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Summary 

This report presents the finding of work done in Work Package 6, activity 6.1 of the MEDIT Project 

entitled "Small scale simulations of forest dynamics under baseline and climate change conditions". 

This is an integration of work made in different Working Packages (WPs) and in particular brings 

together the developments of the small scale GREFOS model (in WP2 and WP6), the tree rings 

analysis (WP1 and WP4) and the functional traits data measured (in WP4) and analysed (in WP5).  

The scientific aim of this deliverable is identify potential shifts in the dynamics of some Mediterranean 

forest to climate change.  The working model is the GREFOS forest gap dynamics simulator as further 

developed and parameterised during the MEDIT project. 

 

Introduction 

At areas surrounding the Mediterranean basin, forests are an important element of the 

established vegetation (Archibold 1995; Scarascia-Mugnozza et al. 2000). These forests are expected 

to experience warmer and drier conditions in the near future due to global warming (Giorgi and 

Lionello 2008; Gualdi et al. 2013), as well as potential shifts in fire frequency driven by both climatic 

and anthropogenic forcing (Barbero et al. 1990; Pausas 2004; Moriondo et al. 2006). Understanding 

their sensitivity and response under global change conditions is important for their management as 

well as for their conservation (Bonan 2008). 

Vegetation dynamics models have been widely used as tools to project the response of 

ecosystems to changing environmental conditions (Prentice et al. 1993; Woodward and Loomas 2004; 

Sitch et al. 2008). A special group of such simulators are individual-based models that follow the life 

cycle of each plant in a community and simulate key processes of interest like regeneration, 

competition and mortality (Grimm et al. 2006). Gap-dynamics models have a long history in modelling 



forest ecosystems structure and function, following an individual-based approach, with applications 

all over the world (Shugart 1984; Pacala et al. 1996; Bugmann 2001; Fyllas et al. 2007; Ngugi et al. 

2013). Because most of the algorithms within these models are based on empirical equations, they 

provide reasonable approximations of growth, succession and disturbance patterns. However, caution 

should be given when extrapolating the results of such models under changing environmental 

conditions, as has already been noted (Loehle and LeBlanc 1996). 

Simulations from both global and local scale vegetation models suggest that forest established at 

Mediterranean areas are particularly vulnerable to climatic changes (Morales et al. 2007; Fyllas and 

Troumbis 2009; Hickler et al. 2012), although the climatic stochasticity of Mediterranean ecosystems 

(Blondel and Aronson 1999) could increase the uncertainty in such modelling exercises. Under climate 

change simulations, some typical Mediterranean tree species like Pinus halepensis are projected to be 

more tolerant than others that are mainly found at the temperate zone (Keenan et al. 2011). One of 

the key drivers of vegetation and/or productivity shifts in these approaches is the increased drought 

stress, following an increase in temperature and decrease in precipitation under projected climate 

change conditions (Morales et al. 2007). However, other factors, such as fire frequency and CO2 

fertilisation could also interact with water limitation leading to complex ecosystem responses (Fyllas 

and Troumbis 2009; Keenan et al. 2011). Disentangling the role of water limitation, fire and CO2 on 

Mediterranean forest is important in order to better understand their current and future dynamics. 

Field and laboratory studies, specifically designed to constrain the way such processes are simulated 

in vegetation dynamics models, could increase our understanding of forest function under current 

conditions and enhance our confidence  in the results of their simulated future states. 

Recently the role of functional diversity at the community level and the role of functional trait 

variation at the species level have been highlighted as important components that needs to be 

incorporated into vegetation dynamics model (Scheiter et al. 2013; Fyllas et al. 2014; van Bodegom et 

al. 2014; Sakschewski et al. 2015). Traditionally parameterisation of species and/or plant functional 

types (PFTs) ar4 based on the use of some "average" or "appropriate" mean trait value, for 

characteristics that have a direct effect on the regeneration, the growth and the mortality of the 

simulated individuals. For example specific leaf area (SLA) has been used as a parameter to 

differentiate the turnover rate of leaf biomass between PFTs (Sitch et al. 2008), or as a parameter to 

differentiate between the architecture (in terms of foliage area/biomass) between tree species 

(Bugmann et al. 2001; Fyllas et al. 2007). The selection of one "average" trait value could lead to a 



"static" model behaviour as the population variability in the response of species/PFTs is "a-priori 

restricted", just because of the constant value given to some key functional characters (Fyllas et al. 

