

3 ΘΑΛΗΣ - Nanocapillary MIS 375233

: 1/1/2014-31/12/2014

«NANOCAPILLARY», μ (μ) μμ « »

-Nanocapillary» μ μμ ~ μ μ μ μ μ μ μ μ μ ,μ μ .

μ μ

μ μ μ > μ μ

μ , μ, μ

▶ μ μ

NANOCAPILLARY

(ultra, micro, meso macro)

μ μ μ μ.

μ. μ μ

1 | Page

μ

,

μ

μ μ hardware. μ

μμ μ (μ :

- μ
- (on going evaluation)
- μ μ
- μμ

() (μμ μ) μ

:

- 1. μ
- 2. μ
- 3. μ

μ5 μ μ

- : 1. University of Antwerp
- 2. University of Oxford
- 3. University of Alicante
- 4. CNRS
- 5. JJ X-Ray Systems ApS

:

METHOD)		μ		μ μ (log	l book)	μ	μ μ	μ	μ , «Log	µ Book»,	μ
μ	μ	μ	μ μ		μ μ			μ	μ μ		μ	
Log Book	μ				μ		:					
\triangleright					,							
\triangleright				μ			μ					
\triangleright		μμ			μ							
\triangleright		μ		μ								

3 | P a g e

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Μετη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

			μ	μμ	,	,	,
μ	,	μ		Nanocapillary.			

,

	μ	μ	μ
μ		:	

In Situ . .3. μ μ μμ "Nanocapillary" μ . .3 μ in situ μ μ μ •

1._____ 1

" ,, $CH_2B_{r2} \\$ μ μ Vycor[®] 7930 μ, , CH₂Br₂, μ Vycor[®] 7930 10 mm μ, μ μ μ μ (Intelligent Gravimetric Analyser, IGA). μ

4 | Page

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

$$\Delta(p) = (V_D - V_A) \left[\frac{\left(R - t(p)\right)^2}{\left(R - t(pA)\right)^2} - 1 \right]$$

μ

Hasley ln(p/po)=K/t^m,

 $\mu \qquad \mu \qquad \qquad \mu \qquad : K = 61.8 \qquad m = 2.219.$

t-film

2. _____2

	μ 2	in situ µ		CH_2Br_2	Vycor [®] 79	930	
	_			μ		μ	
μ		μ	ι				μ
		μ				μ	
			μ		μ	μ	
μ		μ					
	•						

	μ				
μ	μ	μ	μ	μ.	

3. 3

μ 3	in situ	ex situ	ιμ			
			SBA-15	μ		
μΝ	ICM-41	μ	MCF-L	Αμ	μ	in situ
μ	SAXS	μ	μ			
		μ	μ	μ		
MCM-41	μ	•	μ			
μ			_			
μ			μ			
	μ					

μ

. .4. µ

Functional Theory (NLDFT)

 $(p/p_0=1),$

CH₂Br₂.

					Bragg (10)	(11)	MCM-41			
		μ					•	μ		
$p/p_0=$	=0.25	μ			(20)	0.25 Å	l			
		$p/p_0=0.34$	•	μ			μ			
μ		μ		μ	μ	μ	μ			
				μ			μ			
	(10) µ	μ	μ						
μ		$(p/p_0 =$	0.72),						μ	μ
	μμ	,		(11)	(20)		μ			
	•				μ	μ (<i>p</i> / <i>p</i> ₀ =1)		μ	
		μ					Bragg.			
		CH ₂ B	\mathbf{r}_2				μ	(M0	CM-41))
μ		ομ			(contra	ist matchi	ng) µ	μ	μ	
			μ							

μμ

vycor 7930. Vycor 7930 μ μ Corning. H μ μ μ μ μ μ i. 1938 Nordbergⁱⁱ Hood μ μ μ . 75% SiO₂, 5% Na₂O 20% B₂O₃ μ μ μ μ μ μ μ μ μ μ 900 C μ μ : 5% B₂O₃, 0,5% Na₂O μ μ SiO₂. μ μ μ, (

). μ μ μ

μ μ μ μ μ μ μ μ Zsigmondyⁱⁱⁱ 6 μ μ '.

Vycor μ μ μ μ 10 0,5mm. μ μ μ (SEM). μ 30% μ μ μ 2 2 $350^{\circ}C$ μ μ μ

11 | Page

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

CM & SBA

μ			μ	μ	2	
50nm	IUPAC.	μ		μ	μ	
().				

. μ μ μ μ .

MCM SBA μ μ μ SBA – 15 MCM – 41. μ μ μ Antwerp, μ Alicante μ μ μ μ . μ ,μ μ .

μ μ . μ μ μ

.5. μ MCM - 41 TEI AM 5 3 μ MCM - 41 μ

calcination. $\mu \mu \mu \mu$ $\mu \mu$, μ SAXS, XRD, SEM, TEM, Nitrogen Porosimetry .

1. SBA 1.1 SBA

To SBA		MCM			μ			
	μ		Santa	Barbara	(Santa	Barbara	Amorphous).	SBA
	μ		μ			, μ		
			μ	SBA		,		
,						μ	SBA	SBA
- 15		μ	μ	h	ι	μ	μ	
	4 – 14nr	n. µ		μ		μ		SBA –
15	μ	μ			•			μ
μ	S	SBA – 15.						

SBA - 15

μ	μ

. 6

		•	μ	μ	SBA – 15	
	(PEO)			μ.		
μ		μ		μ		
	μ			μ	μ	

μ μ μ μ μ, ph, , .

SBA – 15 µ	μ	μ	
μ			

1.2

		μ	SBA – 15	
μμ .			P123, , HCl, TEOS	,
μ	μμ			

. 7.

.7

SBA – 15

.8. μ SBA – 15

TEI AM

 μ SAXS, XRD, SEM, TEM, Nitrogen Porosimetry .

Log book

μ μ μ μ μ μ μ • μ μ μ μ μ μμ μ

μ μ μ μ μ μ μ μ μ μ Log Book μ μ logbook Nanocapillary μ . μ μ μ

μ μ μ μ μ μ μ μ μ μ μ μ μ

Website

Nanocapillary μ (), μ μ (μ μ μ), μ μ μ . (design) μ μ μ

> μ μ

18 | Page

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

μ μμ. μ

μ μ (, μμ . .)

μμ μ μμ.

- : • μ
- μ μ
- µ
- μ μ links (, , , . .).
- µ
- μμ

μ Nanocapillary

μ μ μ Dr. J. W. Nolan, μμ .

μ μ μ μ μ μ

μ. μ μ μ SBA – 15. μ μ , μ μ RDF I(q) (

), μ μ, μ μ. μ

μ.

μ PyOpenGL. μ μ μ μ loadtxt μ μ PyOpenGL. μ μ μ μ 128 128 128 μ • μ

μ

19 | P a g e

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ ατένδυση στην μουγωνία της χνώσης ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο

ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Μετη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

111111111111111111111111111 10000000000	***************************************
111111111111111111111111111111111111111	

111111111111111111111111111110000000000	
111111111111111111111111111111111111111	***************************************

111111111111111111111111111111110000000	Meessaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
111111111111111111111111111111111111111	***************************************
111111111111111111111111111111111111111	**************
111111111111111111111111111111111111111	bbeebeedee 11111111#1111111111111111111111111

μ μ μ. μμ μ μ μ . . μ. μ μ scripts μ 1.

			1	script		3		1	
μ						(μ	
		SAXS).	2		μ			MySQL	
μ		μ				,			μ
php.	3		μ		μ			,	
			μ				μ		

22 | Page

.

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Log	Dataset
User:	T Select Calibration Data
Select	T Select Cosmic Radiation Data w/o beam
Material Type: Sample Ref. Number:	T Select Cosmic Radiation Data with beam
	T Select Window Data
т	T Select Mask Data
Form of material:	T Select Sample Data
Select	T Dataset for the dB Dataset Rating: -Set-
Experiment	
Wavelength P1 P2 P3 Select + S + S	-
Sample-Detector Calibration material Sample h	nolder:
Select +Select	t 🛟
Window material: Run time (s): Temperature (K)):

. 3. To interface μ SAXS.

