

2 NANOCAPILLARY & μ ~ μ **»** , μ μ : University of Oxford, University of Antwerp, French National Centre for Scientific Research (CNRS), University of Alicante JJ X-Ray μ Danish Science Design. μ [NANOCAPILLARY[©]] μ μ . μ μ μ μ μ μ μ μ μ 1 μ μ CH₂Br₂ μ μ Vycor[®] 7930 (SBA-15 μμ μ & MCM-41) 2 μ μ μ • μ μ μ . . . μ μ μ μ μ μμ μ (Vycor[®] 7930) « μ », μ μ inμ μ situ μ μ 1. μ μ μ μμ **2** | P a g e ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ ione ΘΡΗΣΚΕΥΜΑΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ KAI ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Ευρωπαϊκή Ένωση

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

κό Ταμείο

μ.

1. μ in-situ μ – μ

	μ		2	μ
1.00	Vycor [®] 7930 µ			
	μ	(.2)		
Sad Sad	μ			
Vycor 7930	μ			
$2. \qquad \mu \qquad \text{Vycor}^{\textcircled{\text{B}}} 7930$	μ			
:				

1.		(CH_2Br_2	_	μ	
		μ				
2.	μ	-				
3.	-	μ				

1	μ		
		μ	,

CH_2Br_2		μ	_	•
	282.6 rad/s	2700 rpm.		

-	$\mathbf{r}_{o}\left(\mathbf{m} ight)$		$\mathbf{r}_{s}\left(\mathbf{m} ight)$	(rad/s)
PRB	3.6 x 10 ⁻³		3.65 x 10 ⁻³	282.6
1.			μ	(RPB: Rotated Packed Bed).
	μ	μ		- :1)
μ Vycor [®] 7930			, 2) μ	Vycor [®] 7930

| P a g e

		μμ	Porod (q^4	(q) vs. Q^4		background
	K_p	•			μ	
μμ	Porod	-4.				

μ	K_p (Å ⁻⁴)	$Q_p(\AA^{-3})$		S/V (Å ⁻⁴)
Vycor	10 x 10 ⁻⁷	1.79 x 10 ⁻⁷	0.15	2.23
$CH_2Br_2 + Vycor$	6 x 10 ⁻⁷	2.02 x 10 ⁻⁷	0.15	1.19
$CH_2Br_2 + Vycor$	8 x 10 ⁻⁷	2.50 x 10 ⁻⁷	0.15	1.28

μ	μ		μ
			CH_2Br_2
		μ	
	μ Vycor/C	H_2Br_2	
	μ	7.5%.	
	μ	$_p$ (Difference in	Average Electron
Density),	P_p (Porod Constant)	(thickness of thin plat	e)

.

μ	$_{p}$ (Å ^{-3/2})	$P_p(\mathring{A}^{-5/2})$	$T(\AA^{-2})$
Vycor	8.43 x 10 ⁻³	0.118	1.61 x 10 ⁻⁴
$CH_2Br_2 + Vycor$	8.96 x 10 ⁻³	0.067	3.39 x 10 ⁻⁴
$CH_2Br_2 + Vycor$	9.97 x 10 ⁻³	0.080	3.91 x 10 ⁻⁴

6 | P a g e

		,			,		
		μ		•			
μ	"New	Science	Group"	Imperial	Chemi	cal Industries	
μ μ (<i>Rotating packed bed</i>)							
	μ			Ramshaw	Malliso	on [1]	
	μ	μ					
						•	
					μ	μ	μ

			(CH ₂ Br ₂)	μ		μ	(Vycor [®] 7930)
		•					μ
	μ	μ			μ		
				μ			
	μ			μ	μ		Vycor [®]
7930	μ		μ,μ		,		[2-4]
μ							μ
	μ				μ	μ	U.S. EPA, 1987 [5].

	μ	(Pa s)	(kg/m ³)	D (m ² /s)	(kg/s ²)	_c (kg/s2	2) MW
CH ₂ Br	₂ 1.0	9 x 10 ⁻³	2497	6.8 x 10 ⁻⁶	⁵ 39 x 10 ⁻¹	³ 12 x 10 ⁻²	³ 173.83
		2.		CH ₂ Br ₂ µ	μ		
	μ		μ	μ		μ	,
	(3)			μ	Chen	[6] (2006)
	μ		μ		Chen [7] (2005), Tung	Mah [8]
(1985)	Or	nda [9]	(1968).		3		
	μ		μμ				μ
	μ	μ	(K_L)				
				(3)		
μ	μ	(KL)		(Higee)		(4	4) µ
		(conve	ntional).				

Mass Transfer (K _L)	Model
$\frac{k_{G} \Gamma d_{p}}{D \Gamma_{t}} \left(1 - 0.93 \frac{V_{o}}{V_{t}} - 1.13 \frac{V_{i}}{V_{t}} \right) = 0.35 S_{c}^{0.5} \operatorname{Re}^{0.17} Gr^{0.3} W e^{0.3} \left(\frac{\Gamma_{t}}{a_{p}} \right)^{-0.5} \left(\frac{\dagger_{c}}{\dagger_{g}} \right)^{0.14}$	Chen et al., 2006
$\frac{k_{G}\Gamma d_{p}}{D\Gamma_{t}} \left(1 - 0.93 \frac{V_{o}}{V_{t}} - 1.13 \frac{V_{i}}{V_{t}}\right) = 0.35 S_{c}^{0.5} \operatorname{Re}^{0.17} Gr^{0.3} We^{0.3}$	Chen et al., 2005
$k_{G} = \frac{D}{d_{p}} \frac{2 * 3^{1/3}}{f} S_{c}^{1/2} \operatorname{Re}^{1/3} \left(\frac{\Gamma_{t}}{a}\right)^{1/3} Gr^{1/6}$	Tung and Mah, 1985
$k_{G}\left({-g}\right)^{1/3} = 0.0051\left(\frac{L}{\Gamma}\right)^{2/3}S_{c}^{-1/2}\left(\Gamma_{t}d_{p}\right)^{0.4}$	Onda et al., 1968
3. μ μ μ.	

μ μ μ Higee μ (gravitational acceleration (g)) (centrifugal acceleration (ac)). μ

4.

Madal	Mass Transfer (K _L)		
Iviodel	Conventional (g)	Higee (a _c)	
Chen et al., 2006	0.026 m/s	0.058 m/s	
Chen et al., 2005	0.027 <i>m/s</i>	0.061 m/s	
Tung and Mah, 1985	0.027 <i>m/s</i>	0.042 m/s	
Onda et al., 1968	0.006 m/s	0.015 m/s	
4. (ac	μ μ μ lsorbate)	μ μ	
μ	μ	μ μ	
μ,μ	μ μ		
μ	. , μ μ	Higee , µ	
μ	2	μ .	
2		CH ₂ Br ₂ ,	

μ μ μ μ μ , μμ μ μ μ μ,

8 | P a g e

μ

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Μετη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

μ

[1] Ramshaw C., Mallinson R. H., "Mass Transfer Process", U.S. Patent 4,283,255, 1981.

[2] David S. Weisberg and Martin Dworkin, Method for Measuring Changes in Surface Tension of Agar, Appl. Environ. Microbiol. 1983, 45(4):1338.

[3] David R. Lide, CRC Handbook of Chemistry and Physics, New York 2003, p 1136.

[4] S. Banerjee and F.M. Etzler, An Algorithm for Estimating Contact Angle, Instituteof Paper Scienceand Technology, 1995, Num. 556.

[5] U.S. EPA, Addendum to the Health Assessment Document for Trichloroethylene. Updated Carcinogenicity Assessment for Trichloroethylene. External Review Draft. EPA/600/8-82-006FA. Office of Health and Environmental Assessment, Office of Research and Development, Washington DC, 1987.

[6] Chen Y. S., Lin C. C., Liu H. S., Packing Characteristics for Mass Transfer in a Rotating Packed Bed, Ind. Eng. Chem. Res. 2006, 45, 6846-6853.

[7] Chen Y. S., Lin C. C., Liu H. S., Mass Transfer in a Rotating Packed Bed with Various Radii of the Bed. Ind. Eng. Chem. Res. 2005, 44, 7868.

[8] Tung H. H., Mah R. S. H., Modeling Liquid Mass Transfer in Higee Separation Process. Chem. Eng. Commun. 1985, 39, 147.3.

[9] Onda K., Takeuchi H., Okumoto Y., Mass Transfer Coefficient between Gas and Liquid Phases in Packed Columns. J. Chem. Eng. Jpn. 1968, 1, 56.

9 | Page

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης