
Δ ι ά δ ο σ η  Α λ λ α γ ώ ν  Σ ε  Π λ η ρ ο φ ο ρ ι α κ ά  Ο ι κ ο -
σ υ σ τ ή μ α τ α 1 

 
Γιώργος Παπαστεφανάτος, Πάνος Βασιλειάδης, Άλκης Σιμιτσής 
 
Στο άρθρο αυτό ασχολούμαστε με τη διαχείριση γεγονότων εξέλιξης σε συστήματα διαχείρισης δεδομένων. Συγκεκριμένα, 
μας απασχολεί ένα προσανατολισμένο στα δεδομένα οικοσύστημα (data centric ecosystem) που στη μοντελοποίησή του 
περιλαμβάνει σχέσεις, όψεις και ερωτήσεις. Οι ερωτήσεις είναι μια καλή αρχική αφαίρεση για να μοντελοποιήσουμε πολύ 
πιο σύνθετες ενότητες (modules), οι οποίες είναι είτε εσωτερικές στη βάση δεδομένων (όπως για παράδειγμα αποθηκευ-
μένες διαδικασίες – stored procedures) ή εξωτερικές (όπως για παράδειγμα, εφαρμογές που προσπελάζουν τη βάση δε-
δομένων, αναφορές, κλπ). Με άλλα λόγια, το οικοσύστημα επεκτείνεται και εκτός της βάσεως και περιλαμβάνει και τις 
εφαρμογές που προσπελάζουν τη βάση στη μοντελοποίησή του. Επιπλέον, επισημειώνουμε το πληροφοριακό οικοσύστη-
μα με πολιτικές διαχείρισης εξελικτικών γεγονότων – δηλαδή, για κάθε πιθανή αλλαγή που μπορεί να φτάσει σε μια ενό-
τητα λογισμικού (πίνακας, όψη, ή ερώτηση), η εν λόγω ενότητα είναι επισημειωμένη με πολιτικές που καθορίζουν την 
αντίδρασή της στο γεγονός της αλλαγής. Θεωρούμε ένα γράφημα που αναπαριστά το όλο οικοσύστημα (το οποίο ονομά-
ζουμε Γράφημα Αρχιτεκτονικής του οικοσυστήματος) και διερευνούμε το πώς είναι εφικτή η διαχείριση της διάδοσης των 
αλλαγών στο γράφημα της αρχιτεκτονικής. Πρακτικά, κάθε αλλαγή που καταφτάνει σε μια ενότητα ενεργοποιεί και μια 
πολιτική, η οποία με τη σειρά της είτε τερματίζει τη διάδοση του γεγονότος, είτε καθορίζει την περαιτέρω μετάδοση σε 
επόμενες ενότητες. Δείχνουμε ότι ο μηχανισμός που προτείνουμε τερματίζει πάντα και στο τέλος κάθε διάδοσης, κάθε 
ενότητα είναι επισημειωμένη με μία μοναδική κατάσταση (status), ασχέτως της σειράς με την οποία καταφτάνουν σε αυ-
τή οι αλλαγές που διαδίδονται στο γράφημα. 
 
Στο εν λόγω άρθρο συνοψίζονται πρώιμα ερευνητικά αποτελέσματα (με τη μορφή σύντομου άρθρου), όπως παρουσιά-
στηκαν στο workshop HotSWUp: 
 
George Papastefanatos, Panos Vassiliadis, Alkis Simitsis. Propagating Evolution Events in Data-Centric Software Artifacts. In 3rd 
Workshop on Hot Topics in Software Upgrades (HotSWUp 2011), in conjunction with ICDE 2011, pp. 162-167, April 16, 2011, 
Hannover, Germany 

  

                                                           
1 H παρούσα έρευνα έχει συγχρηματοδοτηθεί από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο - ΕΚΤ) και από εθνικούς πόρους μέ-

σω του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» του Εθνικού Στρατηγικού Πλαισίου Αναφοράς (ΕΣΠΑ) - Ερευ-

νητικό Χρηματοδοτούμενο Έργο: Θαλής. Επένδυση στην κοινωνία της γνώσης μέσω του Ευρωπαϊκού Κοινωνικού Ταμείου.  

http://dx.doi.org/10.1109/ICDEW.2011.5767629
http://www.hotswup.org/2011/
http://www.hotswup.org/2011/
http://www.icde2011.org/


Propagating Evolution Events  

in Data-Centric Software Artifacts 
George Papastefanatos

1
, Panos Vassiliadis

2
, Alkis Simitsis

3
 

1
Institute for the Management of Information Systems / RC “Athena” 

Athens, Hellas 

gpapas@imis.athena-innovation.gr 

2
 Department of Computer Science, University of Ioannina 

Ioannina, Hellas 

pvassil@cs.uoi.gr 

3
HP Labs   

Palo Alto, CA, USA 

alkis@hp.com 

 
Abstract—The success and wellbeing of large organizations rely 

on the smooth functionality and operability of their software. 

Such qualities are largely affected by evolution events and 

changes, like software upgrades. In this paper, we are dealing 

with handling evolution events in data management systems. We 

consider a data-centric ecosystem that captures relational tables, 

views and queries (the latter are seeing as software modules that 

are either internal to the database, e.g., stored procedures, or 

external software applications that access the database). We also 

consider policies dictating the response of a software module to a 

possible event. We investigate the impact of such events to the 

database and present a graph-based mechanism to control event 

propagation. We show that our mechanism terminates and that 

every database construct is annotated with a single status, re-

gardless of the sequence of messages that the node receives. 

Keywords- database evolution, confluence, event propagation 

I.  INTRODUCTION  

The success and wellbeing of large organizations rely on 

the smooth functionality and operability of their software. 

Such qualities are largely affected by evolution events and 

changes, like software upgrade. The problem we are dealing 

with in this paper involves the identification and regulation of 

schema evolution impact in complex data-centric ecosystems. 

We model a data-centric ecosystem as an Architecture 

Graph. This graph captures relational tables, along with their 

schemata and constraints, as well as, views defined on top of 

them and queries (being parts of software modules that are 

either internal to the database, e.g., stored procedures, or ex-

ternal software applications that access the database). Evolu-

tion changes affecting the database structure are mapped to 

graph operations on the graph nodes. The graph is also anno-

tated with policies that dictate the response of a software 

module to a possible event. For example, when a database 

table acting as a provider of a view is about to be deleted, the 

view may veto the deletion if it is annotated by an appropriate 

policy. 

For exploring the impact of a potential event to the graph, 

we study the message propagation. Every time a node receives 

an event, it (a) determines which policy rules apply for this 

event, (b) assumes the appropriate status based on these rules, 

and (c) notifies its neighbors for the event (if needed) via ap-

propriate messages that act as events to their recipients. Thus, 

when a potential event is submitted, the graph is annotated 

with statuses that report on whether an event affects a node or 

not, and in the case that it does, what action should be taken 

for the affected node. Actions imposed on affected nodes may 

in turn generate evolution events propagated as new messages 

towards the rest of the dependent graph structures. Hence, this 

paper answers the following question: Given an evolution 

event e over a node of the Architecture Graph v, how do we 

guarantee that (a) the event propagation terminates and (b) 

that every node is annotated with a single status, regardless of 

the sequence of messages that the node receives? 

Prior work focuses on a simpler data model, which did not 

prevent multiple messages arriving at the same node and, due 

to this shortcoming, it cannot guarantee confluence of the evo-

lution process [7]. Here, we solve this issue by framing 

change messages within high level constructs before they are 

freely flooded over the whole ecosystem’s graph. The benefits 

of this process are twofold: we achieve localization of deci-

sions and guarantee satisfactory handling of event transac-

tions; and we also achieve nice properties, like confluence. 

II. BACKGROUND MODELING 

We extend previous modeling of the Architecture graph 

(see [6]) in order to guarantee a safe, confluent mechanism for 

message propagation. Here, views and queries are considered 

as containers of nodes, which are encapsulated between the 

input and output schemata of a view or a query. Thus, we treat 

such schemata as first class citizens of the model. A full de-

scription of the model can be found in [11]. 

A. Architecture graph.  

Database constructs are presented as a directed graph 

G=(V,E), which we call Architecture graph. Its main compo-

nents are as follows. 



Modules. A module is a semantically high level construct of 

the ecosystem and stands for relations, views, and queries. 

Each module defines a scope and it is disjoint to the others. 

Relations, R. Each relation R(Ω1,Ω2,…,Ωn) is represented as a 

graph that comprises: (a) a schema node, R; (b) n attribute 

nodes, ΩiΩ, i=1..n; and (c) n schema relationships, ES, con-

necting relation and attribute nodes.  

Conditions, C. Conditions refer to selection conditions of 

queries and views and constraints of the database schema and 

belong to three classes: (a) Ω op constant; (b) Ω op Ω’; and 

(c) Ω op Q, where op is a typical binary operator and Q is a 

query.  

V_Course

SM

Semester

CS

CourseStd

C

Course

T

Transcript

S

Student

V_Tr

Q_pass2courses

INS_V

INS_S

OUTSSMTX

SID

SName

GPA

SID

SNa
me

SID

=
>

‘4/
10’

ANDTgr
ade

GB

avg

Q_allStudentGPA

SID

SNa
me

 

Figure 1.  Architecture graph of an example database (our running example) 

Queries, Q. The graph representation of a Select - Project - 

Join - Group By (SPJG) query involves: (a) a query node; (b) 

a set of input schemata nodes (one for every table in the 

FROM clause); (c) an output schema node comprising the set 

of attributes of the SELECT clause; (d) a semantics node, as 

the root node for the subgraph corresponding to the query 

semantics, including the WHERE/HAVING/GROUP BY clauses 

of the query; and (e) attribute nodes belonging to the various 

input and output schemata of the query. 

Views, V. Views are treated as queries. The output schema 

of a view can be used as input by a subsequent view or query. 

Summary. A summary of the Architecture graph is a 

zoomed-out variant of the graph that comprises only modules 

as nodes and edges denoting any possible form of provider 

relationship between modules. Formally, a summary is a di-

rected acyclic graph Gs=(Vs,Es), where VsRVQ compris-

es the graph’s module nodes and EsEF comprises pairs of 

providers and consumers as from-relationship edges, EF. 

Example. Consider the example database of Figure 1. The 

database contains information on semesters, courses offered 

by a department, and students with their transcripts; i.e., what 

course they have enrolled to and with what grade. V_Course 

is a view that combines three relations, Semester, Cours-

eStd, and Course, into a single view that contains the identi-

fiers and descriptions of the involved entities. The V_Tr view 

joins V_Course with the Transcript relation, resulting in a 

view containing the information needed for students’ enroll-

ment. A query, Q_pass2courses, performs a self-join over 

view V_Tr and presents a report that compares the grades for 

two courses, DB_I and DB_II, for those students who enrolled 

in both courses. Another query, Q_allStudentGPA, reports 

the average grade (i.e., over successfully passed courses) for 

every student; the report requires students’ names, so the rela-

tion Student is joined to the view V_Tr. For simplicity, we 

omit all constraints (e.g., primary and foreign keys) and some 

detailed edges, like selection edges. We intentionally do not 

expand the subgraph of Q_pass2courses, V_Course, and 

V_Tr for showing the benefits of handling evolution within 

modules.  

B. Graph Annotation with Policies.  

We evaluate the impact of a change over the system. In the 

past, we described how to map schema changes occurring in a 

database ecosystem to operations on graph nodes [7]; e.g., 

adding an attribute to a relation translates as adding a child 

node to a relation module. We also discussed how to enrich 

the graph with rules, called policies, which dictate how to act 

when specific events occur on the nodes of the graph. Policies 

can be applied at various granularity levels on the graph [8]; 

i.e., from the modules level down to the attribute and operand 

nodes levels. Two example rules are: (a) propagate the 

change, i.e., the graph must be reshaped to adjust to the new 

semantics incurred by the event; and (b) block the change, i.e., 

we retain the existing graph semantics either by blocking the 

event or by constraining it through a rewriting that preserves 

the old semantics. Default values and policy resolution rules 

guarantee that each node may determine the appropriate poli-

cy for any event it receives. For example, the policy “On 

add_attribute to Transcript Then propagate” de-

fined on V_Tr.INS_T node, allows the propagation of the 

addition of a new attribute in the Transcript relation to-

wards the schema of the view.  

C. Message propagation and Status Resolution 

When an event (e.g., attribute deletion) is submitted to the 

graph, a mechanism must ensure that this event is propagated 

to all nodes affected, either directly or transitively, and that 

each affected node acquires the correct status, according to its 

policies for this event. This mechanism has three main parts. 

TABLE I. EVENTS, POLICIES, AND STATUSES OF NODES 

VE 
{SELF, CHILD, PROVIDER} x {ADD, DEL, UPD} x 

{STRUCTURE, SEMANTICS, S+S} 

VP {BLOCK, PROPAGATE} 

VS 
{SELF, CHILD, PROVIDER} x {ADD, DEL, UPD} x 

{STRUCTURE, SEMANTICS, S+S } 

 

Policy determination. Clearly, it would be very hard for the 

user to have to define a policy per event for every module of 

the Architecture Graph. In [8], we have defined a language 

where the user can dictate “default” policies both at the graph 

level and for the children of individual nodes, in order to 

avoid this effort. In fact, the language allows the user to define 

policies at different levels of abstraction which can be overrid-

ing one another (so, for example, if the default policy for the 

deletion of input schema attributes is block, the user can over-

ride it for the input schema attributes of a particular view). 

Then, a late-binding mechanism determines the winner policy 



for each specific node. For a most detailed description of the 

policy annotation and determination, we refer the interested 

user to [7]. 

Status determination. Given finite vocabularies of events, 

VE, policies VP, and statuses VS, we consider a set of rules as a 

function DS: VE x VP  VS (see Table I). 

Event propagation. When a node acquires a status for an 

event, we need to broadcast messages to its neighbors. Each 

message corresponds to a unique event occurring on the send-

er node and describes the event type and the status assigned to 

it according to the prevailing policy. Each message is pro-

cessed inside a module and may trigger one or more events for 

further propagation to the consumer modules. For example, 

the deletion of an attribute that participates in the SELECT 

and WHERE clauses of a view, generates a new message for 

the consumers of the view; this message encodes the modifi-

cation of the view’s structure and semantics. 

 
Figure 2.  Protocol for the message propagation mechanism 

III. MESSAGE PROPAGATION MECHANISM 

The graph nodes form a directed acyclic graph of depend-

encies. Therefore, it is straightforward to get a topological sort 

of the summary of the architecture graph. We enforce the rule: 

“modules communicate with each other via a single means: 

the output schema of a provider module notifies the input 

schema of a consumer module”. Then, the following protocol 

is used: 
(i) We topologically sort the graph at the module level. 

(ii) We visit each module in its topological order and check 
whether there are incoming messages for it. If there are, 
the topological sort guarantees that all messages pending 
for the input schemata of the module are ready. 

(iii) Every module processes the incoming events and decides 
the status for its semantics and output schema. Next, it 
propagates this information to all its consumers (if any). 

Figure 2 shows the protocol for handling events within each 

module. The propagation mechanism involves four node 

types. 
– Input schemata nodes. They receive notifications for 

changes from other modules. 

– Internal nodes. They are: (a) possibly affected by the 
changes to the input schema nodes, and (b) amenable to 
evolution events by the users (e.g., a user altering the se-
lection condition or the grouper attributes of a view). 

– Output schema nodes. They emit messages to their con-
sumers for possible modification of their component. 

– Semantics nodes. They determine whether the semantics 
of a component are the same or not and inform the output 
schema nodes for further propagation. 

Message handling should ensure that within a module each 

event affects the appropriate nodes and that every node must 

be visited and processed (i.e., its status must be determined) 

once per message. The process mechanism is as follows.  

Messages arriving at a node are propagated to all of its con-

sumers (i.e., adjacent nodes connected with an incoming edge 

to this node) according to the type of event that they encode 

(e.g., the addition of an attribute is propagated only to seman-

tics and output nodes, whereas the deletion of an attribute is 

propagated to attribute nodes). For each event initiated by the 

input schema or the user, we identify the affected subgraph of 

the module. For identifying the subgraph, we process each 

event by executing the protocol mechanism and assuming that 

no policies constrain the flooding process. The produced sub-

graph contains only nodes potentially affected by this event.  

TABLE II. MESSAGE PROPAGATION FOR NODES IN A MODULE 

Messages arrive from node type Messages propagated to 

{provider’s output schema} 
Input 

schema 

{children, semantics, 

output schema} 

{father, provider, children, 

user(self)} 

Internal 

Nodes 

{children (if any), 

consumers, father} 

{input schema, children} Semantics {output schema} 

{semantics, children, input 

schema} 

Output 

schema 

{consumers’ input schema, 

module} 

 
Each identified subgraph is acyclic (see Theorem 3). Then, 

a second execution of the protocol starts from the input sche-

ma (or the node affected explicitly by the user) and visits each 

node in a topological order of the subgraph. Based on the de-

fined policy, the node is assigned with a status which is 

enqueued as a new event in the message list of all of its con-

sumers. The process continues with the next node in the topo-

logical order of the identified subgraph. The method guaran-

tees that each node is processed once, after all feasible mes-

sages have arrived at it. Next, we present the message han-

dling mechanism for each class of nodes (see also Table II). 

Input schema nodes. The input schema nodes receive 

messages from the output schema nodes of a provider rela-

tion/view. For example, the output schema of a relation mod-

ule may report the following events to the input schema node 

of a succeeding query: (a) the relation is renamed or deleted; 

(b) attributes are added/deleted/updated; (c) constraints are 

added/deleted/updated. When an input schema node receives 

such a message, then, the following mechanism is triggered: 
(i) The correct policy (based on the type of the received 

message) is determined for the receiving input schema 
node. 

(ii) The rule dictating the policy is fired and the appropriate 
status is assumed. In the case of propagation, the node as-
sumes a status for adjusting to the event, whereas in the 
case of block policy, the node takes a status for blocking 
the event. For example, in the case of an incoming mes-
sage for the addition of a new attribute, for which the in-

A1

...

OUTSSMTX

O1

O2

Om

...

A2

An

INS_Sc1

1. notify 

children

2. notify SMTX 

node

4. notify output 

attributes

3. notify SMTX 

tree nodes

0. input schema 

receives event

5. internal 

nodes notify 

their fathers & 

eventually, 

SMTX&OUTS 

nodes

6. SMTX & 

OUTS notify 

query 

7. OUTS 

notifies all 

consumers

...

5.



put schema retains a propagate policy, the input schema 
node is assigned with a status for adding a child. 

(iii) For changes referring to the input attributes (e.g., deletion 
of an attribute at the provider’s schema, renaming, do-
main modification, etc.) the appropriate input attribute 
nodes of the input schema are notified. 

(iv) The input schema node propagates a message containing 
changes on the semantics of the provider module directly 
to the semantic node of the current module – if such 
changes exist; otherwise no such action is taken. 

(v) The input schema node propagates a message for adding 
children to the output schema node of the module and (if 
any) to the group by node via the semantic node. 

Each input schema has exactly one provider (i.e., the output 

schema of the provider module) and it can receive exactly one 

message that triggers the evolution handling mechanism in 

every module. Thus, a module can receive, at most, as many 

event handling messages for the same original event as its 

input schemata. Alternatively, the mechanism starts when a user 

applies a change at a module, and this triggers exactly one 

‘input’ message possibly at an internal node. 

Internal nodes. These can be either attributes in the input/ 

output schemata of a module, or logical components of the 

semantics node of a module, like a function node, an operand 

or a constant node, group by node, etc. Intra-module nodes 

can receive messages either from (a) their father (e.g., an input 

schema node notifies that a specific input attribute must be 

deleted), (b) from their provider nodes (e.g., an output attrib-

ute node or an operand node is notified by its provider attrib-

ute in the input schema for its deletion), (c) one of its children 

or lastly (d) explicitly by the user who triggers the modifica-

tion of the node itself. The message propagation for internal 

nodes mainly notifies all their consumers on what is happen-

ing to them and the semantics node on whether the semantics 

of the component change. The mechanism is as follows: 
(i) – (ii) The first two steps are like those of the input schema 

nodes. 

(iii) If the node has children and receives a notification from 
its father or if it initiates the event, then its children are 
notified too. This mainly applies to operand nodes in 
composite conditions at views and queries or relations’ 
attributes having constraints (e.g., conditions) as children. 

(iv) If the node is notified by one of its providers or one of its 
children, the father of the node is notified, too. This co-
vers the case where a user triggers an event in the con-
tents of a view (e.g., deletion of a condition) or a relation 
(e.g., modification of an attribute), so that the event 
would be also propagated upwards to the module node. 

(v) The node consumers (if any) are notified too. This covers 
the case where an input attribute is changed, so that the 
event is propagated towards all nodes (e.g., output attrib-
utes, conditions, functions, group by attributes) that refer 
to this attribute. 

Every node notifies its consumers, and since the event han-

dling is performed in a topological order of the module graph, 

each node receives at most one message per edge for the same 

event. (For more details see the long version of the paper 

[11].)  

Semantics nodes. A semantics node receives messages ei-

ther from the input schema of the module, for messages con-

taining changes on the semantics of the provider modules, or 

from its children. The mechanism triggered by the semantics 

node when receiving such messages is as follows: 
(i) – (ii) The first two steps are like those of the input schema 

nodes. 

(iii) The semantic node propagates a message for addition of 
children towards (if any) the group by node. 

(iv) The semantics node propagates all other messages com-
ing from either the input schema node (e.g., for changes 
in the semantics of a provider module) or its children 
(i.e., for changes in the semantics of the module itself) to 
the output schema node of the module. 

Output schema nodes. The output schema is responsible 

for establishing the overall status of the module. An output 

schema node can receive messages from the semantics node 

regarding semantic changes in the module, from the input 

schema for additions of attributes or from one of its children 

for changes referring to the exposed structure of the module. 

The mechanism for handling received event signals is: 
(i) – (ii) The first two steps are like those of the input schema 

nodes. 

(iii) The father of the output schema node, i.e., the module’s 
node, is notified too. Whenever the module’s node gets a 
notification from the output schema it acquires the right 
status (i.e., block if a veto has been fired or the appropri-
ate status in any other case). 

(iv) Except for the case the assigned status is block, all con-
sumers (input schemata) of the output schema node are 
notified with a message announcing the module’s status. 

TABLE III. ADDING EXAMYEAR TO TRANSCRIPT 

visited 

module 

Visited 

Node 

message 

arriving 

status Message 

Emitted 

next node 

in queue 

Transcript Transcript AC {EY} AC AC {EY} V_TR.INS_T 

V_TR INS_T AC {EY} AC AC {EY} OUT_S 

V_TR OUT_S AC {EY} AC AC {EY} V_TR,Q1.INS_V1, 

Q1.INS_V2,Q2.INS_V 

V_TR V_TR AC {EY} AC None none 

Q1 INS_V1 AC {EY} AC AC {EY} OUT_S 

Q1 INS_V2 AC {EY} AC AC {EY} OUT_S 

Q1 OUT_S AC {EY} AC AC {EY} Q1 

Q1 Q1 AC {EY} AC AC {EY} none 

Q2 INS_V AC {EY} AC AC {EY} SMTX, OUT_S 

Q2 SMTX AC {EY} MS AC{EY},
MS 

GB, OUT_S 

Q2 GB AC{EY},MS AC AC{EY} none 

Q2 OUT_S AC{EY},MS AC,MS AC{EY}, 

MS 

Q2 

Q2 Q2 AC{EY},MS AC,MS None none 

Legend: AC:Add_Child, MS:Modify_Semantics 

 
Example (cont’d). Assume that a user adds a new attribute, 

ExamYear (EY), representing the year that the student has 

taken the exam on each course, to the Transcript relation 



(see Figure 1). Assume also, that the propagate policy is as-

signed on all visited nodes. The message propagation for this 

event is presented in Table III. The message for adding EY to 

Transcript results in assigning the appropriate status for 

adding EY as a new child. Since the policy is propagate, an 

identical message is created and the input schema node 

V_TR.INS_T connected with the Transcript node is visited. 

The V_TR.INS_T node adapts the event and informs the out-

put schema node for the addition. The affected subgraph for 

this event according to our mechanism comprises nodes 

{V_TR.INS_T, V_TR.OUT_S,V_TR} which are visited in 

this order. Next, the V_TR.OUT_S node propagates the event 

towards all input schema nodes referring to the V_Tr view. 