- µ
 - gBeh (10h)

- Cosmic Radiation
- Mica Windows
- Empty Beam
- AgBeh Under Rotation
- Vycor
- Vycor Under Rotation
- Ch2Br2.
- NKLB1P12
- NKLB1P28
- NKLB1P29
- NKLB1P36
- NKLB1P37

2D (porosity) μ μ , (autocorrelation), I(q) μ μ μ . μ , (Stochastic Reconstruction) 3D µ μ , 2D μ μ

[1].

26 | Page

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

.

			μ	
	: 1)	μ		
μ	μ	3D		
μ	Hermite, 3)		μ	
	2D			

				,				
	(μ		μ	0				1)
μ		2)			μ			
							μμ	
		3	D	μ		,		

μ (rapid prototyping).

MATLAB

[1] M.E. Kainourgiakis, E.S. Kikkinides, A.K. Stubos, "Diffusion and Flow in Porous Domains Constructed Using Process-Based and Stochastic Techniques", Journal of Porous Materials, vol. 9, no. 2, pp. 141-154, 2002

ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Ευρωπαϊκή Ένωση oó Ke

có Touri

1. µ			3μ	3 μ		$N(x, y, z)\mu$	Gaussian	
		Box-Muller µ	μ	μ	•			

2. μ μ $F(r) = F(x, y, z) = \frac{S_2(r = \sqrt{x^2 + y^2 + z^2}) - S_2(0)^2}{S_2(0) - S_2(0)^2}$ $S_2(r)$ 2 μ 2D 3. 3 μ (μ), μ : $R(x, y, z) = \sum_{i=0}^{c} \sum_{j=0}^{c} \sum_{k=0}^{c} N(x+i, y+j, z+k) \times F(i, j, k)$ 4. 3D (R) µ μ μ Gaussian 5. (thresholding) 3D µ (e) µ 2D MATLAB μ (rapid prototyping). 1: μ

 1: ()
 2D
 , ()
 μ μ 3D μ

 ()
 μ 3D μ .

laterial Name * 💷		
fype × Ø		
*		
Density 🕼		
and the state of t	Transformed data (%	
ramework density 💷		
con		
Choose File no file se acted		
eompanies :		
Manufacturer *		
;		
Jescription / Structure * w		

.2. μ μ.

31 | P a g e

. 3. interface .

. 4. interface .

• mica

- capillaries
- campton
- tapes
- CR ()

μ capillary.

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

3. μ μ

μ μ μ μ μ μ ,μ μ μ μ μ ,μ μ μ μ μ μ Javascript XML (Alax). μ μ Javascript PHP, ,μ μ μ μ . μ , 1. μ μ μ μ

 $\begin{array}{cccc} (http://cairographics.org). & jQuery & \mu & & & \\ & jQuery & \mu & bpopup & (http://dinbror.dk/bpopup/) \\ & \mu & & & \\ & & & & & \\ & & & & & & \\ & & & & & Fabric,JS & & & & & & \\ \end{array}$

, μ. μ μ, μ . μμ

μ.

International Conferences:

μ

μ

- 1. E. P. Favvas, K. L. Stefanopoulos, A. Vairis, J. W. Nolan and A. Ch. Mitropoulos, "In situ SAXS investigation of dibromomethane adsorption in ordered mesoporous silica", Eighth International Symposium Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids, 27th - 31st August, 2012, Krakow, Poland, Proceedings, pp. 238–239.
- 2. E. P. Favvas, K. L. Stefanopoulos, S. K. Papageorgiou, J. W. Nolan and A. Ch. Mitropoulos, "In situ small angle x-ray scattering and benzene adsorption in carbon hollow fiber membranes", Eighth International Symposium Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids, 27th - 31st August, 2012, Krakow, Poland, Proceedings, pp. 240-242.
- 3. Evangelos P. Favvas, Konstantinos L. Stefanopoulos, Nikolaos Ch. Vordos and Athanasios Ch. Mitropoulos, "In situ SAXS study of adsorption in porous glass including hysteresis scanning measurements", 11th International Conference on the Fundamentals of Adsorption (FOA), 19th – 24th May, 2013, Baltimore, USA.
- 4. E.P. Favvas, K.L. Stefanopoulos, N.Ch. Vordos, G.I. Drosos, A.Ch. Mitropoulos, "Characterization of calcium sulfate bone graft substitutes by porosimetry methods", 6th Panhellinic Conference of Porous Materials, 9th-10th September, **2013**, Cavala, Greece.
- 5. E. P. Favvas, K. L. Stefanopoulos, N. Ch. Vordos, A. Ch. Mitropoulos, "Dibromomethane adsorption on mcm-41 by in situ saxs", 6th Panhellinic Conference of Porous Materials, 9th – 10th September, **2013**, Cavala, Greece.
- 6. J. W. Nolan, D. Gkika, N. Vordos, E. P. Favvas, A. Ch. Mitropoulos, "The NANOCAPILLARY Software for Analysis, Simulation and Cataloging of Small Angle X-Ray Scattering data", 6^{th} Panhellinic Conference of Porous Materials, $9^{th} - 10^{th}$ September, 2013, Cavala, Greece.

