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Abstract: We give a characterization of the extremal sequences for the Bellman func-

tion of the dyadic maximal operator. In fact we prove that they behave approximately

like eigenfunctions of this operator for a specific eigenvalue.

1. Introduction

The dyadic maximal operator on Rn is a usefull tool in analysis and is defined by

Mdφ(x) = sup

{
1

|Q|

∫
Q
|φ(u)|du : x ∈ Q, Q ⊆ Rn is a dyadic cube

}
(1.1)

for every φ ∈ L1
loc(Rn) where | · | is the Lesbesgue measure on Rn and the dyadic cubes

are those formed by the grids 2−NZn, N = 0, 1, 2, . . . .

It is well known that it satisfies the following weak type (1,1) inequality

|{x ∈ Rn :Mdφ(x) > λ}| ≤ 1

λ

∫
{Mdφ>λ}

|φ(u)|du,(1.2)

for every φ ∈ L1(Rn) and λ > 0.

From (1.2) it is not difficult to prove the following Lp-inequality

‖Mdφ‖p ≤
p

p− 1
‖φ‖p,(1.3)

for every p > 1 and φ ∈ Lp(Rn), and this can be proved by using the well known Doob’s

method on the dyadic maximal operator.

It is also easy to see that (1.2) is best possible, while (1.3) is also best possible as

can be seen in [15]. (See [1] and [2] for general martingales).

Our aim is to study this maximal operator. One way to do this is to find certain

refinements of the inequalities satisfied by it such as (1.2) and (1.3). Concerning (1.2)

refinements have been done in [8], [10] and [12]. Refinements of (1.3) can be found in

[5] or even more general in [6].

In order to study (1.3) the following function has been introduced in [5]

BQ
p (f, F ) = sup

{
1

|Q|

∫
Q

(Mdφ)p : φ ≥ 0, AvQ(φ) = f, AvQ(φp) = F

}
(1.4)
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where Q is a fixed dyadic cube in Rn, φ ∈ Lp(Q) and

AvQ(h) =
1

|Q|

∫
Q
|h(u)|du,

for every h ∈ L1(Q). This is the so-called Bellman function of two variables associated

to the dyadic maximal operator.

This function given has been explicitly computed. Actually this is done in a much

more general setting of a non-atomic probability measure space (X,µ), where the dyadic

sets are now given in a family of sets T , (called tree), which satisfies conditions similar

to those that are satisfied by the dyadic cubes on [0, 1]n (for details see section 2). Then

the associated dyadic maximal operator MT is defined by

MT φ(x) = sup

{
1

µ(I)

∫
I
|φ|dµ : x ∈ I ∈ T

}
,(1.5)

for φ ∈ L1(X,µ).

The Bellman function of two variables for p > 1 associated to MT is now given by

BTp (f, F ) = sup

{∫
X

(MT φ)pdµ : φ ≥ 0,

∫
X
φdµ = f,

∫
X
φpdµ = F

}
,(1.6)

where 0 < fp ≤ F .

In [5], (1.6) has been found equal to BTp (f, F ) = Fωp(f
p/F )p where ωp : [0, 1] −→[

1,
p

p− 1

]
is the inverse function H−1p of Hp defined for z ∈

[
1,

p

p− 1

]
by Hp(z) =

−(p − 1)zp + pzp−1. This gives us as a result that it is independent of the measure

space (X,µ) and the tree structure T .

For the evaluation of this function the author in [5] introduced a technique which

enabled him to compute it. This is based on an effective linearization of the dyadic

maximal operator that holds for an adequate set of functions, called T -good. Certain

sharp inequalities were proved in [5] by using Holder’s inequality upon suitable subsets

of X in an effective way. After the evaluation of (1.6) he was also able to evaluate other

more general Bellman functions ofMT that involve three parameters. The evaluations

of these new Bellman functions, which are connected with the Dyadic Carleson Imbed-

ding Theorem and others, are based on the result of (1.6) entirely and are proved by

its application on certain elements of the tree T .

The next step for studying the dyadic maximal operator is to investigate the opposite

problem for the Bellman function related to Kolmogorov’s inequality which has been

studied in [7]. More precisely the following function

Bq(f, h) = sup

{∫
X

(MT φ)qdµ : φ ≥ 0,

∫
X
φdµ = f,

∫
X
φqdµ = h

}
,(1.7)

has been computed there, where 0 < h ≤ f q and q ∈ (0, 1) is a fixed constant.

In [7] the authors precisely evaluated the above function by using the linearization

technique introduced in [5]. The situation is now different and new methods were found

in order that (1.7) be evaluated.
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Additionally the following has been proved in [11]

Proposition:Let (φn)n be a sequence of nonnegative functions in L1(X,µ) such that∫
X φndµ = f and

∫
X φ

p
ndµ = F for all n ∈ N . If (φn)n is extremal for (1.6), then for

every I ∈ T we have that lim
n

1

µ(I)

∫
I
φndµ = f and lim

n

1

µ(I)

∫
I
φpndµ = F . Moreover

lim
n

1

µ(I)

∫
I
(MT φn)pdµ = BTp (f, F ).

This gives as an immediate result that there do not exist extremal functions for (1.7).

This is true because if T differentiates L1(X,µ) we would have for any extremal φ that

it should be constant almost everywhere on X so that F = fp which is a trivial case

that we do not consider.

Thus our interest is for those sequences of functions (φn)n that are extremal for this

Bellman function. That is φn : (X,µ) → R+, n ∈ N must satisfy∫
X
φndµ = f,

∫
X
φpndµ = F and lim

n

∫
X

(MT φn)pdµ = Fωp(f
p/F )p.