For the Q_pass2courses (Q1) query, each input schema 

node (i.e., Q1.INS_V2 and Q1.INS_V1) receives a distinct 

message for the attribute addition. These messages are propa-

gated towards the query output schema Q1.OUT_S as two sep-

arate events. The message propagation terminates on the out-

put schema nodes of the two queries (see Figure 1 too), 

Q1.OUT_S and Q2.OUT_S, as no other consumer modules ex-

ists. The output schema of the Q_allStudentsGPA (Q2) 

query, receives two messages for two separate events; one 

from the addition of the attribute in the input schema of the 

query and the other for the modification of the semantics as 

result of the incorporation of the new attribute to the group by 

clause of the query. 

IV. THEORETICAL GUARANTEES 

In this section, we present the theoretical guarantees for the 

correct execution, termination and confluence of the afore-

mentioned protocol mechanism on the architecture graph. We 

examine and prove these properties both at the summary 

graph, i.e., at the intermodule level (theorems 1-3), as well as 

within each module (theorem 4).  

A.  Guarantees at the intermodule level 

In this subsection, we prove that the mechanism for mes-

sage propagation works correctly at the summary or, inter-

module level. We assume that each module responds correctly 

to a given event; we prove this property in the subsequent 

subsection. 

 Theorem 1 (termination). The message propagation at the 

intermodule level terminates.  

Proof: The summary of the Architecture Graph is a di-

rected acyclic cycle. This is due to the fact that a query de-

pends only on views and relations and relations do not depend 

on anything (in the context of this paper, we do not consider 

cyclic foreign key dependencies). Since the summary graph is 

a DAG, we can topologically sort it and propagate the mes-

sages according to this topological order.  Thus, all that it 

takes for the message propagation mechanism to terminate is: 

(a) each module emits at most one message for each session to 

every one of its neighbors; (b) the graph is finite. Since both 

assumptions hold, the algorithm terminates.                          

Theorem 2 (unique status). Each module in the graph will 

assume a unique status once the message propagation termi-

nates. 

Proof: At the summary level, each input schema of a con-

sumer module receives the status and the output schema struc-

ture of its provider module. The topological ordering of the 

graph guarantees that whenever a module is considered, all its 

providers have already been processed. Then, Theorem 4 

proves that once all notifications from the module’s providers 

are in place, the module will uniquely acquire a status.           

Theorem 3 (correctness). Messages are correctly propagat-

ed to the modules of the graph. 

Proof:  The modules that must be appropriately notified are 

these for which an event occurs at their providers. At the 

summary level, the Architecture graph is a connected graph, 

where one (or more) input schema node(s) of a consumer 

module is connected via directed edges to the output schema 

node(s) of its providers. The messaging mechanism dictates 

that each message is propagated from the output node of the 

provider module towards the input schema node of all con-

sumer modules, unless a block policy explicitly halts the 

propagation. On the other hand, the modules that are not visit-

ed by the mechanism (a) either do not have any provider af-

fected or (b) a block policy exists; therefore, they can safely 

ignore any notification.                                          

B. Guarantees at the intramodule level 

In this subsection, we prove that once an event arrives at a 

module, the module responds to the event and annotates the 

output schema with the correct status. 

Theorem 4 (termination and correctness). The message 

propagation at the intramodule level terminates and each node 

assumes a status. 

Proof:   At the intra-module level, for the termination of the 

mechanism, we must prove that each constructed subgraph per 

event type is a directed acyclic graph. For the correctness of 

the mechanism we require that every node is processed once 

(and thus assigned with a status) for all messages arriving at a 

module per session. The latter can be satisfied when the de-

termined subgraph can be topologically sorted and traversed. 

Thus, for both requirements we must prove that the subgraph 

constructed per event type has no cycles. We cover the fol-

lowing events: 

 Change in semantics of provider. The message arrives to 
the input schema node and is propagated to the semantics 
node. The affected subgraph comprises the following 
nodes and directed edges in topological order: {input 

schemasemanticsoutput schemamodule}2 . No cycles 
detected. 

 Internal change in the semantics of a module (e.g., a user 
deletes a part of the condition expression of a view). the 
semantics node is eventually notified from the upwards 
flow of messages in the condition tree and the children are 
notified from the downwards flow of messages. For the 
case that a condition node is modified, the subgraph is:  
{internal node(up)condition tree  seman-

ticsoutput schemamodule}, 

                                                           
2 For ease of graph serialization we denote an edge directing from 

input schema towards semantics as “input schemasemantics”. 



{internal node(down)condition tree}. No cycles de-
tected. For the case that a grouping attribute is modified, 
the subgraph comprises:  
{GB Attributes  GB  semantics  output schema  

module}. 

 Deletion in the structure of the input schema. All affected 
nodes in the tree of the condition part are notified via the 
operand relationship edges; all group by and output sche-
ma are notified via the map-select edges. Subgraph poten-
tially (if group by part exists) comprises: 
{input schema  input attributes}, 

{input attributes  condition tree  semantics}, 

{input attributes  GB attributes GB  node  se-

mantics}, 

{input attributes  output attributes  output 

schema}, 

{semantics  output schema}, 

{output schema  module}. No cycles detected. 

 Addition in the structure of the input schema. A message 
is sent to the output schema and to the semantic node for 
informing the group by node (if any). Subgraph potentially 
comprises:  
{input schema  semantics}, 

{input schema  output schema}, 

{semantics  GB node}, 

{semantics  output schema}, 

{output schema  module}. No cycles detected. 

 Deletion of in the input schema overall (the provider dies 
overall too). The deletion is correctly propagated from the 
messages sent by all the child nodes of the schema. 

 Change in structure (deletion or addition) and semantics 
of a provider. When messages arriving at an input schema 
node contain changes both at the structure and the seman-
tics of the provider module, the subgraph is the union of 
the subgraphs corresponding to each case. Thus, for attrib-
ute addition and change in provider semantics, the sub-
graph is:  
{input schemasemantics}, 

{input schema  output schema}, 

{semantics  GB}, 

{semantics  output schemamodule}. No cycles detect-
ed. For attribute deletion and change in provider seman-
tics, the subgraph is:  
{input schema  semantics}, 

{input schema  input attributes}, 

{input attributes  condition tree  semantics}, 

{input attributes  GB attributes  GB node  se-

mantics}, 

{input attributes  output attributes  output 

schema}, 

{semantics  output schema},{output schema  mod-

ule}. No cycles detected.                            

In all cases, at the end of the process, the output schema 

(and eventually the module itself) has knowledge (a) of what 

happens to their children and (b) what happens to module and 

can pass this information to the next consumer. 

V. RELATED WORK 

Schema evolution has been studied in databases [9], [10]. 

Evolution related approaches have been proposed for the OO 

paradigm [13] and DW configurations [3]. A technique for 

publishing the history of a relational database in XML em-

ploys a set of schema modification operators (SMOs) to repre-

sent the mappings between successive schema versions and an 

XML query language to address queries expressed over differ-

ent versions using the mappings established by the SMOs [4]. 

View adaptation after redefinition, where changes in views 

definition are invoked by the user and rewriting is used to 

keep the view consistent with the data sources, has been stud-

ied [1], [2]. A previous work considers the view synchroniza-

tion problem, where views become invalid after schema 

changes in their definition [5]. Here, the policies act as regula-

tors for the propagation of schema evolution on the graph, 

similarly to the evolution parameters introduced in [4]. An-

other effort presents a model for retaining the original seman-

tics of the queries by preserving mappings consistent when 

changes occur [12]. Here, we allow restructuring of the data-

base graph either for keeping the original semantics or for 

adapting to new ones and also, we employ a message propaga-

tion mechanism for detecting and regulating evolution impact 

in complex database ecosystems. 

VI. CONCLUSIONS 

We focused on the problem of change propagation in data-

base ecosystems. Based on a graph representation of a data-

base and considering that the graph is annotated with policies 

dictating the response of a software module to a possible 

event, we studied the impact of such events to the database 

and presented a graph-based mechanism to control event 

propagation. 

REFERENCES 

[1] Z. Bellahsene, “Schema evolution in data warehouses”. In Knowledge 
and Information Systems, 4(3), pp. 283-304, 2002. 

[2] Gupta, I. S. Mumick, J. Rao, K. A. Ross, “Adapting materialized views 

after redefinitions: Techniques and a performance study”. In Infor-
mation Systems, 26(5), pp. 323-362, 2001. 

[3] M. Golfarelli, J. Lechtenbörger, S. Rizzi, G. Vossen, “Schema Version-

ing in Data Warehouses”. In ECDM, pp. 415–428, 2004. 
[4] Moon, H.J., Curino, C.,Deutsch, A., Hou, C.Y., Zaniolo, C. Managing 

and querying transaction-time databases under schema evolution. In 

VLDB, pp. 882-895, 2008. 
[5] Nica, A. J. Lee, E. A. Rundensteiner, “The CSV algorithm for view 

synchronization in evolvable large-scale information systems”. In 

EDBT, pp. 359-373, 1998. 
[6] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou, “What-If 

Analysis for Data Warehouse Evolution”. In DAWAK, pp. 23-33, 2007. 

[7] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou. Policy-
Regulated Management of ETL Evolution. In JoDS, vol. XIII, pp. 146–

176, 2009. 

[8] G. Papastefanatos, P.Vassiliadis, A.Simitsis, K.Aggistalis, F.Pechlivani, 
Y.Vassiliou, “Language Extensions for the Automation of Database 

Schema Evolution”. In ICEIS, 2008. 

[9] J.F. Roddick et al., “Evolution and Change in Data Management - 
Issues and Directions”. In SIGMOD Record, 29(1), pp. 21-25, 2000. 

[10] J.F. Roddick., “A survey of schema versioning issues for database 

systems”. In Information Software Technology, 37(7), 1995. 
[11] G. Papastefanatos, P. Vassiliadis, A. Simitsis, “Propagation of Evolu-

tion Events in Architecture Graphs” (long version of this paper),  

url: web.imis.athena-innovation.gr/~gpapas/Publications/TR2010.1.pdf 
[12] Y. Velegrakis, R.J. Miller, L. Popa, “Preserving mapping consistency 

under schema changes”. In VLDB J., 13(3), pp. 274-293, 2004.  
[13] R. Zicari, “A framework for schema update in an object-oriented data-

base system”. In ICDE, pp. 2-13, 1991. 

 



Automating the Adaptation of Evolving
Data-Intensive Ecosystems

Petros Manousis1, Panos Vassiliadis1, and George Papastefanatos2

1 Dept. of Computer Science University of Ioannina (Hellas)
{pmanousi, pvassil}@cs.uoi.gr

2 Research Center ”Athena” (Hellas)
gpapas@imis.athenainnovation.gr

Abstract. Data-intensive ecosystems are conglomerations of data repos-
itories surrounded by applications that depend on them for their opera-
tion. To support the graceful evolution of the ecosystem’s components we
annotate them with policies for their response to evolutionary events. In
this paper, we provide a method for the adaptation of ecosystems based
on three algorithms that (i) assess the impact of a change, (ii) compute
the need of different variants of an ecosystem’s components, depending
on policy conflicts, and (iii) rewrite the modules to adapt to the change.

Keywords: Evolution, data-intensive ecosystems, adaptation

1 Introduction

Data-intensive ecosystems are conglomerations of databases surrounded by ap-
plications that depend on them for their operation. Ecosystems differ from the
typical information systems in the sense that the management of the database
profoundly takes its surrounding applications into account. In this paper, we deal
with the problem of facilitating the evolution of an ecosystem without impacting
the smooth operation or the semantic consistency of its components.

Observe the ecosystem of Figure 1. On the left, we depict a small part of a
university database with three relations and two views, one for the information
around courses and another for the information concerning student transcripts.
On the right, we isolate two queries that the developer has embedded in his
applications, one concerning the statistics around the database course and the
other reporting on the average grade of each student. If we were to delete at-
tribute C NAME, the ecosystem would be affected in two ways : (a) syntactically,
as both the view V TR and the query on the database course would crash, and,
(b) semantically, as the latter query would no longer be able to work with the
same selection condition on the course name. Similarly, if an attribute is added
to a relation, we would like to inform dependent modules (views or queries) for
the availability of this new information.

The means to facilitate the graceful evolution of the database without dam-
aging the smooth operation of the ecosystem’s applications is to allow all the



Fig. 1. Managing the adaptation of a University-DB Ecosystem.

involved stakeholders to register veto’s or preferences: for example, we would
like to allow a developer to state that she is really adamant on retaining the
structure and semantics of a certain view. In our method, we can annotate a
module (i.e., relation, view or query) with a policy for each possible event that
it can withstand, in one of two possible modes: (a) block, to veto the event and
demand that the module retains its previous structure and semantics, or, (b)
propagate, to allow the event and adapt the module to a new internal structure.

In this paper, we model ecosystems as graphs annotated with policies for re-
sponding to evolutionary events (Sec. 2) and we address the problem of identi-
fying (a) what parts of the ecosystem are affected whenever we test a potential
change and (b) how will the ecosystem look like once the implications of conflict-
ing policies are resolved and the graph is appropriately rewritten (Sec. 3). Related
work in ecosystem adaptation has provided us with techniques for view adapta-
tion [6], [3], [11] that do not allow the definition of the policies for the adaptation
of the ecosystem modules. Our previous work [8] has proposed algorithms for
impact assessment with explicit policy annotation; however, to the best of our
knowledge, there is no method that allows both the impact assessment and the
rewriting of the ecosystem’s modules along with correctness guarantees.

We implemented our method in a what-if analysis tool, Hecataeus3 where all
stakeholders can pre-assess the impact of possible modifications before actually
performing them, in a way that is loosely coupled to the ecosystem’s components.
Our experimentation with ecosystems of different policies and sizes (Sec. 4)
indicates that our method offers significant effort gains for the maintenance
team of the ecosystem and, at the same time, scales gracefully.

3 http://www.cs.uoi.gr/ pvassil/projects/hecataeus/



2 Formal Background

Our modeling technique, extending [8], uniformly represents all the components
of an ecosystem as a directed graph which we call the Architecture Graph of the
ecosystem. Fig. 2 visually represents the internals of the modules of Fig. 1. To
avoid overcrowding the figure, we omit different parts of the structure in different
modules; the figure is self-explanatory on this.

Fig. 2. A subset of the graph structure for the University-DB Ecosystem.

Modules. A module is a semantically high level construct of the ecosystem;
specifically, the modules of the ecosystem are relations, views and queries. Every
module defines a scope recursively: every module has one or more schemata in
its scope (defined by part-of edges), with each schema including components
(e.g., the attributes of a schema or the nodes of a semantics tree) linked to the
schema also via part-of edges. In our model, all modules have a well defined
scope, “fenced” by input and output schemata.

Relations. Each relation includes a node for the relation per se, a node for
its (output) schema and a node for each for its attributes; all connected via the
aforementioned part-of edges.

Queries. The graph representation of a Select - Project - Join - Group By
(SPJG) query involves a new node representing the query, named query node,
linked to the following schemata:

1. a set of input schemata nodes (one for every table appearing in the FROM
clause). Each input schema includes the set of attributes that participate



in the syntax of the query (i.e., SELECT, WHERE and GROUP BY clauses,
etc.). Each input attribute is linked via a provider, map-select edge to the
appropriate attribute of the respective provider module.

2. an output schema node comprising the set of attributes present in the SE-
LECT clause. The output attributes are linked to the appropriate input at-
tributes that populate them through map-select edges, directing from the
output towards the input attributes.

3. a semantics node as the root node for the sub-graph corresponding to the
semantics of the query (specifically, the WHERE and GROUP-BY part).

We accommodate WHERE clauses in conjunctive normal form, where each atomic
formula is expressed as: (i) Ω op constant, or (ii) Ω op Ω’, or (iii) Ω op Q where
Ω, Ω’ are attributes of the underlying relations, Q is a nested query, and operator
op belongs to the set {<, >, =, ≤, ≥, 6=, IN , EXISTS, ANY }). The entire
WHERE clause is mapped to a tree, where (i) each atomic formula is mapped to
a subtree with an operator node for op linked with operand edges pointing to the
operand nodes of the formulae and (ii) nodes for the Boolean operators (AND,
OR) connect with each other as well as with the operators of the atomic formulae
via the respective operand edges. The GROUP BY part is mapped in the graph
via (i) a node GB, to capture the set of attributes acting as the aggregators
and (ii) one node per aggregate function labeled with the name of the employed
aggregate function; e.g., COUNT, SUM, MIN. For the aggregators, we use edges
directing from the semantics node towards the GB node that are labeled group-
by. The GB node is linked to the respective input attributes acting as aggregators
with group-by edges, which are additionally tagged according to the order of the
aggregators; we use an identifier i to represent the i-th aggregator. Moreover,
for every aggregated attribute in the query’s output schema, there exists a map-
select edge directing from this attribute towards the aggregate function node as
well as an edge from the function node towards the respective input attribute.

Views. Views are treated as queries; however the output schema of a view
can be used as input by a subsequent view or query module.

Summary. A summary of the architecture graph is a zoomed-out variant of
the graph at the schema level with provider edges only among schemata (instead
of attributes too).

Events. We organize the events that can be tested via our method in the
following groups.

– Events at relations. A relation can withstand deletion and renaming of itself
as well as addition, deletion and renaming of its attributes.

– Events at views and queries. A view can withstand the deletion and renaming
of itself, the addition, deletion or renaming of its output attributes and the
update of the view’s semantics (i.e., the modification of the WHERE clause
of the respective SQL query that defines the view).

Policies. As already mentioned, the policy of a node for responding to an
incoming event can be one of the following: (a) PROPAGATE, which means that
the node is willing to adapt in order to be compatible with the new structure



and semantics of the ecosystem, or, (b) BLOCK, which means that the node
wants to retain the previous structure and semantics. We can assign policies to
all the nodes of the ecosystem via a language [5] that provides guarantees for the
complete coverage of all the graph’s nodes along with syntax conciseness and
customizability. The main idea is the usage of rules of the form <receiver node>
: on <event> then <policy>, both at the default level –e.g.,

VIEW.OUT.SELF: on ADD ATTRIBUTE then PROPAGATE;

and at the node-specific level (overriding defaults) –e.g.,

V TR OUT.SELF: on ADD ATTRIBUTE then BLOCK;

3 Impact Assessment and Adaption of Ecosystems

The goal of our method is to assess the impact of a hypothetical event over an
architecture graph annotated with policies and to adapt the graph to assume its
new structure after the event has been propagated to all the affected modules.
Before any event is tested, we topologically sort the modules of the architecture
graph (always feasible as the summary graph is acyclic: relations have no cyclic
dependencies and no query or view can have a cycle in their definition). This is
performed once, in advance of any impact assessment. Then, in an on-line mode,
we can perform what-if analysis for the impact of changes in two steps that
involve: (i) the detection of the modules that are actually affected by the change
and the identification of a status that characterizes their reaction to the event,
and, (ii) the rewriting of the graph’s modules to adapt to the applied change.

3.1 Detection of affected nodes and status determination

The assessment of the impact of an event to the ecosystem is a process that
results in assigning every affected module with a status that characterizes its
policy-driven response to the event. The task is reduced in (a) determining the
affected modules in the correct order, and, (b) making them assume the appro-
priate status. Algorithm Status Determination (Fig. 3) details this process. In
the following, we use the terms node and module interchangeably.

1. Whenever an event is assessed, we start from the module over which it is
assessed and visit the rest of the nodes by following the topological sorting of
the modules to ensure that a module is visited after all of its data providers
have been visited. A visited node assesses the impact of the event internally
(cf., ”intra-module processing”) and obtains a status, which can be one of the
following: (a) BLOCK, meaning that the module is requesting that it remains
structurally and semantically immune to the tested change and blocks the
event (as its immunity obscures the event from its data consumers), (b)
PROPAGATE, meaning that the modules concedes to adapt to the change
and propagate the event to any subsequent data consumers, or, (c) retain a
NO STATUS status, already assigned by the topological sort, meaning that
the module is not affected by the change.



Input: A topologically sorted architecture graph summary Gs(Vs,Es), a global queue
Q that facilitates the exchange of messages between modules.
Output: A list of modules Affected Modules ⊆ Vs that were affected by the event
and acquire a status other than NO STATUS.

1. Q={original message}, Affected Modules = ∅;
2. For All node ∈ Gs(Vs,Es)
3. node.status = NO STATUS;
4. EndFor
5. While (size(Q) > 0)
6. visit module (node) in head of Q;
7. insert node in Affected Modules list;
8. get all messages, Messages, that refer to node;
9. SetStatus(node, Messages);

10. If (node.status == PROPAGATE) Then
11. insert node.Consumers Messages to the Q;
12. EndWhile
13. Return Affected Modules;

Procedure SetStatus(Module, Messages)
Consumers Messages = ∅;
For All Message ∈ Messages

decide status of Module;
put messages for Module’s consumers in Consumers Messages;

EndFor

Fig. 3. Algorithm Status determination

2. If the status of the module is PROPAGATE, the event must be propagated to
the subsequent modules. To this end, the visited module prepares messages
for its data consumers, notifying them about its own changes. These messages
are pushed to a common global message queue (where messages are sorted
by their target module’s topological sorting identifier).

3. The process terminates whenever there are no more messages and no more
modules to be visited.

Intra-module processing. Whenever visited, a module starts by retrieving
from the common queue all the messages (i.e., events) that concern it. It is
possible that more than one message exist in the global queue for a module: e.g.,
with the deletion of an attribute that was used both in the output schema of a
module and in the semantics schema of a module, the module should inform its
consumers that (a) the attribute was deleted and (b) its semantics has changed.
The processing of the messages is performed as follows:

1. First, the module probes its schemata for their reaction to the incoming
event, starting from the input schemata, next to the semantics and finally to
the output schema. Naturally, relations deal only with the output schema.

2. Within each schema, the schema has to probe both itself and its contained
nodes (attributes) for their reaction to the incoming event. At the end of
this process, the schema assumes a status as previously discussed.



3. Once all schemata have assumed status, it is the output schema of the module
that decides the reaction of the overall module; if any of the schemata raises
a veto (BLOCK) the module assumes the BLOCK status too; otherwise, it
assumes the PROPAGATE status.

Theoretical guarantees. Previous models of Architecture Graphs ([8]) al-
low queries and views to directly refer to the nodes representing the attributes of
the involved relations. Due to the framing of modules within input and output
schemata and the topological sorting, in [7] we have proved that the process (a)
terminates and (b) correctly assigns statuses to modules.

3.2 Query and view rewriting to accommodate change

Once the first step of the method, Status Determination, has been completed
and each module has obtained a status, the problem of adaptation would intu-
itively seem simple: each module gets rewritten if the status is PROPAGATE
and remains the same if the status is BLOCK. This would require only the exe-
cution of the Graph Rewrite step – in fact, one could envision cases where Status
Determination and Graph Rewrite could be combined in a single pass. Unfor-
tunately, although the decision on Status Determination can be made locally in
each module, taking into consideration only the events generated by previous
modules and the local policies, the decision on rewriting has to take extra in-
formation into consideration. This information is not local, and even worse, it
pertains to the subsequent, consumer modules of an affected module, making
thus impossible to weave this information in the first step of the method, Status
Determination. The example of Fig. 4 is illustrative of this case.

Fig. 4. Block rewriting example

In the example of Figure 4, we have a relation R and a view V0 defined over
the relation R. Two views (V1 and V2) use V0 in order to get data. V2 is further
used by two queries (Q1 and Q2). The database administrator wants to change
V0, in a way that all modules depending on V0 are going to be affected by that
change (e.g., attribute deletion, for an attribute common to all the modules of
the example). Assume now that all modules except Q2 accept to adapt to the
change, as they have a PROPAGATE policy annotation. Still, the vetoing Q2



must be kept immune to the change; to achieve this we must retain the previous
version of all the nodes in the path from the origin of the evolution (V0) to the
blocking Q2. As one can see in the figure, we now have two variants of V0 and
V2: the new ones (named V n

0 and V n
2 ) that are adapted to the new structure of

V0 – now named V n
0 – and the old ones, that retain their name and are depicted

in the rightmost part of the figure. The latter are immune to the change and
their existence serves the purpose of correctly defining Q2.