2012; 2014). Ignoring the intra-specific variability is not in agreement to what is observed at real plant 

communities and comprises a key element of natural selection and evolution. In addition, depending 

on the way vegetation dynamics models are built, variability in some functional characters could  

affect more than one simulated processes, through either direct or indirect routes. For example, given 

that most vegetation dynamics models include a "carbon starvation"  mortality term, the influence of 

a specific growth parameter on model behaviour could be manifested directly through the growth 

algorithm and indirectly through the mortality algorithm. Ignoring variation in simulated plant 

communities could be an important bias especially when projecting vegetation dynamics under 

climate change conditions, where alternative "functional configurations" could lead to viable life 

strategies.        

In this study we incorporate growth and mortality intra-specific variability in simulations of forest 

dynamics to evaluate the vulnerability of typical forests found in Greece to drought. To do that we 

combine the “Greek Forest Species Simulator”, GREFOS, with a tree ring-width and wood density 

dataset from cores taken at three study areas. The GREFOS model has been developed, 

parameterised and used for forest species found at the north-eastern part of the Mediterranean area 

(Fyllas et al. 2007; Fyllas and Troumbis 2009; Fyllas et al. 2010; Kint et al. 2014). In most forest-gap 

dynamics models, annual tree growth is usually estimated through the concept of optimum diameter 

increment, i.e. the diameter growth that an individual of a certain species and size would achieve 

under no resource limitation or competition (Moore 1989; Bragg 2001; Risch et al. 2005). The "actual" 

diameter increment is subsequently estimated by adjusting the optimum diameter growth based on 

the abiotic and biotic conditions that prevailed for a given time and individual within the stand. Here 

we use ring-width data in order to estimate the parameters (and their variation) of a commonly used 

optimum growth equation (Zeide 1993). Variation in optimum growth between individuals of the 

same species is then included by using a distribution of the growth curve parameters instead of static 

values. Background mortality is usually estimated in forest gap models through species longevity. 

Here we use wood density as a proxy for background mortality (Martinez-Vilalta et al. 2010) and again 

include intra-specific variability through the estimated variation from our samples. Species with a 

higher wood density are in general considered to present a smaller growth rate and a lower annual 

death probability (Reich 2014). 



The aim of this paper is to explore the vulnerability of three common forest types in Greece to 

climate change. We applied the GREFOS model at three different geographic regions along an 

altitudinal gradient of 500 m. Two climatic scenarios were used to force the model under current (BL -

BaseLine) and climate change (CC - IPCC A1B) conditions, and model outputs were comparatively 

considered. The probabilistic algorithm of van Oijen et al. (2013) was subsequently applied to 

determine the vulnerability of the simulated stands to climate change in terms of annual biomass 

production and species composition.   

 

Materials & Methods 

Study Sites and Dominant Tree Species 

Three areas with different dominant tree 

species were selected to obtain the tree cores 

used in this study (Fig. 1). In all study areas the 

sampled trees were found across an altitudinal 

range of ca 500 m (Table 1). The first study 

area is located at the southern part of Mount 

Taygetos, Peloponnese. Pinus nigra and Abies 

cephalonica are the dominant tree species at 

this area, with the pine dominating the lower 

elevations and the more disturbed sites of the 

region. The second study area is located at the Agrafa region, Southern Pindos and it is dominated by 

Quercus frainetto at lower elevations and Abies borisii-regis at higher altitudes. The last study area is 

found at the Northern Part of the Pindos range and the dominant species are Pinus nigra and Fagus 

sylvativa, with the beech restricted at higher altitudes.     

Table 1. Study site description   
Study Area Mt Taygetos Pindos South Pindos North 
Longitude 22.23 21.70 21.05 
Latitude 37.01 39.35 39.91 
Elevation Range (m asl) 795-1451 540-1087 1014-1470 
Average Annual Temperature (oC) 11.3 13.3 8.4 
Total Annual Precipitation (mm) 899 845 941 

Dominant Species P. nigra,            
A. cephalonica 

Q. frainetto 
A. borisii-regis 

P. nigra 
F. sylvatica 



Model Description 

A detailed description of the GREFOS model is provided elsewhere (Fyllas et al. 2007; Fyllas et al. 