Our aim in this paper is to give a characterization of these extremal sequences of

functions. For this reason we restrict ourselves to the class of T -good functions, that

is enough to describe the problem as it was described in [5] (see Section 3). We give

now the statement of our main result

Theorem A: Let (φn)n be a sequence of nonnegative, T -good functions such that∫
X φndµ = f and

∫
X φ

p
ndµ = F . Then it is extremal for (1.6), if and only if

lim
n

∫
X
|MT φn − cφn|pdµ = 0,

for c = ωp(f
p/F ).

For the proof of the above theorem we use the technique introduced in [5] for the

evaluation (1.6). In fact we generalize it in two directions (Theorem 3.1 and 3.2) and by

using these we prove Theorem 3.3 for the extremal sequences we are interested in. This

theorem is in fact a weak form of Theorem A. It is proved by producing two inequalities

that involve
∫
A(MT φ)pdµ and

∫
A φ

pdµ on measurable subsets of A ⊂ X that have a

certain form with respect to the tree T and the function φ. More precisely A is a union

of certain elements of Sφ or a complement of such a set, where Sφ is a subtree of T
that depends on X and gives all the information we need for MT φ (for the definition

of Sφ see section 2). Using these two inequalities we prove Theorem 3.3.

In order to prove Theorem A we need to apply Theorem 3.3 to a new extremal

sequence (gφn) which satisfies the following relation lim
n

∫
X
|gφn − φn|pdµ = 0. gφn is

defined properly on suitable subsets of X where φn is defined. The number of different

values of gφn on each of those subsets are at most two with the one being zero. Then

we prove that the measure of the set where gφn is zero tends to zero by using the fact

that (gφn) is extremal sequence for (1.6). Thus we can arrange everything so that this
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new extremal sequence is constant on those suitable sets. We rename this sequence as

(g′φn). Because of the just mentioned property that it satisfies and the certain form that

have these suitable subsets of X we can apply Theorem 3.3 to it and produce Lemma

3.5 . By using the last mentioned result and the fact that lim
n

∫
X
|gφn−g′φn |

pdµ = 0, we

complete the proof for the characterization of the extremal sequences for the Bellman

function of the dyadic maximal operator.

We mention also that additional work concerning the Bellman functions and certain

symmetrization principles for the dyadic maximal operator can be seen in [6] and [13].

It is also worth saying that in [14] it has been given an alternative method for the

evaluation of the Bellman function (1.6). Also we need to say that the phenomenon

that the norm of a maximal operator is attained by a sequence of eigenfunctions of such

a maximal operator can be seen in [4] and [3] . So by considering the results of this

paper one might guess that it shouldn’t be rare and and may occur in other settings

such as square functions or other dyadic operators. Finally we need to mention that

the extremizers for the Bellman function of three variables related to Kolmogorov’s

inequality have been characterized in [9].

2. Preliminaries

Let (X,µ) be a non-atomic probability measure space. We now give the following

from [5].

Definition 2.1. A set T of measurable subsets of X will be called a tree if the following

are satisfied

i) X ∈ T and for every I ∈ T , µ(I) > 0.

ii) For every I ∈ T there corresponds a finite or countable subset C(I) of T con-

taining at least two elements such that

a) the elements of C(I) are pairwise disjoint subsets of I

b) I = ∪C(I).

iii) T =
⋃
m≥0
T(m), where T(0) = {X} and T(m+1) =

⋃
I∈T(m)

C(I).

iv) The following holds

lim
m→∞

sup
I∈T(m)

µ(I) = 0.

We state the following lemma as is given in [5].

Lemma 2.1. For every I ∈ T and every a ∈ (0, 1) there exists a subfamily F(I) ⊆ T
consisting of pairwise disjoint subsets of I such that

µ

( ⋃
J∈F(I)

J

)
=

∑
J∈F(I)

µ(J) = (1− a)µ(I).
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Given a tree T we define the maximal operator associated to it as follows

MT φ(x) = sup

{
1

µ(I)

∫
I
|φ|dµ : x ∈ I ∈ T

}
,

for every φ ∈ L1(X,µ). From [5] now we recall

Theorem 2.1. The following is true

sup

{
(MT φ)pdµ : φ ≥ 0,

∫
X
φdµ = f,

∫
X
φpdµ = F

}
= Fωp(f

p/F )p,

for every f, F such that 0 < fp ≤ F .

Additionally we give the notion of the extremal sequence as

Definition 2.2. Let (φn)n be a sequence of µ-measurable nonnegative functions defined

on X, p > 1 and 0 < fp ≤ F . Then (φn)n is called (p, f, F ) extremal or simply extremal

if the following hold:∫
X
φndµ = f,

∫
X
φpndµ = F and lim

n

∫
X

(MT φn)pdµ = Fωp(f
p/F )p.

3. Characterization of the extremal sequences

For the proof of Theorem 2.1 an effective linearization for the operator MT was

introduced in [5] valid for certain functions φ. We describe it as appears there and use

it in the sequel.

For every φ ∈ L1(X,µ) nonnegative and I ∈ T we define AvI(φ) =
1

µ(I)

∫
I φdµ.

We will say that φ is T -good if the set

Aφ = {x ∈ X :MT φ(x) > AvI(φ) for all I ∈ T such that x ∈ I}

has µ-measure zero.

Let now φ be T -good and x ∈ X \ Aφ. We define Iφ(x) to be the largest in the

nonempty set

{I ∈ T : x ∈ I and MT φ(x) = AvI(φ)}.
Now given I ∈ T let

A(φ, I) = {x ∈ X \ Aφ : Iφ(x) = I} ⊆ I and

Sφ = {I ∈ T : µ(A(φ, I)) > 0} ∪ {X}.
Obviously then MT φ =

∑
I∈Sφ

AvI(φ)JA(φ,I), µ-a.e. where JE is the characteristic func-

tion of E.

