

- Nanocapillary

μ

MIS 375233

μ

μ	
1.	3
2. μ	4
3. SAXS	11
4. RD	11
5. SEM/TEM/EDX	18

1.

2. μ

					μ				μ
μ			μ						μ
	μ					μ.		μ	
CH ₂ Br ₂ µ		20 C			V	/ycor 7930). То	μ	
μ μ	ı	μ				(IC	GA-001		
HIDEN .	μ		IV	(μ	Л	JPAC)		
		H2			ļ	u		μ	
μ		(μ	, ne	twork	effect).
μ			μ					(de	sorption
scanning curves).			μ		(μ	
μ.1	l)							μ	
		μ							μ
		,			μ	μ	μ	μ	μ
μ	μ			(poi	re bloc	king)		(perc	colation)
μ	μ		. ,		ŀ	ı			
	μ						μ	L	
μ μ		μ					μ		
	μ				μ	μ			
μ.		μ		μ			μ		
μ		(μ			,
μ).							

CH₂Br₂ Vycor 7930 20 C. μ 1. μ μ

ό Ταμείο

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

2. Autosorb-1. -He, -Manifold (μ μ μμ μ, 2,), Cal.-Calibration (μ), μ , V--(Pirani), P-, 0μ

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

1,

 $P/P_0 = 0.6$,

μ

μ

μ

μ 4. μ ₂ 77 μ SBA-15_b1.

SBA-15_b2

μ (IGA). μ6. μ μ $\mu \mu$), Cal.-Calibration (-He, -Manifold (- 2, _ μ, , V-(Pirani), P-), μ , μ , 0μ.

2. SAXS

μ	u 2	in	situ µ		CH ₂ Br	₂ Vyce	or [®] 7930	
_				h	ι			μ
		μ						
		~5000	0 rpm.		μ			
μ			μ					
μ		μ	•					
	μ							
	μ		μ					
	μl			® 7020	QU	D		μ
	CH_2B_{r2}	μ	Vyo	cor° 7930	. CH	$_2$ Br $_2$		
	μ			μ	μ			
(contrast	matching)					μ		
(scanning)μ			μ	μ		•	
μ			μ			μ	,	
μ 	μ			μ	;			
μμ		,	μ	μ	l	n silu	μ	•
					_		(7)
		μ				μ	CH ₂ Br ₂	')
μ Vv	cor [®] 7930	_			μ			
2.				u	u			
u	u u			P*	P.			u
u			μ					•
•								
μ		μ				μ		
μ						•	,	
·				μμ				
					AMMA			12
****	¥ [ΕΚΠΑΙΔΕΥΣΗ Μ	CAI ΔIA BIOY N	ΑΘΗΣΗ		-2013	12
****	* Yn	OYPEIO	ΠΑΙΔΕΙΑΣ ΚΙ	ΑΙ ΘΡΗΣΚΕΥ	MATON		NA THY BYGHTAE	
Ευρωπαϊκή Ευρωπαϊκό Κοινων	Ένωση ΕΙ	ΔΙΚΗ Υ	ΠΗΡΕΣΙΑ τηση της Ελλάδα		ίκης Ένωσης			
	(6)			C 1256 B				

- ¹ D.H. Everett, D.W.I. Whitton, Trans. Faraday Soc., 48 (1952) 749.
 ² D.H. Everett, F.W. Smith, Trans. Faraday Soc. 50 (1954) 187.
 ³ D.H. Everett, Trans. Faraday Soc. 50 (1954) 1077.

- ⁴ A.Ch. Mitropoulos, J. Coll. Interface Sci. 336 (2009) 679.

μ		μ	μ .	
	μ	μ	μ (μ SAXS)	
		μμ		
			D /	
	2		$P_{P_0} = 0.544$, µ	
		μ		μ
		•	μ 3	
		μ		
	1	μ.	2	
		·	μ	
CH ₂ Br	2	μ	, μ μ	
2 .	"uu"	·		
	нн. П. П.		и и	
	p. p		r. r.	
D/		,	,	μ
P_0 ,		μ	μ.	
	μ3	<i>in situ</i> µ (,)	
μ	·	_	SBA-15, MCM-41,	
MCF			SBA-15 u	
	μ	MCM-41 u	u <i>in situ</i> u	
SAXS	u	μ		
~	r.,	•		

,

8. In situ SAXS μ MCM-41 CH₂Br₂ 25 °C

Т	μ	in situ	μ	CH ₂ Br ₂		_
25 °C			8,		μ	
	•					
			μ		-X,	
		,		(in	situ) µ	SAXS
		- CH ₂ Br	2 2	20 C (μ	9 & 10).	μ
	,		μ	Q=0.0038 Å	X ⁻¹	μ
		μ		-x (beam st	top),	

•

CH_2Br_2 μ 10. Vycor μ 20 C.

(correlation peak) Vycor μ *Q*~0.025 Å⁻¹. μ μ μ μ μ μ μ Kelvin. μ μ μ μ Bragg (μ . 3) μ μ Bragg. CH_2Br_2 μ (Vycor) μ μ μ (contrast matching). μ μ 10). (μ μ , (10) μ μ μ μ

> μ μ

4. XRD

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

•

μ 8. μ XRD SBA-15.

5. SEM/EDX/TEM

μ

EDX

μ

MCM -41,

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο

ακό Ταμείο Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης