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1. INTRODUCTION
The two most prominent declarative paradigms, namely logic and functional program-
ming, differ radically in an important aspect: logic programming is traditionally first-
order while functional programming encourages and promotes the use of higher-order
functions and constructs. This difference can be partially explained by the fact that
higher-order logic fails in terms of vital properties such as completeness and compact-
ness. It would seem, on the face of it, that there would be no hope of finding a complete
resolution proof system for higher-order logic programming.

The initial attitude of logic programmers towards higher-order logic programming
was somewhat skeptical: it was often argued (see for example [Warren 1982]) that
there exist ways of encoding or simulating higher-order programming inside Prolog
itself. However, ease of use is a primary criterion for a programming language, and the
fact that higher-order features can be simulated or encoded does not mean that it is
practical to do so.

Eventually extensions with genuine higher-order capabilities were introduced -
roughly speaking, extensions which allow predicates to be applied but also passed as
parameters. The existing proposals can be placed in two main categories, namely the
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intensional and the extensional ones. In the former category, the two most prominent
languages are λProlog [Miller and Nadathur 1986; Nadathur 1987] and HiLog [Chen
et al. 1989; 1993]. The latter category is much less developed: currently (to our knowl-
edge) there exist two main proposals for extensional higher-order logic programming,
namely [Wadge 1991] and [Bezem 1999; 2001], but no actual systems have been built
so far.

In an extensional language, two predicates that succeed for the same instances are
considered equal. On the other hand, in an intensional language it is possible that
predicates that are equal as sets will not be treated as equal. In other words, a pred-
icate in an intensional language is more than just the set of arguments for which it
is true. For example, in Hilog, two predicates are not considered equal unless their
names are the same. The distinction between extensionality and intensionality has
been widely discussed in the literature (see for example the detailed presentation
in [Chen et al. 1993])1 and can be intuitively understood by the following examples:

Example 1.1. Suppose we have a database of professions, both of their membership
and their status. We might have rules such as:

engineer(tom).
engineer(sally).
programmer(harry).

with engineer and programmer used as predicates. In intensional higher-order logic
programming we could also have rules in which these are arguments, eg:

profession(engineer).
profession(programmer).

Now suppose tom and sally are also avid users of Twitter. We could have rules:

tweeter(tom).
tweeter(sally).

Notice now that the predicates tweeter and engineer are equal as sets (since they
are true for the same objects, namely tom and sally). If we attempted to under-
stand the above program from an extensional point of view, then we would have to
accept that profession(tweeter) must also hold (since tweeter and engineer are in-
distinguishable as sets). It is clear that the extensional interpretation in this case
is completely unnatural. The program can however be understood intensionally: the
predicate profession is true of the name engineer (which is different than the name
tweeter).

On the other hand, there are cases where predicates can be understood from an
extensional point of view:

Example 1.2. Consider a program that consists only of the following rule:
p(Q):-Q(0),Q(1).

In an extensional language, predicate p above can be intuitively understood in purely
set-theoretic terms: p is the set of all those sets that contain both 0 and 1.

It should be noted that the above program is also a syntactically acceptable pro-
gram of the existing intensional logic programming languages. The difference is that

1The notions of “extension” and “intension” have a long history and their roots can be traced back in the
study of natural languages and their semantics. The distinction between the two notions is attributed to
Frege, although the actual terms were coined later by R. Carnap. An excellent discussion of these notions
and their implications in the study of natural languages, can be found in [Dowty et al. 1981].
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in an extensional language the above program has a purely set-theoretic semantics.
Actually, as we are going to see, this set theoretic interpretation allows us to permit
queries of the form:

?-p(R).

which will get meaningful answers (the answer in this case will express the fact that R
is any relation which is true of both 0 and 1). Notice that an intensional language will
not in general provide an answer in such a query (since there does not exist any actual
predicate defined in the program that is true of both 0 and 1).

In this paper we will focus on extensional higher-order logic programming. The first
work in this area was [Wadge 1991]. In that paper, W. W. Wadge demonstrated that
there exists a modest fragment of higher-order logic programming that can be under-
stood in purely extensional terms. More specifically, Wadge discovered a simple syntac-
tic restriction which ensured that compliant programs have an extensional declarative
reading. The restriction forbids user-defined predicates to appear as arguments in the
heads of clauses. For example, the two rules cited already:

profession(engineer).
profession(programmer).

violate the restriction. Roughly speaking, the restriction says that rules about predi-
cates can state general principles but cannot pick out a particular predicate for special
treatment. Wadge gave several examples of useful extensional higher-order programs
and outlined the proof of a minimum-model result. He also showed that in this model
the denotations of program predicates are continuous. Continuity can intuitively be
understood as a kind of finitaryness. For example, if foo(p) succeeds and foo is contin-
uous, it means there is a finite set of arguments {a1, . . . , ak} for which p(a1), . . . , p(ak)
all succeed, and if q(a1), . . . , q(ak) also succeed, then foo(q) succeeds. Finally, Wadge
conjectured that a sound and complete proof system exists for his fragment, but did
not further pursue such an investigation. A detailed discussion of Wadge’s approach
(including its problems and shortcomings) is given in Section 8.

In this paper we extend the study initiated in [Wadge 1991] and derive the first,
to our knowledge, complete theoretical framework for extensional higher-order logic
programming, both from a semantic as-well-as from a proof theoretic point of view.

Our first contribution is the development of a novel extensional semantics for higher-
order logic programming that is based on algebraic lattices (see for example [Grätzer
1978]), a subclass of the familiar complete lattices that have traditionally been used in
the theory of first-order logic programming. For every predicate type of our language,
algebraic lattices single out a subset of “finite” objects of that type. In other words,
the proposed semantics reflects in a direct way the finitary nature of continuity that is
implicit in [Wadge 1991]. The benefit of the new approach compared to that of [Wadge
1991] is that all basic properties and results of classical logic programming are now
transferred in the higher-order setting in a natural way. Moreover, the new semantics
leads to a relatively simple, sound and complete proof system even for a language that
is genuinely more powerful than the one considered in [Wadge 1991]. More details on
the connections between the two semantical approaches will be given in Section 8.

Our second contribution fixes a shortcoming of Wadge’s language by allowing clause
bodies and program goals to have uninstantiated higher-order variables. To under-
stand the importance of this extension, consider the following rule for bands (musical
ensembles):

band(B):-singer(S),B(S),drummer(D),B(D),guitarist(G),B(G).
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This says that a band is a group that has at least a singer, a drummer, and a guitarist.
Suppose that we also have a database of musicians:

singer(sally).
singer(steve).
drummer(dave).
guitarist(george).
guitarist(grace).

Our extensional higher-order language allows the query ?-band(B). At first sight a
query like this seems impractical if not impossible to implement. Since a band is a set,
bands can be very large and there can be many (possibly uncountably many) of them.
In existing intensional systems such queries usually fail since the program does not
provide any information about any particular band.

However, in an extensional context the finitary behavior of the predicates of our
language, saves us. If the predicate band declares a relation to be a band, then (due to
the finitaryness described above) it must have examined only finitely many members of
the relation. Therefore we can enumerate the bands by enumerating finite bands, and
this collection is countable (in this particular example it is actually finite). Actually,
as we are going to see, this enumeration can be performed in a careful way so as that
it avoids producing all finite relations one by one (see the discussion in Section 2 that
follows).

Our final contribution is a relatively simple proof system for extensional higher-
order logic programming, which extends classical SLD-resolution. We demonstrate
that the new proof system is sound and complete with respect to the proposed seman-
tics. In particular, the derived completeness theorems generalize the well-known such
theorems for first-order logic programming. This result may, at first sight, also seem
paradoxical, given the well-known failure of completeness for even second-order logic.
But the paradox is resolved by recalling that we are dealing with a restricted subset of
higher-order logic and that the denotations of the types of our language are not arbi-
trary sets but instead algebraic lattices (which have a much more refined structure).

One very important benefit of the proof system is that it gives us an operational
semantics for our language. This means in turn that we could probably extend it with
cut, negation and other operational features not easily specified in terms of model
theory alone.

The rest of the paper is organized as follows: Section 2 presents in a more detailed
manner the basic ideas developed in this paper. Section 3 introduces the syntax of
the higher-order logic programming language H. Section 4 introduces the key lattice-
theoretic notions that will be needed in the development of the semantics. Sections 5
and 6 develop the semantics and the minimum Herbrand model semantics of H; the
main properties of the semantics are also established. Section 7 introduces an SLD-
resolution proof system for H and establishes its soundness and completeness. Sec-
tion 8 presents a description of related approaches to higher-order logic programming.
Section 9 briefly discusses implementation issues and presents certain interesting top-
ics for future work. The lengthiest among the proofs have been moved to corresponding
appendices in order to enhance the readability of the paper.

2. THE PROPOSED APPROACH: AN INTUITIVE OVERVIEW
The purpose of this paper is to develop a purely extensional theoretical framework for
higher-order logic programming which will generalize the familiar theory of first-order
logic programming. The first problem we consider is to bypass one important restric-
tion of [Wadge 1991], namely the inability to handle program clauses or queries that
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contain uninstantiated predicate variables. The following example illustrates these
ideas:

Example 2.1. Consider the following higher-order logic program written in an ex-
tended Prolog-like syntax:

p(Q):-Q(0),Q(s(0)).
nat(0).
nat(s(X)):-nat(X).

The Herbrand universe of the program is the set of natural numbers in successor
notation. According to the semantics of [Wadge 1991], the least Herbrand model of
the program assigns to predicate p a continuous relation which is true of all unary
relations that contain at least 0 and s(0). Consider now the query:

?-p(R).

which asks for all relations that satisfy p. Such a query seems completely unreason-
able, since there exist uncountably many relations that must be substituted and tested
in the place of R.

The above example illustrates why uninstantiated predicate variables in clauses
were disallowed in [Wadge 1991]. From a theoretical point of view, one could extend
the semantics to cover such cases, but the problem is mainly a practical one: “how can
one implement such programs and queries?”.

In more formal terms, the least Herbrand model of a higher-order program under
the semantics of [Wadge 1991] is in general an uncountable set; in our example, this is
evidenced by the fact that there exists an uncountable number of unary relations over
the natural numbers that contain both 0 and s(0). This observation comes in contrast
with the semantics of first-order logic programming in which the least Herbrand model
of a program is a countable set. How can one define a proof system that is sound and
complete with respect to this semantics? The key idea for bypassing these problems
was actually anticipated in the concluding section of [Wadge 1991]:

Our higher order predicates, however, are continuous: if a relation satisfies
a predicate, then some finite subset satisfies it. This means that we have to
examine only finite relations.

In the above example, despite the fact that there exists an infinite number of relations
that satisfy p, all these relations are supersets of the finite relation {0, s(0)}. In some
sense, this finite relation represents all the relations that satisfy p. But how can we
make the notion of “finiteness” more explicit? In order to define a sound and complete
proof system for an interesting extensional higher-order logic programming language,
our semantics must in some sense reflect the above “finitary” concepts more explicitly.

An idea that springs to mind is to define an alternative semantics in which variables
(like Q in Example 2.1) range over finite relations (and not over arbitrary relations as
in [Wadge 1991]). Of course, the notion of “finite” should be appropriately defined for
every predicate type. But then an immediate difficulty appears to arise. Given again
the program in Example 2.1, and the query

?-p(nat).

it is not immediately obvious what the meaning of the above is. Since we have assumed
that Q ranges over finite relations, how can p be applied to an infinite one? To overcome
this problem, observe that in order for the predicate p to succeed for its argument Q,
it only has to examine a “finite number of facts” about Q (namely whether Q is true
of 0 and s(0)). This remark suggests that the meaning of p(nat) can be established
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following a non-standard interpretation of application: we apply the meaning of p to
all the “finite approximations” of the meaning of nat, ie., to all finite subsets of the set
{0, s(0), s(s(0)), . . .}. In our case p(nat) will be true since there exists a finite subset
of the meaning of nat for which the meaning of p is true (namely the set {0, s(0)}).

Notice that the new semantical approach outlined above, heavily relies on the idea
that the meaning of predicates (like nat) can be expressed as the least upper bound of
a set of simpler (in this case, finite) relations. Actually, this is an old and well-known
assumption in the area of denotational semantics, as the following excerpt from [Stoy
1977][page 98] indicates:

So we may reasonably demand of all the value spaces in which we hope to
compute that they come equipped with a particular countable subset of ele-
ments from which all the other elements may be built up.

As we are going to demonstrate, the meaning of every predicate defined in our language
possesses the property just mentioned, and this allows us to use the new non-standard
semantics of application. In fact, as we are going to see, for every predicate type of our
language, the set of possible meanings of this type forms an algebraic lattice [Grätzer
1978]; then, the above property is nothing more than the key property which character-
izes algebraic lattices (see Proposition 4.14), namely that “every element of an algebraic
lattice is the least upper bound of the compact elements of the lattice that are below it”.
More importantly, for the algebraic lattices we consider, it is relatively easy to iden-
tify these compact elements and to enumerate them one by one. Based on the above
semantics, we are able to derive for higher-order logic programs many properties that
are either identical or generalize the familiar ones from first-order logic programming
(see Section 6).

The new semantics allows us to introduce a relatively simple, sound and complete
proof system which applies to programs and queries that may contain uninstantiated
predicate variables. This is due to the fact that the set of “finite” relations is now
countable, and as we are going to see, there exist interesting ways of producing and
enumerating them. The key idea can be demonstrated by continuing Example 2.1.
Given the query:

?-p(R).

one (inefficient and tedious) approach would be to enumerate all possible finite rela-
tions of the appropriate type over the Herbrand universe. Instead of this, we use an
approach which is based on what we call basic templates: a basic template for R is
(intuitively) a finite set whose elements are individual variables. This saves us from
having to enumerate all finite sets consisting of ground terms from the Herbrand uni-
verse. For example2, assume that we instantiate R with the template {X, Y}. Then, the
resolution proceeds as follows:

?-p(R)
?-p({X, Y})
?-{X, Y}(0), {X, Y}(s(0))
?-{0, Y}(s(0))
2

and the proof system will return the answer R = {0, s(0)}. The proof system will also
return other finite solutions, such as R = {0, s(0), Z1}, R = {0, s(0), Z1, Z2}, and so on.
However, a slightly optimized implementation (see Section 9) can be created that re-
turns only the answer R = {0, s(0)}, which represents all the finite relations produced

2The notation we use for representing basic templates will slightly change in Section 7.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Extensional Higher-Order Logic Programming A:7

by the proof system. The intuition behind the above answer is that the given query
succeeds for all unary relations that contain at least 0 and s(0). Similarly, for the band
example of Section 1, the implementation will systematically assemble all the minimal
three-member bands from the talents available.

3. THE HIGHER-ORDER LANGUAGE H: SYNTAX
In this section we introduce the higher-order languageH, which extends classical first-
order logic programming to a higher-order setting. The languageH is based on a simple
type system that supports two base types: o, the boolean domain, and ι, the domain
of individuals (data objects). The composite types are partitioned into three classes:
functional (assigned to function symbols), predicate (assigned to predicate symbols)
and argument (assigned to parameters of predicates).

Definition 3.1. A type can either be functional, argument, or predicate, denoted by
σ, ρ and π respectively and defined as:

σ := ι | (ι→ σ)
ρ := ι | π
π := o | (ρ→ π)

We will use τ to denote an arbitrary type (either functional, argument or predicate
one).

As usual, the binary operator→ is right-associative. A functional type that is differ-
ent than ι will often be written in the form ιn → ι, n ≥ 1. Moreover, it can be easily
seen that every predicate type π can be written in the form ρ1 → · · · → ρn → o, n ≥ 0
(for n = 0 we assume that π = o).

We can now proceed to the definition of H, starting from its alphabet:

Definition 3.2. The alphabet of the higher-order language H consists of the follow-
ing:

(1) Predicate variables of every predicate type π (denoted by capital letters such as
P,Q,R, . . .).

(2) Predicate constants of every predicate type π (denoted by lowercase letters such as
p, q, r, . . .).

(3) Individual variables of type ι (denoted by capital letters such as X,Y,Z, . . .).
(4) Individual constants of type ι (denoted by lowercase letters such as a, b, c, . . .).
(5) Function symbols of every functional type σ 6= ι (denoted by lowercase letters such

as f, g, h, . . .).
(6) The following logical constant symbols: the propositional constants false and true

of type o; the equality constant ≈ of type ι → ι → o; the generalized disjunction
and conjunction constants

∨
π and

∧
π of type π → π → π, for every predicate

type π; the generalized inverse implication constants ←π, of type π → π → o, for
every predicate type π; the existential quantifier ∃ρ, of type (ρ → o) → o, for every
argument type ρ.

(7) The abstractor λ and the parentheses “(” and “)”.

The set consisting of the predicate variables and the individual variables of H will be
called the set of argument variables of H. Argument variables will be usually denoted
by V and its subscripted versions.

The existential quantifier in higher-order logic is usually introduced in a different way
than in first-order logic. So, for example, in order to express the quantification of the
argument variable V of type ρ over the expression E one writes (∃ρ (λV.E)). For sim-
plicity, we will use in this paper the more familiar notation (∃ρVE).
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We proceed by defining the set of positive expressions of H:

Definition 3.3. The set of positive expressions of the higher-order language H is
recursively defined as follows:

(1) Every predicate variable (respectively, predicate constant) of type π is a positive
expression of type π; every individual variable (respectively, individual constant)
of type ι is a positive expression of type ι; the propositional constants false and true
are positive expressions of type o.

(2) If f is an n-ary function symbol and E1, . . . ,En are positive expressions of type ι,
then (f E1 · · ·En) is a positive expression of type ι.

(3) If E1 is a positive expression of type ρ→ π and E2 is a positive expression of type ρ,
then (E1E2) is a positive expression of type π.

(4) If V is an argument variable of type ρ and E is a positive expression of type π, then
(λV.E) is a positive expression of type ρ→ π.

(5) If E1,E2 are positive expressions of type π, then (E1

∧
π E2) and (E1

∨
π E2) are posi-

tive expressions of type π.
(6) If E1,E2 are positive expressions of type ι, then (E1 ≈ E2) is a positive expression of

type o.
(7) If E is an expression of type o and V is an argument variable of type ρ, then (∃ρVE)

is a positive expression of type o.

The notions of free and bound variables of a positive expression are defined as usual.
A positive expression is called closed if it does not contain any free variables.

The set of clausal expressions of H can now be specified:

Definition 3.4. The set of clausal expressions of the higher-order language H is
defined as follows:

(1) If p is a predicate constant of type π and E is a closed positive expression of type π
then p←π E is a clausal expression of H, also called a program clause.

(2) If E is a positive expression of type o, then false ←o E (usually denoted by ←o E or
just← E) is a clausal expression of H, also called a goal clause.

All clausal expressions of H have type o.

Notice that (following the tradition of first-order logic programming) we will talk about
the “empty clause” which is denoted by 2 and is equivalent to← true, ie., to the propo-
sitional constant false.

The union of the sets of positive and clausal expressions of H will be called the set
of expressions of H. To denote that an expression E has type τ , we will often write
E : τ ; additionally, we write type(E) to denote the type of expression E. Expressions of
type ι will be called terms and of type o will be called formulas. We will write ←, ∧
and ∨ instead of ←o,

∧
o and

∨
o. Moreover, instead of ∃ρ we will often write ∃. When

writing an expression, in order to avoid the excessive use of parentheses, certain usual
conventions will be adopted (such as for example the usual priorities between logical
constants, the convention that application is left-associative and that lambda abstrac-
tion extends as far to the right as possible, and so on). Given an expression E, we denote
by FV (E) the set of all free variables of E. By overloading notation, we will also write
FV (S), where S is a set of expressions.