We define also the following correspondence I → I∗ by: I∗ is the smallest element

of {J ∈ Sφ : I ( J}. It is defined for every I ∈ Sφ except X. It is obvious

that the A(φ, I)’s are then pairwise disjoint and that µ
( ⋃
I /∈Sφ

(A(φ, I))
)

= 0, so that⋃
I∈Sφ

A(φ, I) ≈ X, where by A ≈ B we mean that µ(A \B) = µ(B \A) = 0.
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Now the following is a consequence of the above.

Lemma 3.1. Let φ be T -good and I ∈ T , I 6= X. Then I ∈ Sφ if and only if for every

J ∈ T that contains properly I we have that AvJ(φ) < AvI(φ).

Proof. Suppose that I ∈ Sφ. Then µ(A(φ, I)) > 0. Thus A(φ, I) 6= ∅, so there exists

x ∈ A(φ, I). By the definition of A(φ, I) we have that Iφ(x) = I, that is I is the largest

element of T such thatMT φ(x) = AvI(φ). As a consequence the implication stated in

our Lemma holds.

Conversely suppose that I ∈ T and for every J ∈ T that contains properly I we

have that AvJ(φ) < AvI(φ). Then since φ is T − good, for every x ∈ I \Aφ there exists

Jx = Iφ(x) in Sφ such thatMT φ(x) = AvJx(φ) and x ∈ Jx. By our hypothesis we must

have that Jx ⊆ I. Consider the family S1 = (Jx)x∈I\Aφ . This has the property that⋃
x∈I\Aφ

Jx ≈ I. Choose a pairwise disjoint subfamily S2 = (Ji)i with X ≈ ∪Ji. We just

need to consider those Jx ∈ S1 maximal under ⊆ relation. Then by our construction

AvJi(φ) ≥ AvI(φ). Suppose now that I /∈ Sφ. This means that µ(A(φ, I)) = 0, that is

we must have for every x ∈ I \ Aφ that Jx ( I. Since Jx belongs to Sφ for every such

x, by the first part of the proof of this Lemma we conclude that AvJx(φ) > AvI(φ) and

as a consequence AvJi(φ) > AvI(φ) for every i. Since S2 is a decomposition of X and

because of the last inequality we reach to a contradiction. In this way we derive the

proof of our Lemma. �

Now the following is true (see [5]).

Lemma 3.2. Let φ be T -good

i) If I, J ∈ Sφ then either A(φ, J) ∩ I = ∅ or J ⊆ I.

ii) If I ∈ Sφ then there exists J ∈ C(I) such that J /∈ Sφ.

iii) For every I ∈ Sφ we have that

I ≈
⋃
J∈Sφ
J⊆I

A(φ, J).

iv) For every I ∈ Sφ we have that

A(φ, I) = I \
⋃
J∈Sφ
J∗∈I

J, so that

µ(A(φ, I)) = µ(I)−
∑
J∈Sφ
J∗=I

µ(J).

From the above we see that

AvI(φ) =
1

µ(I)

∑
J∈Sφ
J⊆I

∫
A(φ,J)

φdµ =: yI
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where I ∈ Sφ, and for these I ′s we also define

χI = a
−1+ 1

p

I

∫
A(φ,I)

φdµ, where aI = µ(A(φ, I)).

We prove now the following

Theorem 3.1. Let φ be T -good function such that
∫
X

φdµ = f . Let also B = {Ij} be a

family of pairwise disjoint elements of Sφ, which is maximal on Sφ under ⊆ relation.

That is if I ∈ Sφ then I ∩ (∪Ij) 6= ∅.
Then the following inequality holds:∫

X\
⋃
j
Ij

φpdµ ≥
fp −

∑
j
µ(Ij)y

p
Ij

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X\

⋃
j
Ij

(MT φ)pdµ

for every β > 0, where yIj = AvIj (φ).

Proof. We follow [5]. We have that∫
X\∪Ij

φpdµ =
∑

I)piece(B)
I∈Sφ

∫
A(φ,I)

φpdµ,(3.1)

where by writing I ) piece(B) we mean that I ) Ij for some j. Of course (3.1) is true

since X \
⋃
j
Ij ≈

⋃
J∈Sφ

I)piece(B)

A(φ, I) in view of the maximality of B and Lemma 3.2.

Now from (3.1) we have by Holder’s inequality that

∫
X\

⋃
j
Ij

φpdµ ≥
∑
I∈Sφ

I)piece(B)

xpI =
∑
I∈Sφ

I)piece(B)

( ∫
A(φ,I)

φdµ
)p

ap−1I

.(3.2)

It is true that

µ(I)yI =
∑
J∈Sφ
J∗=I

µ(J)yJ +

∫
A(φ,I)

φdµ, for every I ∈ Sφ.

So by using Holder’s inequality in the form

(λ1 + · · ·+ λm)p

(σ1 + · · ·+ σm)p−1
≤ λp1
σp−11

+
λp2
σp−12

+ · · ·+ λpn

σp−1m

, we have

∫
X\∪Ij

φpdµ ≥
∑
I∈Sφ

I)piece(B)

(
µ(I)yI −

∑
J∈Sφ
J∗=I

µ(J)yJ

)p
(
µ(I)−

∑
J∈Sφ
J∗=I

µ(J)
)p−1

≥
∑
I∈Sφ

I)piece(B)

{
(µ(I)yI)

p

(τIµ(I))p−1
−
∑
J∈Sφ
J∗=I

(µ(J)yJ)p

((β + 1)µ(J))p−1

}
,(3.3)
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where τI = (β + 1)− βρI , ρI =
aI
µ(I)

, β > 0.

Thus by (3.3) we have because of the maximality of B that∫
X\

⋃
j
Ij

φpdµ ≥
∑
I∈Sφ

I)piece(B)

µ(I)ypI
τp−1I

−
∑
(∗)

µ(I)ypI
(β + 1)p−1

,(3.4)

where the summation in (∗) is extended to:

(a) I ∈ Sφ: I ) piece(B) with I 6= X and (b)I ∈ Sφ is a piece of B (I = Ij , for some

j).