2010). In brief GREFOS is a forest gap-dynamics model that simulates the lifecycle of each tree in a 

stand. Individuals are competing for light through a height-based hierarchy with taller trees shading 

all smaller trees, and for water based on their belowground biomass. GREFOS accounts for the 

discrete life history strategies that have been identified for Mediterranean tree and shrub species 

(Pausas 1999). Fire seeders (ex. Pinus brutia and Pinus halepensis) have an increased recruitment rate 

and a low survival probability after a fire event. Seeders (ex. Abies borisii-regis, Abies cephalonica and 

Pinus nigra) have a sensitive to fire recruitment stage. P. nigra has a relatively higher survival 

probability (through thicker bark) during a fire. Most  Abies species are not adapted to fire. Facultative 

resprouters (ex. Fagus sylvatica, Quercus frainetto) have an intermediate recruitment density and 

resprouting ability.  Obligate resprouters (ex. Quercus coccifera and Quercus ilex) have a low 

recruitment density and a high resprouting efficiency. Regeneration in the model is based on 

empirical relationships between stand-level LAI and recruitment density (Fyllas et al. 2008; Fyllas et al. 

unpublished data), where a maximum threshold of LAI "ceases" the establishment of saplings, 

through light limitation. Mortality has three components. The growth related component ("carbon 

starvation") estimated as a function of a tree's previous past growth, the background mortality 

representing species longevity and estimated here as a function of wood density, and the fire related 

mortality which is linked to a species life history strategy and thus recruitment density and 

resprouting efficiency. Growth is parameterised through species-specific tree-ring width data as 

further explained in the following paragraph. A daily soil water balance model is used to calculate 

relative water content (θ) and subsequently the annual drought duration in order to adjust growth 

(Granier et al. 1999). In this new version of the model, evaporation is estimated following the 

Priestley-Taylor (1972) method while the pedotransfer functions of Wosten et al. (1999; 2001) along 

with a user specified soil depth are used to calculate soil water retention and release parameters. 

Deeper soils provide higher water availability to the established trees. In this study the fire 

component of the model has been disabled in order to explore only for the effects of drought. The 

two processes of interest that were calibrated with data from trees measured at our study sites are 

individual tree growth and mortality. These are further explained below.  



Optimum growth curve and intraspecific plasticity  

In order to parameterise the growth algorithm a minimum of twenty tree cores were taken for 

each tree species at each study site. Sampled trees were selected to be found outside the stand and 

receiving the full amount of sunlight during a day. All cores were collected at breast height with a 5 

mm increment borer. In the lab, the cores were glued on channelled wood, dried at room 

temperature, and sanded with progressively finer grade abrasive paper until cells were clearly visible 

under magnification. All samples were visually cross-dated using visual recognition of tree-ring 

patterns and lists of marker years (those with narrow rings) (Yamaguchi 1991). Tree-ring widths were 

measured to 0.01 mm using Time Series Analysis and Presentation (TSAP) software package and 

LINTAB measuring table. Raw ring-width series were synchronized according to their Gleichläufigkeit 

score which represents the overall accordance of two series, t-values which are sensitive to extreme 

values such as marker years and the cross-date index (CDI), which is a combination of both (Rinn 

2003). Finally, the COFECHA software was used to perform a data quality control and to evaluate the 

cross-dating (Grissino-Mayer 2001).  

These data were subsequently used to estimate the parameters of the optimum growth curve, 

widely applied in many forest gap models. Here we consider optimum growth to be species specific, 

and we thus estimate the parameters of the curve for each species. As in Bragg (2001), we assume 

that individuals growing at the highest rate for a given diameter class provide an adequate estimate 

of size specific optimal growth. In this version of the model the optimum growth of an individual is 

described by the equation proposed by Zeide (1993): 
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where gm is the maximum radial growth rate (mm a-1) at the peak of the log-normal growth curve, D0 

is the diameter at breast height (D) associated with the maximum growth rate, and Db determines the 

width of the curve.  

The tree-rings data were used to estimate gm, DO and Db along with their confidence intervals. We 

fitted non-linear models using least square regressions with the use of the R programming language 

and the nls library (R Development Core Team 2015). Table 2 summarises the species-specific 

parameter estimates along with their standard deviations. In order to account for intra-specific 

growth variability in the model, a normal distribution is used to randomly assign the growth 



parameters for each tree of a certain species. The first generation of simulated trees are randomly 

initialized based a normal distribution that follows our observations. Subsequent generations inherit 

growth characteristics from a normal distribution that is updated each year based on the parameters 

of the surviving trees. 