Notice that in Definition 3.4 above, a goal clause may contain two types of occur-
rences of variables that serve a similar purpose, namely free argument variables and
argument variables that are existentially quantified. From a semantic point of view,
these two types of variables are essentially the same. However, in a later section we
will distinguish them from an operational point of view: the free argument variables

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Extensional Higher-Order Logic Programming A:9

that appear in a goal are the ones for which an answer is sought for by the proof
system; the argument variables that are existentially quantified are essentially free
variables for which an answer is not sought for (something like the underscored vari-
ables in Prolog systems). This distinction is not an important one, and we could have
proceeded in a different way (eg. by disallowing existentially quantified variables from
goals).

Definition 3.5. A program of H is a finite set of program clauses of H.

Example 3.6. The following is a higher-order program that computes the closure of
its input binary relation R. The type of closure is π = (ι→ ι→ o)→ ι→ ι→ o.

closure←π λR.λX.λY.(R X Y)
closure←π λR.λX.λY.∃Z((R X Z)∧(closure R Z Y))

or even more compactly:

closure←π (λR.λX.λY.(R X Y))
∨
π (λR.λX.λY.∃Z((R X Z)∧(closure R Z Y)))

A possible query could be:← (closure R a b) (which intuitively requests for those bi-
nary relations such that the pair (a, b) belongs to their transitive closure). In a Prolog-
like extended syntax, the above program would have been written as:

closure(R, X, Y) :- R(X, Y).
closure(R, X, Y) :- R(X, Z), closure(R, Z, Y).

and the corresponding query as← closure(R, a, b).

Example 3.7. We define a predicate ordered which checks whether its second ar-
gument (a list) is ordered according to its first argument (a binary relation). The type
of ordered is π = (ι→ ι→ o)→ ι→ o (notice that the type of a list is also ι since a list
is nothing more than a term). In Prolog-like syntax, the program is the following:

ordered(R, [ ]).
ordered(R, [X]).
ordered(R, [X,Y|T]) :- R(X, Y), ordered(R, [Y|T]).

In the syntax of H (slightly extended with the standard notation for lists), the above
program can be written as follows:

ordered←π λR.λL.(L≈ [ ])
ordered←π λR.λL.(∃X(L≈ [X]))
ordered←π λR.λL.(∃X∃Y∃T((L≈ [X,Y|T])∧(R X Y)∧(ordered R [Y|T])))

Assume that we have also defined a binary relation less which succeeds if its first
argument (eg. a natural number) is less than the second one. Then, the query ←
ordered less [1,4,7,10] is expected to succeed. On the other hand, the query ←
ordered R [a,b,c,d] requests for all binary relations under which the list [a,b,c,d]
is ordered. As it will become clear in the subsequent sections of the paper, this is a
meaningful question which can obtain a reasonable answer.

4. ALGEBRAIC LATTICES
In order to develop the semantics of H, we first need to introduce certain lattice-
theoretic concepts. As it is well-known, the standard semantics of classical (first-order)
logic programming, is based on complete lattices (see for example [Lloyd 1987]). As we
are going to see, the development of the semantics of H is based on a special class
of complete lattices, namely algebraic lattices (see for example [Grätzer 1978]). An
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algebraic lattice is a complete lattice in which every element can be created by us-
ing certain compact (intuitively, “simple”) elements of the lattice. In our setting, these
compact elements will be the ones that the proof procedure will generate in order to
answer queries that involve uninstantiated predicate variables. We should mention
at this point that algebraic partially ordered sets are widely used in domain theory
(see for example [Abramsky and Jung 1994]) and in the semantics of functional lan-
guages [Stoy 1977].

We start by introducing some mathematical preliminaries concerning lattice theory.
Since the bibliography on partially ordered sets is huge, certain results appear in one
form or another in various contexts, and they are often hard to locate in the exact form
needed. Propositions 4.7, 4.10 and 4.14 fall into this category; for reasons of complete-
ness, we have included short proofs (or pointers to such proofs) for them. On the other
hand, Lemma 4.17 is, to our knowledge, new. We start with some basic definitions:

Definition 4.1. A set P with a binary relation vP is called a partially ordered set or
poset if vP is reflexive, transitive and antisymmetric.

Usually, the subscript P in vP will be omitted when it is obvious from context.

Definition 4.2. Let P be a poset. An element x ∈ P is called an upper bound for a
subset A ⊆ P , if for every y ∈ A, y v x. If the set of upper bounds of A has a least
element, then this element is called the least upper bound (or lub) of A and is denoted
by
⊔
A. Symmetrically, one can define the notions of lower bound and greatest lower

bound (or glb) of A (this last notion denoted by
d
A).

The following proposition (see for example [Abramsky and Jung 1994][Proposition
2.1.4]) will prove useful later in the paper:

PROPOSITION 4.3. Let P be a poset and let A,B, (Ai)i∈I be subsets of P . Then, the
following statements hold (provided the lubs occurring in the formulas exist):

(1) A ⊆ B implies
⊔
A v

⊔
B.

(2) If A =
⋃
i∈I Ai, then

⊔
A =

⊔
i∈I(

⊔
Ai).

Definition 4.4. Let P be a poset. A subset A of P is directed, if it is nonempty and
each pair of elements of A has an upper bound in A.

Definition 4.5. Let P and Q be posets. A function f : P → Q is called monotonic if
for all x, y ∈ P with x vP y, we have f(x) vQ f(y). The set of all monotonic functions
from P to Q is denoted by [P

m→ Q].

Notice that monotonicity can be generalized in the obvious way for functions f :
Pn → Q, n > 0, since Pn is also a poset (where the partial order in this case is defined
in a point-wise way).

We are particularly interested in one type of posets, namely complete lattices:

Definition 4.6. A poset L in which every subset has a least upper bound and a great-
est lower bound, is called a complete lattice.

In fact, there is a symmetry here: the existence of all least upper bounds suffices to
prove that a poset is indeed a complete lattice, a fact that we will freely use throughout
the paper.

PROPOSITION 4.7. Let P be a poset, L be a complete lattice and let f : P × P → L
be a monotonic function. Then,

⊔
x∈P,y∈P f(x, y) =

⊔
x∈P f(x, x).

PROOF. An easy proof using basic properties of posets (see for example the corre-
sponding proof for domains [Tennent 1991][Lemma 5.3, page 92]).
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Definition 4.8. Let L,L′ be complete lattices. A function f : L→ L′ is called contin-
uous if it is monotonic and for every directed subset A of L, we have f(

⊔
A) =

⊔
f(A).

We will write ⊥L for the greatest lower bound of a complete lattice L (called the bottom
element of L). A very useful tool in lattice theory, is Kleene’s fixpoint theorem:

THEOREM 4.9. Let L be a complete lattice. Then, every continuous function f : L→
L has a least fixpoint lfp(f) given by lfp(f) =

⊔
n<ω f

n(⊥L).

Let A be an arbitrary set and L be a complete lattice. Then, a partial order can be
defined on A→ L: for all f, g ∈ A→ L, we write f vA→L g if for all a ∈ A, f(a) vL g(a).
We will often use the following proposition:

PROPOSITION 4.10. Let A be a poset, L be a complete lattice and let F ⊆ [A
m→ L].

Then, for all a ∈ A, (
⊔
F )(a) =

⊔
f∈F f(a) and (

d
F )(a) =

d
f∈F f(a). Therefore, [A

m→ L]

is a complete lattice.

PROOF. We give the proof for
⊔

(the proof for
d

is symmetrical). Let h ∈ A → L
such that h(a) =

⊔
f∈F f(a), where the least upper bound is well-defined because L is

a complete lattice. Notice that h is obviously an upper bound of F . Now let g be an
arbitrary upper bound of F . For each a ∈ A, it holds that g(a) is an upper bound of
{f(a) | f ∈ F}, thus

⊔
f∈F f(a) v g(a) which means that h v g. Therefore, h =

⊔
F .

It remains to show that h is monotonic. Consider x, y ∈ A such that x v y. For
all f ∈ F we have f(x) v f(y) due to the monotonicity of f . Since

⊔
f∈F f(y) is an

upper bound of {f(y) | f ∈ F}, it is also an upper bound of {f(x) | f ∈ F}. Therefore,⊔
f∈F f(x) v

⊔
f∈F f(y) and consequently h is monotonic.

We will be interested in a certain type of complete lattices in which every element
can be “created” by using a set of compact (intuitively, “simple”) elements of the lattice:

Definition 4.11. Let L be a complete lattice and let c ∈ L. Then c is called compact
if for every A ⊆ L such that c v

⊔
A, there exists finite A′ ⊆ A such that c v

⊔
A′. The

set of all compact elements of L is denoted by K(L).

We can now define the notion of algebraic lattice (see for example [Grätzer 1978]),
which will prove to be the key lattice-theoretic concept applicable to our context.

Definition 4.12. A complete lattice L is called algebraic if every element of L is the
least upper bound of a set of compact elements of L.

The name “algebraic lattice” is due to G. Birkhoff [Birkhoff 1967] (who did not as-
sume completeness at that time). In the literature, algebraic lattices are also called
compactly generated lattices.

Example 4.13. Consider the set L = {false, true} under the ordering false ≤ true,
false ≤ false and true ≤ true. Then, L is an algebraic lattice with K(L) = {false, true}.
Actually, every finite complete lattice is algebraic.

Let S be a set. Then, 2S , the set of all subsets of S, forms a complete lattice under
set inclusion. It is easy to see that this is an algebraic lattice whose compact elements
are the finite subsets of S.

Let P be a poset. Given B ⊆ P and x ∈ P , we write B[x] = {b ∈ B | b vP x}. We have
the following easy proposition:

PROPOSITION 4.14. Let L be an algebraic lattice. Then, for every x ∈ L, x =⊔
K(L)[x].
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PROOF. Obviously it holds that
⊔
K(L)[x] v x. We show that x v

⊔
K(L)[x]. By

Definition 4.12, there exists A ⊆ K(L) such that x =
⊔
A. Obviously, A ⊆ K(L)[x].

Therefore, by Proposition 4.3,
⊔
A v

⊔
K(L)[x] and consequently x v

⊔
K(L)[x].

Given an algebraic lattice L, the set K(L) will be called the basis of L. If additionally,
K(L) is countable, then L will be called an ω-algebraic lattice.

In the rest of this section we will define a particular class of algebraic lattices that
arise in our semantics of higher-order logic programming. This class will be character-
ized by Lemma 4.17 that follows. We first need to define the notion of “step functions”
(see for example [Abramsky and Jung 1994]) which are used to build the compact ele-
ments of our algebraic lattices.

Definition 4.15. Let A be a poset and L be an algebraic lattice. For each a ∈ A and
c ∈ K(L), we define the function (a↘ c) : A→ L as

(a↘ c)(x) =

{
c, if a vA x
⊥L, otherwise

The functions of the above form will be called the step functions of A→ L.

One can view the step function (a ↘ c) as a c-valued characteristic function (ie., as
a function which assigns the c value to all elements of the subset {x ∈ A | a vA x} of
A, and ⊥L to the rest of the elements of A).

Example 4.16. Consider a non-empty set A equipped with the trivial partial or-
der of equality (ie., the partial order that relates every element of A only to itself).
Moreover, let L = {false, true} (which by Example 4.13 is an algebraic lattice). Then,
for every a ∈ A, (a ↘ true) is the function that returns true iff its argument is equal
to a. In other words (a ↘ true) is the characteristic function that corresponds to the
singleton set {a}. On the other hand, for every a, (a↘ false) corresponds to the empty
set.

As a second example, assume that A is the set of finite subsets of N and that L =
{false, true}. Then, for any finite set a ∈ A, (a ↘ true) is the function that given any
finite set x such that x ⊇ a, (a ↘ true)(x) = true. In other words, (a ↘ true) is
the characteristic function that corresponds to a set consisting of a and all its (finite)
supersets. On the other hand, for every a, (a ↘ false) is the function that given any
finite set x, (a↘ false)(x) = false, ie., it corresponds to the empty set (of sets).

The following lemma, which we have not seen explicitly stated before, identifies a class
of algebraic lattices that will play the central role in the development of the semantics
of higher-order logic programming. An important characteristic of these lattices is that
they have a simple characterization of their bases. The proof of the lemma is given in
the Electronic Appendix, Section A.

LEMMA 4.17. Let A be a poset and L be an algebraic lattice. Then, [A
m→ L] is an

algebraic lattice whose basis is the set of all least upper bounds of finitely many step
functions from A to L. If, additionally, A is countable and L is an ω-algebraic lattice
then [A

m→ L] is an ω-algebraic lattice.

We can now outline the reasons why algebraic lattices play such an important role
in our context. As we have already mentioned, one of the contributions of this paper
is that it allows the treatment of queries with uninstantiated predicate variables. The
results of [Wadge 1991] indicate that (due to continuity), if a relation satisfies a pred-
icate, then some “finite representative” of this relation also satisfies it. This gives the
idea of defining a semantics which makes these “finite representatives” more explicit.
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Intuitively, these finite representatives are the compact elements of an algebraic lat-
tice. From an operational point of view, restricting attention to the compact elements
allows us to answer queries with uninstantiated variables: if the set of compact ele-
ments is enumerable then we can try them one by one examining in each case whether
the query is satisfied.

More formally, since our lattices are algebraic and satisfy the conditions of
Lemma 4.17, we have a relatively easy characterization of their sets of compact el-
ements (as suggested by Lemma 4.17). Moreover, as we are going to see, if we restrict
attention to Herbrand interpretations (see Section 6), then the lattices that we have
to consider are all ω-algebraic and therefore their sets of compact elements are count-
able. For these lattices it turns out that we can devise an effective procedure for enu-
merating their compact elements which leads us to an effective proof system for our
higher-order language.

5. THE SEMANTICS OF H
The semantics ofH is built upon the notion of algebraic lattice. Recall that an algebraic
lattice is a complete lattice L with the additional property that every element x of L is
the least upper bound of K(L)[x].

5.1. The Semantics of Types
Before specifying the semantics of expressions ofHwe need to provide the set-theoretic
meaning of the types of expressions ofH with respect to a set D (where D is later going
to be the domain of our interpretations). The fact that a given type τ denotes a set [[τ ]]D
will mean that an expression of type τ denotes an element of [[τ ]]D. In other words, the
semantics of types helps us understand what are the meanings of the expressions of
our language. In the following definition we define simultaneously and recursively two
things: the semantics [[τ ]]D of a type τ and the corresponding partial order vτ 3.

Definition 5.1. Let D be a non-empty set. Then:

— [[ι]]D = D, and vι is the trivial partial order such that d vι d, for all d ∈ D.
— [[ιn → ι]]D = Dn → D. A partial order for this case will not be needed.
— [[o]]D = {false, true}, and vo is the partial order defined by false vo true, false vo false

and true vo true.
— [[ι → π]]D = D → [[π]]D, and vι→π is the partial order defined as follows: for all
f, g ∈ [[ι→ π]]D, f vι→π g if and only if f(d) vπ g(d), for all d ∈ D.

— [[π1 → π2]]D = [K([[π1]]D)
m→ [[π2]]D], and vπ1→π2 is the partial order defined as follows:

for all f, g ∈ [[π1 → π2]]D, f vπ1→π2 g if and only if f(d) vπ2 g(d), for all d ∈ K([[π1]]D).

It is not immediately obvious that the last case in the above definition is well-
defined. More specifically, in order for the quantity K([[π1]]D) to make sense, [[π1]]D must
be a complete lattice. This is ensured by the following lemma:

LEMMA 5.2. Let D be a non-empty set. Then, for every π, [[π]]D is an algebraic lattice
(ω-algebraic if D is countable).

PROOF. The proof is by induction on the structure of π. The basis case is for π = o
and holds trivially (see Example 4.13). For the induction step, we distinguish two cases.
The first case is for π = ι → π1. Then, [[ι → π1]]D = D → [[π1]]D. Notice now that
D is partially ordered by the trivial partial order vι, and it holds that D → [[π1]]D =

3Notice that we are writing vτ instead of the more accurate v[[τ]]
D

. In the following, for brevity reasons we
will often use the former (simpler) notation. Similarly, we will often write ⊥π instead of ⊥[[π]]

D
.
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[D
m→ [[π1]]D] (monotonicity is trivial in this case). By the induction hypothesis and

Lemma 4.17 it follows that [[π]]D is an algebraic lattice (ω-algebraic if D is countable).
The second case is for π = π1 → π2, and the result follows by the induction hypothesis
and Lemma 4.17.

The following definition gives us a convenient shorthand when we want to refer to an
object that is either a compact element or a member of the domain D of our interpre-
tations. This shorthand will be used in various places of the paper.

Definition 5.3. Let D be a non-empty set and let ρ be an argument type. Define:

FD(ρ) =

{
D, if ρ = ι
K([[ρ]]D), otherwise

The set FD(ρ) will be called the set of basic elements of type ρ (with respect to the set
D).

Example 5.4. Consider the type ι → o (a first-order predicate with one argu-
ment has this type). By Definition 5.1, [[ι → o]]D is the set of all functions from D
to {false, true} (or equivalently, of all subsets of D).

As a second example, consider the type (ι → o) → o. This is the type of a predicate
which takes as its only parameter a unary predicate which is first-order; for example,
p in Example 2.1 has this type. Then, it can be verified using Lemma 4.17 and Exam-
ple 4.16 that the set K([[ι→ o]]D) is the set of all finite functions from D to {false, true}
(or equivalently, of finite subsets of D). By Definition 5.1, [[(ι → o) → o]]D is the set
of all monotonic functions from finite subsets of D (ie., elements of K([[ι → o]]D)) to
{false, true}. In other words, in the semantics of H, a predicate of type (ι → o) → o
will denote a monotonic function from finite subsets of D to {false, true}. The role that
monotonicity plays in this context can be intuitively explained by considering again
Example 2.1: if p is true of a finite set, then this set must contain both 0 and s(0).
But then, p will also be true for every superset of this set (since every superset also
contains both 0 and s(0)). As we are going to see, the meaning of all the higher-order
predicates that are defined in a program will possess the monotonicity property.

Notice now that in our interpretation of types, only monotonicity is required; actually,
continuity is not applicable in our interpretation: given a type π1 → π2, it would be
meaningless to talk about the continuous functions from K([[π1]]D) to [[π2]]D because
K([[π1]]D) is not in general a complete lattice4 as required by the definition of continuity.
However, as we are going to see, monotonicity suffices in order to establish that the
immediate consequence operator of every program is continuous (Lemma 6.11) and
therefore has a least fixed-point.

As a last remark, we should mention that the interpretation of types given in Defini-
tion 5.1, does not apply to the inverse implication operator←π of H, whose denotation
is not monotonic (for example, notice that negation can be implicitly defined with the
use of implication). However, since the use of←π is not allowed inside positive expres-
sions, the non-monotonicity of←π does not create any semantic problems.

5.2. The Semantics of Expressions
We can now proceed to give meaning to the expressions ofH. This is performed by first
defining the notions of interpretation and state for H:

4To see this, take π1 = ι→ o and let D be an infinite set. Then, K([[ι→ o]]D) consists of all finite subsets of
D and is not a complete lattice (since the least upper bound of a set of finite sets can itself be infinite).
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Definition 5.5. An interpretation I of H consists of:

(1) a nonempty set D, called the domain of I
(2) an assignment to each individual constant symbol c, of an element I(c) ∈ D
(3) an assignment to each predicate constant p of type π, of an element I(p) ∈ [[π]]D
(4) an assignment to each function symbol f of type ιn → ι, of a function I(f) ∈ Dn → D.

Definition 5.6. Let D be a nonempty set. Then, a state s of H over D is a function
that assigns to each argument variable V of type ρ of H an element s(V) ∈ FD(ρ).

In the following, s[d/V] is used to denote a state that is identical to s the only differ-
ence being that the new state assigns to V the value d.

Before we proceed to formally define the semantics of expressions of H, a short dis-
cussion on the semantics of application is needed. The key technical difficulty we have
to confront can be explained by reconsidering Example 2.1 in the more formal context
that we have now developed.

Example 5.7. Consider again the program from Example 2.1:

p(Q):-Q(0),Q(s(0)).
nat(0).
nat(s(X)):-nat(X).