Input: An architecture graph summary Gs(Vs,Es), a list of modules
Affected modules, affected by the event, and the Initial Event of the user.
Output: Annotation of the modules of Affected modules on the action needed to
take, and specifically whether we have to make a new version of it, or, implement the
change that the user asked on the current version

1. For All Module ∈ Affected modules
2. If(Module.status == BLOCK) Then
3. CheckModule(Module, Affected modules, Initial Event);
4. mark Module not to change; //Blockers do not change

5. EndFor

Procedure CheckModule(Module, Affected modules, Initial Event)
If(Module has been marked) Then return; //Notified by previous block path

If (Initial Event == ADD ATTRIBUTE)
Then mark Module to apply change on current version; //Blockers ignore provider addition

Else mark Module to keep current version as is and apply the change on a clone;
For All Module provider ∈ Affected modules feeding Module

CheckModule(Module provider, Affected modules, Initial Event); //Notify path

EndFor

Fig. 5. Algorithm Path check

The crux of the problem is as follows: if a module has PROPAGATE status
and none of its consumers (including both its immediate and its transitive con-
sumers) raises a BLOCK veto, then both the module and all of these consumers
are rewritten to a new version. However, if any of the immediate consumers,
or any of the transitive consumers of a module raises a veto, then the entire
path towards this vetoing node must hold two versions of each module: (a) the
new version, as the module has accepted to adapt to the change by assuming
a PROPAGATE status, and, (b) the old version in order to serve the correct
definition of the vetoing module.

To correctly serve the above purpose, the adaptation process is split in two
steps. The first of them, Path Check, works from the consumers towards the
providers in order to determine the number of variants (old and new) for each
module. Whenever the algorithm visits a module, if its status is BLOCK, it starts
a reverse traversal of the nodes, starting from the blocker module towards the
module that initialized the flow and marks each module in that path (a) to keep
its present form and (b) prepare for a cloned version (identical copy) where the
rewriting will take place. The only exception to this rewriting is when the module



of the initial message is a relation module and the event is an attribute deletion,
in which case a BLOCK signifies a veto for the adaptation of the relation.

Input: A list of modules Affected modules, knowing the number of versions they
have to retain, initial messages of Affected modules
Output: Architecture graph after the implementation of the change the user asked

1. If(any of Affected modules has status BLOCK) Then
2. If(initial message started from Relation module type AND event ==

DELETE ATTRIBUTE) Then Return;
3. Else
4. For All (Module ∈ Affected modules)
5. If(Module needs only new version) Then
6. proceed with rewriting of Module;
7. connect Module to new providers; //new version goes to new path

8. Else
9. clone Module; //clone module, to keep both versions

10. connect cloned Module to new providers; //clone is the new version

11. proceed with rewriting of cloned Module;
12. EndFor
13. Else
14. For All Module ∈ Affected modules
15. proceed with rewriting of Module //no blocker node

16. EndFor

Fig. 6. Algorithm Graph Rewrite

Finally, all nodes that have to be rewritten are getting their new definition
according to their incoming events. Unfortunately, this step cannot be blended
with Path Check straightforwardly: Path Check operates from the end of the
graph backwards, to highlight cases of multiple variants; rewriting however, has
to work from the beginning towards the end of the graph in order to correctly
propagate information concerning the rewrite (e.g., the names of affected at-
tributes, new semantics, etc.). So, the final part of the method, Graph Rewrite,
visits each module and rewrites the module as follows:

– If the module must retain only the new version, once we have performed the
needed change, we connect it correctly to the providers it should have.

– If the module needs both the old and the new versions, we make a clone of
the module to our graph, perform the needed change over the cloned module
and connect it correctly to the providers it should have.

– If the module retains only the old version, we do not perform any change.

4 Experiments

We assessed our method for its usefulness and scalability with varying graph
configurations and policies; in this section, we report our findings.



Experimental setup. We have employed TPC-DS, version 1.1.0 [10] as our
experimental testbed. TPC-DS is a benchmark that involves star schemata of
a company that has the ability to Sell and receive Returns of its Items with
the following ways: (a) the Web, or, (b) a Catalog, or, (c) directly at the Store.
Since the Hecataeus’ parser could not support all the advanced SQL constructs
of TPC-DS, we employed several auxiliary views and slight query modifications.

Graphs and Events. To test the effect of graph size to our method’s ef-
ficiency, we have created 3 graphs with gradually decreasing number of query
modules: (a) a large ecosystem, WCS, with queries using all the available fact
tables, (b) an ecosystem CS, where the queries to WEB SALES have been re-
moved, and (c) an ecosystem S, with queries using only the STORE SALES fact
table. The event workload consists of 51 events simulating a real case study of
the Greek public sector. See Fig. 7 for an analysis of the module sizes within
each scenario and the workload (listing the percentage of each event type as pct).

Policies. We have annotated the graphs with policies, in order to allow the
management of evolution events. We have used two “profiles“: (a) MixtureDBA,
consisting of 20% of the relation modules annotated with BLOCK policy and
(b) MixtureAD, consisting of 15% of the query modules annotated with BLOCK
policy. The first profile corresponds to a developer-friendly DBA that agrees
to prevent changes already within the database. The second profile tests an
environment where the application developer is allowed to register veto’s for the
evolution of specific applications (here: specific queries). We have taken care to
pick queries that span several relations of the database.

Fig. 7. Experimental configuration for the TPC-DS ecosystem

Experimental Protocol. We have used the following sequence of actions.
First, we annotate the architecture graph with policies. Next, we sequentially
apply the events over the graph – i.e., each event is applied over the graph
that resulted from the application of the previous event. We have performed our
experiments with hot cache. For each event we measure the elapsed time for each
of the three algorithms, along with the number of affected, cloned and adapted
modules. All the experiments have been performed in a typical PC with an Intel
Quad core CPU at 2.66GHz and 1.9GB main memory.

Effectiveness. How useful is our method for the application developers and
the DBA’s? We can assess the effort gain of a developer using the highlighting
of affected modules of Hecataeus compared to the situation where he would
have to perform all checks by hand as the fraction of Affected Modules of the
ecosystem. This gain, expressed via the %AM metric amounts to the percentage



of useless checks the user would have made. We exclude the object that initiates
the sequence of events from the computation, as it would be counted in both
occasions. Formally, %AM is given by the Equation 1.

%AM = 1− #Affected Modules

#(Queries ∪ V iews)
(1)

Fig. 8. Effectiveness assessment as fraction of affected modules (%AM)

The results depicted in Fig. 8 demonstrate that the effort gains compared to
the absence of our method are significant, as, on average, the effort is around
90% in the case of the AD mixture and 97% in the case of the DBA mixture. As
the graph size increases, the benefits from the highlighting of affected modules
that our method offers, increase too. Observe that in the case of the DBA case,
where the flooding of events is restricted early enough at the database’s relations,
the minimum benefit in all 51 events ranges between 60% - 84%.

Effect of policy to the execution time. In the case of Mixture DBA we
follow an aggressive blocking policy that stops the events early enough, at the
relations, before they start being propagated in the ecosystem. On the other
hand, in the case of Mixture AD, we follow a more conservative annotation
approach, where the developer can assign blocker policies only to some module
parts that he authors. In the latter case, it is clear that the events are propagated
to larger parts of the ecosystem resulting in higher numbers of affected and
rewritten nodes. If one compares the execution time of the three cases of the AD
mixture in Fig. 9 with the execution time of the three cases of the DBA mixture
the difference is in the area of one order of magnitude. It is however interesting
to note the internal differences: the status determination time is scaled up with
a factor of two; the rewriting time, however is scaled up by a factor of 10, 20
and 30 for the small, medium and large graph respectively!

Another interesting finding concerns the internal breakdown of the ex-
ecution time in each case. A common pattern is that path check is executed
very efficiently : in all cases it stays within 2% of the total time (thus practically
invisible in the graphic). In the case of the AD mixture, the analogy between the
status determination and the graph rewriting part starts from a 24% - 74% for
the small graph and ends to a 7% - 93% for the large graph. In other words, as
the events are allowed to flow within the ecosystem, the amount of rewriting in-
creases with the size of the graph; in all cases, it dominates the overall execution
time. This is due to the fact that rewriting involves memory management (mod-
ule cloning, internal node additions, etc) that costs much more than the simple
checks performed by Status Determination. In the case of the DBA mixture,



however, where the events are quickly blocked, the times are not only signifi-
cantly smaller, but also equi-balanced: 57% - 42% for the small graph (Status
Determination costs more in this case) and 49% - 50% for the two other graphs.
Again, this is due to the fact that the rewriting actions are the time consuming
ones and therefore, their reduction significantly reduces the execution time too.

Fig. 9. Efficiency assessment for different policies, graph sizes and phases

Effect of graph size to the execution time. To assess the impact of
graph size to the execution time one has to compare the three different graphs
to one another within each policy. In the case of the AD mixture, where the
rewriting dominates the execution time, there is a linear increase of both the
rewriting and the execution time with the graph size. On the contrary, the rate
of increase drops in the case of the DBA mixture: when the events are blocked
early, the size of the graph plays less role to the execution time.

Overall, the main lesson learned from these observations is that the annota-
tion of few database relations significantly restricts the rewriting time (and con-
sequently the overall execution time) when compared to the case of annotating
modules external to the database. In case the rewriting is not constrained early
enough, then the execution cost grows linearly with the size of the ecosystem.

5 Related work

For an overview of the vast amount of work in the area of evolution, we refer the
interested reader to an excellent, recent survey [4]. We also refer the interested
reader to [9] for a survey of efforts towards bidirectional transformations. Here,
we scope our discussion to works that pertain to the adaptation of data-intensive
ecosystems.



Data-intensive ecosystems’ evolution. Research activity around data-
intensive ecosystems has been developed around two tools, Hecataeus and Prism.
Hecataeus [8] models ecosystems as Architecture Graphs and allows the defini-
tion of policies, the impact assessment of potential changes and the computation
of graph-theoretic properties as metrics for the vulnerability of the graph’s nodes
to change. The impact assessment mechanism was first introduced in [8] and sub-
sequently modified in [7]. PRISM++ [2] lets the user define his policies about
imminent changes. The authors use ICMOs (Integrity Constraints Modification
Operators) and SMOs (Schema Modification Operators) in order to rewrite the
queries/views in a way that the results of the query/view are the same as before.

View/schema mapping rewriting. Nica et al., [6] make legal rewritings
of views affected by changes and they primarily deal with the case of relation
deletion by finding valid replacements for the affected (deleted) components via a
meta-knowledge base (MKB) that keeps meta-information about attributes and
their join equivalence attributes on other tables in the form of a hyper-graph.
Gupta et al., [3] redefine a materialized view as a sequence of primitive local
changes in the view definition. On more complex adaptations, those local changes
can be pipelined in order to compute the new view contents incrementally and
avoid their full re-computation. Velegrakis, et al., [11], deal with the maintenance
of a set of mappings in an environment where source and target schemata are
integrated under schema mappings implemented via SPJ queries. Cleve et al.,
[1] introduce mappings among the applications and a conceptual representation
of the database, again mapped to the database logical model; when the database
changes, the mappings allow to highlight impacted areas in the source code.

Comparison to existing approaches.As already mentioned, the anno-
tation of the ecosystem with policies imposes the new problem of maintaining
different replicas of view definitions for different consumers; to the best of our
knowledge, this is the first time that this problem is handled in a systematic
way. Interestingly, although the existing approaches make no explicit treatment
of policies, they differ in the implicit assumptions they make. Nica et al., operat-
ing mainly over virtual views [6], actually block the flooding of a deletion event
by trying to compensate the deletion with equivalent expressions. At the same
time, they do not handle additions or renamings. Velegrakis et al. [11] move
towards the same goal but only for SPJ queries. On the other hand, Gupta et
al., [3], working with materialized views, are focused to adapting the contents
of the views, in a propagate-all fashion. A problem coming with a propagate-all
policy is that the events might affect the semantical part of the views/queries
(WHERE clause) without any notification to the involved users (observe that
the problem scales up with multiple layers of views defined over other views).

Compared to previous editions of Hecataeus [8], this work reports on the first
implementation of a status determination mechanism with correctness guaran-
tees. The management of rewritings via the path checking to handle conflicting
policies and the adaptation to accommodate change are completely novel.



6 Conclusions and Future Work

In this paper we have addressed the problem of adapting a data-intensive ecosys-
tem in the presence of policies that regulate the flow of evolution events. Our
method allows (a) the management of alternative variants of views and queries
and (b) the rewriting of the ecosystem’s affected modules in a way that respects
the policy annotations and the correctness of the rewriting (even in the presence
of policy conflicts). Our experiments confirm that the adaptation is performed
efficiently as the size and complexity of the ecosystem grow. Future work can
address the assessment of complicated events, the visualization of the ecosystem
and the automatic suggestion of policies.

Acknowledgments. This research has been co-financed by the European
Union (European Social Fund - ESF) and Greek national funds through the Op-
erational Program ”Education and Lifelong Learning” of the National Strategic
Reference Framework (NSRF) - Research Funding Program: Thales. Investing
in knowledge society through the European Social Fund.

References

1. Cleve, A., Brogneaux, A.F., Hainaut, J.L.: A conceptual approach to database ap-
plications evolution. In: 29th Intl. Conf. on Conceptual Modeling (ER), Vancouver,
Canada. pp. 132–145 (2010)

2. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Update Rewriting and Integrity
Constraint Maintenance in a Schema Evolution Support System: PRISM++.
PVLDB 4(2), 117–128 (2010)

3. Gupta, A., Mumick, I.S., Rao, J., Ross, K.A.: Adapting materialized views after
redefinitions: techniques and a performance study. Information Systems 26(5), 323–
362 (2001)

4. Hartung, M., Terwilliger, J.F., Rahm, E.: Recent Advances in Schema and Ontol-
ogy Evolution. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.) Schema Matching
and Mapping, pp. 149–190. Springer (2011)

5. Manousis, P.: Database evolution and maintenance of dependent applications via
query rewriting. MSc. Thesis, Dept. of Computer Science, Univ. Ioannina. (Febru-
ary 2013), http://www.cs.uoi.gr/∼pmanousi/publications.html

6. Nica, A., Lee, A.J., Rundensteiner, E.A.: The CVS Algorithm for View Synchro-
nization in Evolvable Large-Scale Information Systems. In: 6th Intl. Conf. on Ex-
tending Database Technology (EDBT 1998), Valencia, Spain. pp. 359–373 (1998)

7. Papastefanatos, G., Vassiliadis, P., Simitsis, A.: Propagating evolution events in
data-centric software artifacts. In: ICDE Workshops. pp. 162–167 (2011)

8. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: Policy-Regulated
Management of ETL Evolution. J. Data Semantics 13, 147–177 (2009)

9. Terwilliger, J.F., Cleve, A., Curino, C.: How clean is your sandbox? - towards a
unified theoretical framework for incremental bidirectional transformations. In: 5th
Intl. Conf. Theory and Practice of Model Transformations (ICMT), Prague, Czech
Rep. pp. 1–23 (2012)

10. Transaction Processing Performance Council: The New Decision Support Bench-
mark Standard. http://www.tpc.org/tpcds/default.asp (April 2012)

11. Velegrakis, Y., Miller, R.J., Popa, L.: Preserving mapping consistency under
schema changes. VLDB Journal 13(3), 274–293 (2004)



Noname manuscript No.
(will be inserted by the editor)

Impact Analysis and Policy-Conforming Rewriting of
Evolving Data-Intensive Ecosystems

Petros Manousis · Panos Vassiliadis · George Papastefanatos

the date of receipt and acceptance should be inserted later

Abstract Data-intensive ecosystems are conglomera-

tions of data repositories surrounded by applications

that depend on them for their operation. In this paper,

we address the problem of performing what-if analysis

for the evolution of the database part of a data-intensive

ecosystem, in order to identify what other parts of an

ecosystem are affected by a potential change in the

database schema, and how will the ecosystem look like

once the change has been performed, while, at the same

time, retaining the ability to regulate the flow of events.

We model the ecosystem as a graph, uniformly covering

relations, views and queries as nodes and their inter-

nal structure and interdependencies as the edges of the

graph. We provide a simple language to annotate the

modules of the graph with policies for their response

to evolutionary events in order to regulate the flow of

events and their impact by (i) vetoing (”blocking”) the

change in parts that the developers want to retain un-

affected and (ii) allowing (”propagating”) the change

in parts that we need to adapt to the new schema. Our

method for the automatic adaptation of ecosystems is

based on three algorithms that automatically (i) assess

the impact of a change, (ii) compute the need of dif-

ferent variants of an ecosystem’s components, depend-

Petros Manousis
Dept. of Computer Science and Engineering, University of
Ioannina (Hellas)
E-mail: pmanousi@cs.uoi.gr

Panos Vassiliadis
Dept. of Computer Science and Engineering, University of
Ioannina (Hellas)
E-mail: pvassil@cs.uoi.gr

George Papastefanatos
Institute for the Management of Information Systems, Re-
search Center ”Athena” (Hellas)
E-mail: gpapas@imis.athena-innovation.gr

ing on policy conflicts, and (iii) rewrite the modules to

adapt to the change. We theoretically prove the cover-

age of the language, as well as the termination, consis-

tency and confluence of our algorithms, and experimen-

tally verify our methods effectiveness and efficiency.

Keywords Evolution, data-intensive ecosystems,

adaptation

1 Introduction

A data-intensive ecosystem is a conglomeration of soft-

ware modules that includes (a) at least one central

database (typically, but not obligatorily, relational),

and, (b) a set of software applications that require

access to the central database via queries embedded
in their code. The distinctive feature of data-intensive

ecosystems is the cohesive management of databases

and applications – plainly put, the management of the

database has to profoundly takes its surrounding appli-

cations into account (and vice versa). In this paper, we

deal with the problem of facilitating the evolution of an

ecosystem without impacting the smooth operation or

the semantic consistency of its components.

To operate smoothly, an ecosystem must withstand

change gracefully. Software maintenance comprises 60%

of the resources spent on building and operating a soft-

ware system [20] and thus, it is of utmost importance

for a system’s life-cycle. In this context, the manage-

ment of changes in a data-centric ecosystem is an im-

portant problem. In this paper, we extend the state of

the art concerning several research questions in the area

of managing the evolution of data-intensive ecosystems.

What does evolution of data-intensive ecosystems

comprise? We start by example – here are a few ex-

amples of possible changes:

Manuscript
Click here to download Manuscript: EcosystemAdaptation.tex 
Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/jods/download.aspx?id=6962&guid=d9f90369-9c4d-4992-8df1-eb3bb8a8a30a&scheme=1
http://www.editorialmanager.com/jods/viewRCResults.aspx?pdf=1&docID=275&rev=1&fileID=6962&msid={3A35A5ED-26F9-407C-84FD-0C05477EB980}


2 Petros Manousis et al.

– A certain attribute of the schema of a view is about

to be deleted, as the administrator wants to simplify

the definition of the view

– A new attribute is added to a relation, because new

content is available

– The WHERE clause of a view is modified with an

extra condition, to account for a new definition of

the view’s contents

Taking the aforementioned examples at a more ab-

stract level, we claim that evolution is of significance

if it affects the syntactic correctness, the semantic va-

lidity, the operational effectiveness, or the administra-

tive overhead of a data-intensive ecosystem. The most

disordering (and also visible) type of impact is syntac-

tic impact : in this case, a change might drive parts of

the ecosystem to be syntactically inconsistent and thus

fail. A deleted attribute might cause applications using

it to crash. In this case, the applications’ developers

have to take care of the change: pinpoint its impact

in their code, assess the necessity for the existence of

this information in the applications and modify their

applications accordingly. If things go wrong, this might

even require negotiations with the DBAs to restore the

deleted attribute. Second, applications can be affected

semantically. If a new attribute is added to a relation it

is possible that it contains important information that

applications should be exploiting (and thus, have to be

synchronized to the new contents of the relation). If

the semantics of a view change, then the data deliv-

ered at the view’s clients are different than the ones

delivered before: in this case, the developers of the af-

fected queries and applications would have to be noti-

fied and decide on whether the queries have to adapt to

the new semantics of the view, or, they would have to

retain the old semantics (again leading to the problem

of compensating the change performed by the DBAs).

A third type of impact (that falls outside the scope of

this paper) involves the effect of a change to the perfor-

mance and administrations of the ecosystem. Dropping

an index may result in a large number of queries run-

ning unacceptably slow or moving a table may result

in making less space for other tables to perform their

insertions.

In all these occasions, we observe that a change per-

formed by the DBA team can have several side-effects

both for the team itself, the developers of applications

of the ecosystem and the end-users. The problem in

all the aforementioned events is that the change is per-

formed before assessing its impact over the ecosystem.

Therefore, addressing the impact assessment problem

in advance of a potential change can be really valuable.

How can we assess the impact of a change in a data

intensive ecosystem? Is it possible to regulate change

in a data-intensive ecosystem? In this paper, we im-

prove the state of the art with concrete results for the

problem of impact assessment. We follow the model of

Architecture Graphs [18,19] that capture all the inter-

dependencies between the constructs of databases and

the application queries via a graph. The graph mod-

els constraints, attributes, relations, views and queries

along with their internal structure as the nodes of the

graph. The edges of the graph denote dependency for

data provision (e.g., between a view and a relation that

populates it with data), part of relationships (e.g., be-

tween a relation and its attributes) and semantic rela-

tionships (e.g., the construction of the WHERE clause

of a query as a tree of expressions). This way, the Ar-

chitecture Graph models all the components of a data-

intensive ecosystem in a uniform way. One of the main

utilities of the Architecture Graph is that it facilitates

impact assessment for potential changes in the ecosys-

tem: whenever a potential change is tested over the Ar-

chitecture Graph, the graph allows us to identify the

area of impact by recursively following edges between

affected nodes. Practically speaking, each node has to

assume a status concerning its reaction to an event that

we test; once a status is assumed, subsequent nodes of

the graph have to be notified too.

At the same time, we are not helpless in manag-

ing potential changes in the core of the ecosystem. If

an application developer is really adamant on retain-

ing the structure and semantics of a database view, it

is possible that this requirement is incorporated in the

Architecture Graph, to prevent possible modifications?

As previous research [16,18] has demonstrated, it is pos-

sible to regulate the flow of events by annotating the

modules of the Architecture Graph with policies, i.e.,

rules for handling events. Specifically, we can annotate

a module (i.e., relation, view or query) with a policy for

each possible event that it can withstand, in one of two

possible modes: (a) block, to veto the event and demand

that the module retains its previous structure and se-

mantics, or, (b) propagate, to allow the event and make

the module adapt with an updated internal structure.

Once the adaptation is complete, the module is also

responsible for igniting the recursive notification of all

the affected software modules in the graph.

To make the discussion a little more concrete, we

present an evolving data-intensive ecosystem in Fig-

ure 1. On the left, we depict a small part of a university

database with three relations and two views, one for the

information around courses and another for the infor-

mation concerning student transcripts. On the right,

we isolate two queries that the developer has embed-

ded in his applications, one concerning the statistics

around the database course and the other reporting on

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 3

Fig. 1 An exemplary University-DB Ecosystem, annotated with policies.

the average grade of each student. If we were to delete

attribute C NAME, the ecosystem would be affected in

two ways : (a) syntactically, as both the view V TR and

the query on the database course would crash, and, (b)

semantically, as the latter query would no longer be

able to work with the same selection condition on the

course name. Similarly, if an attribute is added to a

relation, we would like to inform dependent modules

(views or queries) for the availability of this new infor-

mation. Observe the two policy rules at the bottom of

the figure. The first one dictates that every node of the

graph adapts to any evolutionary event that appears

in the future. The rule uses two shorthands: the term

NODE refers to all the nodes of the graph and the term

∗ refers to any potential event that arrives. The second

rule overrides the first global policy by stating that the

report on the upper right has a veto over the deletion of

one of the attributes exported by the view on student

transcripts (V TR). In Figure 1, we have used a lightly

shaded box to show how these rules are assigned to each

module.

Once the impact of a change has been assessed, is

it possible to see how the ecosystem will look like if the

change is eventually performed? Even with the presence

of policies, it is possible that a potential modification in

the database affects several queries and views that are

willing to accept it and adapt to the new structure or

semantics of the database. The problem becomes more

complicated whenever a change ignites different reac-

tions – e.g., some of the affected queries are willing to

adapt whereas others assume a vetoing status. Then,

the question that has to be answered is “what will the

new structure and semantics of all the affected mod-

ules look like?”. As we will show, the answer to the

question is not straightforward and unfortunately, the

state of the art in ecosystem adaptation is not sufficient

to address it. Specifically, although previous work in

ecosystem adaptation has provided us with techniques

for view adaptation [13], [7], [26], the existing works do

not allow the definition of policies for the adaptation

of the ecosystem modules. At the same time, our own

previous work [18] has proposed algorithms for impact

assessment with explicit policy annotation but without

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 Petros Manousis et al.

the mechanisms to perform the rewriting of the ecosys-

tem. Overall, to the best of our knowledge, there is no

method that allows both the impact assessment and

the rewriting of the ecosystem’s modules along with

correctness guarantees.

To address this shortcoming, the core result of this

paper is the provision of algorithms that identify which

parts of the ecosystem are affected by a potential change

and perform the rewriting of affected modules to adapt

to it, while fulfilling all the constraints imposed by the

-possibly conflicting- policies of all affected modules.