So we can write:∫
X\∪Ij

φpdµ ≥ ypx

τp−1x

+
∑

I ∈ Sφ
I 6= X

I ) piece(B)

1

ρI

(
1

τp−1I

− 1

(β + 1)p−1

)
aIy

p
I−

− 1

(β + 1)p−1

∑
j

µ(Ij)y
p
Ij
.(3.5)

It is easy now to see that

1

(β + 1− βx)p−1
− 1

(β + 1)p−1
≥ (p− 1)βx

(β + 1)p
,(3.6)

for any x ∈ [0, 1], in view of the mean value theorem on derivatives.

Then (3.5) becomes∫
X\∪Ij

φpdµ ≥ ypx

τp−1x

+
(p− 1)β

(β + 1)p

∑
I 6= X
I ∈ Sφ

I ) piece(B)

aIy
p
I −

1

(β + 1)p−1

∑
j

µ(Ij)y
p
Ij

=

[
1

((β + 1)− βρx)p−1
− (p− 1)βρx

(β + 1)p

]
fp +

(p− 1)β

(β + 1)p

∑
I∈Sφ

I)piece(B)

aIy
p
I

− 1

(β + 1)p−1

∑
j

µ(Ij)y
p
Ij
,(3.7)

On the other hand
∑
I∈Sφ

I)piece(B)

aIy
p
I =

∑
X\∪Ij

(MT φ)pdµ, so in view of (3.6) we must have

that ∫
X\∪Ij

φp ≥
fp −

∑
µ(Ij)y

p
Ij

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X\∪Ij

(MT φ)pdµ,

for every β > 0, and the proof of the theorem is now complete. �

If we follow the same proof as above but now work inside any of the Ij we obtain
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Theorem 3.2. Let φ be T -good and A = {Ij} be a pairwise disjoint family of elements

of Sφ. Then for every β > 0 we have that:∫
⋃
j
Ij

φpdµ ≥
∑
µ(Ij)y

p
Ij

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
⋃
j
Ij

(MT φ)pdµ.

We have now the following generalization of Theorem 3.1

Corollary 3.1. φ be a T -good and A = {Ij} be a pairwise disjoint family of elements

of Sφ. Then for every β > 0

∫
X\

⋃
j
Ij

φpdµ ≥
fp −

∑
j
µ(Ij)y

p
Ij

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X\

⋃
j
Ij

(MT φ)pdµ,

where f =
∫
X

φdµ.

Proof. This is true since there exist families B,Γ of pairwise disjoint elements of Sφ

with B as in the statement of Theorem 3.1, such that B =
⋃
j
I ′j , Γ =

⋃
i
Ji with⋃

j
I ′j =

(⋃
j
Ij

)
∪
(⋃

i
Ji

)
and the additional property that Ij is disjoint to Ji for every

j, i. Applying Theorem 3.1 for B and Theorem 3.2 for Γ we obtain, by summing the

respective inequalities, the proof of Corollary 3.1. �

As a consequence of the above we have

Theorem 3.3. Let (φn)n an extremal sequence consisting of T -good functions. Con-

sider for every n ∈ N a pairwise disjoint family An = {Inj } of elements of Sφn such

that the following limit exists

lim
n

∑
I∈An

µ(I)ypI,n, where yI,n = AvI(ϕn), I ∈ An.

Then

lim
n

∫
∪An

(Mφn)pdµ = ωp(f
p/F )p lim

n

∫
∪An

φpndµ

meaning that if one of the limits on the above relation exists then the other also does

and we have the stated equality.

Proof. In view of Theorem 3.2 and Corollary 3.1 we have that

∫
X\∪An

φpndµ ≥
fp −

∑
I∈An

µ(I)ypI,n

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X\∪An

(MT φn)pdµ, and(3.8)

∫
∪An

φpndµ ≥
∑

I∈An µ(I)ypI,n
(β + 1)p−1

+
(p− 1)β

(β + 1)p

∫
∪An

(MT φn)pdµ,(3.9)

for every β > 0 and n ∈ N.
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Summing relations (3.8) and (3.9) for every n ∈ N we obtain

F =

∫
X
φpndµ ≥

fp

(β + 1)p−1
+

(p− 1)β

(β + 1)p

∫
X

(MT φn)pdµ,(3.10)

Since (φn)n is extremal we have equality in the limit in (3.10) for β = ωp(f
p/F ) − 1

(see [5], relation (4.24)).

So we must have equality on (3.8) and (3.9) in the limit for this value of β. Suppose

now that hn =
∑
I∈An

µ(I)ypI,n and that hn → h. (3.9) now can be written in the form

∫
∪An

(MT φn)pdµ ≤
(

1 +
1

β

)(β + 1)p−1
∫
∪An

φpndµ− hn

p− 1
,(3.11)

(see [5], relations (4.24) and (4.25)), for every β > 0. The right hand side of (3.11),

n ∈ N, is minimized for β = βn = ωp

(
hn
/ ∫
∪An

φpndµ
)
− 1, as can be seen at the end of

the proof of Lemma 9 in [5], or by making the related simple calculations.

Since, we have equality in the limit in (3.11) we must have that

lim
n

hn∫
∪An

φpndµ
=
fp

F
,(3.12)

Thus (3.12) and (3.11) give

lim
n

∫
∪An

(MT φn)pdµ = ωp(f
p/F )p lim

n

∫
∪An

φpn

and this holds in the sense stated above. This completes the proof of Theorem 3.3. �

We need now some additional Lemmas that we are going to state and prove below.

First we prove the following.