Consider also the query ← p(nat). The type of p is (ι → o) → o, while the type of
nat is ι → o. Let I be an interpretation with underlying domain D. Then, according
to Definition 5.5, I(p) must be a monotonic function from K([[ι → o]]D) to {false, true}.
Moreover, according to Example 5.4, K([[ι → o]]D) consists of all the finite sets of ele-
ments of D. But I(nat) is a member of [[ι → o]]D and can therefore be an infinite set.
How can we apply I(p) to I(nat)? To overcome this problem, observe that in order for
the predicate p to succeed for its argument Q, it only has to examine a “finite number of
facts” about Q (namely whether Q is true of 0 and s(0)). This remark suggests that the
meaning of p(nat) can be established following a non-standard interpretation of appli-
cation: we apply I(p) to all the “finite approximations” of I(nat), ie., to all elements of
K([[ι→ o]]D)[I(nat)], and then take the least upper bound of the results. Notice that our
approach heavily relies on the fact that our semantic domains are algebraic lattices:
every element of such a lattice (like I(nat) in our example) is the least upper bound of
the compact elements of the lattice that are below it (the finite subsets of I(nat) in our
case).

We can now proceed to present the semantics of H:

Definition 5.8. Let I be an interpretation of H, let D be the domain of I, and let s
be a state over D. Then, the semantics of expressions of H with respect to I and s, is
defined as follows:

(1) [[false]]s(I) = false
(2) [[true]]s(I) = true
(3) [[c]]s(I) = I(c), for every individual constant c
(4) [[p]]s(I) = I(p), for every predicate constant p
(5) [[V]]s(I) = s(V), for every argument variable V
(6) [[(f E1 · · ·En)]]s(I) = I(f) [[E1]]s(I) · · · [[En]]s(I), for every n-ary function symbol f
(7) [[(E1E2)]]s(I) =

⊔
b∈B([[E1]]s(I)(b)), where B = FD(type(E2))

[[[E2]]s(I)]
(8) [[(λV.E)]]s(I) = λd.[[E]]s[d/V](I), where d ranges over FD(type(V))

(9) [[(E1

∨
π E2)]]s(I) =

⊔
π{[[E1]]s(I), [[E2]]s(I)}, where

⊔
π is the least upper bound func-

tion on [[π]]D
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(10) [[(E1

∧
π E2)]]s(I) =

d
π{[[E1]]s(I), [[E2]]s(I)}, where

d
π is the greatest lower bound

function on [[π]]D

(11) [[(E1≈E2)]]s(I) =

{
true, if [[E1]]s(I) = [[E2]]s(I)
false, otherwise

(12) [[(∃VE)]]s(I) =

{
true, if there exists d ∈ FD(type(V)) such that [[E]]s[d/V](I) = true
false, otherwise

(13) [[(p←π E)]]s(I) =

{
true, if [[E]]s(I) vπ I(p)
false, otherwise

(14) [[(← E)]]s(I) =

{
true, if [[E]]s(I) = false
false, otherwise

For closed expressions E we will often write [[E]](I) instead of [[E]]s(I) (since, in this
case, the meaning of E is independent of s).

We need to demonstrate that the semantic valuation function [[ · ]] assigns to every
expression of H an element of the corresponding semantic domain. More formally, we
need to establish that for every interpretation I with domain D, for every state s over
D and for all expressions E : ρ, it holds that [[E]]s(I) ∈ [[ρ]]D. In order to prove this, the
following definition is needed:

Definition 5.9. Let SH,D be the set of states of H over the nonempty set D. We
define the following partial order on SH,D: for all s1, s2 ∈ SH,D, s1 vSH,D s2 iff for every
argument variable V : ρ of H, s1(V) vρ s2(V).

The following lemma states that Definition 5.8 assigns to expressions elements of
the corresponding semantic domain. Notice that in order to establish this, we must
also prove simultaneously that the meaning of positive expressions is monotonic with
respect to states.

LEMMA 5.10. Let E : ρ be an expression ofH and let D be a nonempty set. Moreover,
let s, s1, s2 be states over D and let I be an interpretation over D. Then:

(1) [[E]]s(I) ∈ [[ρ]]D.
(2) If E is positive and s1 vSH,D s2 then [[E]]s1(I) vρ [[E]]s2(I).

The proof of the lemma is given in the Electronic Appendix, Section B.
We can now define the important notion of a model of a set of formulas:

Definition 5.11. Let S be a set of formulas of H and let I be an interpretation of H.
We say that I is a model of S if for every F ∈ S and for every state s over the domain of
I, [[F]]s(I) = true.

We close this section with the definitions of the notions of unsatisfiability and of logical
consequence of a set of formulas.

Definition 5.12. Let S be a set of formulas of H. We say that S is unsatisfiable if no
interpretation of H is a model for S.

Definition 5.13. Let S be a set of formulas and F be a formula of H. We say that F is
a logical consequence of S if, for every interpretation I of H, I is a model of S implies
that I is a model of F.

5.3. Discussion on the Semantics
There are certain aspects of the semantics developed in this section, that deserve a
further discussion. In this subsection we present at an intuitive level the main reasons
that led us to specific decisions regarding the semantics of H.
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One first observation is that our interpretation of types in Definition 5.1 is not the
standard one: the denotation of π1 → π2 is not the set of all relations from the denota-
tion of π1 to the denotation of π2. In [Wadge 1991], W. Wadge interpreted types in the
standard way and attempted, based on this interpretation, to establish a minimum
model property for higher-order logic programs. However, as we explain in detail in
Subsection 8, the proof of the minimum model theorem given in [Wadge 1991] based
on the standard interpretation, contains a flaw. In other words, the standard interpre-
tation of types does not lead to a minimum Herbrand model semantics for higher-order
logic programs. This is one reason that led us to the interpretation of types given in
Definition 5.1. Notice that such restrictions in the interpretation of types are quite
mainstream in the denotational semantics of programming languages. For example,
in the semantics of functional languages, the denotation of a type of the form τ1 → τ2
is the set of all continuous functions from the denotation of τ1 to the denotation of τ2.

A second (related) observation that seems to require further explanation is that in
the semantics of types, [[π1 → π2]]D is defined as [K([[π1]]D)

m→ [[π2]]D] (and not, say, as
[[[π1]]D

m→ [[π2]]D]). The reason for this decision has been presented in an intuitive way
in Section 2 and we can now re-explain it in a slightly more formal manner. Assume
that we want to provide a proof system for programs of H. Consider a goal clause of
the form ←p(R), where p is defined in our program and has type (ι → o) → o. If the
type of p was interpreted as (say) [[[ι → o]]D

m→ [[o]]D], then the proof system would face
the impossible task of examining all the uncountably many relations of type ι → o
for possible solutions. If on the other hand we follow the interpretation of types given
in Definition 5.1, then the set K([[ι → o]]D) is the set of all finite relations, which can
be enumerated. But then this creates the obvious question: “how do we know that we
don’t miss anything by restricting attention to the compact elements of a domain?”. In
our running example, this could be also expressed as follows: “how do we know that
by restricting attention to the finite relations we don’t miss any interesting infinite
ones?”. The answer to this question can be given by appealing to our intuitions about
programs: when the program predicate p succeeds for an infinite relation, then it does
so after a finite amount of time and therefore it has only checked a finite amount of
information about this relation. In other words, the behavior of p can be described by
what it does on finite relations.

The above discussion also intuitively explains our non-standard definition of appli-
cation (see also the discussion in Example 5.7). It also explains why in our seman-
tics the argument variables are permitted to only range over the compact elements
of the corresponding domain5. For example, consider a predicate constant p of type
π = (ι → o) → o, that is defined in a program as p ←π λR.(· · · ). Then, according to
the interpretation of π, R ranges over K([[ι→ o]]D) and this explains why in the case of
the semantics of λ-abstraction in Definition 5.8 the bound variable is required to range
over compact elements.

Finally, one might wonder why we have insisted on demonstrating that the lattices
that show-up in our semantics, are algebraic. In other words, why doesn’t it suffice to
use the compact elements of the lattice regardless of whether they suffice to describe
all elements or not. Intuitively, the algebraicity of our lattices ensures that the new no-
tion of application we introduce is equivalent to the standard one. Alternatively, when
we apply a function to an argument, we don’t lose anything if we apply the function
to all the finite approximations of the argument and take the least upper bound of the
results. In other words, the algebraicity ensures that we can decompose the argument

5This is evidenced by the fact that a state assigns to a variable of type ρ an element of FD(ρ) (and not of
[[ρ]]); the same happens in the semantics of λ-abstraction and of existential quantification.
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of an application without losing any information. A second advantage of the fact that
our domains are algebraic lattices is that we know exactly which are the compact ele-
ments of our lattice (see Lemma 4.17). In an arbitrary complete lattice we would first
have to somehow find and characterize all the compact elements of the lattice for all
types, and of course prove that they are indeed compact. This would probably require
an effort that is comparable to that invested in the present formulation, and wouldn’t
convey the additional information that the lattices we employ belong to a well-known
and broadly studied class of lattices. It is important to stress that algebraic lattices are
very familiar structures in domain theory and they have been used extensively since
the inception of denotational semantics (see for example [Abramsky and Jung 1994]).

6. MINIMUM HERBRAND MODEL SEMANTICS
Herbrand interpretations constitute a special form of interpretations that have proven
to be a cornerstone of first-order logic programming. Analogously, we have:

Definition 6.1. The Herbrand universe UH of H is the set of all terms that can be
formed out of the individual constants and the function symbols of H.

Definition 6.2. A Herbrand interpretation I of H is an interpretation such that:

(1) The domain of I is the Herbrand universe UH of H.
(2) For every individual constant c, I(c) = c.
(3) For every predicate constant p of type π, I(p) ∈ [[π]]UH .
(4) For every n-ary function symbol f and for all t1, . . . , tn ∈ UH, I(f) t1 · · · tn = f t1 · · · tn.

Notice that the interpretation of terms above is being performed in exactly the same
way as in classical (first-order) logic programming. However, the way that predicates
are interpreted above is an extension of the way that predicates are treated in classical
logic programming (in which the arguments of predicates are just elements of the
Herbrand universe).

Since all Herbrand interpretations have the same underlying domain, we will often
refer to a “Herbrand state s”, meaning a state whose underlying domain is UH. As it is
a standard practice in logic programming, we will often refer to an “interpretation of a
program P” rather than of the underlying language H. In this case, we will implicitly
assume that the set of individual constants and function symbols are those that appear
in P. Under this assumption, we will often talk about the “Herbrand universe UP of P.

We should also note that since programs are finite, the Herbrand universe of a pro-
gram is always a countable set. Then, by Lemma 5.2 we get that for every program P
and for every predicate type π, [[π]]UP

is an ω-algebraic lattice (ie., it has a countable
basis).

The definition of a “Herbrand model” is the usual one:

Definition 6.3. A Herbrand model of a program P is a Herbrand interpretation that
is a model of P.

We can now proceed to examine properties of Herbrand interpretations. In the fol-
lowing we denote the set of Herbrand interpretations of a program P with IP .

Definition 6.4. Let P be a program. We define the following partial order on IP:
for all I, J ∈ IP, I vIP J iff for every π and for every predicate constant p : π of P,
I(p) vπ J(p).

LEMMA 6.5. Let P be a program and let I ⊆ IP. Then, for every predicate p of P,
(
⊔
I)(p) =

⊔
I∈I I(p) and (

d
I)(p) =

d
I∈I I(p). Therefore, IP is a complete lattice under

vIP .
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PROOF. We give the proof for
⊔

; the proof for
d

is symmetrical and omitted. Let
J ∈ IP such that for every p : π in P, J(p) =

⊔
I∈I I(p). Notice that

⊔
I∈I I(p) is well-

defined since [[π]]UP
is a complete lattice. Notice also that J is an upper-bound for I

because for every I ∈ I, I vIP J . Let J ′ be an arbitrary upper bound of I. Then, for
every p : π, it holds that J ′(p) is an upper bound of {I(p) | I ∈ I}, and therefore⊔
I∈I I(p) vπ J ′(p), which implies that J vIP J ′.

In the following we denote with ⊥IP the greatest lower bound of IP, ie., the interpreta-
tion which for every π, assigns to each predicate p : π of P the element ⊥π.

The properties of monotonicity and continuity of the semantic valuation function
will prove vital:

LEMMA 6.6 (MONOTONICITY OF SEMANTICS). Let P be a program and let E : ρ be
a positive expression of P. Let I, J be Herbrand interpretations and s be a Herbrand
state of P. If I vIP J then [[E]]s(I) vρ [[E]]s(J).

The proof of the lemma is given in the Electronic Appendix, Section C.

LEMMA 6.7 (CONTINUITY OF SEMANTICS). Let P be a program and let E be a pos-
itive expression of P. Let I be a directed set of Herbrand interpretations and s be a
Herbrand state of P. Then, [[E]]s(

⊔
I) =

⊔
I∈I [[E]]s(I).

The proof of the lemma is given in the Electronic Appendix, Section D.
All the basic properties of first-order logic programming extend naturally to the

higher-order case:

THEOREM 6.8 (MODEL INTERSECTION THEOREM). Let P be a program andM be
a non-empty set of Herbrand models of P. Then,

d
M is a Herbrand model for P.

PROOF. By Lemma 6.5,
d
M is well-defined. Assume that

d
M is not a model for P.

Then, there exists a rule p ←π E in P and basic elements b1, . . . , bn of the appropriate
types such that (

d
M)(p) b1 · · · bn = false while [[E]](

d
M) b1 · · · bn = true. Since for

every M ∈ M we have
d
M v M , using Lemma 6.6 we conclude that for all M ∈ M,

[[E]](M) b1 · · · bn = 1. Moreover, since (
d
M)(p) b1 · · · bn = false, by Lemma 6.5 we get

that (
d
M(p)) b1 · · · bn = false. By Proposition 4.10 we conclude that for some M ∈ M,

M(p) b1 · · · bn = false. But then there exists M ∈ M that does not satisfy the rule
p←π E, and therefore is not a model of P (contradiction).

It is straightforward to check that every higher-order program P has at least one
Herbrand model I, namely the one which for every predicate constant p of P and for
all basic elements b1, . . . , bn of the appropriate types, I(p) b1 · · · bn = true. Notice that
this model generalizes the familiar idea of “Herbrand Base” that is used in the theory
of first-order logic programming.

Since the set of models of a higher-order logic program is non-empty, the intersection
(glb) of all Herbrand models is well-defined and by the above theorem is a model of the
program. We will denote this model by MP.

Definition 6.9. Let P be a program. The mapping TP : IP → IP is defined as follows
for every p : π in P and for every I ∈ IP:

TP(I)(p) =
⊔

(p←πE)∈P

[[E]](I)

The mapping TP will be called the immediate consequence operator for P.

The fact that TP is well-defined is verified by the following lemma:
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LEMMA 6.10. Let P be a program and let p : π be a predicate constant of P. Then,
for every I ∈ IP, TP(I)(p) ∈ [[π]]UP

.

PROOF. The result follows directly by the definition of TP, Lemma 5.10 and the fact
that [[π]]UP

is a complete lattice.

The key property of TP is that it is continuous:

LEMMA 6.11. Let P be a program. Then the mapping TP is continuous.

PROOF. Straightforward using Lemma 6.7.

The following property of TP generalizes the corresponding well-known property from
first-order logic programming:

LEMMA 6.12. Let P be a program and let I ∈ IP. Then I is a model of P if and only
if TP(I) vIP I.

PROOF. An interpretation I ∈ IP is a model of P iff [[E]](I) vπ I(p) for every clause
p←π E in P iff

⊔
(p←πE)∈P [[E]](I) vπ I(p) iff TP(I)(p) vπ I(p).

Define now the following sequence of interpretations:

TP ↑ 0 = ⊥IP
TP ↑ (n+ 1) = TP(TP ↑ n)
TP ↑ ω =

⊔
{TP ↑ n | n < ω}

We have the following theorem (which is entirely analogous to the one for the first-
order case):

THEOREM 6.13. Let P be a program. Then MP = lfp(TP) = TP ↑ ω.

PROOF. Using exactly the same reasoning as in the first-order case (see for example
the corresponding proof in [Lloyd 1987]).

Closing this section, we feel it is important to discuss certain desirable characteris-
tics of the minimum Herbrand model semantics. First of all, in the proposed seman-
tics, the denotation of a user-defined predicate is literally a set of tuples of compact
elements and this fact directly renders the extensionality rule applicable. For exam-
ple, if p is of type (ι→ o)→ o, then the meaning of p is the set of all finite sets for which
p is true. Consider now another predicate of the same type, say q, which is true of the
same finite sets as p. Then, obviously, p and q are equal as sets. From a programming
point of view, extensionality means that p can be replaced by q in any program without
changing the output of the program. For example, if r is of type ((ι → o) → o) → o,
then, by the semantics of application, r(p) has the same meaning as r(q).

In a slightly different direction, the above discussion implies that under the pro-
posed semantics, we can make changes to a predicate’s definition and as long as our
transformations preserve the predicate’s extension, the enclosing program retains its
meaning. Semantics preserving transformations are a vital part of any programming
paradigm; the proposed semantics is actually a formal tool for the justification of such
transformations. Therefore, all the benefits of extensionality that were highlighted
in [Wadge 1991][pages 299-300], continue to hold under the proposed semantics.

Apart from extensionality, the proposed semantics also possesses the potential of be-
ing useful in proving properties of programs. In the theory of programming languages,
many properties of programs can be proved using induction on the approximations of
the least fixed-point of the program (see for example [Stoy 1977][pages 209-217]). Due
to the inductive definition of TP ↑ ω, similar proofs can also be performed in our set-
ting. In conclusion, using the proposed semantics for the understanding and analysis
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of higher-order logic programs appears to be one of the most promising next steps in
our work.

7. A PROOF SYSTEM
In this section we propose a sound and complete proof system for the programs of H.
One important aspect we initially have to resolve, is how to represent basic elements
(see Definition 5.3) in our source language. In the following subsection we introduce
a class of positive expressions, namely basic expressions, which are the syntactic ana-
logues of basic elements. Basic expressions will be used in order the formalization
of the notion of answer (to a given query) as-well-as in the development of the SLD-
resolution proof system.

7.1. Basic Expressions
As we have already seen, basic elements have played an important role in the devel-
opment of the semantics of our higher-order logic programming language. In order to
devise a sound and complete proof system for the programs ofH, we first need to find a
syntactic representation for basic elements. Since the definition of basic elements uses
the operator v (see Lemma 4.17, Definition 4.15 and Definition 5.3), it is not imme-
diately obvious how one can construct a positive expression whose meaning coincides
with a given basic element. Basic expressions introduced below, solve this apparent
difficulty:

Definition 7.1. The set of basic expressions of H is recursively defined as follows.
Every expression of H of type ι is a basic expression of type ι. Every predicate variable
of H of type π is a basic expression of type π. The propositional constants false and true
are basic expressions of type o. A non-empty finite union of expressions each one of
which has the following form, is a basic expression of type ρ1 → · · · → ρn → o (where
V1 : ρ1, . . . ,Vn : ρn):

(1) λV1. · · ·λVn.false
(2) λV1. · · ·λVn.(A1 ∧ · · · ∧ An), where each Ai is either

(a) (Vi ≈ Bi), if Vi : ι and Bi : ι is a basic expression where Vj 6∈ FV (Bi) for all j,
or

(b) the constant true or Vi, if Vi : o, or
(c) the constant true or Vi(B11) · · · (B1r)∧· · ·∧Vi(Bm1) · · · (Bmr), m > 0, if type(Vi) =

ρ′1 → · · · → ρ′r → o and for all k, l, Bkl is a basic expression with type(Bkl) = ρ′l
and for all j, Vj 6∈ FV (Bkl).

The Bi and Bkl above will be called the basic subexpressions of B.

The following example illustrates the ideas behind the above definition.