Specifically, our method works in the following three

steps:

1. Impact assessment. Given a potential event, a status

determination algorithm makes sure that the nodes

of the ecosystem are assigned a status concerning

(a) whether they are affected by the event or not

and (b) what their reaction to the event is (block or

propagate).

2. Conflict resolution and calculation of variants. As-

sume a view used by two queries is altered. Assume

also that the first query vetoes the change and re-

quires the structure and semantics of the old view to

remain, whereas the second concedes to the change

and states it will adapt to the new structure and

semantics of the view. The co-existence of blocker

and adapter data consumers of an affected module

signifies the need to retain both the old and the new

version of the module, whenever this is possible. To

this end, we introduce an algorithm that checks the

affected parts of the graph in order to highlight af-

fected nodes with whether they will adapt to a new

version or retain both their old and new variants.

3. Module Rewriting. Once the status and number of

variants has been determined for the modules of the

graph, we need to implement the rewritings. This

is heavily dependent upon the nature of the event

(obviously, a query adapts differently to the removal

of an attribute and differently to the addition of an

attribute, let alone changes in semantics). Our algo-

rithm visits affected modules sequentially and per-

forms the appropriate restructurings of nodes and

edges.

Coming back to our motivating example, let’s see

what happens when the DBA of the ecosystem tries

to delete attribute C NAME from the intermediate

view V COURSE. As instructed by its policy, the view

”agrees” to adapt to the event and adopts a Propagate

status. Then, it notifies its consumer V TR which also

agrees and pushes the event to its consumers, specif-

ically, Q pass2courses which vetoes the event and as-

sumes a Block status and Q allStudentGPA which is

actually unaffected by the event after it self-examines

whether it is affected. The rest of the modules of the

graph, and specifically, the source relations, have a

status NO STATUS as the propagation of the event

has never reached them. The depiction of the status

determination part is shown in the left part of Fig-

ure 2. Then, our method detects a conflict, as the

view V TR decides to adapt to the event in contrast

to the veto from the application developer of the query

Q pass2courses. Once this conflict is detected, a cloning

mechanism is initiated to satisfy both requirements.

The result is depicted in the right part of Figure 2.

The query Q pass2courses retains the old definition of

both views (i.e., the entire backwards path till the node

initiating the event), whereas the two views are cloned

and these clones (depicted in darker colors in the fig-

ure) are adapted to satisfy the requirement set by the

DBA.

We have implemented our method in a what-if anal-

ysis tool, Hecataeus1 where all stakeholders can pre-

assess the impact of possible modifications before ac-

tually performing them, in a way that is loosely cou-

pled to the ecosystem’s components. We have assessed

our method (Sec. 5) over ecosystems of increasing size

and complexity and also varied the policy assignments

in order to assess the method’s scale up with size and

the effect of the policy annotation to the method’s use-

fulness. Our first experimental goal involved assessing

the effectiveness of our method, i.e., the benefits intro-

duced by our method concerning the effort performed

by the application developers and administrators of the

ecosystem. The results indicate that in the absence of

our system, the typical developer would have to per-

form at least 21% of routine, useless checks to views

and queries that are not related to the event at all;

on average, the number of useless checks is located in

the area of 90%-97%. A second observation has to do

with the amount of rewriting: in all occasions, there

have been several modules that had to be rewritten. Al-

though the average numbers are not particularly high,

ranging from 2 to 13 modules depending on the exper-

imental setup, the maximum numbers are quite high

and, in any case, the automation of the work, equips

the involved stakeholders with correctness guarantees

that would otherwise be non-existent. Another signifi-

cant observation has to do with the conciseness of the

policy annotation rules. The number of policy rules is

practically equivalent to the number of the exceptions

to the default policies (resulting in just a handful of

rules in our experiments). In terms of efficiency, all the

experiments show a completion of the tested changes

as small fractions of a second. At the same time, the

chosen policy significantly affects the spreading of the

1 http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.cs.uoi.gr/~pvassil/projects/hecataeus/


Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 5

Fig. 2 Impact analysis (left) and ecosystem rewriting (right) for an event on our exemplary excosystem

impact of a change over the ecosystem: a policy with

early containment of the event (by blocking it inside

the database) can be an order of magnitude faster than

a policy that blocks changes at the queries only. At the

same time, the graph size is linearly related to the time

needed to complete the impact analysis and rewriting

task. Overall, our experimentation with ecosystems of

different policies and sizes indicates that our method

offers significant effort gains for the maintenance team

of the ecosystem and, at the same time, is executed fast

and scales gracefully.

Roadmap. The structure of this paper is as fol-

lows. In Section 2, we give the background modeling

for the architecture graph, policies and events. In Sec-

tion 3, we discuss impact assessment, conflict resolution

and, module rewriting. In Section 4, we prove the the-

oretical guarantees of our approach. In Section 5, we

present the experimental assessment of our method. In

Section 6, we present related work. We conclude in Sec-

tion 7, along with insights for future work.

2 Formal Background

To assess the impact of a potential change over the data

centric ecosystem, we construct a graph of modules (re-

lations, queries and views) where data consuming nodes

are linked with edges to their providers. Whenever an

event is applied over a module, the module has to as-

sess the impact of the event and notify its consumers.

This recursive process allows us to assess the impact of

the event over the entire ecosystem. Naturally, to facil-

itate this process, we need to establish a formal model

for the main constituents of the problem and its solu-

tion. So, before proceeding with the algorithmic parts

of the adaptation process, in this Section, we present

the formal background for the modeling of architec-

ture graphs, along with the space of possible events

and policy annotations. First, we present how relations,

views and queries construct the architecture graph of

the ecosystem. Then, we move on to present the space

of possible events that can be applied to the nodes of the

graph, either directly by the user (initiating the entire

process of assessing the impact of an event) or tran-

sitively, as modules affected by the event notify other

modules that depend on them for the change. Moreover,

in order to regulate the propagation of events over the

graph, we present the language for policy annotations,

along with its semantics and the rules for policy over-

riding.

2.1 Architecture graph

Our modeling technique, following [15], represents all

the aforementioned database constructs as a directed

graph G = (V,E), which we call Architecture Graph of

the ecosystem. For the reader who is not interested in

all the formalities, the following quick summary along

with Figures 2 and 3 should be sufficient to allow the

understanding of our graph modeling.

– Relations, views and queries (or else modules)

come with a subgraph, that includes (a) a node for

the module itself, (b) a set of input schemata for

views and queries, used for linking these modules

with their data providers, (b) an output schema for

the data exported by the module and (d) a seman-

tics schema for any filtering or restructuring taking

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 Petros Manousis et al.

place inside a view or a query (WHERE, GROUP

BY, etc).

– Input and output schemata include their respective

attributes; semantics schemata include a tree repre-

senting the logical expression of the WHERE clause

and a list of groupers for the GROUP-BY clause, in

case these exist in a query or view.

– Edges of the graph signify dependency on data provi-

sion: at the schema level, input and output schemata

are linked with data dependency edges from data

consumers towards data providers; the respective

holds for attributes of the schemata too. Note that

this mechanism applies both between modules (inter-

module edges) and within the same module (intra-

module edges). Semantic-related edges are also used

for the constructs related to the semantics schema

within views and queries.

The reader who wants to skip the detailed descrip-

tion of the graph can jump to Section 2.2. If this is

not the case, our deliberations proceed with a presen-

tation of the components of the architecture graph as

follows. We start with the high level constructs, such

as relations and queries, which we call modules of the

Architecture Graph, and then we move on to discuss

their main properties. Fig. 3 visually represents the in-

ternals of the modules of Fig. 1. To avoid overcrowding

the figure, we omit different parts of the structure in

different modules; the figure is self-explanatory on this.

Modules. A module is a semantically high level

construct of the ecosystem; specifically, the modules of

the ecosystem are relations, views and queries. Every

module defines a scope recursively: every module has

one or more schemata in its scope (defined by part-of

edges), with each schema including components (e.g.,

the attributes of a schema or the nodes of a semantics

tree) linked to the schema also via part-of edges. In our

model, all modules have a well defined scope, “fenced”

by input and output schemata.

Relations. Each relation R (A1, A2,. . . , An) in the

database schema is represented as a directed graph,

which comprises:

1. a node, R, representing the relation;

2. an output schema node, R SCHEMA, representing

the relation’s output schema;

3. n attribute nodes Ai=1...n, one for each of the at-

tributes and,

4. n+1 schema relationships Ei=1...(n+1), directing

from the schema node towards the attribute nodes,

indicating that the attribute belongs to the rela-

tion’s output schema and one directing from the re-

lation node towards the output schema node indi-

cating that the output schema belongs to the rela-

tion.

In our reference examples, we have the following re-

lations, whose graphs are depicted in Fig. 3): relation

Semester(MID, MDescr) standing for information on

semesters, re-

lation CourseStd(csid,csname,cspts) standing for in-

formation on courses, relation Course(cid, csid, mid)

standing for information on courses on semesters, re-

lation Student(sid, sname) standing for information

on students,and relation Transcript(cid, sid, tgrade)

standing for information on the enrollment of students

to courses and their grades.

Queries and Views. The graph representation of

a Select - Project - Join - Group By (SPJG) query

involves:

1. a new node representing the query, named

query node,

2. a set of input schemata nodes (one for every table

appearing in the FROM clause). Each input schema

includes the set of attributes that participate in the

syntax of the query (i.e., SELECT, WHERE clause,

etc.)

3. an output schema node comprising the set of at-

tributes present in the SELECT clause.

4. a semantics node as the root node for the sub-graph

corresponding to the semantics of the query (specif-

ically, the WHERE and GROUP-BY part), and,

5. attribute nodes belonging to the various input and

output schemata of the query.

The query graph is therefore a directed graph con-

necting the query node with the high level schemata

and semantics nodes. The query node contains an edge

towards every schema it possesses. The schema nodes

are connected to their attributes via part-of relation-
ships. In order to explain the internal structure of a

query, we structure our presentation of the query’s

graph in terms of its SQL parts: SELECT, FROM,

WHERE, and GROUP BY, each of which is eventually

mapped to a sub-graph.

Select part. Each query is assumed to own an output

schema that comprises the attributes, either with their

original or with alias names, appearing in the SELECT
clause. In this context, the SELECT part of the query

maps the respective attributes of the input schemata

to the attributes of the query’s output schema through

map-select edges, directing from the output attributes

towards the input schema attributes.

From part. The FROM clause of a query can be re-

garded as the relationship between the query and the

relations (or views) involved in this query. Thus, the re-

lations included in the FROM part are combined with

the input schemata of the query node through from

edges, directing from the nodes of the appropriate in-

put schemata towards the output schema nodes of the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 7

Fig. 3 A subset of the graph structure for the University-DB Ecosystem.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 Petros Manousis et al.

relation/view nodes. The input schemata of the query

comprise only the attributes of the respective relations

that participate in any way in the query; the attributes

of the input schemata are connected to the respective

attributes of the provider relations or views via map-

select relationships.

Where part. We assume that the WHERE clause of

a query is in conjunctive normal form. Thus, we intro-

duce a directed edge, called where edge, starting from

the semantics node of a query towards an operator node

corresponding to the conjunction of the highest level.

Then, there is a tree of nodes hanging from this con-

junction involving condition nodes (to be defined right

away). The edges are operand relationships as men-

tioned above among binary comparators, boolean op-

erators, input attributes and constants. In Fig. 4 we

depict the graph of Q pass2courses query which per-

forms a self-join over view V TR and presents a report

of the students and their grades, that enrolled in both

DB I and DB II courses. A tree, starting from the

SMTX node, describes the conditions of the selected

tuples. Initially, we take the tuples on which the name

of the first course is equal to DB I, then we filter them

and take the ones that have the same SID for V 1 and

V 2. Finally, we filter those results and take the ones on

which the name of the second course is equal to DB II.

Fig. 4 The graph of the semantics schema for the
Q pass2courses query

We consider three classes of atomic conditions that

are composed through the appropriate usage of an oper-

ator op belonging to the set of classic binary operators,

op (e.g., <, >, =, ≤, ≥, 6=, IN , EXISTS, ANY ): (i)

Ω op constant, (ii) Ω op Ω’, and (iii) Ω op Q where

Ω, Ω’ are attributes of the underlying relations and

Q is a query. A condition node is used for the rep-

resentation of the condition. Graphically, the node is

tagged with the respective operator and it is connected

to the operand nodes of the conjunct clause through the

respective operand relationships, O. Composite condi-

tions are easily constructed by tagging the condition

node with a Boolean operator (e.g., AND or OR) and

the respective edges to the conditions composing the

composite condition.2

Group By part. The GROUP BY part is mapped in

the graph via (i) a node GB, to capture the set of at-

tributes acting as the aggregators and (ii) one node per

aggregate function labeled with the name of the em-

ployed aggregate function; e.g., COUNT, SUM, MIN.

For the aggregators, we use edges directing from the

semantics node towards the GB node that are labeled

group-by. The GB node is linked to the respective input

attributes acting as aggregators with group-by edges,

which are additionally tagged according to the order of

the aggregators; we use an identifier i to represent the i-

th aggregator. Moreover, for every aggregated attribute

in the query’s output schema, there exists a map-select

edge directing from this attribute towards the aggre-

gate function node as well as an edge from the function

node towards the respective input attribute. In Fig. 5

we depict the graph of Q allStudentGPA query. In the

left part we have the edges that connect the output at-

tributes with their providers in the input schemata. We

have SID and SName that are using as their providers

the SID and SName of Semester relation, whilst the

GPA is the AV ERAGE aggregate function of TGrade

coming from V TR view. In the right part of the figure

we have the GB node, which is used to describe the

“group by” clause of the query. The numbers on the

edges depict the order of the groupers, meaning that

first we group by SID and then with SName columns.

Additionally, in MSTX node, we have a node that de-

scribes that in the resulting tuples of the query, the

SID that comes from V TR view and the SID that

comes from Semester relation should be equal to each

other.

Views. Views are treated as queries; however the

output schema of a view can be used as input by a

subsequent view or query module.

Summary. A summary of the architecture graph

is a zoomed-out variant of the graph at the schema

level with provider edges only among schemata (instead

of attributes too). Formally, a summary is a directed

acyclic graph Gs = (Vs, Es), with Vs comprising the

graph’s module nodes (relations, views and queries) and

2 Well-known constraints of database relations – i.e., pri-
mary/foreign key, unique, not null, and check constraints –
can also be captured by this modeling technique. Foreign keys
are subset relations of the source and the target attribute,
check constraints are simple value-based conditions. Primary
keys, which are unique-value constraints, are explicitly repre-
sented through a dedicated node tagged by their names and
a single operand node.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 9

Fig. 5 The graph of a group-by query. To avoid confusion, we depict the edges in two snapshots of the graph: provider edges
(left) and filtering and grouping edges (right).

Es including an edge e(v,u) from a consumer module v

to a provider module u if and only if there is an edge

between an input schema of v and the output schema

of u in the Architecture Graph. We can formally define

different levels of zooming via summary graphs (i) at

the schema level with input/output schemata, (ii) the

module level as in Fig. 6.

2.2 Events

In this section we list the set of possible events that our

method handles. We organize our discussion by classi-

fying these events in three classes: (a) events pertaining

to relations, (b) events pertaining to views or queries,

and (c) events that occur as one module notifies another

for the event it just received.

We can classify the impact of an event as structural

whenever the exported schemata and their attributes

are changed in terms of structure or naming. At the

same time, the impact of an event is semantic whenever

the internals of the semantics schema (i.e., the WHERE

or the GROUP-BY clause of the respective SQL query)

change.

Events that pertain to relations. The first class

of events comprise changes on the schema of relations:

– ADD ATTRIBUTE : in this case, a Relation should

obtain another column

– DELETE ATTRIBUTE : in this case, a Relation

should drop a column

– RENAME ATTRIBUTE : in this case, a Relation

should rename a column

– DELETE SELF : in this case, a Relation will be

deleted

– RENAME SELF : in this case, a Relation will be

called with a new name from now on.

Events that pertain to views and queries. The

second class of events involve changes on the definitions

of Views/Queries:

– ADD ATTRIBUTE : in this case, a Query/View

should have another attribute (column, aggregate

function or value) in its output

– DELETE ATTRIBUTE : in this

case, a Query/View should have less attributes in

its output

– RENAME ATTRIBUTE : in this case, an attribute

is going to be called with a new name from now on

– DELETE SELF : in this case, a View will be deleted

(deleting queries is of no impact to the ecosystem

anyway)

– RENAME SELF : in this case, a View will be called

with a new name from now on

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Petros Manousis et al.

Fig. 6 The Summary Graph of the University-DB Ecosys-
tem.

– ALTER SEMANTICS : in this case, a View is going

to have another WHERE clause or another GROUP

BY clause.

Events that pertain to the notification of a

change between modules. As we will see in Sec-

tion 3, whenever a module has decided on its reaction

against the incoming events, it assumes a status and
notifies subsequent modules. Thus, besides the afore-

mentioned events, we need to support the following list

of events that accrue from the flow of an event to the

graph.

– ADD ATTRIBUTE PROVIDER: this event is gen-

erated by a module in order to inform its consumers

that the module has added an attribute to its out-

put schema.

– DELETE PROVIDER: this event is generated by a

module in order to inform its consumers that this

module has deleted one or all its attributes

– RENAME PROVIDER: this event is generated by

a module to inform its consumers that the module

itself or one of the attributes that exist in output

schema of the module want to change their name.

– ALTER SEMANTICS : this event is generated by a

module to inform its consumers that the semantics

(as described previously: change of WHERE or/and

GROUP BY clause) of a module have changed.

2.3 Policies

Our basic tool for the regulation of the propagation of

an event’s impact to the entire ecosystem is the ability

to block further propagation at certain modules which

veto the event. To achieve this, we employ policies that

annotate the ecosystem’s modules with predefined re-

actions to all possible incoming events they can receive.

This way, whenever a node receives an event that con-

cerns either itself or its constituents (e.g., the attributes

of a schema), the node has already been instructed by

the ecosystem’s administrator on its reaction to the in-

coming event. The policy of a node for responding to

an incoming event can be one of the following:

– PROPAGATE, which means that the node accepts

the change and will adapt to the new reconfiguration

of the ecosystem, or,

– BLOCK, which means that the node wants to retain

the previous structure and semantics.

Requirements for policy annotation. We wish

to provide a language that annotates nodes with poli-

cies and addresses the following usability requirements:

– Completeness: how can we be sure that we can de-

fine annotations for all the possible events that can

arrive to a node, for all the nodes of the ecosystem?

– Conciseness: can we achieve this easily and correctly

with respect to the user’s intentions, without having

the user going to great lengths of coding in order to

annotate the ecosystem with policies?

Completeness. To achieve completeness, we need

to be sure that we can provide an annotation for all the

nodes of the graph and for all the events that each node

can receive. To achieve this, we proceed in two steps: (a)

we explicitly define the node-event space, i.e., the space

of all valid combinations of nodes and incoming events,

and (b) for each node-event combination, we define the

respective policy rule that characterizes the reaction of

the node to this event.

To implement the first of the aforementioned steps,

we exhaustively enumerate all combinations of events

and nodes (see Table 1). Observe, that Table 1 provides

a complete characterization of events that can arrive to

a node organized per event type. In Table 1, the rows

(actually corresponding to the <receiver node> part of

the above rule) are explained as follows:

1. [QUERY|VIEW].[OUT|IN].SELF standing for the

node representing the output (input) schema of all

queries (views)

2. [QUERY|VIEW].[OUT|IN].ATTRS standing for the

nodes representing the attributes of the output (in-

put) schema of all queries (views)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 11

3. [QUERY|VIEW].SMTX.SELF standing for the root

node of the semantics tree of all queries (views)

4. RELATION.OUT.[SELF|ATTRS] standing for the

node representing the output schema of all relations

(or its attributes)

Language for policies. Then, to implement the

translation of the node-event space to policy rules, we

need to provide a language that determines the pol-

icy for each event that appears to each node. The

language that we introduce is used to assign policies

to all the nodes of the ecosystem with guarantees for

the complete coverage of all the graph’s nodes along

with syntax conciseness and customizability. In a nut-

shell, the main idea is the usage of rules of the form

<receiver node [type]> : on <event> then <policy>,

both at the default level –e.g.,

VIEW.OUT.SELF: on ADD ATTRIBUTE then
PROPAGATE;

and at the node-specific level (overriding defaults) –e.g.,

V TR OUT.SELF: on ADD ATTRIBUTE then BLOCK;

Before formally specifying the syntax of the policy

language, we first discuss the issues of language con-

ciseness and rule overriding.

Conciseness. The observant reader might wonder

on the reasoning behind providing rules both at the

node type and the node level. The reason is conciseness:

we want to avoid annotating the graph in a node per

node, event per event basis. To this end, we provide a

language that comes with the simple semantics that un-

less otherwise specified (see the next paragraph), each

node-event pair implements the respective node type -
event type policy. The default, fixed list, comprising 33

rules that can be derived from the entries of Table 1 is

depicted in Fig. 7. In Section 4, we provide a proof for

the language completeness in Theorem 1.

Still, even so, the number of rules needed for com-

pleteness could be considered too large by some users.

To this end, we provide some additional rules that sim-

plify our policy language. These rules come as syntac-

tic sugar to our language. specifically, we introduce two

syntactic sugar extensions as follows:

– the * notation for events allows the user to spec-

ify that a specific module type (i.e., all rela-

tions/views/queries of the ecosystem) of a specific

node is annotated with the same policy for all the

events that occur to it. In other words, the * nota-

tion signifies “for any incoming event”

– the NODE notation specifies that all nodes of the

ecosystem, independently of their type, are anno-

tated with the specified policy for the specified event

(if, of course, the event pertains to the node).

Of course, the combination of the two syntactic short-

hands is also allowed. Thus, we end up with the follow-

ing list of syntactic sugar extensions:

<moduleType>: ON * THEN <policy>;

This rule groups the events that a module type (RE-

LATION, VIEW, QUERY) can receive and sets the

policy for all these events to <policy>.

<namedNode>: ON * THEN <policy>;

This rule finds the node that is specified by name

<namedNode> and sets the policy for all these

events to <policy>.

NODE: ON <event> THEN <policy>; This rule

annotates all the nodes of the graph that can receive

the specified event (named <event>) with the same

policy, namely <policy>.

NODE: ON * THEN <policy>; This rule actually

replaces the group of the 33 rules to one simple rule,

saying that regardless of the event, the policy is uni-

formly set to <policy>.

Theorem 3 describes why these extra rules correctly

cover up the needed events and correctly assign the

policies to the nodes.

1. QUERY.OUT.SELF: on ADD ATTRIBUTE then <policy>;
2. QUERY.OUT.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
3. QUERY.OUT.SELF: on DELETE SELF then <policy>;
4. QUERY.OUT.SELF: on RENAME SELF then <policy>;
5. QUERY.OUT.ATTRIBUTES: on DELETE SELF then <policy>;
6. QUERY.OUT.ATTRIBUTES: on RENAME SELF then <policy>;
7. QUERY.OUT.ATTRIBUTES: on DELETE PROVIDER then <policy>;
8. QUERY.OUT.ATTRIBUTES: on RENAME PROVIDER then <policy>;
9. QUERY.IN.SELF: on DELETE PROVIDER then <policy>;

10. QUERY.IN.SELF: on RENAME PROVIDER then <policy>;
11. QUERY.IN.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
12. QUERY.IN.ATTRIBUTES: on DELETE PROVIDER then <policy>;
13. QUERY.IN.ATTRIBUTES: on RENAME PROVIDER then <policy>;
14. QUERY.SMTX.SELF: on ALTER SEMANTICS then <policy>;
15. VIEW.OUT.SELF: on ADD ATTRIBUTE then <policy>;
16. VIEW.OUT.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
17. VIEW.OUT.SELF: on DELETE SELF then <policy>;
18. VIEW.OUT.SELF: on RENAME SELF then <policy>;
19. VIEW.OUT.ATTRIBUTES: on DELETE SELF then <policy>;
20. VIEW.OUT.ATTRIBUTES: on RENAME SELF then <policy>;
21. VIEW.OUT.ATTRIBUTES: on DELETE PROVIDER then <policy>;
22. VIEW.OUT.ATTRIBUTES: on RENAME PROVIDER then <policy>;
23. VIEW.IN.SELF: on DELETE PROVIDER then <policy>;
24. VIEW.IN.SELF: on RENAME PROVIDER then <policy>;
25. VIEW.IN.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
26. VIEW.IN.ATTRIBUTES: on DELETE PROVIDER then <policy>;
27. VIEW.IN.ATTRIBUTES: on RENAME PROVIDER then <policy>;
28. VIEW.SMTX.SELF: on ALTER SEMANTICS then <policy>;
29. RELATION.OUT.SELF: on ADD ATTRIBUTE then <policy>;
30. RELATION.OUT.SELF: on DELETE SELF then <policy>;
31. RELATION.OUT.SELF: on RENAME SELF then <policy>;
32. RELATION.OUT.ATTRIBUTES: on DELETE SELF then <policy>;
33. RELATION.OUT.ATTRIBUTES: on RENAME SELF then <policy>;

Fig. 7 The 33 combinations of events and node types that
provide complete graph coverage; policy can be either BLOCK
or PROPAGATE

Customizability and Rule Over-

riding. Whereas our small list of generic, default rules

can cover all possible combinations of events and node

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 Petros Manousis et al.