Table 2. Parameter estimates along with their confidence intervals for each study species. 

  Species Gm (mm y-1) Gm sd DO (cm) DO sd Db (-) Db sd 
Abies borisii-regis 6.07 1.07 16.38 8.33 1.97 0.47 
Abies cephalonica 5.48 1.09 9.57 4.71 1.72 0.88 
Fagus sylvatica 3.46 1.46 8.84 5.78 2.09 0.80 
Pinus nigra 5.34 1.14 7.53 2.83 1.53 0.56 
Quercus frainetto 4.52 1.17 6.41 2.81 1.25 0.19 
 

Background mortality  

The mortality component (ΠR) of the model was parameterised based on the equation reported 

in Martinez Vilalta et al. (2010). This equation was developed for tree species found in Spain under a 

similar range of climatic conditions. It uses wood density (DW [g cm-3]) as a sole predictor. Here we use 

stem wood samples from individuals established within our study sites to estimate species specific 

wood density values along with their confidence intervals. After collecting samples from the field the 

water-displacement method was implemented to estimate DW as it allows for easy and reliable 

volume measurement (Chave 2005). A container was filled with water and placed on a digital balance. 

A dried wood sample (48h at 60oC) that was weighted before hand was then sunk in the container, 

such that it is completely immersed. The volume of the wood sample is estimated from the water 

displacement.   

The annual background mortality rate is estimated from:    

 
( 3.56 )0.51 WxD
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with the inclusion of intraspecific variability through a normal distribution with mean equal to DW and 

standard deviation equal to DWsd. Table 3 summarises DW estimates for the species of interest. A 

similar approach to growth in terms of accounting for DW variability is applied here.  

 Table 3. Mean wood density estimates along with their confidence intervals for each study species. 

  Species DW (g cm-3) DW sd 
Abies borisii-regis 0.62 0.04 
Abies cephalonica 0.61 0.06 
Fagus sylvatica 0.72 0.04 
Pinus nigra 0.60 0.05 



Quercus frainetto 0.75 0.06 
 

 

Simulation Setup and Vulnerability Estimation 

At each study area the model was set-up to simulate stand dynamics along an altitudinal (500 m 

wide) gradient, with an elevation step of 50 m.  Soil depth was set to 1.0 m in all study sites. All 

simulations started from bare ground and lasted for a 1000 year long simulation period. Two climate 

scenarios were used, namely: 1) the baseline (BL) climate representing the current climatic conditions 

with the climate of the 20th century at each study area randomly repeated for the simulation period, 

and 2) the IPCC A1B climate change (CC) scenario with an approximately 3oC increase in temperature 

and 20% reduction in precipitation taken as one of the intermediate projections cases from an 

ensemble regional climate model projections for the Mediterranean area (Gualdi et al. 2013). The 

baseline climate was extracted from the E-OBS gridded climatology (Haylock et al. 2008) for the time 

period between 1950 to 2013. In both cases a spin up period of 500 years, where the observed 1950-

2013 climate was randomly replicated, was used in order for vegetation to reach an equilibrium with 

climate. Under the CC scenario during the spin-up period climate was assumed to be similar to BL 

climate, followed by a transient period of 100 years where temperature and precipitation anomalies 

were linearly applied until climate stabilizes after year 600. 

We performed 30 iterations for each altitude and climate scenario. The key model outputs of 

interest are a) the annual stand level basal area increment (ΔΒ) representing an aggregated measure 

of forest productivity, and b) the absolute (BAi) and the relative (ri=BAi/BAT) contribution species (i) to 

the stands basal area.  

The probabilistic vulnerability algorithm of van Oijen et al. (2013) was subsequently applied to 

the simulation outputs. In this approach vulnerability is defined as "the expected difference in 

ecosystem performance between years with and without hazardous conditions". Here we 

implemented this algorithm to investigate for : a) the vulnerability of stand productivity, expressed by 

changes in ΔΒ and b) the vulnerability of community composition, expressed by changes in the 

relative species contribution to the stands basal area (ri). Vulnerability (V) is then defined as: 

nh hV X X= − (3) 

where X is the stand level ΔΒ in the case of forest productivity and ri in the case of species 

composition. The nh and h subscripts represent years with non hazardous conditions and hazardous 



conditions respectively. Years with hazardous conditions are defined as those for which the annual 

relative water (θ) content is less than the 25% quantile during years with no climate change.  

