between the top and bottom electrodes, Hm, the characteristic velocity
V ∗ = ε0U

2/µ1Hm and the electric potential is scaled with the potential dif-
ference U . The relevant dimensionless groups that emerge are the Reynolds
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Figure 58: Contours of u (a), (b),(c), v (d),(e),(f) at t = 26.4 for Re = 10,
Ca = 30, Cn = 0.0025, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 1, λρ = 0.001,
λµ = 0.001, and λε = 2.5, (a),(d) Pe = 800, (b),(e) Pe = 100, (c),(f) results of
Karapetsas & Bontozoglou [95].

number, Re = ρ1V ∗Hm/µ1, the capillary number, Ca = µ1V ∗ /σ, the density
ratio, λρ = ρ2/ρ1, the viscosity ratio, λmu = µ2/µ1, the dielectric constants
ratio λε = ε1/ε2, Pe = HmV

∗/(M∗φ∗) is the Peclet number, and Cn = ε/Hm

is the Cahn number. ε0 is the permittivity of vacuum, εr(C) the dielectric con-
stant, V the electric potential, and Ē = −∇V is the electric strength. The
2d/3d roughness elements are numerically treated by an immersed boundary
method, which consists of imposing zero values to all fluid velocity components
on the stationary boundary surface that does not necessarily coincide with the
computational grid (see, for details, Fadlun et al. [104]). In accordance with
the aforementioned studies, zero velocities are imposed in the grid points within
the roughness elements. At the first grid point outside each roughness element,
all the convection and viscous derivatives are discretized by using the distance
between the grid point and the boundary of the wall disturbance and not the
actual mesh size.

Figure 58 shows the distributions of the velocity components u and v pre-
dicted by the diffuse interface model and Figure 59 shows the distributions of
pressure p and electric potential V . The present results are compared with the
corresponding results of Karapetsas & Bontozoglou [95]. The non-dimensional
time is t = 26.4 (26.3 in Karapetsas & Bontozoglou [95]), Re = 10, Ca = 30,
Cn = 0.0025, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 1, λρ = 0.001, λµ = 0.001,
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Figure 59: Contours of p (a), (b),(c), V (d),(e),(f) at t = 26.4 for Re = 10,
Ca = 30, Cn = 0.0025, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 1, λρ = 0.001,
λµ = 0.001, and λε = 2.5, (a),(d) Pe = 800, (b),(e) Pe = 100, (c),(f) results of
Karapetsas & Bontozoglou [95].
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Figure 60: Contours of u produced by a mesh of 80 × 80 (a), 120 × 120 (b),
160× 160 (c), 240× 240 (d), results from Karapetsas & Bontozoglou [95] (e) at
t = 7.8 for Re = 10, Ca = 30, Pe = 800, Cn = 0.0025, d = 0.3, s = 0.8, p = 0.2,
w = 0.2, L = 1, λρ = 0.001, λµ = 0.001, and λε = 2.5.

and λε = 2.5 for two values of Pe = 800 and 100. The computational mesh is
160 × 160. It can be seen that both the features of the interface predicted by
the diffuse interface model, as well as the distributions of u, v, p, V are in good
qualitative agreement with the results of Karapetsas & Bontozoglou [95].

Figures 60 and 61 shows the effect of grid refinement on the distributions
of the velocity components u and v produced by the diffuse interface model at
non-dimensional time t = 7.8. Four meshes were examined, 80× 80, 120× 120,
160 × 160, and 240 × 240. The parameters are Re = 10, Ca = 30, Pe = 800,
Cn = 0.0025, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 1, λρ = 0.001, λµ = 0.001,
and λε = 2.5. It can be seen that, for all meshes, the qualitative characteristics
of the distributions are in good agreement with the results of Karapetsas &
Bontozoglou [95]. However, a small distortion can be observed in the small size
meshes 80 × 80, 120 × 120 near the interface, which is eliminated with further
grid refinement. In contrast, the interface seems to be little affected by the grid
resolution, and it is well captured by all grids used.

Figure 62 shows the time evolution of the maximum and minimum amplitude
of the interfacial perturbation for various meshes and values of Peclet number.
A very good agreement is observed with grid refinement. A reduction in Pe
leads to an improvement of the predictions based on the present diffuse interface
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Figure 61: Contours of v produced by a mesh of 80 × 80 (a), 120 × 120 (b),
160× 160 (c), 240× 240 (d), results from Karapetsas & Bontozoglou [95] (e) at
t = 7.8 for Re = 10, Ca = 30, Pe = 800, Cn = 0.0025, d = 0.3, s = 0.8, p = 0.2,
w = 0.2, L = 1, λρ = 0.001, λµ = 0.001, and λε = 2.5.

Figure 62: Evolution of the amplitude for Re = 10, Ca = 30, Pe = 800,
Cn = 0.0025, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 1, λρ = 0.001, λµ = 0.001,
and λε = 2.5.
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Figure 63: Contours of u (a) and v (b) at t = 26.4 produced by the present 3d
diffuse interface model using a mesh of 80 × 80 × 16 grid points for Re = 10,
Ca = 30, Pe = 200, Cn = 0.01, d = 0.3, s = 0.8, p = 0.2, w = 0.2, L = 1,
λρ = 0.001, λµ = 0.001, and λε = 2.5.

Figure 64: Contours of c (a), p (b), and V (b) at t = 26.4 produced by the
present 3D diffuse interface model using a mesh of 80× 80× 16 grid points for
Re = 10, Ca = 30, Pe = 200, Cn = 0.01, d = 0.3, s = 0.8, p = 0.2, w = 0.2,
L = 1,λρ = 0.001, λµ = 0.001, and λε = 2.5.

model.

5.5 Simulation of 3D Newtonian film in the presence of a
spatially periodic electric field.

A number of 3d simulations were also performed using the present diffuse inter-
face model. Figures 63 and 64 show iso-surfaces of u and v velocity components,
concentration c, pressure p, and electric potential V in a representative case with
Re = 10, Ca = 30, Pe = 200, Cn = 0.01, d = 0.3, s = 0.8, p = 0.2, w = 0.2,
L = 1, λρ = 0.001, λµ = 0.001, and λε = 2.5. The computational domain was
1×1×0.2 and the mesh was 80×80×16. The magnitude of the spanwise velocity
component w was smaller than 10−10, indicating that for the present geometric
arrangement and configuration the flow can be considered two-dimensional.
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5.6 Conclusions

The development of a Navier-Stokes/Cahn-Hilliard (NS/CH) solver for the sim-
ulation of two-phase flows in the presence of electric field was described in this
report. The governing equations and numerical methods were presented includ-
ing constant density, variable viscosity and variable density, variable viscosity
formulations. Several time-stepping algorithms, spatial discretization, the pro-
jection algorithm, and numerical details were also provided. Representative
results obtained from several verification tests were shown, which exhibited a
reasonably good agreement against other published results. These tests included
damped oscillations of a capillary wave between two superposed viscous fluids
with the same dynamic viscosity, Rayleigh-Taylor instability, the rise of a gas
bubble in a liquid, and the two-dimensional (2d) and three-dimensional (3d)
two-phase flow of Newtonian film in the presence of a spatially periodic electric
field. In order to improve the efficiency of the present 2d/3d diffuse interface
model, the implementation of multigrid solvers, parallelization (MPI, OpenMP),
and adaptive mesh refinement are suggested.
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