ADD DELETE RENAME ALTER

ATTR

ATTR

PROV SELF PROV SELF PROV SMTX

QUERY

OUT
SELF X X X X

ATTRS X X X X

IN
SELF X X X X

ATTRS X X

SMTX SELF X

VIEW

OUT
SELF X X X X

ATTRS X X X X

IN
SELF X X X X

ATTRS X X

SMTX SELF X

RELATION OUT
SELF X X X

ATTRS X X

Table 1 The space of events that can be received by each node type

types, it is quite possible that we want to define a dif-

ferent reaction to the same event for different modules.

For example, we might wish a certain view to block at-

tribute addition, whereas we would allow another view

to adapt to the same event. To facilitate this possibility

we allow three layers of rules:

1. Layer 0: Rules that are applied to all the nodes of

the Architecture Graph via the <NODE> nota-

tion.

2. Layer 1: General rules at the node type level, about

all modules and their attributes.

3. Layer 2: Rules that apply to all the attributes of a

specific schema.

4. Layer 3: Rules that apply to specific attribute nodes.

In our approach, the semantics of the layers of rules

state that each layer overrides the policy of its previ-

ous layers. This way, if we have a default policy for

all relations (layer 1) for a certain event (e.g., rename)

we can customize the behavior of a specific relation to

be different than the default by defining a specific rule

for it (layer 2). Theorem 2 in Section 4 proves that our

overriding mechanism assigns the correct policy to each

node. Within each of the layers, the following ordering

is imposed:

1. First, the * notation is transformed to the appropri-

ate list of rules.

2. Second, any more specific rules override the * nota-

tion with their designated policies.

Language Syntax. The language’s syntax com-

prises rules that abide to the following structure:

<receiver> : on <event> then <policy>

where:

1. <receiver> can be any of the ecosystem’s node types

2. <event> can be any of the events that can arrive

to an instance of this node type, either because the
user initiated this as the starting event, or due to

the propagation of the event in the ecosystem

3. <policy> can be either PROPAGATE or BLOCK

The above list of possible rules covers the node type

layer (Layer 0), but not the two others. To this end,

we introduce two extra kinds of potential values for the

<receiver> part of the rules of our language.

1. <NAMED SCHEMA NODE>.ATTRIBUTES stand-

ing for the nodes representing the attributes of the

<named schema node> of the graph.

2. <NAMED NODE> standing for the <named node>
node of the graph.

The first of the two extra rules refers to all the at-

tributes of a specific schema (layer 2), and, the second

one refers to individual nodes of the graph (layer 3).

Reference Example. Returning to our reference

example, the following text represents a set of rules of

how policy rules should be written in order to have all

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 13

nodes of the graph propagating all possible events for

all modules, except for V TR view, in which only the

CID attribute will propagate any of its incoming events.

Fig. 8 covers the first set of completeness-ensuring rules

mentioned previously.

QUERY.OUT.SELF: on ADD ATTRIBUTE then PROPAGATE;
QUERY.OUT.SELF: on ADD ATTRIBUTE PROVIDER then PROPAGATE;
QUERY.OUT.SELF: on DELETE SELF then PROPAGATE;
QUERY.OUT.SELF: on RENAME SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE PROVIDER then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME PROVIDER then PROPAGATE;
QUERY.IN.SELF: on DELETE PROVIDER then PROPAGATE;
QUERY.IN.SELF: on ADD ATTRIBUTE PROVIDER then PROPAGATE;
QUERY.IN.SELF: on RENAME PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on DELETE PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on RENAME PROVIDER then PROPAGATE;
QUERY.SMTX.SELF: on ALTER SEMANTICS then PROPAGATE;
VIEW.OUT.SELF: on ADD ATTRIBUTE then PROPAGATE;
VIEW.OUT.SELF: on ADD ATTRIBUTE PROVIDER then PROPAGATE;
VIEW.OUT.SELF: on DELETE SELF then PROPAGATE;
VIEW.OUT.SELF: on RENAME SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE PROVIDER then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME PROVIDER then PROPAGATE;
VIEW.IN.SELF: on DELETE PROVIDER then PROPAGATE;
VIEW.IN.SELF: on RENAME PROVIDER then PROPAGATE;
VIEW.IN.SELF: on ADD ATTRIBUTE PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on DELETE PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on RENAME PROVIDER then PROPAGATE;
VIEW.SMTX.SELF: on ALTER SEMANTICS then PROPAGATE;
RELATION.OUT.SELF: on ADD ATTRIBUTE then PROPAGATE;
RELATION.OUT.SELF: on DELETE SELF then PROPAGATE;
RELATION.OUT.SELF: on RENAME SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on DELETE SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on RENAME SELF then PROPAGATE;

Fig. 8 Application of default rules for our reference example

Assuming now that the user wanted for the view

V TR to have a BLOCK policy for all possible events,

Fig. 9 describes the set or rules needed to be issued

after the general rules of Fig. 8.

Finally, the user decided that there is an exception

to the rules of Fig. 9, and the attribute CID of the

output schema of the V TR module should have again

a different policy than its siblings (switching again to

PROPAGATE instead of BLOCK that was set in the

previous set of rules), for its deletion. This is achieved

by the set of policies depicted in Fig. 10.

Using the additional rules that simplify our policy

language, the same example could be written as Fig. 11

describes.

3 Impact Assessment and Adaptation of

Ecosystems

The goal of our method is to assess the impact of a hy-

pothetical event over an architecture graph annotated

with policies and to adapt the graph to assume its new

structure after the event has been propagated to all

V TR OUT.SELF: on ADD ATTRIBUTE then BLOCK;
V TR OUT.SELF: on ADD ATTRIBUTE PROVIDER then BLOCK;
V TR OUT.SELF: on DELETE SELF then BLOCK;
V TR OUT.SELF: on RENAME SELF then BLOCK;
V TR OUT.ATTRIBUTES: on DELETE SELF then BLOCK;
V TR OUT.ATTRIBUTES: on RENAME SELF then BLOCK;
V TR OUT.ATTRIBUTES: on DELETE PROVIDER then BLOCK;
V TR OUT.ATTRIBUTES: on RENAME PROVIDER then BLOCK;
V TR IN TRANSCRIPT.SELF: on DELETE PROVIDER then BLOCK;
V TR IN TRANSCRIPT.SELF: on RENAME PROVIDER then BLOCK;
V TR IN TRANSCRIPT.SELF: on ADD ATTRIBUTE PROVIDER then
BLOCK;
V TR IN TRANSCRIPT.ATTRIBUTES: on DELETE PROVIDER then
BLOCK;
V TR IN TRANSCRIPT.ATTRIBUTES: on RENAME PROVIDER then
BLOCK;
V TR IN V COURSE.SELF: on DELETE PROVIDER then BLOCK;
V TR IN V COURSE.SELF: on RENAME PROVIDER then BLOCK;
V TR IN V COURSE.SELF: on ADD ATTRIBUTE PROVIDER then
BLOCK;
V TR IN V COURSE.ATTRIBUTES: on DELETE PROVIDER then BLOCK;
V TR IN V COURSE.ATTRIBUTES: on RENAME PROVIDER then
BLOCK;
V TR SMTX.SELF: on ALTER SEMANTICS then BLOCK;

Fig. 9 Overriding the default rules for a view in our reference
example

V TR OUT.CID: on DELETE SELF then PROPAGATE;
V TR OUT.CID: on DELETE PROVIDER then PROPAGATE;

Fig. 10 Overriding the default rules for an attribute in our
reference example

NODE: on * then PROPAGATE;
V TR: on * then BLOCK;
V TR OUT.CID: on DELETE SELF then PROPAGATE;
V TR OUT.CID: on DELETE PROVIDER then PROPAGATE;

Fig. 11 Simplified policy language example

the affected modules. Before any event is tested, we

topologically sort the modules of the architecture graph

(always feasible as the summary graph is acyclic: rela-

tions have no cyclic dependencies and no query or view

can have a cycle in their definition). This is performed

once, in advance of any impact assessment. Then, in an

on-line mode, we can perform what-if analysis for the

impact of changes in two steps that involve: (i) the de-

tection of the modules that are actually affected by the

change and the identification of a status that character-

izes their reaction to the event, and, (ii) the rewriting

of the graph’s modules to adapt to the applied change.

3.1 Topological sort

In order to make sure that the messages between mod-

ules are transferred in the right order from providers

to consumers, we perform a topological sorting of the

graph’s modules prior to any other step. As Theorem 4

in Section 4 indicates, this is always feasible as the

Architecture Graph does not contain cycles.

We follow a traditional approach to our topologi-

cal sorting, which proceeds as follows: first we find the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 Petros Manousis et al.

modules with zero incoming edges. These modules are

removed from the examination set along with their out-

going edges, after being assigned a unique ID. This

gives as a result a new set of modules with zero in-

coming edges. The algorithm stops when there are no

more modules to visit. Relations have the smallest IDs,

followed by Views and Queries.

Input: A summary of an architecture graph Gs(Vs,Es) that
comprises the modules of an architecture graph G(V,E).
Output: A topologically sorted architecture graph summary
Gs(Vs,Es), i.e. an annotation of the modules of Gs with a
sequential id’s, via a mapping Y : Vs → N.

1. notY etV isited← Vs;
2. count = |Vs|;
3. While (notY etV isited not empty){
4. ForEach (vi ∈ notY etV isited){
5. If (vi has zero incoming edges){
6. notY etV isited← notY etV isited− vi ;
7. remove edges starting from vi;
8. vi(id)← count;
9. count← count− 1;

10. }
11. }
12. }

Fig. 12 Algorithm Topological sort

Observe that topological sorting of the graph is nec-

essary, as opposed to a simple flooding of messages with

events over the graph, due to the existence of multiple

paths from data providers to their consumers (e.g., ob-

serve in Fig. 3 how the query Q pass2Courses is fed by

view V TR via two paths, as it performs a self-join).

Also, the existence of policies (which we detail in Sec-

tion 3.3) require a strict order for visiting the nodes

of the graph. Apart from the termination of our algo-

rithms, we also want to guarantee the following prop-

erties:

– Confluence: each module in the graph will assume

the same status, independently from the order of

processing the incoming messages.

– Consistency: all the modules will be correctly

rewritten.

In Theorem 6 and Theorem 11 in Section 4, we

demonstrate why we need the principled visit of the

nodes of the graph in a manner obeying the topological

sort; had we not followed the topological sort it would

be impossible to guarantee these correctness properties.

Therefore, in the rest of our deliberations, unless explic-

itly mentioned, the propagation of the impact of events

follows the topological sort.

Once the topological sort has been completed, we

are ready to interactively work with the user towards

highlighting the impact of a change and rewriting the

graph accordingly. These two tasks are explained in the

following two subsections.

3.2 Detection of affected nodes and status

determination

The assessment of the impact of an event to the ecosys-

tem is a process that results in assigning every affected

module with a status that characterizes its policy-

driven response to the event. In contrast to the policy,

which is an annotation of each module with a directive

on how to respond to a potential future event, a status

is the decided reaction to an actual event, after it has

reached the module. The status determination task is

reduced in (a) determining the affected modules in the

correct order, and, (b) making them assume the appro-

priate status. Algorithm Status Determination (Fig. 13)

details this process. In the following, we use the terms

node and module interchangeably.

1. Before assessing the event, all modules are set to

status NO STATUS. At the end of the algorithm’s

execution, the modules that will have retained this

status will be the ones that have not been affected

by the event.

2. Whenever an event is assessed,we start from the

module over which it is assessed and visit the rest

of the nodes by following the topological sorting of

the modules to ensure that a module is visited after

all of its data providers have been visited. A visited

node assesses the impact of the event internally (cf.,

”intra-module processing”) and, if there is reason to
change its NO STATUS status, due to incoming no-

tifications from its providers, it obtains a new sta-

tus, which can be one of the following: (a) BLOCK,

meaning that the module is requesting that it re-

mains structurally and semantically immune to the

tested change and blocks the event (as its immunity

obscures the event from its data consumers), (b)

PROPAGATE, meaning that the module concedes

to adapt and propagate the event to any subsequent

data consumers.

3. If the status of the module is PROPAGATE, the

event must be propagated to the subsequent mod-

ules. To this end, the visited module prepares mes-

sages for its data consumers, notifying them about

its own changes. These messages are pushed to a

common global message queue (where messages are

sorted by their target module’s topological sorting

identifier).

4. The process terminates when there are no more mes-

sages and no more modules to be visited.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 15

Input: A topologically sorted architecture graph summary
Gs(Vs,Es), a global queue Q that facilitates the exchange of
messages between modules.
Output: A list of modules AffMdls ⊆ Vs that were affected
by the event and acquire a status other than NO STATUS.

1. Q={original message}, AffMdls = ∅;
2. For All (node ∈ Gs(Vs,Es)){
3. node.status = NO STATUS;
4. }
5. While (size(Q) > 0){
6. visit module (node) in head of Q;
7. insert node in AffMdls list;
8. get all messages, Messages, that refer to node;
9. SetStatus(node, Messages);

10. If (node.status == PROPAGATE) {
11. insert node.ConsumersMsgs to the Q;
12. }
13. }
14. Return AffMdls;

Procedure SetStatus(Module, Messages)
ConsumersMsgs = ∅;
For All (Message ∈ Messages){

decide status of Module;
put messages for Module’s consumers in ConsumersMsgs;

}

Fig. 13 Algorithm Status determination

Intra-module processing. A module starts by re-

trieving from the global queue all the messages contain-

ing the events that concern it. For message processing

within each module, a local queue is used. The process-

ing of the messages is performed as follows:

1. First, the module probes its schemata for their reac-

tion to the incoming event, starting from the input

schemata, next to the semantics and finally to the

output schema. Naturally, relations deal only with

the output schema.
2. Within each schema, the schema probes both it-

self and its contained nodes (attributes) for their

reaction to the incoming event. At the end of this

process, the schema assumes a status as previously

discussed.

3. Once all schemata have assumed status, the output

schema decides the reaction of the overall module;

if any of the schemata raises a veto (BLOCK) the

module assumes the BLOCK status too; otherwise,

it assumes the PROPAGATE status.

4. Finally, in case a PROPAGATE status is assumed,

it prepares and inserts into the global queue appro-

priate messages for all its consumers.

Observe that a module may receive multiple mes-

sages. Typically this is due to the following two reasons:

(a) cases of self-join, where a provider feeds (directly

or indirectly) a consumer via multiple one paths (and

thus, a change in the provider concerns more than one

schemata of the consumer – observe here that it is not

obligatory that these schemata have identical reaction

towards the event) and (b) a deletion of an attribute in

a view might affect both the semantics and the output

schema of the view, producing thus, two messages to

its consumers: one that notifies that output attributes

have changed and another notifying that the semantics

of the view has changed (e.g., a part of the SELECT

clause has been dropped due to the attribute deletion).

Message structure and content. Each message

msg is a quadruple msg(n, s, e, p) with the following

parts:

– n is the recipient module of the message.

– s is the specific schema of n, to which the message

is sent (note that due to this information, we can

also find who the sender of the message was, since

an input schema has exactly one provider)

– e is the event that this message carries.

– p are message parameters containing additional in-

formation needed for some events (e.g., the new

name of an attribute for attribute addition or re-

naming events).

All possible evolution events (as presented in Sec-

tion 2.2) performed on relations, views and queries gen-

erate initial messages that fall into the following types:

– DELETE ATTRIBUTE: the user deletes an at-

tribute from the output schema

– RENAME ATTRIBUTE: the user renames an at-

tribute from the output schema.

– ADD ATTRIBUTE: the user adds another at-

tribute to the output schema of a module.

– DELETE SELF: the user deletes a whole module.

– RENAME SELF: when the user renames a whole

module.

– ALTER SEMANTICS: the user changes the seman-

tics of a module.

Once the module has determined its reaction, it con-

structs messages for its data consumers. The contents

of the messages depend on the type of event. Here, we

list some examples of such cases.

– When a message is processed saying that an at-

tribute is going to be deleted, the input schema of

the consumers that are connected to that attribute

is informed that the attribute will be deleted.

– If the whole module is going to be deleted then the

consumers of this module will receive a message in

their input schema saying that the provider of that

input schema is going to be deleted.

– Likewise when an attribute is going to be renamed,

the input schema of the consumers that are con-

nected to that attribute is informed that the at-

tribute will have a new name from now on.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 Petros Manousis et al.

– If the whole module is going to be renamed, then

the consumers of this module will receive a message

in their input schema saying that the provider of

that input schema is going to be renamed.

– When a module processes a message saying that a

new attribute is going to be added to its output

schema, it informs all of its consumers in their in-

put schema that a new attribute was added to their

provider.

– Finally when a module processes a message saying

that its semantics have changes, it informs all its

consumers that it changed its semantics.

Maestros for the local processing. To facilitate

the local, independent nature of message processing

by the modules, each module awakes a maestro that

handles the probing of schemata as well as the deci-

sion making on what status will the schema assume.

A maestro is a simple piece of software (implemented

as an abstract interface, later materialized on a case

by case basis) that is specialized on the combination

type of event × module type. For each type of mod-

ule, there is a specialized maestro that takes care of sta-

tus determination and rewriting for each possible event

that can be received.

In terms of software architecture, the decision for

this structuring of the code was done in order to de-

centralize event processing. It allows the reasonably

smooth extension of the architecture with new types of

events or modules at the price of some code reusability.

In terms of algorithmic principles, we gain the bene-

fits of module independence at the price of a common

queue of messages.

In [9], we present how events are processed inside

modules, organized by the type of the incoming message

that the module is called to handle. For each event,

we explain the structure of the incoming message and

the list of steps that have to take place (organized per

schema, if more than one schemata of the module are

involved).

Assume a message with a provider attribute deletion

event for the attribute named A1.2, that a view module

V1 receives, as depicted in Figure 14 (a).

– Initially, the maestro of the V1 module will find

the attribute with name A1.2 in the input schema

that fetched the message to the module, denoted as

A1.2, too. Then, A1.2 checks its policy for the event

(provider attribute deletion) and acquires a status.

The same status is assumed for the input schema

node of the module V1 as well. If there is any connec-

tion between A1.2 and the semantics schema, then

the semantics schema checks its policy for the al-

ter semantics event, assumes a status, and creates

messages for V1’s consumers, that describe that the

semantics of V1 will change. The newly created mes-

sages are kept in a local message queue of the mae-

stro, as depicted in Figure 14 (b).

– Then, if there are attributes in the output schema of

V1 that are connected with A1.2 (denoted as V1.2),

the maestro checks their policy for the event and

acquires for each one a status. The output schema

node of the module V1 acquires a status as well.

Finally, the maestro, for each of the V1.2 attributes

finds their consumers so as to notify them that their

provider attributes are to be deleted. Those mes-

sages are also kept in the local message queue of the

maestro, as depicted in Figure 14 (c).

– When all the above reach to an end, the V1 module

checks the statuses of the input, semantics, and out-

put nodes. If none of them has acquired a BLOCK

status, then the module acquires status PROPA-

GATE and notifies the consumers of V1 about the

change, by inserting all the messages of the local

message queue in the global message queue, as de-

picted in Figure 14 (d).

Theoretical guarantees. Previous models of Ar-

chitecture Graphs ([18]) allow queries and views to di-

rectly refer to the nodes representing the attributes of

the involved relations. Due to the framing of modules

within input and output schemata and the topological

sorting, in Theorem 4, and Theorem 5 we prove that the

process (a) terminates and (b) correctly assigns statuses

to modules.

3.3 Query and view rewriting to accommodate change

Once the first step of the method, Status Determina-

tion, has been completed and each module has obtained

a status, their rewriting would intuitively seem straight-

forward: each module gets rewritten if the status is

PROPAGATE and remains the same if the status is

BLOCK. This would require only the execution of the

Graph Rewrite step – in fact, one could envision cases

where Status Determination and Graph Rewrite could

be combined in a single pass. Unfortunately, although

the decision on Status Determination can be made lo-

cally in each module, taking into consideration only

the events generated by previous modules and the lo-

cal policies, the decision on rewriting has to take extra

information into consideration. This information is not

local, and even worse, it pertains to the subsequent,

consumer modules of an affected module, making thus

impossible to weave this information in the first step

of the method, Status Determination. The example of

Fig. 15 is illustrative of this case.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 17

Fig. 14 Status determination example

Fig. 15 Block rewriting example

Figure 15 depicts our reference example, which con-

sists of 5 relations, 2 views and 2 queries. We have

omitted the full names of the nodes, for illustration

purposes. Assume now that the database administra-

tor wants to change V0, which is the V Course view of

our reference example, in a way that all modules de-

pending on V0 are going to be affected by that change

(e.g., attribute addition, or attribute deletion/rename

for an attribute common to all the modules of the ex-

ample). Assume now that all modules except Q2 accept

to adapt to the change, as they have a PROPAGATE

policy annotation. Still, the vetoing Q2 must be kept

immune to the change; to achieve this we must retain

the previous version of all the nodes in the path from

the origin of the evolution (V0) to the blocking Q2. As

one can see in the figure, we now have two variants of

V0 and V1: the new ones (named V c
0 and V c

1 ) that are

adapted to the new structure of V0 – now named V c
0

–, are depicted in the leftmost part of the right figure,

having lighter color, and the old ones, that retain their

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 Petros Manousis et al.

name, are depicted in the rightmost part of the figure.

The latter are immune to the change and their existence

serves the purpose of correctly defining Q2.

Input: An architecture graph summary Gs(Vs,Es), a list of
modules AffMdls, affected by the event, and the InitialEvt

of the user.
Output: Annotation of the modules of AffMdls on the action
needed to take, and specifically whether we have to make a
new version of it, or, implement the change that the user
asked on the current version

1. For All (Module ∈ AffMdls){
2. If(Module.status == BLOCK){
3. CheckModule(Module, AffMdls, InitialEvt);
4. mark Module not to change; //Blockers do not change

5. }
6. }

Procedure CheckModule(Module, AffMdls, InitialEvt)
If (Module has been marked) {return;} //Already notified

If (InitialEvt == ADD ATTRIBUTE){ //Allow additions

mark Module to apply change on current version;
}
Else{

mark Module to keep current version as is and apply the
change on a clone;
}
For All(ModuleProv ∈ AffMdls feeding Module){ //Notify path

CheckModule(ModuleProv, AffMdls, InitialEvt);
}

Fig. 16 Algorithm Path check

The crux of the problem is as follows: if a module

has PROPAGATE status and none of its consumers

(including both its immediate and its transitive con-

sumers) raises a BLOCK veto, then both the module

and all of these consumers are rewritten to a new ver-

sion. However, if any of the immediate consumers, or

any of the transitive consumers of a view module raises

a veto, then the entire path towards this vetoing node

must hold two versions of each module: (a) the new ver-

sion, as the module has accepted to adapt to the change

by assuming a PROPAGATE status, and, (b) the old

version in order to serve the correct definition of the

vetoing module. Exceptionally, if the event vetoed in-

volves a relation, the veto freezes any other change and

the event is blocked.

To correctly serve the versioning purpose, the adap-

tation process is split in two steps. The first of them,

Path Check, works from the consumers towards the

providers in order to determine the number of variants

(old and new) for each module. Whenever the algorithm

visits a module, if its status is BLOCK, it starts a re-

verse traversal of the nodes, starting from the blocker

module towards the module that initialized the flow and

marks each module in that path (a) to keep its present

form and (b) prepare for a cloned version where the

rewriting will take place. A cloned version is an identical

copy of a module’s subgraph, with the same providers

but with different name. For example, if we already have

a view in SQL as:

CREATE VIEW vn AS SELECT c FROM t;

then its clone would be

CREATE VIEW vn Clone AS SELECT c FROM t;

The only exception to this rewriting is when the

module of the initial message is a relation module and

the event is an attribute deletion, in which case a

BLOCK signifies a veto for the adaptation of the re-

lation.