Results 

Simulations under current climatic conditions (BL) adequately captured the altitudinal ranges of 

species distribution across the elevational gradient of the three study sites. At Taygetos, P. nigra is 

dominant at lower elevations with A. cephalonica increasing its contribution with altitude (Fig. 2). 

Following the climate change scenario (CC), the model simulates a strong uphill shift of P. nigra across 

the whole altitudinal gradient and a significant decrease of A. cephalonica (Fig. 2). Total stand 

productivity as expressed here by the annual basal area increment (ΔB) is more vulnerable at lower 

altitudes (Fig. 5). However community composition is simulated to be more vulnerable at higher 

altitudes, with P. nigra increasing its relative contribution at the expense of A. cephalonica   

At Pindos South, Q. frainetto is more abundant at lower elevation stands (up to 900 m asl) but 

with increasing altitude A. borisii-regis becomes the dominant element of vegetation (Fig. 3) under BL 

conditions. The applied climate change scenario leads to a significant reduction in the total basal area 

of the stand at lower altitudes. An uphill shift of Q. frainetto is also simulated under CC, leading to a 

retreat of A. borisii-regis (Fig. 4). The vulnerability of stand productivity is stronger at low altitudes 

(Fig. 6). However simulations suggest that shifts in relative species abundance increases with altitude.  

At Pindos North the observed vegetation transition with altitude was simulated under the BL 

climatic scenario. P. nigra dominates the stands up to an elevation of ca 1100 m asl, a mixed forest is 

simulated between 1150 and 1300 m with F. sylvatica dominating the stands at higher altitudes (Fig. 

4). At this region, climate change leads to loss of F. sylvatica across the simulated gradient. The 

reduction in total stand productivity is stronger at lower altitudes, with the highest changes in species 

relative contribution expected at high altitudes (Fig. 7).    

All figures are presented at the end of this document. 

 

Discussion 

This study presents a framework that integrates field and laboratory work to better parameterise 

a forest-gap model in order to understand and to project the dynamics of typical forest transitions in 

Greece. The inclusion of species-specific parameters led to model performance that accurately 

predicted the standing biomass and the distributional range of expansion of our study species at the 



sites of interest. We suggest that vegetation dynamics models, and particularly those that are 

implemented at local scales should be strongly linked and constrained with site-specific information 

(Fyllas et al. 2014).  

The inclusion of growth and mortality plasticity is an important aspect of this work. Currently 

there is a great effort to include functional trait variation into models of vegetation dynamics, in order 

to account for the potential plasticity in the response of ecosystems to climate change (Scheiter et al. 

2013; Fyllas et al. 2014;, van Bodegom et al. 2014). In this study we present a simple method to follow 

such an approach within existing forest gap-dynamics models, based on the measured intra-specific 

variability in parameters that control growth and mortality. Under climate change conditions this 

parameterisation led to simulated declines in species biomass that were more gradual compared to 

the static parameterisation of the model. This was mainly due to tree growth adjustments and not 

mortality (results not shown here), as the phylogenetic signal for WD is rather strong with only small 

variation observed at the species level (Table 3). We only implemented "plasticity" for these two key 

ecological processes, but other processes could also be considered. For example, including variation in 

the allometric parameters defining tree architecture could account for potential variation in the 

competition for light and/or water resources. In any case this variability should be taken into account 

following an "adaptation" perspective. Practically this means that the distributions of 

traits/parameters that are inherited by the new recruits (next generation) should be informed by the 

distribution of mature trees in the stand (previous generation).  

Observations of shifts in forest structure and function that could be associated to changes in 

climatic conditions over the last century have started to accumulate. Changes of tree growth related 

to temperature increase and/or drought (Jump et al. 2006; Linares and Tiscar 2010), decline in 

precipitation (Sarris et al. 2011), and/or CO2 fertilisation (Martinez Vilalta et al. 2008) have been 

documented for trees established at both low and high altitude sites around the Mediterranean 

Basin. Increased forest dieback has been attributed to drought (Van Mantgem et al. 2009, reviewed in 

Allen et al. 2010,) and/or to pathogens outbreaks (Desprez-Loustau et al. 2006; Chrysopolitou et al. 