Example 7.2. We consider various cases of the above definition:

— The terms a, f(a,b), X and f(X,h(Y)), are basic expressions of type ι.
— Assume X : ρ. Then, λX.false is a basic expression of type ρ → o. Intuitively, it

corresponds to the basic element ⊥ρ→o.
— Assume X : ι. Then, λX.(X≈ a) is a basic expression of type ι → o. Intuitively, it

corresponds to the basic element (a↘ true) or more simply to the finite set {a}.
— Assume X : ι and Y : ι. Then, λX.λY.(X≈ a)∧(Y≈ b) is a basic expression of type
ι → ι → o. Intuitively, it corresponds to the basic element (a ↘ (b ↘ true)) or more
simply to the singleton binary relation {(a, b)}.

— Assume X : ι. Then, (λX.(X≈ a))
∨
ι→o(λX.(X≈ b)) is a basic expression of type

ι→ o. It corresponds to the basic element
⊔
{(a↘ true), (b↘ true)}, or more simply

to the finite set {a, b}.
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— Assume Q : ι → o. Then, λQ.(Q(a)∧Q(b))is a basic expression of type (ι → o) → o.
Intuitively, it corresponds to the basic element (

⊔
{(a ↘ true), (b ↘ true)}) ↘ true.

More simply, it corresponds to the set of all finite sets that contain both a and b.

The proof system that will be developed later in this section, relies on a special form
of basic expressions:

Definition 7.3. The set of basic templates of H is the subset of the set of basic
expressions of H defined as follows:

— The propositional constants false and true are basic templates.
— Every non-empty finite union of basic expressions (of the form presented in items 1

and 2 of Definition 7.1) in which all the basic subexpressions involved are distinct
variables, is a basic template.

The distinct variables mentioned above, will be called template variables.

Example 7.4. Assume in the following expressions that X, Y, Z, W : ι, Q, Q1, Q2 : ι → o
and R : ((ι → o) → o) → o. The expression λX.(X≈ Z) is a basic template of type
ι → o. The expression λX.λY.(X≈ Z)∧(Y≈ W) is a basic template of type ι → ι → o;
the template variables in this case are Z and W. The expression λQ.(Q(Z)∧Q(W))is a
basic template of type (ι → o) → o with template variables Z and W. The expression
λR.(R(Q1)∧R(Q2)) is a basic template of type ((ι → o) → o) → o with template vari-
ables Q1 and Q2.

Notice from the above example that the structure of basic templates is in general much
simpler than that of basic expressions (due to the fact that a template variable can rep-
resent an arbitrary basic expression of the same type). For this reason, basic templates
are much simpler to enumerate than arbitrary basic expressions.

The following two lemmas establish the connections between basic elements and
basic expressions.

LEMMA 7.5. For every basic expression B : ρ, for every Herbrand interpretation I of
H, and for every Herbrand state s, [[B]]s(I) ∈ FUH(ρ).

PROOF. The proof is by induction on the type of B. The basis case is for basic expres-
sions of type ι and o and holds trivially. We demonstrate that the lemma holds for basic
expressions of type ρ = ρ1 → · · · → ρn → o, assuming that it holds for all basic expres-
sions that have simpler types than ρ. If the basic expression is a predicate variable,
the result is immediate; otherwise, we have to distinguish the following cases:

Case 1: B = λV1. · · ·λVn.false. Then, the corresponding basic element in FUH(ρ) is the
bottom element of type ρ1 → · · · → ρn → o (ie., ⊥ρ1→···→ρn→o).
Case 2: B = λV1. · · ·λVn.(A1 ∧ · · · ∧ An). Then, the corresponding basic element is the
element b1 ↘ (b2 ↘ · · · ↘ (bn ↘ true) · · · ), where the bi are defined as follows:

— If Vi : ι, then by Definition 7.1, Ai = (Vi ≈ Bi). In this case, bi = [[Bi]]s(I).
— If Vi : o then Ai is either equal to true or to Vi; in the former case bi = false and in

the latter case bi = true.
— If Vi is of any other type then Ai is either equal to true or to Vi(B11) · · · (B1r) ∧ · · · ∧

Vi(Bm1) · · · (Bmr), where m > 0. In the former case it is bi =⊥ρi ; in the latter case
bi =

⊔
1≤j≤m([[Bj1]]s(I)↘ ([[Bj2]]s(I)↘ · · · ↘ ([[Bjr]]s(I)↘ true) · · · )).
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Case 3: B is a finite union of lambda abstractions. Then, for each term of the finite
union we can create (as above) a basic element. By taking the finite union of these
elements, we create the basic element that corresponds to B.

It can be easily verified that for every basic expression B, [[B]]s(I) coincides with the
corresponding basic element defined as above.

The converse of the above lemma holds, as the following lemma demonstrates.

LEMMA 7.6. Let ρ be any argument type and let b ∈ FUH(ρ). Then, there exists a
closed basic expression B : ρ such that for every Herbrand interpretation I, [[B]](I) = b.

PROOF. The proof is by induction on the structure of argument types. The basis
case is for argument types ι and o, and holds trivially. We demonstrate that the lemma
holds for type ρ = ρ1 → · · · → ρn → o, assuming that it holds for all subtypes of ρ.
Assume now that b is a basic element of type ρ, consisting of a finite union of step
functions.

If the union is empty, then B = λV1. · · ·λVn.false. Assume now that the union is non-
empty. Then, the basic expression corresponding to b will simply be the union of the
basic expressions corresponding to the step functions that comprise b.

Let b1 ↘ (b2 ↘ · · · ↘ (bn ↘ true) · · · ) be one of the step functions that constitute
b. We create the basic expression: B = λV1. · · ·λVn.(A1 ∧ · · ·An) where each Ai can be
created as follows:

— If bi is of type ι and bi = t ∈ UH, then Ai = (Vi ≈ t).
— If bi is of type o and bi = false, then Ai = true.
— If bi is of type o and bi = true, then Ai = Vi.
— Otherwise, bi is a finite union of m > 0 basic elements of the form bj1 ↘ (bj2 ↘ · · · ↘

(bjr ↘ true) · · · ), 1 ≤ j ≤ m. Then, Ai = Vi(B11) · · · (B1r) ∧ · · · ∧ Vi(Bm1) · · · (Bmr),
where Bj1, . . . ,Bjr are the expressions that correspond (by the induction hypothesis)
to bj1, . . . , bjr.

It is easy to verify that the resulting basic expression B satisfies [[B]](I) = b.

The above two lemmas suggest that basic expressions are the syntactic analogues of
basic elements.

7.2. Substitutions and Unifiers
Substitutions are vital in the development of the proof system for H:

Definition 7.7. A substitution θ is a finite set of the form {V1/E1, . . . ,Vn/En}, where
the Vi’s are different argument variables of H and each Ei is a positive expression
of H having the same type as Vi. We write dom(θ) = {V1, . . . ,Vn} and range(θ) =
{E1, . . . ,En}. A substitution is called basic if all Ei are basic expressions. A substitution
is called zero-order, if type(Vi) = ι, for all i ∈ {1, . . . , n} (notice that every zero-order
substitution is also basic). The substitution corresponding to the empty set will be
called the identity substitution and will be denoted by ε.

We are now ready to define what it means to apply a substitution θ to an expression
E. Such definitions are usually complicated by the fact that one has to often rename
the bound variable before applying θ to the body of a lambda abstraction. In order to
simplify matters, we follow the simple approach suggested in [Barendregt 1984][pages
26-27], which consists of the following two conventions:

— The α-congruence convention: Expressions that are α-congruent will be consid-
ered identical (expression E1 is α-congruent with expression E2 if E2 results from E1
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by a series of changes of bound variables). For example, λQ.Q(a) is α-congruent to
λR.R(a).

— The variable convention: If expressions E1, . . . ,En occur in a certain mathemati-
cal context (eg., definition, proof), then in these expressions all bound variables are
chosen to be different from the free variables.

Using the variable convention, we have the following simple definition:

Definition 7.8. Let θ be a substitution and let E be a positive expression. Then, Eθ
is an expression obtained from E as follows:

— Eθ = E, if E is false, true, c, or p.
— Vθ = θ(V) if V ∈ dom(θ); otherwise, Vθ = V.
— (f E1 · · ·En)θ = (f E1θ · · ·Enθ).
— (E1E2)θ = (E1θ E2θ).
— (λV.E1)θ = (λV.(E1θ)).
— (E1

∨
π E2)θ = (E1θ

∨
π E2θ).

— (E1

∧
π E2)θ = (E1θ

∧
π E2θ).

— (E1 ≈ E2)θ = (E1θ ≈ E2θ).
— (∃VE1)θ = (∃V (E1θ)).

Notice that in the case of lambda abstraction (and similarly in the case of existential
quantification), it is not needed to say “provided V 6∈ FV (range(θ)) and V 6∈ dom(θ)”.
By the variable convention this is the case.

Definition 7.9. Let θ = {V1/E1, . . . ,Vm/Em} and σ = {V′1/E′1, . . . ,V′n/E′n} be sub-
stitutions. Then the composition θσ of θ and σ is the substitution obtained from the
set

{V1/E1σ, . . . ,Vm/Emσ,V
′
1/E
′
1, . . . ,V

′
n/E

′
n}

by deleting any Vi/Eiσ for which Vi = Eiσ and deleting any V′j/E
′
j for which V′j ∈

{V1, . . . ,Vm}.

The following proposition is easy to establish:

PROPOSITION 7.10. Let θ, σ and γ be substitutions. Then:

(1) θε = εθ = θ.
(2) For all positive expressions E, (Eθ)σ = E(θσ).
(3) (θσ)γ = θ(σγ).

We will now define the notions of “unifier” and “most general unifier”, which in our case
are the same as in the case of classical first-order logic programming (notice that in the
following definition, the expressions to be unified are of type ι and the substitutions
involved are all zero-order). Notice that in the proposed proof system there is no higher-
order unification process involved.

Definition 7.11. Let S be a set of terms of H (ie., expressions of type ι). A zero-order
substitution θ will be called a unifier of the expressions in S if the set Sθ = {Eθ | E ∈ S}
is a singleton. The zero-order substitution θ will be called a most general unifier of
S (denoted by mgu(S)), if for every unifier σ of the expressions in S, there exists a
zero-order substitution γ such that σ = θγ.

We now have the following Substitution Lemma (see for example [Tennent 1991] for
a corresponding lemma in the case of functional programming). The Substitution
Lemma shows that given a basic substitution θ, the meaning of Eθ is that of E in a
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certain state definable from θ. The lemma will be later used in the proof of soundness
of the proposed proof system.

LEMMA 7.12 (SUBSTITUTION LEMMA). Let I be an interpretation of H and let s be
a state over the domain of I. Let θ be a basic substitution and E be a positive expression.
Then, [[Eθ]]s(I) = [[E]]s′(I), where s′(V) = [[θ(V)]]s(I) if V ∈ dom(θ) and s′(V) = s(V),
otherwise.

PROOF. By structural induction on E.

The following lemmas, that also involve the notion of substitution, can be easily
demonstrated and will prove useful in the sequel.

LEMMA 7.13. Let θ1, . . . , θn be basic substitutions. Then, θ1 · · · θn is also a basic
substitution.

PROOF. By induction on n and using Definitions 7.1 and 7.9.

LEMMA 7.14. Let I be an interpretation of H and let s be a state over the domain
of I. Let λV.E1 and E2 be positive expressions of type ρ → π and ρ respectively. Then,
[[(λV.E1)E2]]s(I) = [[E1{V/E2}]]s(I).

PROOF. By structural induction on E1.

LEMMA 7.15. Let I be a Herbrand interpretation of H and let s be a Herbrand
state. Let E be a positive expression. Then, there exists a basic substitution θ such that
[[E]]s(I) = [[Eθ]]s′(I) for every Herbrand state s′.

PROOF. Define θ such that if V ∈ FV (E), θ(V) = B, where B is a closed basic expres-
sion such that [[B]](I) = s(V) (the existence of such a B is ensured by Lemma 7.6). The
lemma follows by a structural induction on E.

It is important to note that in the rest of the paper, the substitutions that we will use
will be basic ones (unless otherwise stated). Actually, the only place where a non-basic
substitution will be needed, is when we perform a β-reduction step (see for example
the rule for λ in the forthcoming Definition 7.18).

7.3. SLD-Resolution
We now proceed to define the notions of answer and correct answer.

Definition 7.16. Let P be a program and G be a goal. An answer for P ∪ {G} is a
basic substitution for (certain of the) free variables of G.

Definition 7.17. Let P be a program, G =← A be a goal clause and let θ be an
answer for P ∪ {G}. We say that θ is a correct answer for P ∪ {G} if for every model M
of P and for every state s over the domain of M , [[Aθ]]s(M) = true.

Definition 7.18. Let P be a program and let G =← A and G′ =← A′ be goal clauses.
We say that A′ is derived in one step from A using basic substitution θ (or equivalently
that G′ is derived in one step from G using θ), and we denote this fact by A

θ→ A′

(respectively, G θ→ G′), if one of the following conditions applies:

(1) p E1 · · ·En
ε→ E E1 · · ·En, where p←π E is a rule in P.

(2) Q E1 · · ·En
θ→ (Q E1 · · ·En)θ, where θ = {Q/Bt} and Bt a basic template.

(3) (λV.E) E1 · · ·En
ε→ (E{V/E1})E2 · · ·En.

(4) (E′
∨
π E
′′) E1 · · ·En

ε→ E′ E1 · · ·En.
(5) (E′

∨
π E
′′) E1 · · ·En

ε→ E′′ E1 · · ·En.
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(6) (E′
∧
π E
′′) E1 · · ·En

ε→ (E′ E1 · · ·En) ∧ (E′′ E1 · · ·En), where π 6= o.
(7) (E1 ∧ E2)

θ→ (E′1 ∧ (E2θ)), if E1
θ→ E′1.

(8) (E1 ∧ E2)
θ→ ((E1θ) ∧ E′2), if E2

θ→ E′2.
(9) (true ∧ E)

ε→ E

(10) (E ∧ true)
ε→ E

(11) (E1 ≈ E2)
θ→ true, where θ is an mgu of E1 and E2.

(12) (∃VE)
ε→ E

Moreover, we write A
θ
� A′ if A = A0

θ1→ A1
θ2→ · · · θn→ An = A′, n ≥ 1, where θ = θ1 · · · θn

(and similarly for G
θ
� G′).

Definition 7.19. Let P be a program and G be a goal. An SLD-derivation of P ∪ {G}
is a (finite or infinite) sequence G0 = G,G1, . . . of goals and a sequence θ1, θ2, . . . of basic
substitutions such that:

(1) each Gi+1 is derived in one step from Gi using θi+1, and
(2) for all i, if θi = {V/Bt} where Bt is a basic template, then the free variables of Bt

are disjoint from all the variables that have already appeared in the derivation up
to Gi−1.

Definition 7.20. Let P be a program and G be a goal. Assume that P ∪ {G} has a
finite SLD-derivation G0 = G,G1, . . . ,Gn with basic substitutions θ1, . . . , θn, such that
Gn = 2. Then, we will say that P ∪ {G} has an SLD-refutation of length n using basic
substitution θ = θ1 · · · θn.

Definition 7.21. Let P be a program, G be a goal and assume that P ∪ {G} has an
SLD-refutation using basic substitution θ. Then, a computed answer σ for P ∪ {G} is
the basic substitution obtained by restricting θ to the free variables of G.

Example 7.22. Consider the program of Example 3.6. An SLD-refutation of the goal
← closure Q a b is given below (where we have omitted certain simple steps involving
lambda abstractions):

closure Q a b θ1 = ε
(λR.λX.λY.(R X Y)) Q a b θ2 = ε
Q a b θ3 = {Q/(λX.λY.(X≈ X0)∧(Y≈ Y0))}
(λX.λY.(X≈ X0)∧(Y≈ Y0)) a b θ4 = ε
(a≈ X0)∧(b≈ Y0) θ5 = {X0/a}
�∧(b≈ Y0) θ6 = ε
(b≈ Y0) θ7 = {Y0/b}
�

If we restrict the composition θ1 · · · θ7 to the free variables of the goal, we get the com-
puted answer σ1 = {Q/λX.λY.(X≈ a)∧(Y≈ b)}. Intuitively, σ1 assigns to Q the relation
{(a, b)} (for which the query is obviously true). Notice that by substituting Q with dif-
ferent basic templates, one can get answers that are “similar” to the above one, such
as for example {(a, b), (Z1, Z2)} or {(a, b), (Z1, Z2), (Z3, Z4)}, and so on. Answers of this
type are in some sense “represented” by the answer {(a, b)}. Actually, one can easily
optimize the proof system so as to avoid enumerating such superfluous answers (see
the discussion in Section 9).

However, there exist other answers to our original query that are gen-
uinely different from {(a, b)} and can be obtained by making differ-
ent clause choices. For example, another answer to our query is σ2 =
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{Q/(λX.λY.(X≈ a)∧(Y≈ Z))
∨
π (λX.λY.(X≈ Z)∧(Y≈ b))}, which corresponds to

the relations of the form {(a, Z), (Z, b)}, for every Z in the Herbrand universe. Similarly,
one can get the answer {(a, Z1), (Z1, Z2), (Z2, b)}, and so on.

In other words, we observe that by performing different choices in the selection of
a basic template for Q and making an appropriate use of the two rules of the program
for closure, we get an infinite (but countable) number of computed answers to our
original query.

7.4. Soundness of SLD-resolution
In this subsection we establish the soundness of the SLD-resolution proof system. The
following lemmas are very useful in the proof of the soundness theorem:

LEMMA 7.23. Let P be a program, let I be an interpretation of P and let s be a state
over the domain of I. Let E1 and E2 be positive expressions of type ρ → π and let E be a
positive expression of type ρ. If [[E1]]s(I) vρ→π [[E2]]s(I), then [[(E1 E)]]s(I) vπ [[(E2 E)]]s(I).

PROOF. Straightforward using the definition of application.

LEMMA 7.24. Let P be a program, let G =← A and G′ =← A′ be goals and let θ be a
basic substitution such that A θ→ A′. Then, for every model M of P and for every state s
over the domain of M , it holds that [[Aθ]]s(M) w [[A′]]s(M).

PROOF. First, observe that in all cases A is of the form E E1 · · ·Ek, k ≥ 0, where E is
an expression of predicate type. We perform a structural induction on E.
Induction Basis: We distinguish three cases, namely E = (E′ ≈ E

′′
), E = p and E = Q.

For the first case it suffices to show that [[(E′ ≈ E
′′
)θ]]s(M) w [[true]]s(M), where θ is an

mgu of E′ and E
′′
. This holds trivially since both sides are equal to true. For the second

case it suffices to show that [[(pE1 · · ·Ek)θ]]s(M) w [[(Ep E1 · · ·Ek)θ]]s(M), where θ = ε
and p←π Ep is a clause in P. This follows easily by the fact that M is a model of P and
using Lemma 7.23. The third case is trivial.
Induction Step: We examine the two most interesting cases (the rest are straightfor-
ward):
Case 1: E = (λV.E′). In this case θ is the empty substitution, and therefore it suffices to
show that [[(λV.E′)E1 · · ·Ek]]s(M) w [[E′{V/E1}E2 · · ·Ek]]s(M). By Lemma 7.14 we have
that [[(λV.E′)E1]]s(M) = [[E′{V/E1}]]s(M), and the result follows by Lemma 7.23.

Case 2: E = (E′∧E′′). Moreover, assume that E′ θ→ E′1. Then, (E′∧E′′) derives in one step
the expression (E′1∧ (E′′θ)). It suffices to show that [[(E′∧E′′)θ]]s(M) w [[E′1∧ (E′′θ)]]s(M),
or equivalently that [[(E′θ)∧ (E′′θ)]]s(M) w [[E′1 ∧ (E′′θ)]]s(M). But this holds since by the
induction hypothesis we have that [[E′θ]]s(M) w [[E′1]]s(M).

LEMMA 7.25. Let P be a program and G =← A be a goal. Let G0 = G,G1 =←
A1, . . . ,Gn =← An be an SLD-refutation of length n using basic substitutions
θ1, . . . , θn. Then, for every model M of P and for every state s over the domain of M ,
[[Aθ1 · · · θn]]s(M) w [[An]]s(M).