Input: A list of modules affected modules, AffMdls, knowing
the number of versions they have to retain, initial messages
of AffMdls, and initial evolution message, IMsg

Output: Architecture graph after the implementation of the
change the user asked

1. If(any of AffMdls has status BLOCK){
2. If(IMsg started from Relation module type AND

event == DELETE ATTRIBUTE) {Return};
3. Else
4. {
5. module toConnect←Module;
6. For All (Module ∈ AffMdls){
7. If(Module needs two versions){ //clone module to

8. toConnect← clone of Module; //keep both versions

9. }
10. connect toConnect to new providers;
11. proceed with rewriting of toConnect;
12. }
13. }
14. }
15. Else
16. {
17. For All(Module ∈ AffMdls){ //all nodes PROPAGATE

18. proceed with rewriting of Module //edges fixed internally

19. }
20. }

Fig. 17 Algorithm Graph Rewrite

Finally, all nodes that have to be rewritten are

getting their new definition according to their incom-

ing events. Unfortunately, this step cannot be blended

with Path Check straightforwardly: Path Check oper-

ates from the end of the graph backwards, to highlight

cases of multiple variants; rewriting however, has to

work from the beginning towards the end of the graph

in order to correctly propagate information concerning

the rewrite (e.g., the names of affected attributes, new

semantics, etc.). So, the final part of the method, Graph

Rewrite, visits each module and rewrites the module as

follows:

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 19

– If the module must retain only the new version, once

we have performed the needed change, we connect

it correctly to the providers it should have.

– If the module needs both the old and the new ver-

sions, we make a clone of the module to our graph,

perform the needed change over the cloned module

and connect it correctly to the providers it should

have.

– If the module retains only the old version, we do not

perform any change.

One could possibly argue that we could have used a

principled way to mark the paths of the blocker mod-

ules, starting from the blocker module and visiting all

the affected modules with ID smaller than the blocker’s

ID, marking them to have two versions in the new

schema. Unfortunately, this method would have been

insufficient as it would not be able to guarantee that the

affected modules that are not in the path of a blocker

module will not be marked to obtain two versions too.

For example, in Figure 15, the Q1.ID could be either

8 or 9 after the topological sorting. If Q1.ID is 9, then

the aforementioned ID based traversal could be used.

If Q1.ID is 8, then Q2.ID is 9 and the aforementioned

ID based traversal would mark the Q1 module to obtain

two versions, which is wrong.

How much cloning is required? Each execution of

the Path Check and the Graph Rewrite algorithms in-

volves one event only. For each such event, a cloning

is required whenever (a) the event involves deletion

or semantics update, (b) a view module initiates the

propagation of an event due to its PROPAGATE pol-

icy and (c) some of its (possibly transitive) data con-

sumers raises a veto. In this case, the entire path till the

blocker (blocker excluded) must be cloned. If there are

two blockers that have the same provider, then there

is no extra duplication. For a given event that fulfils

the aforementioned conditions, assuming n blockers in

an event, and m paths, m ≤ n, involving M nodes

(excluding the blockers), we need M extra cloned mod-

ules. If the graph contains V views and Q queries, the

maximum impact is when all of them are affected by

an event. A worst case scenario can be conceived when

there is a root view and everybody else is defined over

this view either directly or transitively. Assume now

that the root view is affected in a way that all views

and queries are affected (e.g., change of semantics) and

all queries are blockers, although all views are propa-

gators (because if another view is a blocker, its queries

are protected). Then, we need to clone V views, which

is the maximum amount of cloning that can happen in

an event. Our reference example is in fact such a worst

case (see Fig. 15). Practically speaking of course, this

possibility is rare (observe for example Fig. 19 on how

a large subset of the Drupal ecosystem is constructed).

Returning to the rewriting process of modules with

a PROPAGATE status, we can summarize this process

as follows:

– Whenever the attributes of a modules output

schema are deleted, renamed or inserted, the subse-

quent consumer schemata are adopted accordingly;

– Whenever entire modules are deleted or renamed,

the respective schemata are deleted or renamed ac-

cordingly.

In the following paragraphs, we are going to discuss

the way the rewriting process is performed within each

module. Initially, we need to distinguish two categories,

depending on the type of the module that is rewritten:

(a) the rewriting processes that apply to Relation mod-

ules, and, (b) the processes that apply to Query/View

modules. This differentiation is mainly due to the fact

that, in contrast to the Relation modules that contain

only an output schema, the Query/View modules ad-

ditionally contain a semantics schema and a set of in-

put schemata (one per provider). Therefore, queries and

views require a different treatment.

In the following two subsections, we are going to

briefly describe for each event, the steps that are fol-

lowed in the module rewriting mechanism, when the

module is accepting the change (its status is PROPA-

GATE). Naturally, if the status is BLOCK, no rewriting

is required at the internals of the module.

3.3.1 Relation module rewriting

For each of the events applied to a relation (as presented
in Table 1), we perform the following steps for rewriting

the affected relation module and progating the event

towards the rest of the graph:

Attribute addition When a new attribute is added

to a relation module, the user is prompted for the

name of the new attribute and the module checks if

it is available or already in use by another attribute.

If all conditions are met then the new attribute is

added to the output schema of the module and a

message with the addition along with the new at-

tribute name is propagated to all dependent mod-

ules.

Attribute deletion When an attribute is deleted, the

output schema searches for the specific attribute

and deletes it. Similarly, a message for the deletion

is propagated to all dependent modules.

Attribute rename When an attribute is renamed,

the output schema searches for the specific attribute

and renames it with the name provided by the user,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 Petros Manousis et al.

unless there is conflict with any attribute having the

same name in the output schema of the module; in

this case the user is prompted to change it. Again,

a message for the renamed attribute is generated.

Self (module) deletion When a relation module is

deleted, its output schema with all its attributes are

deleted and the module node itself is also deleted.

A message for the deletion is propagated to all de-

pendent modules.

Self (module) rename When a relation module is

renamed, the user is prompted for the new name

of the module. If it is unique, the module and its

output schema are renamed accordingly. Moreover,

a message with the renamed relation is propagated

to all connected query/view modules, in order to

update their input schemata with the new name.

3.3.2 Query/View module rewriting

Query and View have the same events, thus we do not

separate their rewriting methods. The steps for rewrit-

ing (a PROPAGATE status is assumed) are as follows:

Attribute addition The user adds a new attribute

by selecting it out of the list of attributes belonging

in the output schemata of the query/view providers

and sets a unique alias name for this attribute. In

case there is a GROUP BY clause in the semantics

schema, the user is prompted for adding the new

attribute to the groupers or using any aggregate

function. In any case, the new attribute is directly

added to the output schema of the module. If the

attribute was not used before in the query/view, it

is added in the respective input schema and finally

all the needed connections between the output node

and the semantics (if applicable) and input node are

set. Moreover, its name is propagated to the mod-

ules that are connected, in order to let them know

the name of the new attribute.

Attribute provider addition When an attribute is

added in a provider of the module, the input schema

of the module adds a new attribute node with the

specified name. If there is any connection to the se-

mantics schema due to a GROUP BY clause, the

user is again prompted for adding the new attribute

to the groupers or using any aggregate function. Fi-

nally, when all conditions are met, the new attribute

is added to the output schema of the module (check-

ing to see if there are any conflicts with the name of

the new attribute and if so, the user is prompted ac-

cordingly). Moreover, the name of the new attribute

is propagated to the modules that are connected, in

order to update their input schemata accordingly.

Attribute deletion For the case that an output at-

tribute is deleted, it is first removed from the out-

put schema. All connections of the output attribute

with the semantics schema are removed and finally,

if the attribute is not used in the semantics tree, it

is removed from the respective input schema.

Attribute provider deletion When an attribute of

a provider module is deleted, it is initially removed

from the corresponding input schema of the module.

If it is used in a condition in the semantics tree, then

this condition is set to true or false, depending on

the operator which connects this condition with the

semantics tree (true if the condition was connected

to an AND operator and false if it was connected

to an OR operator). Finally, if this attribute is part

of the SELECT clause of the query, it is removed

from the output schema. See Fig. 18 for how the

aforementioned example of Fig. 14 is rewritten.

Attribute rename When an attribute is renamed,

the output schema searches for the specific attribute

and renames it with then name provided by the user,

unless there is conflict with any attribute already

present in the output schema of the module, having

the same name with the one chosen for renaming

(in this case the user is prompted again). Moreover,

its name is propagated to the modules that are con-

nected, in order to let them know the new name of

the attribute in order to update their schemata.

Attribute provider rename When an attribute is

renamed in one of the providers of the module, the

attribute is initially renamed in the corresponding

input schema of the module. If there is a connection

between any attribute of the output schema with

the same name, this attribute is also renamed, un-

less the name is already used by any attribute of the

output schema, in which case, the user is prompted

for a new name. Finally, this new name is further

propagated to the modules that are connected to

this current one.

Module deletion When a query/view module is

deleted, the schemata nodes of the module with all

their attributes are deleted and the module node

itself is also deleted.

Module rename When a query/view module is re-

named, the user is prompted for the new name of

the module and if it is unique in the graph, then the

module and its output, semantics and input schema

nodes are renamed accordingly. Moreover, the new

name is propagated to the modules that are con-

nected to this query/view, in order to know the

new name of the module and update their input

schemata.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 21

Provider module deletion When a provider module

is deleted, the respective input schema of the mod-

ule that receives this notification is deleted. The

steps applied to the deletion of a provider attribute

are performed for all attributes of the the deleted

provider module.

Provider module rename When a provider module

is renamed, the module that receives this notifica-

tion initially checks if its input schema that corre-

sponds to the renamed provider had the same name

with the old provider name (not always the case,

since there could be an AS rename in the query/view

definition). If this is the case, the input schema of

the module is renamed accordingly (unless the new

name conflicts with an AS rename of any other in-

put schema of the module). If the new name due to

conflicts cannot be set to the input schema, the user

is prompted for a new one.

Alter of semantics When a query/view module

changes it semantics, the user is prompted to al-

ter the where and the group by clause of the mod-

ule and the semantics tree is rewritten from this

input. When an alter of semantics message arrives

from any of the module’s providers, and the mod-

ule has PROPAGATE semantics, then, as we have

already discussed in the previous subsection, there

is no rewriting at all at the module.

Fig. 18 Rewriting for the example of Fig. 14

4 Theoretical Guarantees

In this section, we provide a set of theoretical guaran-

tees regarding the correct annotation of the graph with

events and policies and the termination and confluence

properties of our proposed algorithms.

4.1 Language Properties

Theorem 1 The entries of Table 1 cover completely

the space of node types with the events they can sustain.

Proof 1 The table that contains the events that each

node type can receive was described earlier in Section 2

(Table 1). In Table 2 we have replaced the X symbols of

the table’s cells with the numbers of the default policy

rules, according to the numbering scheme of Figure 7.

Two cells in the ALTER SEMANTICS column are an-

notated with a X and without a reference to a rule; we

explain why in the following text.

The events that are user generated and pertain to

views and queries are:

UQV.1 ADD ATTRIBUTE
UQV.2 DELETE ATTRIBUTE
UQV.3 RENAME ATTRIBUTE
UQV.4 DELETE SELF
UQV.5 RENAME SELF
UQV.6 ALTER SEMANTICS

As mentioned previously in Section 2.2, the events that

are user generated and pertain to relations are:

UR.1 ADD ATTRIBUTE
UR.2 DELETE SELF
UR.3 RENAME SELF
UR.4 DELETE ATTRIBUTE
UR.5 RENAME ATTRIBUTE

Our policy language covers all these events that are re-

lated with the user interaction and are the marks of

Table 1 that are in the lines that contain the OUT and

SMTX keywords on queries, views and relations.

Due to the message propagation mechanism, addi-

tional events occur. These events (also described in Sec-

tion 2.2) are received by the IN nodes of the query and

view modules. These events are:

MP.1 ADD ATTRIBUTE PROVIDER
MP.2 DELETE PROVIDER
MP.3 RENAME PROVIDER
MP.4 ALTER SEMANTICS

For our policy language to cover the three of the four

previous events (MP.1, MP.2, and MP.3) that are re-

lated to the message propagation mechanism, additional

policies are needed. The exception of MP.4 is due to the

fact that the IN schema node who receives such an event

forwards it to the respective SMTX node who is actu-

ally the one responsible for the handling of this event.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 Petros Manousis et al.

ADD DELETE RENAME ALTER

ATTR

ATTR

PROV SELF PROV SELF PROV SMTX

QUERY

OUT
SELF 1 2 3 4

ATTRS 5 7 6 8

IN
SELF 11 9 10 X

ATTRS 12 13

SMTX SELF 14

VIEW

OUT
SELF 15 16 17 18

ATTRS 19 21 20 22

IN
SELF 25 23 24 X

ATTRS 26 27

SMTX SELF 28

RELATION OUT
SELF 29 30 31

ATTRS 32 33

Table 2 The space of events that can be received by each node type according to the line number in the rules of the policy
file

Therefore, there is no need to define a policy at the IN

schema node, as the event will be appropriately handled

at the SMTX node.

In Table 2 we have all the above combinations of

events and node types, thus, our default 33 rule have

completely covered the space of node types with their

incoming events.

Precisely, lines 1 to 14 concern queries.

As previously stated at the exception of MP.4, the

14 rule (QUERY.SMTX.SELF: on ALTER SEMANTICS
then <policy>;) covers two events, since the IN node

forwards this message to the SMTX node which is

the only responsible for the policy over the AL-

TER SEMANTICS event.

Likewise, lines 15 to 28 concern views.

The 28 rule (VIEW.SMTX.SELF: on
ALTER SEMANTICS then <policy>;) covers two events

just like 14 rule does, for the exact same reasons.

Finaly, lines 29 to 33 concern relations.

As one may notice the 33 rules cover all the 35

events that may appear in each one of the nodes. The

inequality of the numbers is because of the exception of

MP.4. Therefore, the fact that the 33 rules cover 33

events plus the two events that do not need any rule

proves that all the events (UR.*, UQV.*, and MP.*)

are covered by our policy rules.

Moreover, if we override the 33 default rules, then,

the most refined policy will be enforced for each node.�

1 QUERY.OUT.SELF: on ADD ATTRIBUTE then <policy>; which is for
UQV.1
2 QUERY.OUT.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
which is for MP.1 in output schema node
3 QUERY.OUT.SELF: on DELETE SELF then <policy>; which is for
UQV.4
4 QUERY.OUT.SELF: on RENAME SELF then <policy>; which is for
UQV.5
5 QUERY.OUT.ATTRIBUTES: on DELETE SELF then <policy>; which is
for UQV.2
6 QUERY.OUT.ATTRIBUTES: on RENAME SELF then <policy>; which
is for UQV.3
7 QUERY.OUT.ATTRIBUTES: on DELETE PROVIDER then <policy>;
which is for MP.2
8 QUERY.OUT.ATTRIBUTES: on RENAME PROVIDER then <policy>;
which is for MP.3
9 QUERY.IN.SELF: on DELETE PROVIDER then <policy>; which is for
MP.2
10 QUERY.IN.SELF: on RENAME PROVIDER then <policy>; which is for
MP.3
11 QUERY.IN.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
which is for MP.1 in input schema node
12 QUERY.IN.ATTRIBUTES: on DELETE PROVIDER then <policy>;
which is for MP.2
13 QUERY.IN.ATTRIBUTES: on RENAME PROVIDER then <policy>;
which is for MP.3
14 QUERY.SMTX.SELF: on ALTER SEMANTICS then <policy>; which is
for both UQV.6 and MP.4

Table 3 Query policies with the addressed events

Theorem 2 The policy overriding mechanism is cor-

rect (assigns the correct policy to each node).

Proof 2 One node may have more than one policies

for a specific event. This occurs because a policy over

an event may be set in any of the following three rules:

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 23

15 VIEW.OUT.SELF: on ADD ATTRIBUTE then <policy>; which is for
UQV.1
16 VIEW.OUT.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
which is for MP.1 in output schema node
17 VIEW.OUT.SELF: on DELETE SELF then <policy>; which is for
UQV.4
18 VIEW.OUT.SELF: on RENAME SELF then <policy>; which is for
UQV.5
19 VIEW.OUT.ATTRIBUTES: on DELETE SELF then <policy>; which is
for UQV.2
20 VIEW.OUT.ATTRIBUTES: on RENAME SELF then <policy>; which is
for UQV.3
21 VIEW.OUT.ATTRIBUTES: on DELETE PROVIDER then <policy>;
which is for MP.2
22 VIEW.OUT.ATTRIBUTES: on RENAME PROVIDER then <policy>;
which is for MP.3
23 VIEW.IN.SELF: on DELETE PROVIDER then <policy>; which is for
MP.2
24 VIEW.IN.SELF: on RENAME PROVIDER then <policy>; which is for
MP.3
25 VIEW.IN.SELF: on ADD ATTRIBUTE PROVIDER then <policy>;
which is for MP.1 in input schema node
26 VIEW.IN.ATTRIBUTES: on DELETE PROVIDER then <policy>; which
is for MP.2
27 VIEW.IN.ATTRIBUTES: on RENAME PROVIDER then <policy>;
which is for MP.3
28 VIEW.SMTX.SELF: on ALTER SEMANTICS then <policy>; which is
for both UQV.6 and MP.4

Table 4 View policies with the addressed events

29 RELATION.OUT.SELF: on ADD ATTRIBUTE then <policy>; which is
for UR.1
30 RELATION.OUT.SELF: on DELETE SELF then <policy>; which is for
UR.2
31 RELATION.OUT.SELF: on RENAME SELF then <policy>; which is for
UR.3
32 RELATION.OUT.ATTRIBUTES: on DELETE SELF then <policy>;
which is for UR.4
33 RELATION.OUT.ATTRIBUTES: on RENAME SELF then <policy>;
which is for UR.5

Table 5 Relation policies with the addressed events

1. Rules about all the nodes of the Architecture

Graph.

2. Rules about all modules and their attributes.

3. Rules that apply to all the attributes of a spe-

cific schema.

4. Rules that apply to specific attribute nodes.

The golden standard of correctness requires that

whenever a node has more than one policies for the

same event, the one that perseveres is the policy defined

at the finest level of detail.

The overriding mechanism is correct because the fol-

lowing sequence of events is guaranteed: initially, it we

apply the most general rules for all the nodes of the

graph, then the rules per module type, then the rules

referring to the attributes of specific schemata, and fi-

nally, the rules that apply to specific attributes.

Observe that this is independent on whether the poli-

cies are assigned a priori, during the construction of the

graph, or, on demand, whenever a specific node needs

to determine its policy.�

Theorem 3 The extra rules

– <moduleType>: ON * THEN <policy>;

– <namedNode>: ON * THEN <policy>;

– NODE: ON <event> THEN <policy>;

– NODE: ON * THEN <policy>;

can correctly cover up the events of the Table 2 and cor-

rectly override each other mechanism (assign the correct

policy to each node).

Proof 3 We need to prove that these rules will cover up

all the events that a node might receive, as well as that

these rules correctly override each other. The more gen-

eral rules are the ones that contain the keyword NODE.

These rules are applied first. Then the rules that ap-

ply to modules and finally the rules that are applied to

specific nodes of the graph. Within each rule, the rules

that contain the keyword * are preceding over the others

rules.

The rule: NODE: ON * THEN <policy>; is trans-

lated to all the 33 rules described in Figure 7 and prove

their correctness in Theorem 1. So all the events are

covered. This rule is also the first one to be applied in

our graph, regardless of its position.

The rule NODE: ON <event> THEN <policy>; is

translated to the rules that apply for the specified event

type. We can follow the columns of the table 2 in order

to see that for:

– ATTRIBUTE ADDITION, the rules of Figure 7

that apply are: rule 1 for the queries, rule 15 for

the views and rule 29 for the relations.

– ATTRIBUTE PROVIDER ADDITION, the rules

of rules of Figure 7 that apply are: rule 2 and 11

for the queries and rule 16 and 25 for the views.

– DELETE SELF, the rules of Figure 7 that apply

are: rule 3 and rule 5 for queries, rule 17 and rule

19 for views, rule 30 and rule 32 for relations.

– DELETE PROVIDER, the rules of Figure 7 that

apply are: rule 7, rule 9 and rule 12 for the queries,

rule 21, rule 23 and rule 26 for the views.

– RENAME SELF, the rules of Figure 7 that apply

are: rule 4 and rule 6 for the queries, rule 18 and

rule 20 for the views, rule 31 and rule 33 for the

relations.

– RENAME PROVIDER, the rules of Figure 7 that

apply are: rule 8, rule 10 and rule 13 for the queries,

rule 22, rule 24 and rule 27 for the views.

– ALTER SEMANTICS, the rules of Figure 7 that

apply are: rule 14 for the queries and rule 28 for

the views.

This rule is the second one that is applied in our graph,

in order to correctly override the more general first rule

( NODE: ON * THEN <policy>;).

The rule <moduleType>: ON * THEN <policy>;

is translated to the set of rules that apply to the specific

module type. For example,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 Petros Manousis et al.

– for the query module type, these rules are: 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and, 14,

– for the view module type, these rules are: 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and, 28,

– for the relation module type, these rules are: 29, 30,

31, 32, and, 33.

This rule is the third one that is applied in our graph, in

order to correctly override the two more general rules.

Finally, the rule <namedNode>: ON * THEN

<policy>; is translated to the rules that apply to

the module type of the specific <namedNode>. This

means that the rules that are generated have the

<namedNode>’s name. For example, for a relation

named TRANSCRIPT,

1. the rules will start with TRANSCRIPT SCHEMA

– for the ATTRIBUTE ADDITION event, which

is for the rule 29,

– for the DELETE SELF event, which is for the

rule 30,

– for the RENAME SELF event, which is for the

rule 31,

2. and two more rules that are for the attributes of

the TRANSCRIPT relation, starting with TRAN-

SCRIPT SCHEMA.ATTRIBUTES

– for the DELETE SELF event of the attributes,

which is for the rule 32,

– for the RENAME SELF event of the attributes,

which is for the rule 33.

This rule is applied after the rules per module type have

been applied and before rules with specific events for

specific nodes are applied.�

4.2 Theoretical Guarantees for the Status

Determination Algorithm

First, we prove that the mechanism for message prop-

agation works correctly at the inter-module level.

Theorem 4 The message propagation at the inter-

module level terminates.

Proof 4 The summary of the architecture graph is a

directed acyclic cycle. This is due to the fact that (i)

a query depends only on views and relations, and (ii)

relations do not depend on anything (in the context of

this paper, we do not consider cyclic foreign key depen-

dencies).

Since the summary graph is a DAG, we can topolog-

ically sort it and propagate the messages according to

this topological order. Thus, all that it takes for the mes-

sage propagation mechanism to terminate is: (a) each

module emits a message only once for each session to

its consumers that are related with the event/parameter;

(b) the graph is finite. Since both assumptions hold, the

algorithm terminates.�

Theorem 5 Each module in the graph will assume a

status once the message propagation terminates; this

status is the same, independently from the order of pro-

cessing the incoming messages.

Proof 5 Each module gathers from the common mes-

sage queue all the messages that concern it. For each

message, the module and its schemata, assume a sta-

tus. A module’s status can change only in the follow-

ing order: NO STATUS < PROPAGATE < BLOCK,

meaning that if a module has assumed a PROPAGATE

status, it can not change it to NO STATUS but it may

change it to BLOCK. Therefore, if a message that will

ignite a BLOCK policy is found anywhere in the list

of incoming messages, this BLOCK status will eventu-

ally be assumed and not overridden later. Otherwise, a

PROPAGATE status will be assumed. At the end of the

message processing, the module retains the final status

it assumed.�

Theorem 6 Messages are correctly propagated to the

modules of the graph.

Proof 6 For the node that receives the initial event we

need to prove that:

1. the node either acquires BLOCK status, therefore

the message propagation mechanism stops, or,

2. the node acquires PROPAGATE status and notifies

its consumers about the change.

For all the other nodes we need to prove that:

3. that a module will not be affected if none of its

providers was affected by the imminent change,

4. there is no module that receives a message while its

provider has a BLOCK status,

5. there is no module that should have received a mes-

sage when it was its turn to acquire a status but the

message was not in its input message list,

The first two propositions stand because of the

rewrite maestros mechanism. The modules communi-

cate using a global list of messages. The rewrite mae-

stro keeps a local list of all the outgoing messages of

the module to its consumers. When the module fin-

ishes processing all its incoming messages, the maestro

checks the module’s status and if it is BLOCK, then

returns, without adding the outgoing messages to the

global list, which proves the first proposition. If the sta-

tus of the module is PROPAGATE then the output mes-

sages are added in the global list, so the consumers of

the module are notified, which proves the second propo-

sition.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 25

For the third proposition: One (or more) input

schema node(s) of a consumer module is connected

via directed edges to the output schema node(s) of its

providers. Due to its inherent construction, the modules

which are eventually visited by the message propagation

mechanism, have at least one of their providers affected.