39 | Page

ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

μ

μ

μ

- K. D. Karakosta, E. P. Favvas, E. P. Kouvelos, N. C. Kokkinos, A. Ch. Mitropoulos, R. Nickolov, "*A study of domain theory on Vycor glass*", 6th Panhellinic Conference of Porous Materials, 9th – 10th September, **2013**, Cavala, Greece.
- D. A. Gkika, P. Cool , E. F. Vansant, J. W. Nolan, N. Vordos, E. P. Favvas and A. Ch. Mitropoulos, "*How much do nanomaterials cost?*", 6th Panhellinic Conference of Porous Materials, 9th 10th September, **2013**, Cavala, Greece.
- E. P. Favvas, K. L. Stefanopoulos, N. Ch. Vordos, A. Ch. Mitropoulos, "In situ CH₂Br₂ adsorption and SAXS measurements in MCM-41", 10th International Symposium on the Characterization of Porous Solids (COPS-X), 11-14 May, 2014, Granada, Spain.

Peer reviewed journals:

- 10. E. P. Favvas, K. L. Stefanopoulos, S. K. Papageorgiou and A. Ch. Mitropoulos "In situ small angle x-ray scattering and benzene adsorption in carbon hollow fiber membranes", Adsorption 19, **2013**, 225–233.
- E. P. Favvas, K. L. Stefanopoulos, A. Vairis, J. W. Nolan, K. D. Joensen and A. Ch. Mitropoulos, "In situ SAXS investigation of dibromomethane adsorption in ordered mesoporous silica", Adsorption 19, 2013, 331–338.

Peer reviewed journals (Under Review):

- Evangelos P. Favvas, Konstantinos L. Stefanopoulos, Nikolaos Ch. Vordos, George I. Drosos, Athanasios Ch. Mitropoulos, "Structural study of bone graft substitute calcium sulfate cements by porosimetry, diffraction and microscopy", J. Amer. Ceram. Soc. 2014, under review.
- 13. Evangelos P. Favvas, Evangelos P. Kouvelos, Sergios K. Papageorgiou, Constantinos G. Tsanaktsidis, Athanasios Ch. Mitropoulos "*Natural resin polymer: A promising material for H*₂O adsorption process. A performance study and a structural characterization evaluation", Polymer Testing, **2014**, under review.
- E. P. Favvas, K. L. Stefanopoulos, N. Ch. Vordos, A. Ch. Mitropoulos, N. K. Kanellopoulos, "*In situ SAXS study of dibromomethane adsorption on MCM-41*", Microp. Mesop. Mater. 2014, under review.

40 | Page

Ευρωπαϊκή Ένωση

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Μετη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

^{1.} A.Ch. Mitropoulos, Small-angle X-ray scattering studies of adsorption in Vycor glass, J.Coll.Interface Sci. 336, 679-690 (2009).

^{2.} H.P.Hood and M.E.Norberg, treated borosilicate glass, U.S.Patent (1938) 2,106,744.

^{3.} A.Zsigmondy, Z. Anorg. Chem. 71 (1911) 356.

^{4.} P.Levitz, G.Ehret, S.K.Sinha, and J.M.Drake, Porous Vycor glass: The microstructure as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorption, J.Chem.Phys. 95 (1991) 6151-6161.