PROOF. Using Lemma 7.24, Lemma 7.12 and induction on n.

THEOREM 7.26 (SOUNDNESS). Let P be a program and G =← A be a goal. Then,
every computed answer for P ∪ {G} is a correct answer for P ∪ {G}.

PROOF. The result is a direct consequence of Lemma 7.25 for Gn = 2 (ie., for Gn =←
true).
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7.5. Completeness of SLD-resolution
In order to establish the completeness of the proposed SLD-resolution, we need to
first demonstrate a result that is analogous to the lifting lemma of the first-order case
(see [Lloyd 1987]). We first state (and prove in the appendix) a more technical lemma,
which has as a special case the desired lifting lemma.

In the rest of this subsection, whenever we refer to a “substitution” we mean a “basic
substitution”.

LEMMA 7.27. Let P be a program, G be a goal and let θ be a substitution. Suppose
that there exists an SLD-refutation of P ∪ {Gθ} using substitution σ. Then, there exists
an SLD-refutation of P ∪ {G} using a substitution δ, where for some substitution γ it
holds that δγ ⊇ θσ and dom(δγ− θσ) is a (possibly empty) set of template variables that
are introduced during the refutation of P ∪ {G}.

The proof of the above lemma is by induction on the length of the SLD-refutation of
P ∪ {Gθ}, and is given in the Electronic Appendix, Section E.

LEMMA 7.28 (LIFTING LEMMA). Let P be a program, G be a goal and let θ be a
substitution. Suppose that there exists an SLD-refutation of P∪{Gθ} using substitution
σ. Then, there exists an SLD-refutation of P∪{G} using a substitution δ, where for some
substitution γ it holds that Gδγ = Gθσ.

PROOF. By Lemma 7.27, δγ and θσ differ only in template variables that are intro-
duced during the refutation. By the second restriction mentioned in Definition 7.19,
these variables are different from the variables in the goal G. Therefore, δγ and θσ
agree on the expressions they assign to the free variables of G.

Notice that the above lifting lemma differs slightly from the corresponding lemma
for classical logic programming, where we actually have the equality δγ = θσ. This
difference is due to the existence of template variables in the higher-order resolution
proof system. Of course, if we restrict the higher-order proof system to apply to first-
order logic programs, then it behaves like classical SLD-resolution and the usual lifting
lemma holds.

Example 7.29. Consider any program P of our higher-order language and con-
sider the goal clause G =← R(Z), where Z is of type ι and R of type ι → o. Let
θ = {R/λX.(X≈ a), Z/a}. Then, Gθ =← (λX.(X≈ a))(a). We have the following SLD-
refutation:

(λX.(X≈ a))(a)
ε→ (a≈ a)

ε→ true

Therefore, Gθ has an SLD-refutation with substitution σ = ε. On the other hand, we
have the following SLD-refutation of G:

R(Z)
{R/λX.(X≈ X0)}→ (λX.(X≈ X0))(Z)

ε→ (Z≈ X0)
{X0/Z}→ true

Therefore, G has an SLD-refutation with substitution δ which is equal to the compo-
sition of the substitutions {R/λX.(X≈ X0)}, ε and {X0/Z}, ie., δ = {R/λX.(X≈ Z), X0/Z}.
Let γ = {Z/a}. Then, δγ = {R/λX.(X≈ a), X0/a, Z/a} while θ = {R/λX.(X≈ a), Z/a}. We
see that δγ ⊇ θσ and dom(δγ − θσ) = {X0} (which is a template variable). Moreover, it
holds Gθσ = Gδγ.

Before we derive the first completeness result, we need certain definitions and lemmas.

Definition 7.30. Let P be a program and let E be a positive expression or a goal
clause. We define SE to be the set of all expressions that can be obtained from E by
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substituting zero or more occurrences of every predicate constant p in E with the ex-
pression E1

∨
π · · ·

∨
π Ek, where p←π Ei are all the clauses6 for p in P. Moreover, Ê ∈ SE

is the expression obtained from E by substituting every predicate symbol occurrence
with the corresponding expression.

LEMMA 7.31. Let P be a program, E be a positive expression or a goal clause, I be a
Herbrand interpretation of P and let s be a Herbrand state. Then, [[E]]s(TP(I)) = [[Ê]]s(I).

PROOF. The proof is by structural induction on E. Assume that E is a positive ex-
pression (the proof for the case of goal clause is similar). For the induction basis we
need to consider the cases where E is an argument variable V, an individual constant
c, a propositional constant (false, true), or a predicate constant p. Except for the last one,
all other cases are straightforward because the meaning of E is independent of TP(I)
and I. For the last case assume that E1, . . . ,Ek are all the bodies of the rules defining
p in P. By definition of the TP operator, it holds that [[p]]s(TP(I)) =

⊔
(p←πEi)∈P [[Ei]]s(I).

Moreover, [[Ê]]s(I) = [[E1

∨
π · · ·

∨
π Ek]]s(I) =

⊔
(p←πEi)∈P [[Ei]]s(I). This completes the ba-

sis case. For the induction step, all cases are immediate.

LEMMA 7.32. Let P be a program, G,G′ be goals and G′ ∈ SG. If G′ θ→ H′ then G
θ
� H,

where H′ ∈ SH.

PROOF. The proof is by induction on the numberm of top-level subexpressions of the
goal G that are connected with the logical constant ∧. The basis case is for m = 1, ie., it
applies to goal clauses G that do not contain a top-level ∧. Assume that G =← A. The
cases we need to examine for A for the induction basis are the following: (p A1 · · ·An),
(QA1, . . .An), ((λV.A′) A1 · · ·An), ((A′

∨
π A
′′) A1 · · ·An), ((A′

∧
π A
′′) A1 · · ·An), (A1 ≈

A2), and (∃VA). The only non-trivial case is A = (p A1 · · ·An), which we demonstrate.
Assume that p is defined in P with a set of k rules with right-hand sides E1, . . . ,Ek. Let
Ep = E1

∨
π · · ·

∨
π Ek. Since G =← (pA1 · · ·An), we have that G′ =← (A′ A′1 · · ·A′n), with

A′ ∈ Sp,A
′
1 ∈ SA1

, . . . ,A′n ∈ SAn . We distinguish three cases for A′:

— A′ = p. Then G′
ε→ H′, where H′ =← (Ej A

′
1 · · ·A′n) for some j. We also have that

G
ε→ H, where H =← (Ej A1 · · ·An). Obviously, it holds that H′ ∈ SH.

— A′ = Ep and Ep contains more than one disjunct. Then G′
ε→ H′, where H′ =←

(Ej A
′
1 · · ·A′n). We also have that G

ε→ H, where H =← (Ej A1 · · ·An). Again, it holds
that H′ ∈ SH.

— A′ = Ep and Ep contains exactly one disjunct. Then this disjunct must be a lambda
abstraction of the form (λV.A′′). This implies that G′ =← ((λV.A′′)A′1 · · ·A′n) and
G′

ε→ H′, where H′ =← (A′′{V/A′1}A′2 · · ·A′n). On the other hand, G ε→ H1, where
H1 =← ((λV.A′′)A1 · · ·An), and H1

ε→ H, where H =← (A′′{V/A1}A2 · · ·An). There-
fore, G

ε
� H where H′ ∈ SH.

The above completes the proof for the basis case. For the induction step, the goal must
be of the form G =← (A1∧A2). Then, G′ =← (A′1∧A′2) where A′1 ∈ SA1

and A′2 ∈ SA2
. Since

G′
θ→ H′, we conclude without loss of generality that A′1

θ→ H′1 and H′ =← (H′1 ∧ A′2θ).

By the induction hypothesis, since A′1
θ→ H′1, we get that A1

θ
� H1, where H′1 ∈ SH1

. But

6We may assume without loss of generality that each predicate symbol p that is used in P, has a definition
in P: if no such definition exists, we can add to the program the clause p←π E, where E is a basic expression
corresponding to the basic element ⊥π .
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then this easily implies that (A1 ∧ A2)
θ
� (H1 ∧ A2θ), ie., G

θ
� H, where H′ ∈ SH. This

completes the proof for the induction step and the lemma.

LEMMA 7.33. Let P be a program, G,G′ be goals and G′ ∈ SG. If there exists an SLD-
refutation for P∪ {G′} using substitution θ, then there also exists an SLD-refutation for
P ∪ {G} using the same substitution θ.

PROOF. The proof is by induction on the length n of the refutation of P ∪ {G′}. The
induction basis is for n = 1 and includes the following cases for G: (true∧true), (true∨E1),
(E1∨true), (E1 ≈ E2), ((λV.true)E) and (∃V true). It can be easily verified that the lemma
holds for all these cases.

Suppose now that the result holds for n − 1. We demonstrate that it also holds for
n. Let G′ = G′0,G

′
1, . . . ,G

′
n be the derived goals of the SLD-refutation of G′ using the

sequence of substitutions θ1, . . . , θn. Since G′
θ1→ G′1, by Lemma 7.32 there exists a goal

G1 such that G
θ1
� G1 and G′1 ∈ SG1

. By the induction hypothesis, P ∪ {G1} has an
SLD-refutation using θ2 · · · θn. It follows that P∪{G} also has an SLD-refutation using
θ = θ1 · · · θn.

COROLLARY 7.34. Let P be a program and G be a goal. If there exists an SLD-
refutation for P ∪ {Ĝ} using substitution θ, then there also exists an SLD-refutation for
P ∪ {G} using the same substitution θ.

LEMMA 7.35. Let P be a program and G =← A be a goal such that [[A]]s(⊥IP) = true
for all Herbrand states s. Then, there exists an SLD-refutation for P∪{G}with computed
answer equal to the identity substitution.

The proof of the lemma can be found in the Electronic Appendix, Section F.
As in the first-order case, we have various forms of completeness. We can now prove

the analogue of a theorem due to Apt and van Emden (see [Apt 1990][Lemma 3.17]
or [Lloyd 1987][Theorem 8.3]).

THEOREM 7.36. Let P be a program, G =← A be a goal and assume that [[A]]s(MP) =
true for all Herbrand states s. Then, there exists an SLD-refutation for P ∪ {G} with
computed answer equal to the identity substitution.

PROOF. We prove by induction on n that if [[A]]s(TP ↑ n) = true for all Herbrand
states s, then P ∪ {G} has an SLD-refutation with computed answer equal to the iden-
tity substitution. For n = 0 the proof is a direct consequence of Lemma 7.35.

Now suppose that the result holds for n − 1. For the induction step assume that
[[A]]s(TP ↑n) = true for all s. By Lemma 7.31, [[Â]]s(TP ↑ (n− 1)) = true. By the induction
hypothesis there exists an SLD-refutation for P ∪ {Ĝ} with computed answer equal to
the identity substitution. Let θ be the composition of the substitutions that are used
during the SLD-refutation of P ∪ {Ĝ}. By Corollary 7.34, P ∪ {G} also has an SLD-
refutation using the same substitution θ. The restriction of θ to the free variables of
G is equal to the restriction of θ to the free variables of Ĝ which is equal to the empty
substitution. Therefore, P∪{G} has an SLD-refutation with computed answer equal to
the identity substitution.

The following theorem generalizes a result of Hill [Hill 1974] (see also [Apt
1990][Theorem 3.15]):

THEOREM 7.37. Let P be a program and G =← A be a goal. Suppose that P ∪ {G}
is unsatisfiable. Then, there exists an SLD-refutation of P ∪ {G}.
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PROOF. Since P ∪ {G} is unsatisfiable and since MP is a model of P, we conclude
that [[G]]s(MP) = false, for some state s. Therefore, [[A]]s(MP) = true. By Lemma 7.15 we
can construct a substitution θ such that [[Aθ]]s′(MP) = true for all Herbrand states s′.
By Theorem 7.36, there exists an SLD-refutation for P ∪ {Gθ}. By Lemma 7.28 there
exists an SLD-refutation for P ∪ {G}.

Finally, the following theorem is a generalization of Clark’s theorem [Clark 1979]
(see also the more accessible [Apt 1990][Theorem 3.18]) for the higher-order case:

THEOREM 7.38 (COMPLETENESS). Let P be a program and G =← A be a goal.
For every correct answer θ for P ∪ {G}, there exists an SLD-refutation for P ∪ {G} with
computed answer δ and a substitution γ such that Gθ = Gδγ.

PROOF. Since θ is a correct answer for P∪{← A}, it follows that [[Aθ]]s(MP) = true for
all Herbrand states s. By Theorem 7.36, P∪{Gθ} has an SLD-refutation with computed
answer equal to the identity substitution. This means that if σ is the composition of
the substitutions used in the refutation of P ∪ {Gθ}, then Gθσ = Gθ. By Lemma 7.28
there exists an SLD-refutation for P ∪ {G} using substitution δ′ such that for some
substitution γ, Gδ′γ = Gθσ. Let δ be δ′ restricted to the variables in G. Then, it also
holds that Gδ′γ = Gδγ, and therefore Gδγ = Gθσ = Gθ.

8. RELATED WORK
In this section we present various approaches to higher-order logic programming that
are directly or indirectly connected to the work reported in this paper.

8.1. The Origins
The basic notions underlying our work can be traced back to certain classical ideas
from computability theory as-well-as to ideas from domain theory. Starting back in
1959, Kleene and Kreisel introduced in [Kleene 1959] and [Kreisel 1959] respectively,
what are now known as the Kleene-Kreisel continuous functionals. The key idea in
both of these works was to construct a hierarchy of functionals where the behavior of
functional Φ on input Ψ can be determined through finite “approximations” to Φ and
Ψ. There is an obvious conceptual link to our work in which the behavior of a program
predicate is described in terms of its behavior on the compact elements of the domain
corresponding to its argument type.

The work of Kleene and Kreisel has very close connections to the development of
domain theory in Theoretical Computer Science (see for example [Normann 2006] for
a more detailed discussion on the relationship between the two areas). Roughly speak-
ing, domain theory was developed in order to solve recursive definitions (of functions,
data-structures, etc.) that often appear in Computer Science. The problem we have con-
sidered in this paper is exactly of this type: we are given a set of recursively defined
higher-order predicates and we are seeking the least solution of this set of definitions.
Our solution to the problem has actually used many mainstream tools from domain
theory (eg., algebraic lattices, least fixed-point theorem, and so on). What is new in
our approach is that our constructions are performed in a logic programming setting
(and not in a functional or an imperative one); moreover, our language has the novel
characteristic of supporting uninstantiated higher-order variables, a fact that led us to
a novel way of interpreting types and to a new, non-standard interpretation of applica-
tion.
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8.2. Extensional Higher-Order Logic Programming
Work on extensional higher-order logic programming is rather limited. Apart from
the results of [Wadge 1991]7, the only other work that has come to our attention is
that of M. Bezem [Bezem 1999; 2001], who considers higher-order logic programming
languages with syntax similar to that of [Wadge 1991].

Wadge’s approach:. In [Wadge 1991], W. W. Wadge identifies a fragment of higher-
order logic programming that is argued to have an extensional semantics. In this frag-
ment, (i) predicate constants cannot appear as parameters in the heads of clauses, (ii)
predicate variables that appear in the body of a clause must also appear in its head,
and (iii) predicate variables cannot appear in goal clauses. Wadge provides a standard
semantics for this language [Wadge 1991][page 292] in which the denotations of types
are not restricted, ie., the denotation of π1 → π2 is the set of all functions from the
denotation of π1 to the denotation of π2. Under this semantics, it is claimed in [Wadge
1991] that every program has a unique minimum model that assigns to predicates
continuous relations. The ideas in [Wadge 1991] are indeed intriguing, but the main
argument contains a flaw (which however can be corrected by altering the semantics).
More specifically, a careful examination of [Wadge 1991] reveals that if the denotations
of types are not somehow restricted, then the main theorem of the paper (the second
theorem in page 296 of [Wadge 1991]) does not hold.

Example 8.1. We give an example which demonstrates that if in the fragment
of [Wadge 1991] one allows the universally quantified variables to range over arbitrary
relations, then the intended model of the program will not in general be continuous.
This contradicts the second theorem in page 296 of [Wadge 1991] which states that
the minimum Herbrand model of a higher-order program is continuous. Actually, the
construction of the minimum Herbrand model itself sketched in [Wadge 1991] does not
seem to work either, if the domains contain arbitrary relations.

Consider the program:

apply(R,S):-R(S).

where the type of apply is ((ι → o) → o) → (ι → o) → o. The intended model of the
program assigns to apply the relation apply which contains all pairs (r, s) such that
s ∈ r. We demonstrate that apply is not continuous if we allow the implicit universal
quantifiers to range over all relations of the corresponding types.

Consider the relation nat = {0, 1, 2, . . .} of type ι → o and the relation
allnat = {nat} of type (ι → o) → o. It is easy to see that allnat is
not continuous. Consider now the following directed subset of the domain of
apply : {(allnat , ∅), (allnat , {0}), (allnat , {0, 1}), . . .}. Obviously, it holds apply(allnat , ∅) =
apply(allnat , {0}) = · · · = false while apply(allnat ,nat) = true. In other words, apply is
not continuous.

Based on the same lines of reasoning, if our domains are arbitrary then the operators
Ki used in the sketch of the proof of [Wadge 1991][pages 296-297] are not continuous
and therefore Kleene’s fixpoint theorem cannot be applied to get the minimum model
result.

As we realized in the first steps of our research for the present paper, if we restrict
the domains to contain only continuous functions, then all theorems of [Wadge 1991]
hold exactly as stated and the flaw is corrected. More specifically, given a non-empty

7The work in [Wadge 1991] has also been used in order to define a higher-order extension of Datalog [Koun-
touriotis et al. 2005].
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set D, the definition of the semantics of types in [Wadge 1991][page 292] can be altered
as follows (we use [[ · ]]∗D to denote the new semantics):

— [[ι]]
∗
D = D.

— [[ιn → ι]]
∗
D = Dn → D.

— [[o]]
∗
D = {false, true}.

— [[ι→ π]]
∗
D = D → [[π]]

∗
D.

— [[π1 → π2]]
∗
D = [[[π1]]

∗
D

c→ [[π2]]
∗
D], ie., the set of continuous functions from [[π1]]

∗
D to

[[π2]]
∗
D.

The corresponding partial orders can be easily defined as in Definition 5.1. The seman-
tics of expressions can be defined in an analogous way as in Definition 5.8, the main
difference being that the semantics of application is the standard one. In the following,
we will refer to the above semantics as the “continuous semantics”.

It is easy to check that under the continuous semantics every higher-order logic pro-
gram (of the fragment considered in [Wadge 1991]) has a unique minimum Herbrand
model and this model assigns continuous denotations to all predicates of the program.
Moreover, it is straightforward to see that the continuous semantics also applies to
the richer language we consider in this paper, ie., a language allowing uninstantiated
predicate variables in clauses.

The continuous semantics was the first semantics we considered when we started
the research reported in this paper. However, we soon also realized that although
the continuous semantics is quite appropriate for the fragment considered in [Wadge
1991], it is not very convenient when the language allows occurrences of uninstanti-
ated predicate variables in clauses. Consider a goal clause of the form←p(R), where p
is defined in our program and has type (ι → o) → o. Then, the continuous semantics
dictates that we should examine all possible relations of type ι → o for possible solu-
tions. This set of relations is uncountable. Of course we know that since the denotation
of p in the least model of the program is continuous, there must be some finite set
that satisfies p. This finiteness property is of vital importance in order to devise any
sound and complete proof system for our fragment. The problem, as we understood it,
was that the continuous semantics does not reflect the finiteness property directly. In
other words, we needed a semantics which would make the finiteness more explicit.

Actually, there appear to be close connections between the semantics proposed in
this paper and the continuous semantics. It is relatively easy to show that for every
argument type ρ of H there is a bijection between the sets [[ρ]]D and [[ρ]]

∗
D. Similarly,

there is a bijection between the set of interpretations of H under the proposed seman-
tics and the set of interpretations of H under the continuous semantics. Then, the
following proposition can be established:

PROPOSITION 8.2. Let P be a program and let F be a formula of H. Then, F is a
logical consequence of P under the proposed semantics iff F is a logical consequence of
P under the continuous semantics.