2013), while drought-induced changes in species composition have also been documented (Allen and 

Breshears 1998; Penuelas and Boada 2003). Furthermore, some studies report an increase in fire 

frequency associated with the recent warming, both at the north-western (Pausas and Fernandez-

Munoz 2012) and the north-eastern (Koutsias et al. 2013) part of the Mediterranean Basin. The way 



these shifts will progress in the near future is important in terms of nature conservation and climate 

change mitigation practices.  

Simulation studies have also highlighted the vulnerability of Mediterranean ecosystems to 

climate change, mainly as an effect of increased drought stress, with forests ecosystems usually 

projected to shift to shrublands (Schröter et al. 2005; Hickler et al. 2012). At mountainous 

Mediterranean areas changes in species composition could arise as an integrated effect of drought 

and fire, with more tolerant species increasing their dominance along altitudinal gradients (Fyllas and 

Troumbis 2009; Moser et al. 2010). In this study we focused on the effects of drought. In general, our 

simulations suggest that larger changes in the productivity of mountainous Mediterranean forest are 

expected at lower altitudes (Figs 5, 6, 7). On the other hand, changes in species composition are 

stronger at higher altitudes due to the expansion of more drought tolerant taxa under drier 

conditions and the retreat of less drought tolerant species. However, these shifts can also be species 

and site specific, depending on both the prevailing climatic conditions and the local species pool. Our 

results are in agreement with the study of Benito Garzon et al. (2008) where a niche-based model was 

used to estimate the current and future distribution of some dominant tree species across the Iberian 

Peninsula. They projected a stronger decrease in the potential distribution of mountainous conifers 

(less drought tolerant) compared to a lower vulnerability of typical Mediterranean tree species (more 

drought tolerant). Keenan et al. (2011) combined niche and process based methods to predict the 

future of forest ecosystems at the same geographic area, suggesting that niche-based methods might 

overestimate species decline as they do not take into account possible CO2 fertilisation effects. On the 

other hand, process-based models that include the potential CO2 fertilisation effect could 

overestimate the performance of Mediterranean tree species under global warming conditions, as 

growth limitation by either water or nutrients availability could also be strong especially in mature 

forest stands (Korner et al. 2007). In our study CO2 fertilisation was not taken into account as growth 

was parameterised using observed tree-ring widths, rather than solving a detailed photosynthesis 

algorithm. Fire was also not taken into account. Changes in the structure and function of the 

simulated stands under climate change scenarios were thus mainly mediated through the effects of 

drought on species growth.  

Conclusions 

This study presents the use of an integrative framework to explore for the potential effects of 

climate change on the dynamics of mountainous Mediterranean forests in Greece. Emphasis was 



given at incorporating intra-specific variability in growth and mortality. Simulations under climate 

change conditions suggest an upward shift of more drought tolerant species, a stronger reduction in 

forest productivity at lower altitudes and significant changes in species composition at higher 

altitudes. We suggest that the use of field studies designed to cover modelling needs could provide a 

means to constrain the uncertainty in simulations of forest dynamics, particularly under changing 

climatic conditions.  
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Figure 2. Forest Dynamics across the altitudinal gradient of Taygetos under Baseline Climate Conditions (solid 

lines) and Climate Change Conditions (broken lines). 

  



Figure 3. Forest Dynamics across the altitudinal gradient of Pindos South under Baseline Climate Conditions 

(solid lines) and Climate Change Conditions (broken lines). 

  



 

Figure 4. Forest Dynamics across the altitudinal gradient of Pindos North under Baseline Climate Conditions 

(solid lines) and Climate Change Conditions (broken lines). 

  



 

Figure 5. Vulnerability of total stand basal area increment (ΔΒ) and associated shifts in species relative (ri) 

contribution across the altitudinal gradient of Taygetos. See text for details in estimating vulnerability 

indices. 

  



 

Figure 6. Vulnerability of total stand basal area increment (ΔΒ) and associated shifts in species relative (ri) 

contribution across the altitudinal gradient of Pindos South (Agrafa). See text for details in estimating 

vulnerability indices. 

  



 

Figure 7: Vulnerability of total stand basal area increment (ΔΒ) and associated shifts in species relative (ri) 

contribution across the altitudinal gradient of Pindos North (Valia Calda). See text for details in estimating 

vulnerability indices. 
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