Lemma 3.3. Let φ be T -good. Then we can associate to φ, a measurable function

defined on X, gφ, which attains two at most values (cφJ or 0) on certain subsets of

A(φ, J), that decompose it, for every J ∈ Sφ, and which is defined in a way that for

every I ∈ T which contains an element of Sφ (that is it is not contained in any of the

AJ) we must have that
∫
I gφdµ =

∫
I φdµ. Additionally for any I ∈ Sφ we will have that∫

AI
gpφdµ =

∫
AI
φpdµ and µ({φ = 0} ∩AI) ≤ µ({gφ = 0} ∩AI).

Proof. We define gφ inductively using Lemma 3.2. Note that A(φ,X) = AX = X \
∪I∈Sφ,I∗=XI. We define first a function g

(1)
φ : X → R+ such that the integral

relation mentioned above holds for this function and additionally g
(1)
φ /AX attains at

most two values on certain subsets of AX , which are in fact unions of elements of T ,

and which decompose AX . For this proof we proceed as follows. We set g
(1)
φ (x) = φ(x),

for x ∈ X \ AX . We write AX = ∪jIj,X , where (Ij,X)j is a family of elements of

T , maximal with respect to the relation Ij,X ⊆ AX . For every Ij,X there exists an

integer kj > 0, such that Ij,X ∈ T(kj). Then we consider the unique I
′
j,X such that
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Ij,X ∈ C(I
′
j,X), that is I

′
j,X ∈ T(kj−1) and I

′
j,X ) Ij,X . By the maximality of Ij,X for

any j we have that I
′
j,X ∩ (X \ AX) 6= ∅, thus by Lemma 3.2 iv) there exists I ∈ Sφ

such that I∗ = X and I
′
j,X ∩ I 6= ∅. Since I

′
j,X ∩ AX 6= ∅, we conclude that I

′
j,X ) I,

for any such I ∈ Sφ. We consider now a maximal disjoint subfamily of (I
′
j,X)j , denoted

by (I
′
jN ,X

)N , which still covers ∪jI
′
j,X . By the above discussion we have that for every

N , we can write I
′
jN ,X

= DjN ∪ BjN , where BjN = I
′
jN ,X

∩ AX and DjN is a union of

some of the elements J , of Sφ for which J∗ = X. Obviously we have ∪NBjN = AX and

each BjN is a union of elements of certain elements of the family (Ij,X)j . Now fix a jN .

For any a ∈ (0, 1) which will be chosen later, using Lemma 2.1, we construct a family

AXφ,jN , of elements of T , all of which are contained in BjN , and such that∑
J∈AXφ,jN

µ(J) = aµ(BjN ).(3.13)

Define the function gN,φ,X : BjN → R+ by setting

gN,φ,X := cφN,X , on ∪AXφ,jN
:= 0, on BjN \ ∪AXφ,jN

(3.14)

where the constants cφN,X and γφN,X := µ(∪AXφ,jN ) satisfy∫
BjN

gN,φ,Xdµ = cφN,Xγ
φ
N,X =

∫
BjN

φdµ and∫
BjN

gpN,φ,Xdµ = (cφN,X)pγφN,X =
∫

BjN

φpdµ,

 ,(3.15)

It is easy to see that such choices for cφN,X and γφN,X are possible.

In fact (3.15) give

γφN,X =


( ∫
BjN

φdµ
)p

∫
BjN

φpdµ


1/(p−1)

≤ µ(BjN ), by Holder’s inequality

so we just need to set

a =
γφN,X
µ(BjN )

.

Then we set cφN,X =

∫
BjN

φdµ

γφN,X
. Define now g

(1)
φ on AX = ∪NBjN by g

(1)
φ (t) =

gN,φ,X(t) = cφN,X , for t ∈ BjN , for any N . Note now that g
(1)
φ may attain more than

one positive values on AX . It is easy then to see that there exists a common positive

value, denoted by cφX and measurable sets LN ⊆ BjN , such that if we define gφ(t) = cφX
for t ∈ LN , and gφ(t) = 0, for t ∈ BjN \ LN and for any N , we still have that∫
BjN

gφdµ =
∫

BjN

φdµ = cφXµ(LN ) and
∫
AX

gpφdµ =
∫
AX

φpdµ. For the construction of LN
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and cφX , we just need to find first the subsets LN of BjN such that the first of the

integral equalities mentioned right above are true, and this can be done for arbitrary

cφX , since the space (X,µ) is nonatomic. Then we just need to find the constant cφX
for which the second integral equality is also true. Note that for these choices of LN

and cφX we may not have
∫

BjN

gpφdµ =
∫

BjN

φpdµ, for every N , but the respective equality

with AX in place of BjN should be true.

Until now we have defined gφ on AX . We set now gφ = φ on X \AX . It is immediate

then, by the construction of gφ, that if I ∈ T is such that I∩AX 6= ∅, and I∩(X\AX) 6=
∅, we must have that

∫
I

gφdµ =
∫
I

φdµ. This is true since then I can be written as a

certain union of some subfamily of I
′
jN ,X

and of some class of J ′s, where J is such that

J∗ = X. We continue then inductively and change the values of gφ on the sets AI , for

I is such that I∗ = X, in the same way as was done before, but now working inside

those I ′s. In the limit we have defined the function gφ in all X, which obviously has

the desired properties. Moreover the inequality µ({φ = 0} ∩ AI) ≤ µ({gφ = 0} ∩ AI)
is easily verified if we work as above in BjN ∩ {φ > 0} instead of BjN . In this way by

passing from φ to gφ we increase or leave unchanged the measure of the set where the

corresponding function is zero.

Let now (φn)n be an extremal sequence consisting of T -good functions and let gn =

gφn . We are now ready to prove the following

Lemma 3.4. With the above notation for an extremal (φn)n sequence of T -good func-

tions we have that limn µ({φn = 0}) = 0.