An outline of the proof of the above proposition is given in the Electronic Appendix,
Section G.

What the above proposition suggests is that the two semantics, despite their differ-
ences, are closely related. The key advantage of the proposed semantics is that it is
much closer to the SLD-resolution proof system that is introduced in Section 7. More
specifically:

— The compact elements of our algebraic lattices correspond to the basic expressions
that are a vital characteristic of the proposed proof system (see Subsection 7.1).
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— The notion of answer and correct answer for a query (see Definitions 7.16 and 7.17)
can now be accurately defined. Notice that the notion of correct answer must be quite
close to that of computed answer in order to be able to state the main completeness
theorem.

In conclusion, the proposed semantics allows us to define an SLD-resolution proof sys-
tem and it helps us formalize and prove its completeness. It is unclear to us whether
(and how) this could have been accomplished by relying on the continuous semantics.

Bezem’s approach:. In [Bezem 2001] a notion of extensionality is defined (called the
extensional collapse) and it is demonstrated that many logic programs are extensional
under this notion; however, this notion appears to differ from classical extensionality
and has a more proof-theoretical flavor.

The source language considered by Bezem is quite close to the one we adopt in this
paper. The “hoapata” programs defined in [Bezem 2001] are higher-order logic pro-
grams in which the higher-order arguments (hoa) can only be passed (p), applied (a)
and/or thrown away (ta). In particular, all higher-order arguments in the head of a
clause, are distinct variables. Roughly speaking, these restrictions define a language
that is syntactically similar to ours.

However, the semantics of hoapata programs defined in [Bezem 2001] appears to
differ significantly from the semantics of H. As it was pointed to us by one of the
reviewers, one important difference can be seen when considering queries with unin-
stantiated predicate variables. More specifically, given the program:

p(Q):-Q(0),Q(s(0)).

the query ←p(R) will not return any answer under the approach of [Bezem 2001].
Under our semantics, we will get basic expressions (representing sets), as discussed in
the previous sections. However, if the two facts:

nat(0).
nat(s(0)).

are added to the program, then Bezem’s approach will return the answer R=nat, while
our approach will continue to return the same answers (basic expressions). This dif-
ference in behavior when evaluating queries with uninstantiated higher-order argu-
ments, can also be observed when comparing our approach with that of λProlog and
HiLog. A more careful discussion of this issue is given at the end of the following sub-
section.

8.3. Intensional Higher-Order Logic Programming
Research on intensional higher-order logic programming is much more extended. The
two main existing approaches in this area are represented by the languages λProlog
and HiLog. Both systems have mature implementations and have been tested in vari-
ous application domains. It should be noted that both λProlog and HiLog encourage a
form of higher-order programming that extends in various ways the higher-order pro-
gramming capabilities that are supported by functional programming languages. For
a more detailed discussion on this issue, see [Nadathur and Miller 1998][section 7.4].

In the rest of this section, we give a brief presentation of certain characteristics of
these two systems that are related to their intensional behavior (ie., characteristics
that will help the reader further clarify the differences between the intensional and
extensional approaches). A detailed discussion on the syntax, semantics, implementa-
tion and applications of the two languages, is outside the scope of this paper (and the
interested reader can consult the relevant bibliography).
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λProlog:. The language was initially designed in the late 1980s [Miller and Na-
dathur 1986; Nadathur 1987; Nadathur and Miller 1990] in order to provide a proof
theoretic basis for logic programming. The syntax of λProlog is based on the intu-
itionistic theory of higher-order hereditary Harrop formulas. The resulting language
is a powerful one, that allows the programmer to quantify over function and predi-
cate variables, to use λ-abstractions in terms, and so on. The semantics of λProlog is
not extensional (see for example the discussion in [Nadathur and Miller 1998]). The
following simple example illustrates this idea.

Example 8.3. Consider the λProlog program (we omit type declarations):

r p.
p X :- q X.
q X :- p X.

The goal←(r q) fails for the above program.

Notice that due to the unit clause r p., the above program is not a valid H program.
Actually, as it was first remarked in [Wadge 1991][Example in pages 292-293], if pred-
icate constants are used as parameters in the heads of clauses in a higher-order lan-
guage, then there does not appear to exist any straightforward way to achieve an ex-
tensional minimum-model semantics. In conclusion, λProlog has a very general syn-
tax; this makes the language very powerful from an expressive point of view, but more
demanding from a semantic point of view.

Since the syntax ofH is restricted with respect to that of λProlog, in order to compare
the two systems, we restrict attention to the syntax of H. In general, we believe that
programs of H that do not involve uninstantiated higher-order variables will have
a similar behavior in λProlog and under our proof system (see also the discussion
and conjecture at the end of this subsection). For programs or queries that contain
uninstantiated higher-order variables, the two systems have in general a different
behavior. Consider for example the band example given in the introductory section, and
the query ←band(B). This goal is not generally a meaningful one for λProlog because
there exist too many suitable answer substitutions (ie., predicate terms) for B that one
could think of (see the relevant discussion in [Nadathur and Miller 1998][page 50]).
Notice that there exists at least one suitable answer for B, namely the top relation
λx.> that is true of everything, which can be taken as the desired answer in such
queries (see again [Nadathur and Miller 1998][page 50]). Our approach in such queries
is quite different: the SLD-resolution will enumerate the possible bands (sets) that can
be formed given the information in the program. For example, B = {sally, dave, grace}
is one such band. We believe that such queries that return sets as answers add a
nice new characteristic to higher-order logic programming that deserves to be better
investigated.

HiLog:. The language possesses a higher-order syntax and a first-order seman-
tics [Chen et al. 1989; 1993]. It extends classical logic programming quite naturally,
and allows the programmer to write in a concise way programs that would be rather
awkward to code in Prolog. It has been used in various application domains (eg. deduc-
tive and object-oriented databases, modular logic programming, and so on).

As it is the case with λProlog, HiLog also differs from H in the way that it han-
dles queries with higher-order uninstantiated arguments. For example, the←band(R)
query will fail in HiLog since there is no actual band defined in the program. However,
consider the program:

married(john,mary).
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Then, the query:

?-R(john,mary).

is a meaningful one for HiLog, and the interpreter will respond with R = married.
Intuitively, the interpreter searches the program for possible candidate relations and
tests them one by one. Of course, if there is no binary relation defined in the program,
the above query will fail.

The above program behavior can be best explained by the following comment
from [Chen et al. 1993]: “in HiLog predicates and other higher-order syntactic objects
are not equal unless they (ie., their names) are equated explicitly”.

Some remarks:. From the above discussion, it turns out that the four languages,
namely H, the “hoapata” language, λProlog and HiLog, seem to have the same behav-
ior when restricted to the fragment proposed in [Wadge 1991]. This is something we
had observed during the course of this research and which was also pointed to us by
two of the reviewers of the paper. It would be interesting (and certainly nontrivial) to
establish this behavioral equivalence in a formal way (ie., by using the semantics of
each language in order to demonstrate that for the particular fragment all four lan-
guages have the same logical consequences). Of course, as we have seen above, the
addition of uninstantiated predicate variables, differentiates H from the other three
proposals.

Notice that despite the fact that the four languages seem to have the same behav-
ior when restricted to the fragment of [Wadge 1991], the proposed approach appears
to have an important distinguishing characteristic: since it is based on an extension
of classical logic programming, one can use well-established techniques in order to
demonstrate program equivalence, the correctness of transformations, and so on (eg.,
by using induction on the approximations to the least fixpoint of the immediate conse-
quence operator).

8.4. Other Approaches
There exist other approaches in the study of higher-order logic that appear to
be connected to higher-order logic programming. One such approach is reported
in [Benzmüller et al. 2004] in which the semantics of classical higher-order logic is re-
examined with the goal of characterizing the deductive power of existing higher-order
theorem provers. More specifically, Church’s simply typed λ-calculus is considered as
the source language and nine classes of models are identified. Roughly speaking, the
classes are distinguished based on “the amount of extensionality” that is present in
each one of them.

The work of [Benzmüller et al. 2004] is interesting because the classes of models can
be used in order to study and classify existing higher-order theorem provers of varying
capabilities. Moreover, as the authors point out (Section 8.1, page 1085 of [Benzmüller
et al. 2004]), it is possible that their results may be relevant to higher-order logic
programming and in particular to the semantic study of λProlog.

9. FUTURE WORK
There are several aspects of this work, both theoretical and practical, that can be fur-
ther investigated. In the following, we briefly discuss some of them.

Semantics:. The discussion of the related approaches in Section 8 leaves open some
interesting questions that deserve to be further investigated.

First of all, it would be interesting to investigate whether the four different lan-
guages mentioned in Section 8 (namely H, “hoapata” programs, λProlog and HiLog)
coincide semantically when restricted to the fragment of “definitional programs” in-
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troduced in [Wadge 1991]. If such an equivalence holds, then its demonstration must
be non-trivial (mainly due to the fact that all four formalisms use different semantic
approaches).

A second important question stems from the continuous semantics outlined in Sub-
section 8.2. It would be interesting to examine whether a proof system can be defined
forH programs which will be sound and complete with respect to the continuous seman-
tics. Such an approach would seem more “mainstream” since it would (for example)
avoid the non-standard semantics of application given in Definition 5.8.

Implementation:. A prototype implementation of the proposed proof system has been
performed in Haskell8. A detailed description of the implementation is outside the
scope of this paper. However, in the following we outline certain points that we feel are
important.

The main difference in comparison to a first-order implementation, is that the proof
system has to generate an infinite (yet enumerable) number of basic templates. In or-
der to make more efficient the production of the basic templates, one main optimization
has been adopted. As we have already mentioned in Definition 7.3, a basic template
is a non-empty finite union of basic expressions of a particularly simple form. In the
implementation, the members of this union are generated in a “demand-driven way”,
as the following examples illustrate.

Example 9.1. Consider the query ← (R a b),(R c d). The proposed proof system
would try some basic templates until it finds one that satisfies the query. However, if it
first tries the basic template (λX.λY.(X≈ Z)∧(Y≈ W)) then this will obviously not lead
to an answer (since a relation that satisfies the above query must contain at least two
pairs of elements). In order to avoid such cases, our implementation initially produces
a basic expression that consists of the union of a basic template with an uninstan-
tiated variable (say L) of the same type as the template; intuitively, L represents a
(yet undetermined) set of basic templates that may be needed later during resolution
and which need not yet be explicitly generated. In our example, the implementation
starts with the production of an expression of the form (λX.λY.(X≈ Z)∧(Y≈ W))

∨
L.

When the second application in the goal is reached, then a second basic template
will be generated together with a new uninstantiated variable (say L1). The final
answer to the query will be an expression of the form: (λX.λY.(X≈ a)∧(Y≈ b))

∨
(λX.λY.(X≈ c)∧(Y≈ d))

∨
L1. The intuitive meaning of the above answer is that the

query is satisfied by all relations that contain at least the pairs (a, b) and (c, d).
Notice that an important practical advantage of the above optimization is that

a unique answer to the given query is generated. Notice also that if the formal
proof system of the previous sections was followed faithfully in the implementa-
tion, then an infinite number of answers would be generated: an answer represent-
ing the two-element relation {(a, b), (c, d)}, an answer representing all three-element
relations {(a, b), (c, d), (X1, X2)}, an answer representing the four-element relations
{(a, b), (c, d), (X1, X2), (X3, X4)}, and so on.

Example 9.2. Consider the ordered predicate of Example 3.7 and let ← ordered
R [1,2,3] be a query. Following the same ideas as in the previous exam-
ple, the implementation will produce the unique answer (λX.λY.(X≈ 1)∧(Y≈
2))

∨
(λX.λY.(X≈ 2)∧(Y≈ 3))

∨
L. Intuitively, this answer states that the list

[1,2,3] is ordered under any relation of the form {(1, 2), (2, 3)} ∪ L.
Finally, consider Example 3.6 defining the closure predicate. Consider also the

query← closure Q a b. Then, the implementation will enumerate the following (infi-

8The code can be retrieved from http://code.haskell.org/hopes
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nite set of) answers:

Q = (λX.λY.(X≈ a)∧(Y≈ b))
∨

L
Q = (λX.λY.(X≈ a)∧(Y≈ Z))

∨
(λX.λY.(X≈ Z)∧(Y≈ b))

∨
L

. . .

which intuitively correspond to relations of the following forms:

Q = {(a, b)} ∪ L
Q = {(a, Z), (Z, b)} ∪ L
. . .

Intuitively, the above answers state that the pair (a, b) belongs to the transitive closure
of all relations that contain at least the pair (a, b); moreover, it also belongs to the
transitive closure of all relations that contain at least two pairs of the form (a, Z) and
(Z, b) for any Z, and so on.

We conjecture that the above ideas can be used in order to define a new, more efficient
proof procedure for H which will also be sound and complete with respect to the se-
mantics introduced in this paper. Of course, an attempt in this direction would mean
that the notions of basic expression and basic template would have to be altered: the
present definitions do not allow a basic expression to be the union of a predicate vari-
able (like L in the above examples) with another basic expression. We believe that all
the proofs of Section 7 can be adapted in order to work under the new definitions and
the new proof procedure, but this has to be further investigated.

We are currently considering issues regarding an extended WAM-based implementa-
tion of the ideas presented in the paper. We believe that ideas originating from graph-
reduction [Field and Harrison 1988] will also prove vital in the development of this
extended implementation.

Other Extensions:. Another interesting direction for future research is the extension
of our higher-order fragment with negation-as-failure. The semantics of negation in a
higher-order setting could probably be captured model-theoretically using the purely
logical characterization of the well-founded semantics through an appropriate infinite-
valued logic given in [Rondogiannis and Wadge 2005].

Also, it would be interesting to investigate whether it is possible to build a higher-
order logic programming language that would combine both extensional and inten-
sional characteristics. Designing such a language would obviously be important be-
cause such a system could embody all the benefits from both the extensional and the
intensional approaches.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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Online Appendix to:
Extensional Higher-Order Logic Programming

A. CHARALAMBIDIS, K. HANDJOPOULOS, P. RONDOGIANNIS, University of Athens
W. W. WADGE, University of Victoria

A. PROOF OF LEMMA 4.17
In order to establish Lemma 4.17, we first demonstrate the following auxiliary propo-
sitions:

PROPOSITION A.1. Let A be a poset and L be an algebraic lattice. Then, for each
step function (a ↘ c) and for every f : [A

m→ L] it holds that (a ↘ c) v f if and only if
c v f(a).

PROOF. If (a↘ c) v f , by applying both functions to a we get c v f(a). Now suppose
that c v f(a) and consider an arbitrary x ∈ A. In case a v x, we have (a ↘ c)(x) = c
thus, since c v f(a) and f is monotonic, (a↘ c)(x) v f(x). Otherwise, (a↘ c)(x) =⊥L
thus (a↘ c)(x) v f(x). It follows that (a↘ c) v f .

PROPOSITION A.2. Let L be a complete lattice and assume there exists B ⊆ K(L)
such that for every x ∈ L, x =

⊔
B[x]. Then L is an algebraic lattice (ω-algebraic if B is

countable) with basis K(L) = {
⊔
M |M is a finite subset of B}.

PROOF. It is immediate that L is algebraic, since by assumption every element of
L can be written as the least upper bound of a set of compact elements of L. The
nontrivial part is establishing the relation between K(L) and B.

Given x ∈ L, we let ∆(x) be the set {
⊔
M | M is a finite subset of B[x]}. Notice

that B[x] =
⋃
{M | M is a finite subset of B[x]}. Using Proposition 4.3(2), we have that⊔

B[x] =
⊔

∆(x) and thus
⊔

∆(x) = x. We show that for each x ∈ L it holds that
K(L)[x] = ∆(x) by proving that each set is a subset of the other one.

First consider an arbitrary c ∈ K(L)[x] and recall that c =
⊔

∆(c). By the compact-
ness of c, there exists a finite A ⊆ ∆(c) such that c v

⊔
A. But then

⊔
A v c because

c is an upper bound of ∆(c), and therefore c =
⊔
A. By the definition of ∆(c) and the

fact that A ⊆ ∆(c), we get that c =
⊔
{
⊔
M1, . . . ,

⊔
Mr}, where M1, . . . ,Mr are finite

subsets of B[c]. By Proposition 4.3(2), c =
⊔

(M1 ∪ · · · ∪Mr). In other words there exists
a finite set M = M1 ∪ · · · ∪Mr such that M ⊆ B[c] ⊆ B[x] and c =

⊔
M , which means

that c ∈ ∆(x).
On the other hand, consider a finite set M = {c1, . . . , cn} ⊆ B[x] such that

⊔
M ∈

∆(x). Let A be a subset of L such that
⊔
M v

⊔
A. Due to the compactness of each ci,

by ci v
⊔
A we get ci v

⊔
Ai for some finite Ai ⊆ A. But then, for every i, ci v

⊔
Ai v⊔

{
⊔
A1, . . . ,

⊔
An} =

⊔
(A1 ∪ · · · ∪ An). In other words,

⊔
M v

⊔
(A1 ∪ · · · ∪ An), which

implies that
⊔
M is compact. Moreover, since x is an upper bound of M , we have that⊔

M ∈ K(L)[x]. Hence, K(L)[x] = ∆(x).
To complete the proof, simply take x =

⊔
L in the equality K(L)[x] = ∆(x). If, ad-

ditionally, B is countable, the cardinality of K(L) is bounded by the number of finite
subsets of a countable set, which is countable. Hence, L is an ω-algebraic lattice in this
case.
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We can now proceed to the proof of Lemma 4.17:
Lemma 4.17 Let A be a poset and L be an algebraic lattice. Then, [A

m→ L] is an
algebraic lattice whose basis is the set of all least upper bounds of finitely many step
functions from A to L. If, additionally, A is countable and L is an ω-algebraic lattice
then [A

m→ L] is an ω-algebraic lattice.

PROOF. Let B denote the set of all step functions from A to L. Recall that [A
m→ L]

forms a complete lattice by Proposition 4.10. Let (a↘ c) ∈ B be an arbitrary step func-
tion. We show that (a↘ c) is compact. Consider a set F of monotonic functions from A
to L such that (a↘ c) v

⊔
F . By Propositions A.1 and 4.10 we get that c v

⊔
f∈F f(a).

By the compactness of c, there exists a finite F ′ ⊆ F such that c v
⊔
f∈F ′ f(a). Let

f ′ =
⊔
F ′. Then, c v f ′(a), or equivalently by Proposition A.1, (a ↘ c) v f ′ =

⊔
F ′.

Hence, (a↘ c) is compact.
We now show that every monotonic function f ∈ [A

m→ L] is the least upper bound
of B[f ]. Since f is an upper bound of this set, we let g be an upper bound of B[f ] and
prove that f v g. In fact, we consider an arbitrary x ∈ A and prove that f(x) v g(x).
Suppose Sx is the set of all step functions hc = (x ↘ c) for every compact element
c ∈ K(L)[f(x)]. By Proposition A.1, we have that for all step functions hc ∈ Sx, hc v f ;
thus Sx is a subset of B[f ]. Since g is an upper bound of B[f ], it must also be an upper
bound of Sx, therefore it holds that hc v g for each hc ∈ Sx. Applying this inequality
for x we get that c v g(x) for each c ∈ K(L)[f(x)], therefore

⊔
K(L)[f(x)] v g(x). Since

L is an algebraic lattice, f(x) is the least upper bound of K(L)[f(x)], thus f(x) v g(x).
Hence, f is the least upper bound of B[f ].

On the whole, we have shown that B is a subset of K([A
m→ L]) such that each

monotonic function f from A to L is the least upper bound of B[f ]. Notice that if, addi-
tionally, A is countable and L is an ω-algebraic lattice, then B is countable because its
cardinality is equal to that of the cartesian product of two countable sets. Now apply
Proposition A.2.