For the same reason, the modules that are not visited

by the mechanism (a) either do not have any provider

affected, or, (b) a block policy terminated the message

propagation in provider modules, earlier.

For the fourth proposition: The messaging mech-

anism dictates that each message is propagated from

the output node of the provider module towards the

input schemata of all consumer modules, unless a

BLOCK policy explicitly halts the propagation. Since

a BLOCK policy terminates the message propagation

from this provider module, we guarantee that there is no

consumer module to receive any message from provider

module.

For the fifth proposition: The messaging mechanism

uses a list to transfer the messages between the mod-

ules. This list is sorted by the ID numbers that the

modules have acquired by the topological sort algorithm

(described in Figure 12). Since the list is topologically

sorted too, we guarantee that there there is no module

that should have received a message when it was its turn

to acquire a status but the message was not in its input

message list.�

Theorem 7 The message propagation at the intra-

module level: (i) terminates, with (ii) each node assum-

ing a unique status according to its policy and the status

precedence constraints.

Proof 7 We visit the schemata of a module in a

fixed order: input schemata, semantics schema, output

schema. For each of these schemata, we may visit its

attributes too. All these constructs are finite and vis-

ited only once. This is a task that the maestros perform

and the very reason for their existence, otherwise we

could have allowed message propagation via the graph’s

edges within the modules too. Therefore, the algorithm

terminates and (i) is proved.

For requirement (ii) we need to prove the following:

1. for all messages, vetoes override adaptation,

2. per message, for all the appropriate nodes (and only

them) the status of the most detailed nodes overrides

the decision of the status of the schema,

3. if any of the schemata of a module has status

BLOCK, the module assumes status BLOCK.

Regarding the first proposition: as already stated at

the proof of Theorem 5, a node’s status can change

only in the following order: NO STATUS < PROP-

AGATE < BLOCK, meaning that if a node has as-

sumed a PROPAGATE status, it can not change it to

NO STATUS but it may change it to BLOCK.

Regarding the second proposition: every time a

schema is probed on an event (a) the appropriate nodes

within a schema are asked about their policy, or/and,

(b) the schema itself is asked about its policy. Ta-

ble 2 describes the relationship between events and nodes

prompted, in the lines that say ATTRS the (a), (b) take

place, while in the lines that say SELF only the (b) takes

place. This is the correct and desired behavior. When an

attribute acquires a status, the schema node is prompted

to acquire the same status. The completeness of the lan-

guage guarantees that all nodes have a policy for any

incoming event that can arrive to them. Therefore, in

all occasions (i) the correct nodes are prompted for a

response, (ii) the policy of the appropriate nodes pre-

vails, (iii) it is impossible that such a policy does not

exist. Therefore, for each message all nodes acquire the

correct status.

Regarding the third proposition: the proposition is

inherently supported.�

4.3 Theoretical Guarantees for the Path Check

Algorithm

We are going to prove that Path Check Algorithm ter-

minates and all modules at the end have the correct

number of versions they need to keep.

Theorem 8 The module traversal terminates and the

visited modules have the correct notification of how

many versions they need.

Proof 8 Algorithm Path Check sequentially passes

from each of the affected modules with BLOCK status

and for each of them executes method CheckModule. If

we can prove that CheckModule terminates, then the

algorithm terminates too.

The algorithm has as input: (i) a finite set of

modules (each module with BLOCK status starts the

CheckModule method once), and (ii) the initial event

placed by the user.

In every step, the CheckModule method marks the

module to keep two versions, and finds the providers of

this module through which the module was marked about

the change. These provider modules are listed in the set

of the affected modules. If there are no more modules

this means that the method reached the module from

which the change started.

Since this is a recursive procedure, the providers of

the providers of those modules are also marked and so

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26 Petros Manousis et al.

on. The condition that inspects whether the visited mod-

ule was previously marked, is done by the following line:

If(Module has been marked) Then return;

of the CheckModule method. This condition makes

sure that the recursive traversals of the method termi-

nate as soon as possible –since those modules have al-

ready been marked by a previous traversal– and every

module that is part of the path that goes from a blocker

module to the source of the changes has been marked to

keep two versions.�

4.4 Theoretical Guarantees for the Graph Rewrite

Algorithm

We are going to prove that (a) Graph Rewrite Algo-

rithm terminates, (b) when Graph Rewrite terminates,

all modules have the correct connections at the inter-

module level, and (c) all modules are correctly rewritten

at the intra-module level.

4.4.1 Termination and confluence at inter-module level

First, we prove that the mechanism for graph rewriting

works correctly at the inter-module level.

Theorem 9 The graph rewriting at the inter-module

level terminates.

Proof 9 The Graph Rewriting Algorithm terminates

when all the notified modules that accepted the change

(meaning that those modules acquired a PROPAGATE

status) are rewritten. The algorithm has as input the

list of the affected modules, each one having its status

and the number of versions it needs to keep, and the ini-

tial messages that each affected module received. In the

special case of the DELETE ATTRIBUTE event com-

ing from a Relation module, the algorithm terminates

right away. Otherwise, each one of the affected modules

(which is a finite list of modules) is rewritten once, so

the algorithm terminates.

We need to prove:

1. that each module is rewritten only once for each one

of the messages it received,

2. that there is a finite list of messages, and

3. that there is a finite number of modules that are go-

ing to be rewritten.

For 1 and 2 since the incoming messages of a module

are finite (as proved earlier in theorem 4), and maestros

are only once executed per message we are sure that

each module is rewritten once per message received. For

3 the number of modules that acquired PROPAGATE

status is finite, since the graph is finite. Therefore, since

all assumptions hold, the algorithm terminates.�

Theorem 10 The graph will be in the correct form af-

ter the rewrite.

Proof 10 We need to prove that:

1. All the modules that have no status will not be

rewritten.

2. All the modules with BLOCK status will not be

rewritten.

3. If there is no vetoer in the graph, then all the mod-

ules with PROPAGATE status will be rewritten.

4. If there is any vetoer, then the modules with PROP-

AGATE status will be rewritten (i) themselves –

since there is only one version needed– if they are

not part of a blocker path, or, (ii) as clones –since

there are two versions needed– as parts of a blocker

path. In both cases the modules will be connected to

the appropriate path.

A module is part of a blocker path when the module

has PROPAGATE status but at least one of its descen-

dants acquired status BLOCK.

We need two paths, the “new providers” in which all

the nodes accepted the change, and the “old providers”

in which we keep the old definitions of all the affected

modules because a module declined the change. If a mod-

ule needs to keep only one version then the path with the

“new providers” is the one that this module belongs to.

If a module needs to keep two versions then the path

with the “old providers” that did not want to accept the

change is the one that this module belongs to, while its

clone belongs to the path with the “new providers” that

accepted the change, thus providing right essence to the

modules that need to keep only one version. The num-

ber of versions a module has to keep is given by the

algorithm depicted in Figure 16.

If none of the modules vetoed, then the Graph

Rewrite Algorithm does a traversal visiting the affected

nodes, in order to apply the change the user asked. The

algorithm works only with the modules that have PROP-

AGATE status, thus 1, 2 and 3 are proved. For 4:

1. If the module needs to keep two versions we clone

the module, we connect the cloned module to its new

providers (if it is the module that started the event

then we connect it to the providers that the original

has), and we proceed with the rewrite of the cloned

module. This way, the cloned modules are all in one

path, and the modules that vetoed are all in the other

path.

2. If the module belongs to a path without blocker mod-

ules, then it needs to keep only the new version we

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 27

connect it to the path of the new providers and we

proceed with the internal rewriting of the module.

�

4.4.2 Termination and confluence at intra-module level

Theorem 11 The rewriting of modules at the intra-

module level terminates and each module is rewritten

correctly.

Proof 11 Sections 3.3.1 and 3.3.2 describe the intra

module rewriting process, where we begin our module

rewriting from the input schema, continue to the se-

mantics schema and terminate to the output schema.

There is only one exception at the aforementioned rule

and that is on the attribute addition of query/view

modules, where we start from the output schema of

the module and move towards the semantics and input

schemata.

In both cases, we start rewriting from the one bor-

der of the module (input or output) and terminate to

the other border of the module (output or input, respec-

tively). Because of the previous statement, we guarantee

that our method terminates because: (a) we perform a

single visit per affected node, and (b) we work with a

finite number of nodes. As for the validity of the intra-

module rewriting, each event is rewritten as described

in sections 3.3.1 and 3.3.2 and whenever information

is needed, either the modules passes that information

from the provider module to the consumer module, or

prompt the user to provide the needed information.�

5 Experiments

We assessed our method for its usefulness and scalabil-

ity with varying graph configurations and policies; in

this section, we report our findings. As already men-

tioned, all the material for this work, including input

ecosystems, links to the source code (publicly available

at git) and results can be found in the paper’s web

page3. We have employed a real-world case, based on 7

major revisions of Drupal in the period 2003 - 2007 as

the testbed for our experimentation. To further stress-

test our method with more complicated scenarios, we

have also performed a controlled experiment, based on

a widely used benchmark, TPC-DS, to allow the evalu-

ation of the effect of different problem parameters (like

policy annotation and graph size) to the effectiveness,

efficiency and required user effort of our method. Before

proceeding, we describe the fundamental metrics that

we employ for the assessment of our experiments.

3 http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/

index.html

5.1 Effectiveness and Effort Metrics

In this subsection, we discuss the metrics used to as-

sess the efficiency, the effort spent for the annotation of

the graph and the effectiveness metrics that we employ

in our experiments. Evaluating efficiency is straightfor-

ward, as we assess the breakdown of the time spent for

each of the 3 steps of our method. For the rest of the

metrics, we provide a more detailed discussion, right

away. We conclude this subsection with a note on the

experimental configuration of each experiment.

5.1.1 Effectiveness: do we gain from annotating the

graph with policies and testing what-if scenarios this

way?

How can we assess the effort gain of a developer us-

ing the highlighting of affected modules of Hecataeus?

This gain should be contrasted to the effort spent in

the case where he would have to perform all checks by

hand. We employ the %AM metric, measuring the frac-

tion of Affected Modules of the ecosystem as the gain

that amounts to the percentage of useless checks the

user would have made. We exclude the object that ini-

tiates the sequence of events from the computation, as

it would be counted in both occasions. Formally, %AM

is given by the Equation 1.

%AM = 1− #Affected Modules

#(Queries ∪ V iews)
(1)

Moreover, to assess the extent of rewritings that are

automated by our method, for each event we measure

the number of Rewritten Modules as the sum of the

number of modules that were cloned (new versions of

affected modules) with the number of existing adapted

modules. We denote this measurement with the RM

metric, given by the Equation 2.

RM = #Adapted Modules + #Cloned Modules (2)

5.1.2 Policy annotation effort: how much time does it

take to setup the policy rules in order to work with our

what-if analysis tool?

How hard is it to annotate the graph with policies? How

much time does the user have to spend for authoring

the rules?

Our method comes with the possibility of using syn-

tactic sugar rules that make life easy and fast. For the

rare occasion when the user does not want to use these

syntactic shortcuts, for every specific module that gets

into the user’s focus, the user has to provide as many

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html
http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html


28 Petros Manousis et al.

rules as necessary to override the default policies. In

the worst case, this requires 9 + 5 × |input schemata|
rules for a full re-specification of a query/view module.

When the syntactic sugar is used, one rule is sufficient

to fully invert the policy of a module. Of course, rules

for more detailed subsets of the module can also over-

ride this default. In any case, in order to write these

rules, the user has to locate the module in the graph

and invoke the graphical policy editor; however, locat-

ing the module is actually the difficult part of the an-

notation. To address this task, Hecataeus comes with a

layout containing the filesystem of the project that the

user investigates. Initially, the user has to find the file

that contains the query he wants to change its policy.

When the user selects a file, the queries that are in this

file, are highlighted in the visual representation of the

Architecture Graph in our tool, providing a smaller set

of modules that need to be searched. Finally, when the

user finds the module he wants to differentiate from the

global policy, he adds only one line of text to the pol-

icy file that says that this query has a specified policy.

We repeatedly monitored the annotation time, using a

wristwatch, and this task takes at most 1 minute for

each query that the user wants to set a specific policy.

In each experiment, we also discuss the number of

rules required for the execution of the experiment. We

believe the annotation effort is practically negligible.

5.1.3 Experimental configuration

In all our experiments, we need to fix the following pa-

rameters for our experimental setup: (a) an ecosystem

comprising a database schema surrounded by a set of
queries and possibly a set of views, (b) a workload of

events that are sequentially applied to the above config-

uration, and (c) a palette of “profiles” that determine

the way the ecosystem’s architecture graph is annotated

with policies towards the management of hypothetical

events; hence, these profiles simulate the intention of

the administrating team for the management of the

ecosystem.

5.2 Replaying the Evolution of Drupal

Ecosystem. In this experiment, we have employed

Drupal, versions 4.1.0 to 4.7.11 [30] as our experimen-

tal testbed. Drupal is a Content Management System

(CMS) that is written in PHP language, which contains

SQL queries in its php script files. We used some of the

major versions of this project that took place between

2003 and 2007. As one may notice in Table 6, there

are no Views in this project; that is why we decided to

split the experiment in two setups, described in Sections

5.2.1 and 5.2.2 respectively.

5.2.1 Original evolution scenario

In this setup, we replay the original evolution of the

Drupal project, raising each one of the events that really

occured, having no blocker modules.

Events. We have used the actual events that

evolved the database schema of Drupal between the

major versions we describe in Table 6. For example,

in order to get to version 4.2.0 we had to perform 6

attribute additions and 2 attribute deletions.

Policies. The default reaction for the original sce-

nario was to accept all changes between two subsequent

versions. Thus, the policy for all modules was to prop-

agate all events that occur on the system; this is ex-

pressed by having only one rule in the policy file (NODE:

on * THEN PROPAGATE;).

5.2.2 Modified scenario with view cloning

In the second setup, we replay an alternative evolution

case of the Drupal project, in order to examine the effect

of cloning of views on the overall system. Specifically,

we added a view named: “UNV iew”, that is used to

join the USERS and NODE relations. Then, we rewrote all

queries joining the two tables to use the view instead.

Moreover, we added one extra query that asks for all the

attributes of UNview which would act as a blocker to

all events that ultimately reach it. This setting allows us

to see how view cloning operates ”in the microscope”.

Events. We have also used the actual events as in

the previous setup. The only difference to the previous

approach is that, when there was an attribute deletion

in USERS or NODE relations, we performed the deletion

to the UNview module, instead of the USERS or NODE

relation modules.

Policies. The policy again was to propagate all the

changes in all modules except for the additional query;

this is expressed by the following two rules:

– NODE: on * then PROPAGATE; and

– Qadditional: on * then BLOCK;.

Experimental Protocol. We have used the follow-

ing sequence of actions. First, we annotate the architec-

ture graph with policies. Next, we sequentially apply

the events over the graph – i.e., each event is applied

over the graph that resulted from the application of the

previous event. For each event we measure the elapsed

time for each of the three algorithms, along with the

number of affected, cloned and adapted modules. The

experiment was performed in a typical PC with an Intel

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 29

Drupal
Version

Published at Relations Queries
Attribute
Addition

Attribute
Deletion

Table
Addition

Table
Deletion

4.1.0 2003-02-01 38 234 6 2 0 0
4.2.0 2003-08-01 38 239 1 5 3 1
4.3.1 2003-12-01 40 251 8 4 1 1
4.4.3 2005-06-01 40 254 16 5 16 4
4.5.8 2006-03-14 52 277 12 11 4 1
4.6.11 2007-01-05 55 327 14 11 7 5

Table 6 Drupal dataset from ver. 4.1.0 to ver. 4.7.11

Fig. 19 Drupal 4.1.0 cluster with queries asking same tables
as arcs.

i5 CPU at 2.90GHz and 32GB main memory and only

one core being used.

5.2.3 Annotation effort

The “real world” experiment was conducted using the

syntactic sugar policy annotation rules. When we used

the setup that is described in Section 5.2.1 we did not

have to write any rules (the default one is generated by

our tool). When we used the setup that is described in

Section 5.2.2, we had to write only one rule, in order to

block the propagation of events to the extra query we

deliberately inserted in the ecosystem.

5.2.4 Effort gains

In both variants of our experiments, we can see that

the effectiveness is way too high for all events. This

is because the average number of affected modules is

small compared to the size of the graph. More precise

results about this experimental setup you may see in

Table 7, where we notice that the minimum benefit for

Metric
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

%
A

M

min 97.1 88.2 94.2 71 93.1 79.7
avg 98.2 97.3 96.8 91 98.5 97.3

max 99.2 98.8 99.6 99.6 100 99.7

R
M

min 2 4 2 2 1 2
avg 5.4 7.8 9.3 24.7 5 10

max 8 30 16 77 20 68

Table 7 Results of the original evolution scenario of Drupal

the developers is 71% while the average benefit ranges

between 91% - 98.5%!

In the experimental setup that is described in Sec-

tion 5.2.2, we can see that the metrics have not changed

significantly. Also due to the blocker query and the

UNview modules, we now have clones! This way, the

query that was marked to block all the changes remains

intact, while the rest of the ecosystem evolves.

The minimum number of clones per event is 0. Also,

since the height of our tree is only one level, the max-

imum number of clones per event can not be greater

than 1. Those metrics are displayed in Table 8.

Metric
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

%
A

M

min 97.1 88.5 94.3 70.7 93.2 79.5
avg 98.2 96.8 96.9 91 98.5 97.2

max 99.2 98.8 99.6 99.6 100 99.7

R
M

min 3 4 2 2 1 2
avg 5.4 8.4 9.2 24.7 5 10
max 8 30 16 79 20 70∑

Cloned 0 4 1 3 3 5

Table 8 Results of the modified evolution scenario of Drupal

5.2.5 Efficiency assessment

The time needed to perform the adaptation of the

ecosystem is practically negligible. Table 9 displays the

time needed for the original Drupal experimental setup,

described in Section 5.2.1. Table 10 displays the time

needed for the modified Drupal experimental setup, de-

scribed in Section 5.2.2. The experiments of the Drupal

project were conducted with cold cache (it is interesting

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



30 Petros Manousis et al.

Step
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

1
min 110 171 65 56 37 76
avg 1311 1732 1135 913 678 728
max 8048 8913 9035 8498 10426 11888

2
min 2 2 2 1 1 1
avg 4 4 7 7 5 8
max 11 15 25 28 24 64

3
min 105 154 76 48 29 59
avg 362 506 560 659 251 364
max 1282 1947 1773 2830 1812 1328

Table 9 Drupal project times (in microseconds) for “origi-
nal” setup

Step
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

1
min 120 323 81 46 40 124
avg 1357 2227 1241 929 632 686
max 8124 10782 9707 8957 87896 9706

2
min 3 3 3 1 1 1
avg 4 19 18 14 10 13
max 13 51 149 68 123 99

3
min 114 801 82 72 25 88
avg 395 8128 1443 2051 1316 2193
max 1364 15244 11917 13103 9177 11713

Table 10 Drupal project times (in microseconds) for “mod-
ified” setup

to note that in all occasions, the processing of the first

event took an order of magnitude higher than the rest

of the events; here we report the min, max and average

of all events for each step).

5.3 Controlled experiment with TPC-DS

To better control and assess the behavior of our al-

gorithms, we need a more complex environment than

Drupal. In fact, our experience with several CMS’s re-

veals that the internal structure of the database is in-

tentionally kept as simple as possible, obviously in an

attempt to maximize performance. Thus, we have em-

ployed a decision support benchmark, TPC-DS, as the

testbed for our controlled experiment. We start with a

description of the experimental setup.

5.3.1 Experimental setup for TPC-DS

Ecosystem. We have employed TPC-DS, version 1.1.0

[25] as our experimental testbed. TPC-DS is a bench-

mark that involves star schemata of a company that has

the ability to Sell and receive Returns of its Items with

the following ways: (a) the Web, or, (b) a Catalog, or, (c)

directly at the Store. Moreover the company keeps data

of Customers, regarding their Income band, or their

Demographics data and additionally keep data about

the Promotion of their Items. To handle advanced SQL

constructs in the queries of TPC-DS, we had to add

views for the handling of WITH clauses and to make

modifications to queries containing keywords as LIMIT,

HAVING in order to remove parser-offending parts that

Hecataeus’ parser cannot handle. To test the effect of

graph size to our method’s efficiency, we have created

3 graphs with gradually decreasing number of query

modules: (a) a large ecosystem, WCS, with queries us-

ing all the available fact tables, (b) an ecosystem CS,

where the queries to WEB SALES have been removed,

and (c) an ecosystem S, with queries using only the

STORE SALES fact table.

Events. The event workload consists of 51 events

simulating a real case study of the Greek public sector.

See Fig. 20, left, for an analysis of the module sizes

within each scenario. In Fig. 20, right, we present the

breakdown of the workload (listing the percentage of

each event type as pct).

Policies. We have annotated the graphs with poli-

cies, in order to allow the management of evolution

events. We have used two “profiles”: (a) MixtureDBA,

consisting of 20% of the relation modules annotated

with BLOCK policy and (b) MixtureAD, consisting of

15% of the query modules annotated with BLOCK pol-

icy. The first profile corresponds to a developer-friendly

DBA that agrees to prevent changes already within

the database. The second profile tests an environment

where the application developer is allowed to register

veto’s for the evolution of specific applications (here:

specific queries). We have taken care to pick queries

that span several relations of the database.

Fig. 20 Experimental configuration for the TPC-DS ecosys-
tem

Experimental Protocol. We have used the follow-

ing sequence of actions. First, we annotate the architec-

ture graph with policies. Next, we sequentially apply

the events over the graph – i.e., each event is applied

over the graph that resulted from the application of the

previous event. The experiment was performed with hot

cache in order to measure the time. For each event we

measure the elapsed time for each of the three algo-

rithms, along with the number of affected, cloned and

adapted modules. The experiment was performed in a

typical PC with an Intel Quad core CPU at 2.66GHz

and 1.9GB main memory with only one core was being

used.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 31

5.3.2 Effectiveness assessment: How useful is our

method for the application developers and the DBA’s?

In this subsection, we discuss the evaluation of the effort

gain metrics for our controlled experiment. We eval-

uated the %AM metric for each of the 51 events of

the workload, performed over all three ecosystems (S,

CS, WCS) and for both the policy annotation profiles

(MixtureDBA and MixtureAD). In the upper part of

Fig. 21 we demonstrate the minimum, average and max-

imum value of the %AM metric for all these 51 runs,

organized annotation policy and ecosystem. The results

demonstrate that the effort gains compared to the ab-

sence of our method are significant, as, on average, the

effort is around 90% in the case of the AD mixture and

97% in the case of the DBA mixture. As the graph size

increases, the benefits from the highlighting of affected

modules that our method offers, increase too. Observe

that in the case of the DBA case, where the flooding

of events is restricted early enough at the database’s

relations, the minimum benefit in all 51 events ranges

between 60% - 84%.

Fig. 21 Effectiveness assessment as fraction of affected mod-
ules (%AM) and number of rewritten modules (RM) of the
“controlled” experiment

Likewise, we evaluated the RM metric for each of

the 51 events of the workload. The results demonstrate

that the minimum number of modules needing a rewrite

is 0 for almost all combinations of mixture and graph

size for the event workload. This happened in both the

MixtureDBA and the MixtureAD cases for different

reasons – still both related to a veto. In the case of

MixtureDBA, if a relation vetoes a possible change to

it, then the event is immediately blocked and no rewrit-

ing or cloning takes place. Similarly, if a query vetoes a

change in a relation (eg. attribute deletion), again, the

event is frozen no rewriting or cloning takes place. At

the same time, observe that the average and maximum

number of modules needing a rewrite increases as the

size of the graph increases. This is expected, as the in-

crease in the graph size signifies that the new queries

can possibly use some of the tables/views of the smaller

graph (remember that the graphs are constructed by

adding views and queries each time). Then, every event

affects more modules as the graph increases. Another

worth mentioning fact is that when the MixtureDBA

policy is used, the number of the modules needing

rewrite drops, since the flooding of events is restricted

early enough, inside the database.

5.3.3 Policy annotation effort: how many rules does

one have to write in order to work with our what-if

analysis tool?