Proof. Fix n ∈ N and let φ = φn and gφ = gφn and S = Sφ the respective subtree of

φ.

We consider two cases:

i) p ≥ 2

We set PI =

∫
AI

φpdµ

aI
, for every I ∈ Sφ.

We obviously have
∑
I∈Sφ

aIPI = F . We consider then the sum Σφ =
∑
I∈Sφ

γIPI , where

γI = γφI as above. We must have

Σφ =
∑
I∈Sφ

γI

∫
AI

φp

aI
=
∑
I∈Sφ

γI
γI · cpI
aI

=
∑
I∈Sφ

γ2I
cpI
aI

=
∑
I∈Sφ

γ2Ia
p−2
I cpI
ap−1I

p≥2
≥
∑
I∈Sφ

(γIcI)
p

ap−1I

=
∑
I∈Sφ

( ∫
AI

φ
)p

ap−1I

.
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From the first inequality in (4.20) in [5], and since φn is extremal we have that the last

sum in the last inequality tends to F , as φ moves along (φn)n. We conclude∑
I∈Sφ

γIPI ≈ F(3.16)

since Σφ ≤ F . Consider now for every R > 0 and every φ the following set

Sφ,R = ∪{AI = A(φ, I) : I ∈ Sφ, PI < R}.

For every I ∈ Sφ such that PI < R we have that
∫
AI

φp < RaI . Summing for all such I

we obtain ∫
Sφ,R

φpdµ < Rµ(Sφ,R).(3.17)

Additionally we have that∣∣∣∣∣∣∣∣
∑
I∈Sφ
PI≥R

aIPI − F

∣∣∣∣∣∣∣∣ =

∫
Sφ,R

φpdµ, and(3.18)

∑
I∈Sφ
PI<R

γIPI ≤
∑
I∈Sφ
PI<R

aIPI ≤
∫
Sφ,R

φpdµ.(3.19)

From (3.15) and (3.19) we have that

lim sup
φ

∣∣∣∣∣∣∣∣
∑
I∈Sφ
PI≥R

γIPI − F

∣∣∣∣∣∣∣∣ ≤ lim
φ

∫
Sφ,R

φpdµ,(3.20)

where we have supposed that the last limit exists (in the opposite case we just pass to

a subsequence of (φn)n). From (3.18) and (3.20) we conclude that

lim sup
φ

∑
I∈Sφ
PI≥R

(aI − γI)PI ≤ 2 lim
φ

∫
Sφ,R

φpdµ.(3.21)

By using now Theorem 3.3 we have that

lim
φ

∫
Kφ

(MT φ)pdµ = ωp(f
p/F )p lim

φ

∫
Kφ

φpdµ,

whenever the limits exist, where Kφ is a union of pairwise disjoint elements of Sφ. (The

conditions of Theorem 3.3 are satisfied because of the boundedness of the sequences

mentioned there).

Now for a fixed R > 0, Sφ,R is a union of sets of the form AI , for certain I ∈ Sφ.

Each AI can be written in view of Lemma 3.2 as AI = I \
⋃

J∈Sφ
J . Using then a diagonal
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argument and passing if necessary to a subsequence we can suppose that

lim
φ

∫
Sφ,R

(MT φ)pdµ = ωp(f
p/F )p lim

φ

∫
Sφ,R

φp.(3.22)

Since MT φ(t) ≥ f , for every t ∈ X, we have that

lim
φ

∫
Sφ,R

(MT φ)pdµ ≥ (lim sup
φ

µ(Sφ,R))fp,(3.23)

and because of (3.17) we have that

lim
φ

∫
Sφ,R

φpdµ ≤ lim sup
φ

Rµ(Sφ,R),(3.24)

for any R > 0. Combining the last two relations (in view of (3.22)) we obtain that

fp(lim sup
φ

µ(Sφ,R)) ≤ Rωp(fp/F )p · (lim sup
φ

µ(Sφ,R)),(3.25)

so by choosing R > 0 suitable small depending only on f, F we have that

lim sup
φ

µ(Sφ,R) = 0.(3.26)

Using now (3.21) and (3.24) we obtain, for this R that

Rlim sup
φ

∑
I∈Sφ
PI≥R

(aI − γI) ≤ 2 lim
φ

∫
Sφ,R

φpdµ ≤ 2R lim
φ
µ(Sφ,R) = 0

Thus

lim
φ

∑
I∈Sφ
PI≥R

(aI − γI) = 0.(3.27)

Since now
∑
I∈Sφ

aI = 1, µ(Sφ,R) =
∑
I∈Sφ
PI<R

aI we easily obtain from (3.27) that:

lim
φ

1− µ(Sφ,R)−
∑
I∈Sφ
PI≥R

γI

 = 0 ⇒

lim
φ

∑
I∈Sφ
PI≥R

γI = 1, which gives of course:

lim
φ

∑
I∈Sφ

(aI − γI) = 0. But then we have that

µ({φ = 0}) ≤ µ({gφ = 0}) =
∑
I∈Sφ

(aI − γI)
φ−→ 0,

Lemma 3.2 is proved in the first case.

ii) The case 1 < p < 2 is treated in a similar way:
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Here we define PI =

∫
AI

φp

ap−1I

and prove in the same manner that

lim
φ

∑
I∈Sφ

(ap−1I − γp−1I )PI = 0.

Using then the inequality xq− yq > q(x− y), for 1 > x > y and 0 < q < 1, we conclude

that:

lim
φ

∑
I∈Sφ

(aI − γI) = 0, that is

lim
φ
µ({gφ = 0}) = 0, and so

lim
φ
µ({φ = 0}) = 0,

and by this we end the proof of Lemma 3.4. �

Suppose now that (φn)n is extremal. For every φ ∈ {φn, n = 1, 2, . . .} we define

g′φ : x → R+ by g′φ(t) = cφI , t ∈ AI for I ∈ Sφ, that is we ignore the zero values of gφ.