B. PROOF OF LEMMA 5.10
Lemma 5.10 Let E : ρ be an expression of H and let D be a nonempty set. Moreover,
let s, s1, s2 be states over D and let I be an interpretation over D. Then:

(1) [[E]]s(I) ∈ [[ρ]]D.
(2) If E is positive and s1 vSH,D s2 then [[E]]s1(I) vρ [[E]]s2(I).

PROOF. The two statements are established simultaneously by a structural induc-
tion on E.

Induction Basis: The cases for E being false, true, c, p or V, are all straightforward.

Induction Step: The interesting cases are E = (E1E2) and E = (λV.E1). The other cases
are easier and omitted.

Case 1: E = (E1E2). We examine the two statements of the lemma:
Statement 1: Assume that E1 : ρ1 → π2 and E2 : ρ1. Then, it suffices to demonstrate
that [[(E1E2)]]s(I) ∈ [[π2]]D, or equivalently that

⊔
b∈B([[E1]]s(I)(b)) ∈ [[π2]]D, where B =

FD(type(E2))
[[[E2]]s(I)]

= {b ∈ FD(type(E2)) | b v [[E2]]s(I)}. By the induction hypothesis,
[[E1]]s(I) ∈ [[ρ1 → π2]]D and [[E2]]s(I) ∈ [[ρ1]]D. But then, for every b ∈ B, [[E1]]s(I)(b) ∈
[[π2]]D and since [[π2]]D is a complete lattice, we get that

⊔
b∈B([[E1]]s(I)(b)) ∈ [[π2]]D.
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Statement 2: It suffices to demonstrate that [[(E1E2)]]s1(I) v [[(E1E2)]]s2(I), or
equivalently that

⊔
b2∈B2

([[E1]]s1(I)(b2)) v
⊔
b′2∈B′2

([[E1]]s2(I)(b′2)), where B2 =

FD(type(E2))
[[[E2]]s1 (I)]

and B′2 = FD(type(E2))
[[[E2]]s2 (I)]

. Notice that by definition, B2 =

{b ∈ FD(type(E2)) | b v [[E2]]s1(I)} and B′2 = {b ∈ FD(type(E2)) | b v [[E2]]s2(I)}. By
the induction hypothesis we have [[E2]]s1(I) v [[E2]]s2(I), and therefore B2 ⊆ B′2. By
the induction hypothesis we also have that [[E1]]s1(I) v [[E1]]s2(I). By the induction
hypothesis for the first statement of the lemma, both [[E1]]s1(I) and [[E1]]s2(I) are mono-
tonic functions since they belong to [[ρ1 → π2]]D. Therefore,

⊔
b2∈B2

([[E1]]s1(I)(b2)) v⊔
b′2∈B′2

([[E1]]s2(I)(b′2)), or equivalently [[(E1E2)]]s1(I) v [[(E1E2)]]s2(I).

Case 2: E = (λV.E1). We examine the two statements of the lemma:
Statement 1: Assume that V : ρ1 and E1 : π1. We show that [[(λV.E1)]]s(I) ∈ [[ρ1 → π1]]D.
We distinguish two cases, namely ρ1 = ι and ρ1 = π. If ρ1 = ι then the result follows
easily using the induction hypothesis for the first statement of the lemma. If ρ1 = π,
then we must demonstrate that [[(λV.E1)]]s(I) ∈ [[π → π1]]D = [K([[π]]D)

m→ [[π1]]D]. In
other words, we need to show that the function λd.[[E1]]s[d/V](I) is monotonic. But this
follows directly from the induction hypothesis for the second statement of the lemma.
Statement 2: It suffices to show that [[(λV.E1)]]s1(I) v [[(λV.E1)]]s2(I). By the semantics
of lambda abstraction, it suffices to show that λd.[[E1]]s1[d/V](I) v λd.[[E1]]s2[d/V](I), or
that for every d, [[E1]]s1[d/V](I) v [[E1]]s2[d/V](I), which holds by the induction hypothe-
sis.

C. PROOF OF LEMMA 6.6
Lemma 6.6 Let P be a program and let E : ρ be a positive expression of P. Let I, J be
Herbrand interpretations and s be a Herbrand state of P . If I vIP J then [[E]]s(I) vρ
[[E]]s(J).

PROOF. The proof is by a structural induction on E.

Induction Basis: The cases for E being false, true, c, p or V, are all straightforward.

Induction Step: The interesting cases are E = (E1E2) and E = (λV.E1). The other cases
are easier and omitted.

Case 1: E = (E1E2). It suffices to demonstrate that [[(E1E2)]]s(I) v [[(E1E2)]]s(J),
or equivalently that

⊔
b2∈B2

([[E1]]s(I)(b2)) v
⊔
b′2∈B′2

([[E1]]s(J)(b′2)), where B2 =

FD(type(E2))
[[[E2]]s(I)]

and B′2 = FD(type(E2))
[[[E2]]s(J)]

. Notice that by definition, B2 =

{b ∈ FD(type(E2)) | b v [[E2]]s(I)} and B′2 = {b ∈ FD(type(E2)) | b v [[E2]]s(J)}. By the
induction hypothesis we have [[E2]]s(I) v [[E2]]s(J), and therefore B2 ⊆ B′2. By the induc-
tion hypothesis we also have that [[E1]]s(I) v [[E1]]s(J). Therefore,

⊔
b2∈B2

([[E1]]s(I)(b2)) v⊔
b′2∈B′2

([[E1]]s(J)(b′2)), or equivalently [[(E1E2)]]s(I) v [[(E1E2)]]s(J).

Case 2: E = (λV.E1). It suffices to show that [[(λV.E1)]]s(I) v [[(λV.E1)]]s(J). By
the semantics of lambda abstraction, it suffices to show that λd.[[E1]]s[d/V](I) v
λd.[[E1]]s[d/V](J), or that for every d, [[E1]]s[d/V](I) v [[E1]]s[d/V](J), which holds by the
induction hypothesis.
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D. PROOF OF LEMMA 6.7
Lemma 6.7 Let P be a program and let E be any positive expression of P. Let I
be a directed set of Herbrand interpretations and s be a Herbrand state of P. Then,
[[E]]s(

⊔
I) =

⊔
I∈I [[E]]s(I).

PROOF. The proof can be performed in two steps: we first show that [[E]]s(
⊔
I) w⊔

I∈I [[E]]s(I) and then that [[E]]s(
⊔
I) v

⊔
I∈I [[E]]s(I).

For the first of these two statements observe that by Lemma 6.6, we have that
[[E]]s(

⊔
I) w [[E]]s(I), for all I ∈ I. But then [[E]]s(

⊔
I) is an upper bound of the set

{[[E]]s(I) | I ∈ I}, and therefore [[E]]s(
⊔
I) w

⊔
I∈I [[E]]s(I). It remains to show that

[[E]]s(
⊔
I) v

⊔
I∈I [[E]]s(I). The proof is by a structural induction on E.

Induction Basis: The cases for E being false, true, c, p or V, are all straightforward.

Induction Hypothesis: Assume that for given expressions E1,E2 it holds that
[[Ei]]s(

⊔
I) =

⊔
I∈I [[Ei]]s(I), i ∈ {1, 2}. Notice that we assume equality. This is due to

the fact that the one direction has already been established for all expressions while
the other direction is assumed.

Induction Step: We distinguish the following cases:

Case 1: E = f E1 · · ·En. This case is straightforward since for every interpretation I and
for every state s, the value of [[f E1 · · ·En]]s(I) only depends on s (since the expressions
E1, . . . ,En are of type ι and do not contain predicate symbols).
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Case 2: E = (E1E2). Assume that E2 : ρ. Then:

[[(E1E2)]]s(
⊔
I) =

=
⊔
b∈B([[E1]]s(

⊔
I)(b)), where B = {b ∈ FD(ρ) | b v [[E2]]s(

⊔
I)}

(Semantics of application)

=
⊔
b∈B((

⊔
I∈I [[E1]]s(I))(b)), where B = {b ∈ FD(ρ) | b v [[E2]]s(

⊔
I)}

(Induction hypothesis)

=
⊔
b∈B(

⊔
I∈I [[E1]]s(I)(b)), where B = {b ∈ FD(ρ) | b v [[E2]]s(

⊔
I)}

(Proposition 4.10)

=
⊔
{[[E1]]s(I)(b) | I ∈ I, b ∈ FD(ρ), b v [[E2]]s(

⊔
I)}

(Proposition 4.3(2))

=
⊔
{[[E1]]s(I)(b) | I ∈ I, b ∈ FD(ρ), b v

⊔
I∈I [[E2]]s(I)}

(Induction hypothesis)

=
⊔
{[[E1]]s(I)(b) | I ∈ I, b ∈ FD(ρ), b v

⊔
J∈F [[E2]]s(J), F finite subset of I}

(Since b is either a compact element or a member of D)

v
⊔
{[[E1]]s(I)(b) | I ∈ I, b ∈ FD(ρ), b v [[E2]]s(J)}, for some J ∈ I

(Because I is directed and [[E2]]s is monotonic by Lemma 6.6)

v
⊔
{[[E1]]s(I)(b) | I ∈ I, J ∈ I, b ∈ FD(ρ), b v [[E2]]s(J)}

(Proposition 4.3(1))

v
⊔
I∈I,J∈I

⊔
{[[E1]]s(I)(b) | b ∈ FD(ρ), b v [[E2]]s(J)}

(Proposition 4.3(2))

v
⊔
I∈I

⊔
{[[E1]]s(I)(b) | b ∈ FD(ρ), b v [[E2]]s(I)}

(Proposition 4.7)

=
⊔
I∈I [[(E1E2)]]s(I)

(Semantics of application)

Case 3: E = (λV.E1). We show that [[(λV.E1)]]s(
⊔
I) v

⊔
I∈I [[(λV.E1)]]s(I). Consider b ∈

FD(type(V)). By the semantics of lambda abstraction we get that [[(λV.E1)]]s(
⊔
I)(b) =

[[E1]]s[b/V](
⊔
I); by the induction hypothesis this is equal to

⊔
I∈I [[E1]]s[b/V](I), which by

Proposition 4.10 is equal to (
⊔
I∈I [[(λV.E1)]]s(I))(b).

Case 4: E = (E1

∨
π E2). We show that [[(E1

∨
π E2)]]s(

⊔
I) v

⊔
I∈I [[(E1

∨
π E2)]]s(I),

ie., that for all b1, . . . , bn, if [[(E1

∨
π E2)]]s(

⊔
I) b1 · · · bn = true then

(
⊔
I∈I [[(E1

∨
π E2)]]s(I)) b1 · · · bn = true. By the semantics of

∨
π we get that if

[[(E1

∨
π E2)]]s(

⊔
I) b1 · · · bn = true then it either holds that [[E1]]s(

⊔
I) b1 · · · bn = true or

[[E2]]s(
⊔
I) b1 · · · bn = true. By the induction hypothesis and Proposition 4.10 we get

that either
⊔
I∈I([[E1]]s(I) b1 · · · bn) = true or

⊔
I∈I([[E2]]s(I) b1 · · · bn) = true. Then there

must exist I ∈ I such that either [[E1]]s(I) b1 · · · bn = true or [[E2]]s(I) b1 · · · bn = true.
By the semantics of

∨
π we get that [[(E1

∨
π E2)]]s(I) b1 · · · bn = true and therefore

(
⊔
I∈I [[(E1

∨
π E2)]]s(I)) b1 · · · bn = true.
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Case 5: E = (E1

∧
π E2). We show that [[(E1

∧
π E2)]]s(

⊔
I) v

⊔
I∈I [[(E1

∧
π E2)]]s(I). In

other words, it suffices to show that for all b1, . . . , bn, if [[(E1

∧
π E2)]]s(

⊔
I) b1 · · · bn =

true then (
⊔
I∈I [[(E1

∧
π E2)]]s(I)) b1 · · · bn = true. But if [[(E1

∧
π E2)]]s(

⊔
I) b1 · · · bn =

true, then by the semantics of
∧
π we get that [[E1]]s(

⊔
I) b1 · · · bn = true and

[[E2]]s(
⊔
I) b1 · · · bn = true. By the induction hypothesis and Proposition 4.10 this

implies that
⊔
I∈I([[E1]]s(I) b1 · · · bn) = true and

⊔
I∈I([[E2]]s(I) b1 · · · bn) = true. This

means that there must exist I1, I2 ∈ I such that [[E1]]s(I1) b1 · · · bn = true and
[[E2]]s(I2) b1 · · · bn = true. Since I is directed, we get that I =

⊔
{I1, I2} exists in I and it

holds that [[E1]]s(I) b1 · · · bn = true and [[E2]]s(I) b1 · · · bn = true. By the semantics of
∧
π,

[[(E1

∧
π E2)]]s(I) b1 · · · bn = true and thus (

⊔
I∈I [[(E1

∧
π E2)]]s(I)) b1 · · · bn = true.

Case 6: E = (E1 ≈ E2). It suffices to show that [[(E1 ≈ E2)]]s(
⊔
I) v

⊔
I∈I [[(E1 ≈ E2)]]s(I).

This is straightforward since the value of [[(E1 ≈ E2)]] only depends on s (since the
expressions E1,E2 do not contain predicate symbols).

Case 7: E = (∃VE1). We show that [[(∃E1)]]s(
⊔
I) v

⊔
I∈I [[(∃VE1)]]s(I) or equiva-

lently that if [[(∃VE1)]]s(
⊔
I) = true then

⊔
I∈I [[(∃VE1)]]s(I) = true. Notice now that

if [[(∃VE1)]]s(
⊔
I) = true then there exists b such that [[E1]]s[b/V](

⊔
I) = true, which by

the induction hypothesis gives
⊔
I∈I [[E1]]s[b/V](I) = true. But this last statement im-

plies that
⊔
I∈I [[(∃VE1)]]s(I) = true.

E. PROOF OF LEMMA 7.27
Lemma 7.27 Let P be a program, G be a goal and let θ be a substitution. Suppose that
there exists an SLD-refutation of P ∪ {Gθ} using substitution σ. Then, there exists an
SLD-refutation of P∪{G} using a substitution δ, where for some substitution γ it holds
that δγ ⊇ θσ and dom(δγ − θσ) is a (possibly empty) set of template variables that are
introduced during the refutation of P ∪ {G}.

PROOF. The proof is by induction on the length n of the SLD-refutation of P∪ {Gθ}.

Induction Basis: The basis case is for n = 1. We need to distinguish cases based on the
structure of G. The most interesting case is G = (E1 ≈ E2) (the rest are simpler and
omitted). By assumption, it holds that (E1θ ≈ E2θ)

σ→ true, where σ is an mgu of E1θ

and E2θ. But then we also have that (E1 ≈ E2)
δ→ true, where δ is an mgu of E1 and E2.

Since θσ is a unifier of E1,E2, there exists substitution γ such that θσ = δγ.

Induction Step: We demonstrate the statement for SLD-refutations of length n+ 1. We
distinguish cases based on the structure of G.

Case 1: G =← (pE1 · · ·Ek). Then, Gθ =← (p (E1θ) · · · (Ekθ)). By Definition 7.18 we get
that p (E1θ) · · · (Ekθ)

ε→ E (E1θ) · · · (Ekθ), where p ← E is a rule in P. By assumption,
E (E1θ) · · · (Ekθ) has an SLD-refutation of length n using σ. Consider now the goal G.
By Definition 7.18, we get that (pE1 · · ·Ek)

ε→ (EE1 · · ·Ek). Notice now that since E is
a closed lambda expression, it holds that (EE1 · · ·Ek)θ = (E (E1θ) · · · (Ekθ)). Moreover,
since (E (E1θ) · · · (Ekθ)) has an SLD-refutation of length n using σ, we get by the induc-
tion hypothesis that (EE1 · · ·Ek) has an SLD-refutation using substitution δ, where for
some substitution γ it holds that δγ ⊇ θσ and dom(δγ − θσ) is a set of template vari-
ables that are introduced during the refutation of (EE1 · · ·Ek). But then, (pE1 · · ·Ek)
has an SLD-refutation which satisfies the requirements of the lemma.

Case 2: G =← (QE1 · · ·Ek). Consider first the case where θ(Q) = B, for some ba-
sic expression B. Then, Gθ =← (B (E1θ) · · · (Ekθ)). Notice now that B can be either a
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higher-order predicate variable or a finite-union of lambda abstractions. We examine
the case where B is a single lambda abstraction (the other two cases are similar).
Since B is a lambda abstraction, assume that B = λV.C. By Definition 7.18 we get that
B (E1θ) · · · (Ekθ)

ε→ C{V/(E1θ)} (E2θ) · · · (Ekθ). By assumption, C{V/(E1θ)} (E2θ) · · · (Ekθ)
has an SLD-refutation of length n using σ. Consider now the goal G. By Defini-
tion 7.18, we get that (QE1 · · ·Ek)

{Q/Bt}→ Bt (E1{Q/Bt}) · · · (Ek{Q/Bt}), where Bt =
λV.Ct, and B = Btγ1, for some substitution γ1 with dom(γ1) = FV (Bt). We assume
without loss of generality that the set dom(γ1) is disjoint from FV (G) and from
dom(θ) ∪ FV (range(θ)). By Definition 7.18 we get that Bt (E1{Q/Bt}) · · · (Ek{Q/Bt})

ε→
Ct{V/E1{Q/Bt}} (E2{Q/Bt}) · · · (Ek{Q/Bt}). Notice now that:

((Ct{V/E1{Q/Bt}}) (E2{Q/Bt}) · · · (Ek{Q/Bt}))θγ1 = (C{V/E1θ}) (E2θ) · · · (Ekθ)

Then, since (C{V/E1θ}) (E2θ) · · · (Ekθ) has an SLD-refutation of length n using σ, we get
by the induction hypothesis that (Ct{V/E1{Q/Bt}}) (E2{Q/Bt}) · · · (Ek{Q/Bt}) has an
SLD-refutation using substitution δ′, where for some substitution γ it holds δ′γ ⊇ θγ1σ
and dom(δ′γ − θγ1σ) is a set of template variables that are introduced during this
SLD-refutation. From the above discussion we conclude that (QE1 · · ·Ek) has an SLD-
refutation using substitution δ = {Q/Bt}δ′. Moreover, it holds that δγ = {Q/Bt}δ′γ ⊇
{Q/Bt}θγ1σ ⊇ θσ and dom(δγ − θσ) is a set of template variables that are introduced
during the refutation of (QE1 · · ·Ek).

Consider now the case where θ(Q) is undefined. Then, Gθ =← (Q (E1θ) · · · (Ekθ)).
By Definition 7.18 we get that Q (E1θ) · · · (Ekθ)

{Q/Bt}→ Bt (E1θ{Q/Bt}) · · · (Ekθ{Q/Bt}).
We may assume without loss of generality that the set FV (Bt) is disjoint from FV (G)
and from dom(θ) ∪ FV (range(θ)). By assumption, Bt (E1θ{Q/Bt}) · · · (Ekθ{Q/Bt}) has
an SLD-refutation of length n using σ′, where σ = {Q/Bt}σ′. Consider now the goal G.

By Definition 7.18, we get that (QE1 · · ·Ek)
{Q/Bt}→ Bt (E1{Q/Bt}) · · · (Ek{Q/Bt}). Notice

now that:

(Bt (E1{Q/Bt}) · · · (Ek{Q/Bt}))θ{Q/Bt} = Bt (E1θ{Q/Bt}) · · · (Ekθ{Q/Bt})

Then, since Bt (E1θ{Q/Bt}) · · · (Ekθ{Q/Bt}) has an SLD-refutation of length n using
σ′, we get by the induction hypothesis that Bt (E1{Q/Bt}) · · · (Ek{Q/Bt}) has an SLD-
refutation using substitution δ′, where for some substitution γ it holds δ′γ ⊇ θ{Q/Bt}σ′
and dom(δ′γ − θ{Q/Bt}σ′) is a set of template variables that are introduced during
this SLD-refutation; notice that these template variables can be chosen to be different
than the variables in FV (Bt). From the above discussion we conclude that (QE1 · · ·Ek)
has an SLD-refutation using substitution δ = {Q/Bt}δ′. Moreover, it holds that δγ =
{Q/Bt}δ′γ ⊇ {Q/Bt}θ{Q/Bt}σ′ = θ{Q/Bt}σ′ = θσ and dom(δγ − θσ) is a set of template
variables that are introduced during the refutation of (QE1 · · ·Ek).