In this subsection, we discuss the effort of the user

for the annotation of the Architecture Graph ecosys-

tem with policies, over the conducted controlled exper-

iments. We have worked with both policy mixtures and

observed the effort needed as the number of blockers

increases. Remember that in the MixtureDBA policy

of the “controlled” experiment we block events at re-

lations; we have set 20% of our relation modules to

block the events that they receive and kept the size

of the relation modules is the same in all three exper-

iments (S, CS, and WCS ). In the MixtureAD policy

–in the same experimental setup– we set about 15% of

the query modules as blockers. Here, the number of the

blockers depends on the numbers of the query modules,

which is different for each one of the S, CS, and WCS

experiments.

Table 11 displays our results. We have one row for

the MixtureDBA and one row per size (S, CS, WCS )

for the MixtureAD policy. The first columns explain the

annotation policy, the nature and number of interest-

ing modules (relations in the first case and queries in

the latter) and the number of blockers within each con-

figuration. The next three columns explain the effort

spent to annotate the ecosystem without the syntac-

tic sugar: we list the number of default rules that have

to be defined for completeness reasons, the extra rules

that pertain to the individual blocker modules and the

sum of these two measures. Finally, the last group of

columns, refers to the case where the syntactic sugar

was available, in a manner similar to the previous.

For the case where the syntactic sugar was not used,

we have to mention the following observations and clar-

ifications. At first, the number of default rules (33)

seems quite high. However, we should also mention that

Hecataeus supports the user gracefully by offering the

template list ready to the user. At the same time, the

number of extra rules per blocking module is about 9

rules per module. Although the numbers for the en-

tire ecosystem reach to a high level, in the regular case

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



32 Petros Manousis et al.

Without syntactic

sugar

With syntactic

sugar

Mixture Size Modules of interest Modules Blockers Default Extra Total Default Extra Total

DBA all Relations 25 5 33 25 58 1 5 6

AD S Queries 27 4 33 36 69 1 4 5

AD CS Queries 68 10 33 90 123 1 10 11

AD WCS Queries 89 12 33 118 151 1 12 13

Table 11 Modules and rules for policy annotation effort.

where the annotation is performed in an incremental

fashion, the ratio of 9 rules per module seems quite tol-

erable.

For the case where we have exploited the syntactic

sugar, the set of rules needed decreases dramatically.

This is due to the dramatic decrease in both the de-

fault rules (1 rule only) and the necessary rules per

module (again one rule only). Specifically, observe that

we can annotate with PROPAGATE policies the entire

graph using only one rule (NODE: ON * THEN PROP-

AGATE;), and for each one of the blocker modules, we

need to use, again, only one rule (<namedNode>: ON

* THEN BLOCK;). Overall, the savings in effort and

the speedup are too high both in batch and incremental

ways of using our method.

5.3.4 Efficiency: how fast can we interact with our

what-if analysis tool?

In this subsection, we evaluate the time needed to com-

plete the process of what-if analysis with our tool. Effi-

ciency plays an important role in the design and admin-

istration process of an ecosystem, if we wish to allow the

involved stakeholders to interactively test alternative

configurations and scenarios for policy annotations or

restructuring of the ecosystem’s architecture to accom-

modate forthcoming changes gracefully. To this end, we

investigate the effect of policy annotation and graph

size to the completion time and its breakdown in the

three phases of our method.

Effect of policy to the execution time. In the

case of Mixture DBA we follow an aggressive blocking

policy that stops the events early enough, at the rela-

tions, before they start being propagated in the ecosys-

tem. On the other hand, in the case of Mixture AD, we

follow a more conservative annotation approach, where

the developer can assign blocker policies only to some

module parts that he authors. In the latter case, it is

clear that the events are propagated to larger parts of

the ecosystem resulting in higher numbers of affected

and rewritten nodes. If one compares the execution time

of the three cases of the AD mixture in Fig. 22 with the

execution time of the three cases of the DBA mixture

the difference is in the area of one order of magnitude.

It is however interesting to note the internal differences:

the status determination time is scaled up with a fac-

tor of two; the rewriting time, however is scaled up by a

factor of 10, 20 and 30 for the small, medium and large

graph respectively!

Another interesting finding concerns the internal

breakdown of the execution time in each case. A

common pattern is that path check is executed very effi-

ciently : in all cases it stays within 2% of the total time

(thus practically invisible in the graphic). In the case

of the AD mixture, the analogy between the status de-

termination and the graph rewriting part starts from

a 24% - 74% for the small graph and ends to a 7% -

93% for the large graph. In other words, as the events

are allowed to flow within the ecosystem, the amount

of rewriting increases with the size of the graph; in all

cases, it dominates the overall execution time. This is

due to the fact that rewriting involves memory man-

agement (module cloning, internal node additions, etc)

that costs much more than the simple checks performed

by Status Determination. In the case of the DBA mix-

ture, however, where the events are quickly blocked,

the times are not only significantly smaller, but also

equi-balanced: 57% - 42% for the small graph (Status

Determination costs more in this case) and 49% - 50%

for the two other graphs. Again, this is due to the fact

that the rewriting actions are the time consuming ones

and therefore, their reduction significantly reduces the

execution time too.

Effect of graph size to the execution time. To

assess the impact of graph size to the execution time one

has to compare the three different graphs to one another

within each policy. In the case of the AD mixture, where

the rewriting dominates the execution time, there is a

linear increase of both the rewriting and the execution

time with the graph size. On the contrary, the rate of

increase drops in the case of the DBA mixture: when

the events are blocked early, the size of the graph plays

less role to the execution time.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 33

Fig. 22 Efficiency assessment for different policies, graph
sizes and phases

Overall, the main lesson learned from these obser-

vations is that the annotation of few database relations

significantly restricts the rewriting time (and conse-

quently the overall execution time) when compared to

the case of annotating modules external to the database.

In case the rewriting is not constrained early enough,

then the execution cost grows linearly with the size of

the ecosystem.

6 Related work

Schema evolution is a long-studied problem in database

and software research [21], [22]. For an overview of the

related work, we refer the interested reader to a re-

cent survey [8] and an up-to-date list of related publica-

tions4. In this section, we focus our discussion to works

related to the adaptation of data-intensive ecosystems

to schema evolution operations. We first highlight the

main approaches that deal with evolution in relational

data-intensive systems, mappings and view rewritings,

bidirectional transformations and DW evolution. Then,

we present and discuss the differences and contributions

of our current work with them.

Evolution of Data-intensive ecosystems. Re-

search activity related to ecosystems built on top of re-

lational databases has been recently developed around

two tools, Hecataeus and Prism.

Hecataeus is based on the notion of Architecture

Graphs, as we have already seen. The first version of

Architecture Graphs was introduced in [14] and com-

prehensively described in [18], along with the first ver-

sion of an algorithm for the propagation of the changes

of one entity to other related entities (see the end of

this section for the improvements to the model and the

4 http://dbs.uni-leipzig.de/en/publications

algorithms that we introduce here). The annotation of

tables, views and queries with policies came with an

extension of SQL presented in [16]. In a different line

of research, in [17], the authors proposed a set of graph

metrics that assess the vulnerability and the mainte-

nance effort of adapting a database ecosystem to evo-

lution events. The assessment of these works has taken

place over the evolution of real-world ETL scenarios.

Prism [2], [3] introduces a method for rewriting

queries whenever their underlying database schema

changes, with the aim of retaining the original query

semantics. The authors introduce a set of Schema Mod-

ification Operators (SMOs) for categorizing schema

changes. SMOs can be simple schema operations on ta-

bles, such as CREATE TABLE, DROP TABLE, ADD COLUMN

or more complex operations between tables, such as

MERGE TABLES and JOIN TABLES. Besides the SMOs,

Prism considers changes on constraints and proposes

a set of integrity constraints modification operators

(ICMO) such as ADD PRIMARY KEY and ADD FOREIGN

KEY. Policies (CHECK, ENFORCE, IGNORE) are also used

in Prism, for enforcing data consistency in tables that

evolve, rather than regulating the rewriting of queries

and views. For example, when ENFORCE policy accom-

panies an ADD PRIMARY KEY change, then all violating

tuples must be removed in order to help DBA carry out

consistency validations. Regarding the rewriting pro-

cess, the authors propose the Chase & Backchase algo-

rithm which uses as input the SMOs and the query to

be rewritten and applies the invert operation on its syn-

tax such that the query retains its results unchanged.

Finally, in [3], the authors extend their techniques to

DML statements, as well.

Two noteworthy approaches from the areas of

software engineering pertain to this work. First, an

approach based on software slicing is presented in

[11] where the authors propose techniques for the

identification of the impact of relational database

schema changes upon object-oriented applications. At

first, the authors identify the database queries within

the software and perform data-flow analysis for es-

timating the possible runtime values of the query.

Then, they use dynamic slicing [5] for extracting the

lines of code of the program related to the query. Sec-

ond, [29] presents a method for analyzing the evolution

of object-oriented software systems from the point of

view of their logical design. The authors’ method stud-

ies the lifetime of UML class models and performs sev-

eral steps of analysis to determine phases, patterns, and

similarities in the lifetime of the classes.

View/schema mappings rewriting and Bidi-

rectional transformations. Another area related to

our problem involves the works related to the adapta-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://dbs.uni-leipzig.de/en/publications


34 Petros Manousis et al.

tion and rewriting of views and schema mappings as

well as the works on bidirectional transformations. Re-

garding view rewriting, in [13] the authors propose le-

gal rewritings of views affected by changes, focusing

on the case of relation deletion by finding valid replace-

ments for the affected (deleted) components via a meta-

knowledge base (MKB) that keeps meta-information

about attributes and their join equivalence attributes

on other tables in the form of a hyper-graph. [7] rede-

fines a materialized view as a sequence of primitive local

changes in the view definition. On more complex adap-

tations, those local changes can be pipelined in order to

compute the new view contents incrementally and avoid

their full re-computation. In [26], the authors deal with

the maintenance of a set of mappings in an environ-

ment where source and target schemata are integrated

under schema mappings implemented via SPJ queries.

Finally, [1] introduces mappings among the applica-

tions and a conceptual representation of the database,

again mapped to the database logical model; when the

database changes, the mappings allow to highlight im-

pacted areas in the source code.

Regarding bidirectional transformations, [23] pro-

vides a survey on the techniques and tools related to

the use of bidirectional transformations. The basic idea

behind Bidirectional Transformations is that ”there

are two models or schemata S and T and a mapping

between them M that serves as a bridge to allow op-

erations and data to flow between the two models.

M must conform to the bidirectional properties that

govern the quality of synchronization between S and

T” [23]. The authors examine 5 different approaches

of bidirectional transformations, namely: Lenses [4]

which is a mathematical abstraction centered around

a pair of functions called get and put, working on

models S, which describes the source, and T , which

is the target; Schema Modification Operators [2] as

previously described; Channels [24], which is a dis-

creet bidirectional transformation from S to T , de-

scribed by a 4-tuple of functions (S,I,Q,U), that oper-

ate on Schema, data Instances, Queries and Updateds

respectively;DB−MAIN [1] which is a transformation

toolkit, where the evolution transformations consist of

a target schema T that derives from a source schema S,

when a construct C (entities, relationships, attributes,

constraints, etc.) is replaced by a new one, called C ′;

and finally, the Both − As − V iew (BAV ) approach

[12], where the schemata of several databases are inte-

grated to form a virtual database, with a global schema

with a combination of LAV and GAV assertions. Bidi-

rectional transformations come in a declarative way (as

opposed to our graph-based representation), with the

requirement of reversible transformations (so that both

directions of the mapping work) and aim to support

(with different degrees of effectiveness) the traditional

data integration tasks (data migration, query rewrit-

ing and dispatching), cross-version transformations and

inter-model mappings.

Data-warehouses evolution. Evolution in data

warehouses is quite related to our problem as it in-

volves the handling of interdependencies in a complex

data ecosystem comprising data sources, ETL flows,

warehouse tables and data marts. In this context, in

[28] the authors deal with inconsistencies arising by

schema changes on the external data sources of a data

warehouse. They propose a method that uses wrap-

pers connected to a monitor for detecting predefined

events on the external sources and generating actions

for the DBA. In [6], the authors employs a graph repre-

sentation for data warehouse schemata and define an

algebra for graph modifications that can be used to

create new schema versions. They deal with multiple

versions of the underlying database and discuss how

cross-version queries can be answered with the help of

augmented data warehouse schemata. Finally, [27] pro-

poses a layered architecture for data warehouses, in or-

der to achieve a much clearer, dedicated assignment of

data transformation to each layer, providing –according

to the authors– flexibility, consistency, re-usability and

scalability of data.

Comparison to existing approaches. A first fea-

ture of our approach is that it enables the processing of

multiple messages arriving at a module. The reader may

wonder why simply flooding the Architecture Graph

with messages on an event is not sufficient to solve

the problem of impact analysis. Simply flooding com-
promises the confluence of the method as the same

node might receive more than one messages (possibly

contradicting in the presence of policies) for the same

event. Our algorithm achieves confluence by properly

processing all messages within a module before prop-

agating its impact to next dependent consumers. An-

other distinctive feature is the presence of policies, ex-

actly placed to avoid the “blind” flooding of messages

and regulate the flow. As already mentioned, the anno-

tation of the ecosystem with policies imposes the new

problem of maintaining different replicas of view defini-

tions for different consumers; to the best of our knowl-

edge, this is the first time that this problem is handled

in a systematic way. Interestingly, although the exist-

ing approaches make no explicit treatment of policies

for the blocking or the propagation of evolution, they

differ in the implicit assumptions they make. Nica et

al., operating mainly over virtual views [13], actually

block the flooding of a deletion event by trying to com-

pensate the deletion with equivalent expressions. Vele-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Impact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems 35

grakis et al. [26] move towards the same goal but only

for SPJ queries. On the other hand, Gupta et al., [7],

working with materialized views, are focused to adapt-

ing the contents of the views, in a propagate-all fash-

ion. A problem coming with a propagate-all policy is

that the events might affect the semantical part of the

views/queries (WHERE clause) without any notifica-

tion to the involved users (observe that the problem

scales up with multiple layers of views defined over

other views). Bidirectional transformations, although

very promising as a set of techniques, require the con-

struction of assertions in a declarative language (which

is not a straightforward task to automate) and they

are typically tailored for different tasks than the ones

addressed here (i.e., policy-based impact analysis and

rewriting for data-intensive ecosystems): DB-MAIN for

mappings among conceptual-logical-and physical mod-

els, Channels for logical-physical mappings among ap-

plications and data, BAV and lenses for data integra-

tion. Curino et al. [2] are not trying to adapt the queries

to a new schema, but they are trying to rewrite queries

in order to revert the schema modifications. Addition-

ally, the proposed methods restrain rewritings only to

changes in a relation; this way, Prism does not follow

view redefinitions, which would cause problems in query

defined over those views. Moreover, if a relation changes

causing redefinitions on views used by queries then the

queries are not automatically rewritten, causing again

problems on the queries definitions. Emmerich et al. [11]

on the other hand, stop their approach at the impact

analysis step, without performing any rewritings of the

entities that are affected by a change. Finally, Xing and

Stroulia [29] provide a comprehensive method for class

profiling that presents interesting opportunities for fu-

ture work, if applied in the context of data-intensive

ecosystems.

Concerning our previous works, as already men-

tioned, in ([18], [19]), we have presented our method for

the background modeling, a first version of the mech-

anism of impact assessment in the presence of policies

and the system architecture for our tool Hecataeus. In

[10], we have extended the aforementioned works (a) by

exploiting the scoping offered by the new graph model

for the ecosystem’s modules to provide a status deter-

mination mechanism with correctness guarantees, (b)

by introducing path checking and multiple versions to

resolve the adaptation of conflicting policies, and, (c)

by presenting the management of rewritings to accom-

modate change. In this paper, we significantly extend

[10] in several ways. First, we present the full-blown ar-

chitecture graph model, along with the space of events.

Second, we introduce a policy determination language

to reduce programmer’s effort in annotating the graph.

Third, we discuss the message structure and an exten-

sible software architecture for the propagation of the

change. Fourth, we formally prove the correctness guar-

antees of our method. Finally, we complement the ex-

perimental findings with extra metrics that concern the

extent of rewriting as well as the effort needed for anno-

tating the graph with policies. Thus, we provide a thor-

ough, rigorous and comprehensive record of our tech-

nique and software for managing the evolution of data-

intensive ecosystems. All the material for this work, in-

cluding input ecosystems, links to the source code (pub-

licly available at git) and results can be found in the pa-

per’s web page: http://www.cs.uoi.gr/~pmanousi/

publications/2013_ER/index.html.

7 Conclusions and Future Work

In this paper we have addressed the problem of adapt-

ing a data-intensive ecosystem in the presence of poli-

cies that regulate the flow of evolution events. Our

method allows (a) the management of alternative vari-

ants of views and queries and (b) the rewriting of the

ecosystem’s affected modules in a way that respects the

policy annotations and the correctness of the rewriting

(even in the presence of policy conflicts). Our exper-

iments confirm that the adaptation is performed ef-

ficiently as the size and complexity of the ecosystem

grow.

Future work can continue in several directions. In

this paper, we have performed what-if analysis where

each time, only a single event is assessed. Future work

can address the assessment of complicated events, in-

volving a set of possible changes simultaneously applied

over either the same or different modules. This would

also involve some extra ”garbage collection” of views

that are redundant or useless. The possibility of adding

more semantics to the Architecture Graph is also a pos-

sible path for future research. For example, constraints

that are not necessarily extracted from the reverse en-

gineering of the database, like functional or conditional

functional dependencies, or logical constraints within

the source code (e.g., pre- and post-conditions over the

correctness of a stored procedure) can also become part

of the graph. Adding more kinds of sources, like for ex-

ample, web-services, or XML stores to the graph is also

a possibility. Providing hints to the DBA’s or the de-

velopers for policies in a semi-automatic way can also

help with the annotation of the graph. Finally, algo-

rithms for the visualization of the ecosystem can be an

ongoing topic of research for long.

Acknowledgments. We would like to thank the re-

viewers of this paper for their constructive comments.

This research has been co-financed by the European

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html
http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html


36 Petros Manousis et al.

Union (European Social Fund - ESF) and Greek na-

tional funds through the Operational Program ”Edu-

cation and Lifelong Learning” of the National Strategic

Reference Framework (NSRF) - Research Funding Pro-

gram: Thales. Investing in knowledge society through

the European Social Fund.

References

1. A. Cleve, A.-F. Brogneaux, and J.-L. Hainaut. A con-
ceptual approach to database applications evolution. In
29th Intl. Conf. on Conceptual Modeling (ER), Vancouver,

Canada, pages 132–145, 2010.
2. C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo.

Update Rewriting and Integrity Constraint Maintenance
in a Schema Evolution Support System: PRISM++.
PVLDB, 4(2):117–128, 2010.

3. C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo. Au-
tomating the database schema evolution process. VLDB

J., 22(1):73–98, 2013.
4. J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,

and A. Schmitt. Combinators for bidirectional tree trans-
formations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst., 29(3), 2007.

5. K. Gallagher and D. Binkley. Program slicing. In Fron-

tiers of Softw. Maint. IEEE CS Press, 2008.
6. M. Golfarelli, J. Lechtenbörger, S. Rizzi, and G. Vossen.

Schema versioning in data warehouses: Enabling cross-
version querying via schema augmentation. Data Knowl.

Eng., 59(2):435–459, 2006.
7. A. Gupta, I. S. Mumick, J. Rao, and K. A. Ross. Adapt-

ing materialized views after redefinitions: techniques and
a performance study. Information Systems, 26(5):323–
362, 2001.

8. M. Hartung, J. F. Terwilliger, and E. Rahm. Recent Ad-
vances in Schema and Ontology Evolution. In Z. Bellah-
sene, A. Bonifati, and E. Rahm, editors, Schema Matching

and Mapping, pages 149–190. Springer, 2011.
9. P. Manousis. Database evolution and maintenance of de-

pendent applications via query rewriting. MSc. Thesis,
Dept. of Computer Science, Univ. Ioannina., February
2013. http://www.cs.uoi.gr/~pmanousi/publications.

html.
10. P. Manousis, P. Vassiliadis, and G. Papastefanatos.

Automating the adaptation of evolving data-intensive
ecosystems. In 32th International Conference on Concep-

tual Modeling (ER), Hong-Kong, China, pages 182–196,
2013.

11. A. Maule, W. Emmerich, and D. S. Rosenblum. Impact
analysis of database schema changes. In 30th International

Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, pages 451–460, 2008.

12. P. McBrien and A. Poulovassilis. Data integration by bi-
directional schema transformation rules. In Proceedings

of the 19th International Conference on Data Engineering,
March 5-8, 2003, Bangalore, India, pages 227–238, 2003.

13. A. Nica, A. J. Lee, and E. A. Rundensteiner. The CVS
Algorithm for View Synchronization in Evolvable Large-
Scale Information Systems. In 6th Intl. Conf. on Extending

Database Technology (EDBT 1998), Valencia, Spain, pages
359–373, 1998.

14. G. Papastefanatos, K. Kyzirakos, P. Vassiliadis, and
Y. Vassiliou. Hecataeus: A Framework for Represent-
ing SQL Constructs as Graphs. In Proceedings of 10th

International Workshop on Exploring Modeling Methods for
Systems Analysis and Design-EMMSAD, Porto, Portugal,
2005.

15. G. Papastefanatos, P. Vassiliadis, and A. Simitsis. Propa-
gating evolution events in data-centric software artifacts.
In ICDE Workshops, pages 162–167, 2011.

16. G. Papastefanatos, P. Vassiliadis, A. Simitsis, K. Ag-
gistalis, F. Pechlivani, and Y. Vassiliou. Language Exten-
sions for the Automation of Database Schema Evolution.
In Proc. ICEIS (1), Barcelona, Spain, pages 74–81, 2008.

17. G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vas-
siliou. Design metrics for data warehouse evolution.
In 27th International Conference on Conceptual Modeling

(ER), Barcelona, Spain, pages 440–454, 2008.
18. G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vas-

siliou. Policy-Regulated Management of ETL Evolution.
J. Data Semantics, 13:147–177, 2009.

19. G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vas-
siliou. HECATAEUS: Regulating schema evolution. In
Proceedings of the 26th International Conference on Data

Engineering (ICDE), Long Beach, California, USA, pages
1181–1184, 2010.

20. R. Pressman. Software Engineering: A Practitioner’s Ap-

proach: European Adaption. McGraw-Hill, 5 edition, April
2000.

21. S. Ram and G. Shankaranarayanan. Research is-
sues in database schema evolution: the road not
taken. Working paper, Department of Information
Systems, Boston University School of Management.,
2003. http://smgapps.bu.edu/smgnet/Personal/Faculty/

Publication/pubUploads/Shankar,_G_15.pdf?wid=1536.
22. J. F. Roddick. Schema evolution in database systems -

an annotated bibliography. SIGMOD Record, 21(4):35–40,
1992.

23. J. F. Terwilliger, A. Cleve, and C. Curino. How clean
is your sandbox? - towards a unified theoretical frame-
work for incremental bidirectional transformations. In 5th

International Conference on Theory and Practice of Model
Transformations (ICMT), Prague, Czech Republic, pages 1–
23, 2012.

24. J. F. Terwilliger, L. M. L. Delcambre, D. Maier, J. Stein-
hauer, and S. Britell. Updatable and evolvable transforms
for virtual databases. PVLDB, 3(1):309–319, 2010.

25. Transaction Processing Performance Council. The New
Decision Support Benchmark Standard, April 2012.
http://www.tpc.org/tpcds/default.asp.

26. Y. Velegrakis, R. J. Miller, and L. Popa. Preserving map-
ping consistency under schema changes. VLDB Journal,
13(3):274–293, 2004.

27. T. Winsemann, V. Köppen, and G. Saake. A layered
architecture for enterprise data warehouse systems. In
M. Bajec and J. Eder, editors, CAiSE Workshops, volume
112 of Lecture Notes in Business Information Processing,
pages 192–199. Springer, 2012.

28. R. Wrembel and B. Bebel. Metadata management in a
multiversion data warehouse. J. Data Semantics, 8:118–
157, 2007.

29. Z. Xing and E. Stroulia. Analyzing the evolutionary
history of the logical design of object-oriented software.
IEEE Trans. Software Eng., 31(10):850–868, 2005.

30. Drupal Community. Drupal. http://ftp.drupal.org/

files/projects/, 2014.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.cs.uoi.gr/~pmanousi/publications.html
http://www.cs.uoi.gr/~pmanousi/publications.html
http://smgapps.bu.edu/smgnet/Personal/Faculty/Publication/pubUploads/Shankar,_G_15.pdf?wid=1536
http://smgapps.bu.edu/smgnet/Personal/Faculty/Publication/pubUploads/Shankar,_G_15.pdf?wid=1536
http://www.tpc.org/tpcds/default.asp
http://ftp.drupal.org/files/projects/
http://ftp.drupal.org/files/projects/