Then we easily see because of Lemma 3.2 that

lim
φ

∫
X
g′φdµ = f, lim

φ

∫
X

(g′φ)pdµ = F and

lim
φ

∫
X
|gφ − g′φ|pdµ = 0.(3.28)

Additionally because of
∫
AI

gφdµ =
∫
AI

φdµ, I ∈ Sφ and I ≈
⋃

J∈Sφ
J⊆I

A(φ, J) we have that

for every I ∈ Sφ

AvI(gφ) = AvI(φ).(3.29)

From (3.29) we have that MT gφ ≥ MT φ on X ⇒ lim
φ

∫
X

(MT gφ)pdµ = Fωp(f
p/F )p,

in view of (3.15) and Theorem 2.1.

Since
∫
X

gφdµ = f ,
∫
X

(gφ)pdµ = F we have that (gφ)φ is an extremal sequence.

Suppose now that we have proved the following

lim
φ

∫
X
|g′φ − φ|pdµ = 0,(3.30)

and that

lim
φ

∫
X
|MT gφ − cgφ|pdµ = 0, for c = ωp(f

p/F )(3.31)
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Then because of (3.28) we would have that

lim
φ

∫
X
|φ− gφ|pdµ = 0

(3.31)⇒

lim
φ

∫
X
|MT φ− cφ|pdµ = 0

that is the result we need to prove. We proceed to the proof of (3.30) and (3.31).

Lemma 3.5. With the above notation

lim
φ

∫
X
|MT gφ − cgφ|qdµ = 0.

Proof. We recall that c = ωp(f
p/F ). We set for each φ ∈ {φn, n = 1, 2, . . .}

∆φ = {t ∈ X :MT gφ(t) > cgφ(t)}

It is obvious by passing if necessary to a subsequence that

lim
φ

∫
∆φ

(MT gφ)pdµ ≥ ωp(fp/F )p lim
φ

∫
∆φ

gpφdµ.(3.32)

We consider now for every I ∈ Sφ the set (X \∆φ)∩AI . We distinguish now two cases:

(i)AvI(φ) = yI > ccφI , where cφI is the positive value of gφ on AI (if it exists). Then

because of Lemma 3.3 we have that MT gφ(t) ≥ AvI(gφ) = AvI(φ) > ccφI ≥ cgφ(t), for

each t ∈ AI . Thus (X \∆φ) ∩AI = ∅ in this case. We study now the second one.

(ii)yI ≤ ccφI . Let now t ∈ AI with gφ(t) > 0, that is gφ(t) = cφI . We prove that for

such t we have MT gφ(t) ≤ cgφ(t) = ccφI . Suppose now that for some t we have the

opposite inequality. Then there exists Jt such that t ∈ Jt and AvJt(gφ) > ccφI . Then

one of the following hold

(a)Jt ⊆ AI . Then by the form of gφ/AI (equals 0 or cφI ), we have that AvJt(gφ) ≤
cφI < ccφI , which is a contradiction. Thus this case is excluded.

(b)Jt is not a subset of AI . Then two subcases can occur.

b1) Jt ⊆ I and contains properly an element of Sφ, J ′, for which (J ′)∗ = I. Since

now (ii) holds, t ∈ Jt and AvJt(gφ) > ccφI , we must have that J ′ ( Jt ( I. We choose

now an element of T , J ′t ( I, which contains Jt, with maximum value on the average

AvJ ′t(φ). Then by it’s choice we have that for each K ∈ T such that J ′t ⊆ K ( I the

following holds AvK(φ) ≤ AvJ ′t(φ). Since now I ∈ Sφ and AvI(φ) ≤ ccφI by Lemma

3.1 and the choice of J ′t we have that AvK(φ) < AvJ ′t(φ) for every K ∈ T such that

J ′t ( K. So again by Lemma 3.1 we conclude that J ′t ∈ Sφ. But this is impossible since

J ′ ( J ′t (, J ′, I ∈ Sφ and (J ′)∗ = I. We turn now to the last subcase.

b2) I ( Jt. Then by an application of Lemma 3.3 we have that AvJt(φ) = AvJt(gφ) >

ccφI ≥ yI = AvI(φ) which is impossible by Lemma 3.1, since I ∈ Sφ.

In any of the two cases b1) and b2) we have proved that we have (X \∆φ) ∩ AI =

AI \ (gφ = 0), while we showed that in case (i), (X \∆φ) ∩AI = ∅.
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We remind that
∑
I∈Sφ

(aI − γI)
φ−→ 0. Since

⋃
I∈Sφ AI ≈ X we conclude by the above

discussion that X \ ∆φ ≈
(⋃

I∈S1,φ
AI
)
\ Eφ, where µ(Eφ) → 0 and S1,φ is a subset

of the subtree Sφ. Since now each AI , I ∈ S1,φ ⊆ Sφ is written by Lemma 3.2 as a

set difference of unions of elements of Sφ and Theorem 3.3 holds for such unions, we

conclude by a diagonal argument and by passing if necessary to a subsequence, that

lim
φ

∫
∪AI
I∈S1,φ

(MT φ)pdµ = ωp(f
p/F )p · lim

φ

∫
∪AI
I∈S1,φ

φpdµ, so since

µ(Eφ) → 0 =⇒ lim
φ

∫
X\∆φ

(MT φ)pdµ = ωp(f
p/F )p lim

φ

∫
X\∆φ

φpdµ.

Because now of the relation MT gφ ≥ MT φ ,which holds µ-almost everywhere on X

we have as a result that

lim
φ

∫
X\∆φ

(MT gφ)pdµ ≥ ωp(fp/F )p lim
φ

∫
X\∆φ

gpφdµ.(3.33)

Adding the relations (3.32) and (3.33) we have obtain lim
φ

∫
X

(MT gφ)pdµ ≥ ωp(fp/F )F ,

which in fact is an equality since (gφ) is an extremal sequence. So we must have equality

in both (3.32) and (3.33). By using then the elementary inequality xp − yp > (x− y)p

which holds for every x > y > 0 and p > 1, in view of the inequality MT gφ ≥ cgφ on

∆φ we must have that

lim
φ

∫
∆φ

|MT gφ − cgφ|pdµ = 0(3.34)

Similarly for X \∆φ. That is

lim
φ

∫
∆φ

|MT gφ − cgφ|pdµ = 0(3.35)

Adding (3.34) and (3.35) we derive limφ||MT gφ − cgφ||Lp = 0, and by this we end the

proof of our Lemma. �

We now proceed to

Lemma 3.6. Under the above notation (3.30) is true.

Proof. We just need to prove that

lim
φ

∫
{g′φ≤φ}

[φp − (g′φ)p]dµ = 0.(3.36)

Then since

lim
φ

∫
{g′φ≤φ}

[φp − (g′φ)p]dµ = lim
φ

∫
φ≤g′φ

[(g′φ)p − φp], and p > 1

we have the desired result, in view of the inequality (x− y)p < xp − yp, for 0 < y < x

and p > 1.
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We use the inequality

t ≤ tp

p
+

1

q
, for every t > 0 where p, q > 1 such that

1

p
+

1

q
= 1,(3.37)

We set

∆
(1)
I,φ = {g′φ ≤ φ} ∩A(φ, I)

∆
(2)
I,φ = {φ < g′φ} ∩A(φ, I).

Because of (3.37) if we write cI,φ instead of cφI and suppose that cI,φ > 0, we have that

1

cI,φ
φ(x) ≤ 1

p

1

cpI,φ
φp(x) +

1

q
, for every x ∈ AI = A(φ, I).

Integrating over ∆
(1)
I,φ, and ∆

(2)
I,φ we have that

1

cI,φ

∫
∆

(j)
I,φ

φdµ ≤ 1

p

1

cpI,φ

∫
∆

(j)
I,φ

φpdµ+
1

q
µ(∆

(j)
I,φ), for j = 1, 2, I ∈ Sφ

which gives

cp−1I,φ

∫
∆

(j)
I,p

φdµ ≤ 1

p

∫
∆

(j)
I,φ

φpdµ+
1

q
µ(∆

(j)
I,φ)cpI,φ.

Note that the last inequality is satisfied even if cI,φ = 0. Summing the above for I ∈ Sφ
we obtain ∑

I∈Sφ

cp−1I,φ

∫
∆

(j)
I,φ

φdµ ≤ 1

p

∫
⋃
I
∆

(j)
I,φ

φpdµ+
1

q

∑
I∈Sφ

µ(∆
(j)
I,φ)cpI,φ,(3.38)

for j = 1, 2 ⇒ (by adding the above to inequalities)∑
I∈Sφ

cp−1I,φ

∫
A(φ,I)

φdµ ≤ 1

p
F +

1

q

∑
I∈Sφ

µ(A(φ, I))cpI,φ.(3.39)

The left hand side of (3.39) is equal to∑
I∈Sφ

cp−1I,φ (cI,φγ
φ
I ) =

∑
I∈Sφ

γφI c
p
I,φ =

∫
X
gpφdµ

while the right hand side is equal to
1

p
F +

1

q

∫
X

(g′φ)pdµ. In the limit we have equality in

the limit on (3.39), because of (3.28). This gives equality on (3.38) for j = 1, 2 in the

limit. Thus for j = 1 we have that∑
I∈Sφ

cp−1I,φ

∫
∆

(1)
I,φ

φdµ ≈ 1

p

∑
I∈Sφ

∫
∆

(1)
I,φ

φpdµ+
1

q

∑
I∈Sφ

cpI,φµ(∆
(1)
I,φ)⇒

∫
{g′φ≤φ}

φ(g′φ)p−1dµ ≈ 1

p

∫
{g′φ≤φ}

φpdµ+
1

q

∫
{g′φ≤φ}

(g′φ)pdµ.(3.40)
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We set

tφ =

(∫
{g′φ≤φ}

φpdµ

)1/p

, Sφ =

(∫
{g′φ≤φ}

(g′φ)pdµ

)1/p

.

Then ∫
{g′φ≤φ}

φ(g′φ)p−1dµ ≤ tφ · Sp−1φ , so (3.40) gives:

1

p
tpφ +

1

q
Spφ ≤

φ
tφ · Sp−1φ

so as a result we have because of (3.37) that

1

p
tpφ +

1

q
Spφ ≈φ tφ · S

p−1
φ .

Since now in (3.37) we have equality only for t = 1, and tφ, Sφ are bounded we conclude

that
tpφ
Spφ
−→
φ

1, so tpφ − S
p
φ

φ−→ 0⇒
∫
{g′φ≤φ}

[φp − (g′φ)p]dµ
φ−→ 0,

which is (3.36). �

We have thus proved Theorem A. We mention it as

Theorem 3.4. Let (φn)n be a sequence of T -good functions such that
∫
X φndµ = f

and
∫
X φ

p
ndµ = F . Then (φn)n is extremal if and only if

lim
n

∫
X
|MT φn − cφn|pdµ = 0, where c = ωp(f

p/F ).

At last we mention that since T -good functions include T -step functions, in the case

of Rn, where the Bellman function is given by (1.4) for a fixed dyadic cube Q, we obtain

the result in Theorem 3.4 for every sequence of Lesbesgue measurable functions (φn)n.

In general in all interesting cases we do not need the hypothesis for φn to be T -good

since T -simple functions are dense on Lp(X,µ).
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