Case 3: G =← ((λV.E)E1 · · ·Ek). Then, Gθ =← ((λV.Eθ) (E1θ) · · · (Ekθ)). By Def-
inition 7.18 we get that (λV.Eθ) (E1θ) · · · (Ekθ)

ε→ (Eθ{V/(E1θ)}) (E2θ) · · · (Ekθ).
Moreover, by assumption, (Eθ{V/(E1θ)}) (E2θ) · · · (Ekθ) has an SLD-refutation of
length n using σ. Consider now the goal G. By Definition 7.18, we get that
(λV.E)E1 · · ·Ek

ε→ (E{V/E1})E2 · · ·Ek. Notice now that ((E{V/E1})E2 · · ·Ek)θ =
(Eθ{V/(E1θ)}) (E2θ) · · · (Ekθ), and since the latter expression has an SLD-refutation of
length n using σ, we get by the induction hypothesis that (E{V/E1})E2 · · ·Ek has an
SLD-refutation using a substitution δ, where for some substitution γ it holds δγ ⊇ θσ
and dom(δγ − θσ) is a set of template variables that are introduced during this refu-
tation. But then, ((λV.E)E1 · · ·Ek) has an SLD-refutation using substitution δ which
satisfies the requirements of the lemma.
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Case 4: G =← ((E′
∨
π E
′′)E1 · · ·Ek). Then, Gθ =← ((E′θ

∨
π E
′′θ) (E1θ) · · · (Ekθ)). By Def-

inition 7.18 we get that (E′θ
∨
π E
′′θ) (E1θ) · · · (Ekθ)

ε→ (E′θ) (E1θ) · · · (Ekθ) (and sym-
metrically for E′′). By assumption, either (E′θ) (E1θ) · · · (Ekθ) or (E′′θ) (E1θ) · · · (Ekθ)
has an SLD-refutation of length n using σ. Assume, without loss of generality, that
(E′θ) (E1θ) · · · (Ekθ) has an SLD-refutation of length n using σ. Consider now the
goal G. By Definition 7.18, we get that (E′

∨
π E
′′)E1 · · ·Ek

ε→ E′ E1 · · ·Ek. Notice now
that (E′ E1 · · ·Ek)θ = (E′θ) (E1θ) · · · (Ekθ), and since the latter expression has an SLD-
refutation of length n using σ, we get by the induction hypothesis that E′ E1 · · ·Ek
has an SLD-refutation using a substitution δ, where for some substitution γ it holds
δγ ⊇ θσ and dom(δγ − θσ) is a set of template variables that are introduced during
this refutation. But then, (E′

∨
π E
′′)E1 · · ·Ek has an SLD-refutation using substitution

δ which satisfies the requirements of the lemma.

Case 5: G =← ((E′
∧
π E
′′)E1 · · ·Ek). Then, Gθ =← ((E′θ

∧
π E
′′θ) (E1θ) · · · (Ekθ)).

By Definition 7.18 we get (E′θ
∨
π E
′′θ) (E1θ) · · · (Ekθ)

ε→ ((E′θ) (E1θ) · · · (Ekθ)) ∧
((E′′θ) (E1θ) · · · (Ekθ)). By assumption, ((E′θ) (E1θ) · · · (Ekθ)) ∧ ((E′′θ) (E1θ) · · · (Ekθ)) has
an SLD-refutation of length n using σ. Consider now the goal G. By Definition 7.18, we
get that (E′

∧
π E
′′)E1 · · ·Ek

ε→ (E′ E1 · · ·Ek)∧ (E′′ E1 · · ·Ek). Notice now that it holds that
((E′ E1 · · ·Ek) ∧ (E′′ E1 · · ·Ek))θ = ((E′θ) (E1θ) · · · (Ekθ)) ∧ ((E′′θ) (E1θ) · · · (Ekθ)); since the
latter expression has an SLD-refutation of length n using σ, we get by the induction
hypothesis that (E′ E1 · · ·Ek)∧ (E′′ E1 · · ·Ek) has an SLD-refutation using a substitution
δ, where for some substitution γ it holds δγ ⊇ θσ and dom(δγ − θσ) is a set of template
variables that are introduced during this refutation. But then, (E′

∧
π E
′′)E1 · · ·Ek has

an SLD-refutation using substitution δ which satisfies the requirements of the lemma.

Case 6: G =← (true ∧ E). Then, Gθ =← (true ∧ (Eθ)). By Definition 7.18 we get (true ∧
(Eθ))

ε→ Eθ. By assumption, Eθ has an SLD-refutation of length n using σ. Consider
now the goal G. By Definition 7.18, we get that (true ∧ E)

ε→ E. Since Eθ has an SLD-
refutation of length n using σ, we get by the induction hypothesis that E has an SLD-
refutation using a substitution δ, where for some substitution γ it holds δγ ⊇ θσ and
dom(δγ − θσ) is a set of template variables that are introduced during this refutation.
But then, (true ∧ E) has an SLD-refutation using substitution δ which satisfies the
requirements of the lemma.

Case 7: G =← (E ∧ true). Almost identical to the previous case.

Case 8: G =← (∃VE). Then, Gθ =← (∃V (Eθ)). By Definition 7.18 we get (∃V (Eθ))
ε→ Eθ.

By assumption, Eθ has an SLD-refutation of length n using σ. Consider now the goal
G. By Definition 7.18, we get that (∃VE)

ε→ E. Since Eθ has an SLD-refutation of length
n using σ, we get by the induction hypothesis that E has an SLD-refutation using a
substitution δ, where for some substitution γ it holds δγ ⊇ θσ and dom(δγ− θσ) is a set
of template variables that are introduced during this refutation. But then, (∃VE) has
an SLD-refutation using substitution δ which satisfies the requirements of the lemma.

Case 9: G =← (E1 ∧ E2). We may assume without loss of generality that given the
goal Gθ =← (E1θ ∧ E2θ), the first step in the refutation will take place due to the
subexpression E1θ. Moreover, again without loss of generality, due to the associativity
of ∧, we assume that E1 is not an expression that contains a top-level ∧ (ie., it is not of
the form A1∧A2). The proof could be easily adapted to circumvent the two assumptions
just mentioned (but this would result in more cumbersome notation). We perform a
case analysis on E1:
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Subcase 9.1: E1 = (A1 ≈ A2). Then, we have ((A1 ≈ A2)θ ∧ E2θ)
σ1→ (true ∧ E2θσ1), where

σ1 is an mgu of A1θ and A2θ. By assumption, (true ∧ E2θσ1) has an SLD-refutation of
length n using σ′, where σ = σ1σ

′. Consider now (E1 ∧ E2). By Definition 7.18, it holds
that (A1 ≈ A2)

δ1→ true, where δ1 is an mgu of A1,A2. By Definition 7.18 we get that
((A1 ≈ A2)∧E2)

δ1→ (true∧E2δ1). Since θσ1 is a unifier of A1,A2, there exists θ′ such that
θσ1 = δ1θ

′, and since (true ∧ E2θσ1) has an SLD-refutation of length n using σ′, we get
that (true ∧ E2δ1θ

′) = (true ∧ E2δ1)θ′ has an SLD-refutation of length n using σ′. By the
induction hypothesis we get that (true ∧ E2δ1) has an SLD-refutation using δ′, where
δ′γ ⊇ θ′σ′ and dom(δ′γ − θ′σ′) is a set of template variables that are introduced during
the refutation of this goal. But then, (E1∧E2) has an SLD-refutation using substitution
δ = δ1δ

′. Moreover, it holds that δγ = δ1δ
′γ ⊇ δ1θ′σ′ = θσ1σ

′ = θσ.
Subcase 9.2: E1 = (QA1 · · ·Ar). Consider first the case where θ(Q) = B, for some basic
expression B. Notice now that B can be either a higher-order predicate variable or a
finite-union of lambda abstractions. We examine the case where B is a single lambda
abstraction (the other two cases are similar). Since B is a lambda abstraction, we have
that E1θ

ε→ E′1, where E′1 is the resulting expression after performing the outer beta
reduction in E1θ. By Definition 7.18 we have that (E1 ∧ E2)θ

ε→ E′1 ∧ E2θ. By assump-
tion, E′1 ∧ E2θ has an SLD-refutation of length n using σ. Consider now (E1 ∧ E2). By

Definition 7.18, it holds that E1
{Q/Bt}→ E′′1 , where E′′1 = E1{Q/Bt} and B = Btγ1, for

some substitution γ1, with dom(γ1) = FV (Bt). We may assume without loss of gener-
ality that the set dom(γ1) is disjoint from FV (G) and from dom(θ) ∪ FV (range(θ)). By
Definition 7.18, we also get that E′′1

ε→ E′′′1 , where E′′′1 is the expression that results
after performing the outer beta reduction in E′′1 . Then, by Definition 7.18 we get that

E1 ∧ E2
{Q/Bt}→ E′′1 ∧ E2{Q/Bt} and E′′1 ∧ E2{Q/Bt}

ε→ E′′′1 ∧ E2{Q/Bt}. Notice now that
(E′′′1 ∧E2{Q/Bt})θγ1 = E′1∧E2θ, and since E′1∧E2θ has an SLD-refutation of length n us-
ing σ, we get by the induction hypothesis that (E′′′1 ∧ E2{Q/Bt}) has an SLD-refutation
using δ′, where for some substitution γ it holds δ′γ ⊇ θγ1σ and dom(δ′γ − θγ1σ) is a
set of template variables that are introduced during this SLD-refutation. But then,
E1 ∧ E2 has an SLD-refutation using substitution δ = {Q/Bt}δ′. Moreover, it holds that
δγ = {Q/Bt}δ′γ ⊇ {Q/Bt}θγ1σ ⊇ θσ and dom(δγ − θσ) is a set of template variables
that are introduced during the refutation of G.

Consider now the case where θ(Q) is undefined, ie., there does not exist a binding for

Q in θ. Then, we have that E1θ
{Q/Bt}→ E′1, where E′1 = Bt (A1θ{Q/Bt}) · · · (Arθ{Q/Bt}).

We may assume without loss of generality that the set FV (Bt) is disjoint from FV (G)

and from dom(θ) ∪ FV (range(θ)). By Definition 7.18 we have that (E1 ∧ E2)θ
{Q/Bt}→

E′1 ∧ (E2θ{Q/Bt}). By assumption, E′1 ∧ (E2θ{Q/Bt}) has an SLD-refutation of length
n using σ′, where σ = {Q/Bt}σ′. Consider now (E1 ∧ E2). By Definition 7.18, it holds

that E1
{Q/Bt}→ E′′1 , where E′′1 = E1{Q/Bt}. By Definition 7.18 we get that E1 ∧ E2

{Q/Bt}→
E′′1 ∧ E2{Q/Bt}. Notice now that (E′′1 ∧ E2{Q/Bt})θ{Q/Bt} = E′1 ∧ E2θ{Q/Bt}, and since
E′1 ∧ E2θ{Q/Bt} has an SLD-refutation of length n using σ′, we get by the induc-
tion hypothesis that (E′′1 ∧ E2{Q/Bt}) has an SLD-refutation using δ′, where for some
substitution γ it holds that δ′γ ⊇ θ{Q/Bt}σ′, and dom(δ′γ − θ{Q/Bt}σ′) is a set of
template variables that are introduced during this SLD-refutation; notice that these
template variables can be chosen to be different than the variables in FV (Bt). Then,
E1 ∧ E2 has an SLD-refutation using substitution δ = {Q/Bt}δ′. Moreover, it holds that
δγ = {Q/Bt}δ′γ ⊇ {Q/Bt}θ{Q/Bt}σ′ = θ{Q/Bt}σ′ = θσ and dom(δγ − θσ) is a set of
template variables that are introduced during the refutation of G.
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Subcase 9.3: E1 =← ((A′
∨
π A
′′)A1 · · ·Ar). Then, E1θ = (A′θ

∨
π A
′′θ) (A1θ) · · · (Arθ). By

Definition 7.18 we get that (A′θ
∨
π A
′′θ) (A1θ) · · · (Arθ)

ε→ (A′θ) (A1θ) · · · (Arθ) (and sym-
metrically for A′′). By Definition 7.18 we have (E1θ ∧ E2θ)

ε→ ((A′θ) (A1θ) · · · (Arθ)) ∧
E2θ and (E1θ ∧ E2θ)

ε→ ((A′′θ) (A1θ) · · · (Arθ)) ∧ E2θ. By assumption, either
((A′θ) (A1θ) · · · (Arθ)) ∧ E2θ or ((A′′θ) (A1θ) · · · (Arθ)) ∧ E2θ has an SLD-refutation of
length n using σ. Assume, without loss of generality, that ((A′θ) (A1θ) · · · (Arθ)) ∧ E2θ
has an SLD-refutation of length n using σ. Notice now that by Definition 7.18, we have
that (A′

∨
π A
′′)A1 · · ·Ar

ε→ A′ A1 · · ·Ar. Moreover, notice that ((A′ A1 · · ·Ar) ∧ E2)θ =
((A′θ) (A1θ) · · · (Arθ)) ∧ E2θ, and since the latter expression has an SLD-refutation of
length n using σ, we get by the induction hypothesis that ((A′ A1 · · ·Ar) ∧ E2) has an
SLD-refutation using a substitution δ, where for some substitution γ it holds δγ ⊇ θσ
and dom(δγ − θσ) is a set of template variables that are introduced during this refu-
tation. But then, ((A′

∨
π A
′′)A1 · · ·Ar) ∧ E2 has an SLD-refutation using substitution δ

which satisfies the requirements of the lemma.
Subcase 9.4: E1 has any other form except for the ones examined in the previous three
subcases. Then, it can be verified that in all these subcases it holds that E1θ

ε→ E′1,
for some E′1. By Definition 7.18 we have that (E1 ∧ E2)θ

ε→ E′1 ∧ (E2θ). By assumption,
E′1 ∧ (E2θ) has an SLD-refutation of length n using σ. Consider now (E1 ∧ E2). By Def-
inition 7.18 and by examination of all the possible cases for E1 it can be seen that
E1

ε→ E′′1 , where E′1 = E′′1θ. By Definition 7.18 we get that E1 ∧ E2
ε→ E′′1 ∧ E2. Notice now

that (E′′1 ∧ E2)θ = E′1 ∧ E2θ, and since E′1 ∧ E2θ has an SLD-refutation of length n using
σ, we get by the induction hypothesis that (E′′1 ∧ E2) has an SLD-refutation using δ,
where for some substitution γ it holds that δγ ⊇ θσ, and dom(δγ − θσ) is a set of tem-
plate variables that are introduced during this SLD-refutation. Then, E1 ∧ E2 has an
SLD-refutation using substitution δ which satisfies the requirements of the lemma.

F. PROOF OF LEMMA 7.35
Lemma 7.35 Let P be a program and G =← A be a goal such that [[A]]s(⊥IP) = true for
all Herbrand states s. Then, there exists an SLD-refutation for P∪ {G} with computed
answer equal to the identity substitution.

PROOF. We establish a stronger statement which has the statement of the lemma
as a special case. Let us call a substitution θ closed if every expression in range(θ)
is closed. We demonstrate that for every closed basic substitution θ, if [[Aθ]]s(⊥IP) =
true for all Herbrand states s, then there exists an SLD-refutation for P ∪ {Aθ} with
computed answer equal to the identity substitution. The statement of the lemma is
then a direct consequence for θ = ε.

We start by noting that A is always of the form (A0 A1 · · ·An), n ≥ 0 (if n = 0 then A0

is of type o). We perform induction on the type ρ1 → · · · ρn → o of A0.

Outer Induction Basis: The outer induction basis is for n = 0, ie., for type(A0) = o, and
in order to establish it we need to perform an inner structural induction on A0.

Inner Induction Basis: For the inner induction basis we need to examine the cases
where A0 is false, true, (E1 ≈ E2) and Q, where type(Q) = o. The first case is not appli-
cable since [[falseθ]]s(⊥IP) = false. The second case is immediate. We examine the latter
two cases:

Case 1: A0 = (E1 ≈ E2). Since for all s it holds that [[(E1 ≈ E2)θ]]s(⊥IP) = true, we
get that for all s, [[E1θ]]s(⊥IP) = [[E2θ]]s(⊥IP). By the fact that ⊥IP is a Herbrand inter-
pretation, we conclude that E1θ and E2θ must be identical expressions of type ι, and
therefore they are unifiable using the identity substitution.
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Case 2: A0 = Q, with type(Q) = o. If θ(Q) = false then it can not be the case that
[[A0]]s(⊥IP) = true, and therefore this case is not applicable. If θ(Q) = true, the result is
trivial. If on the other hand Q 6∈ dom(θ), then this case is not applicable since it is not
possible to have [[A0θ]]s(⊥IP) = true, for all s (eg. choose s such that s(Q) = false).

Inner Induction Step: We distinguish the following cases:

Case 1: A0 = (∃QE). We can assume without loss of generality that Q 6∈ dom(θ). Since
for all s it holds that [[(∃QE)θ]]s(⊥IP) = true, it follows that [[Eθ]]s[b/Q](⊥IP) = true for
some b ∈ FUP

(type(Q)). Let θ′ = {Q/B} where B is a closed basic expression such that
[[B]](⊥IP) = b (the existence of such an expression B is ensured by Lemma 7.6). Then it
is easy to see that [[Eθθ′]]s(⊥IP) = true for all states s. By the induction hypothesis there
exists an SLD-refutation for P ∪ {Eθθ′} using some substitution σ and with computed
answer equal to the identity substitution. Using Lemma 7.27, it follows that there
exists an SLD-refutation of P ∪ {Eθ} using substitution δ where for some substitution
γ it holds that δγ ⊇ {Q/B}σ; moreover, dom(δγ−{Q/B}σ) is a set of template variables
that are introduced during the refutation of P ∪ {Eθ}. Since the restriction of σ to the
free variables of Eθθ′ is the identity substitution, it follows that the restriction of δ to
the free variables of Eθ will either be empty or it will only contain the binding Q/B. We
conclude that there exists a refutation of P ∪ {(∃QE)θ} using substitution εδ = δ. The
computed answer is the identity substitution since Q is not a free variable of (∃QE)θ.

Case 2: A0 = (E1∧E2). By assumption, [[(E1∧E2)θ]]s(⊥IP) = true, for all s. Then, it holds
[[E1θ]]s(⊥IP) = true and [[E2θ]]s(⊥IP) = true. By the induction hypothesis there exist
SLD-refutations for P∪ {← E1θ} and P∪ {← E2θ} with computed answers equal to the
identity substitution. Let θ1 and θ2 be the compositions of the substitutions used for
the refutations of P ∪ {← E1θ} and P ∪ {← E2θ} respectively. Now, since the computed
answer of the refutation for P∪{E1θ} is the identity, this implies that the free variables
of E2θ that also appear free in E1θ do not belong to dom(θ1). Moreover, the rest of the
free variables of E2θ do not belong to dom(θ1), because the variables of θ1 have been
obtained by using resolution steps that only involve “fresh” variables. In conclusion,
the restriction of θ1 to the free variables of (E1 ∧ E2)θ is the identity substitution (and
similarly for θ2). These observations imply that E2θθ1 = E2θ. But then, we can construct
a refutation for P ∪ {← (E1θ ∧ E2θ)} by first deriving true from E1θ and then deriving
true from E2θθ1 = E2θ. The substitution used for the refutation of P ∪ {← (E1 ∧ E2)θ} is
θ1θ2 and the computed answer is equal to the restriction of θ1θ2 to the free variables of
(E1 ∧ E2)θ, which gives the identity substitution.

Case 3: A0 = (E1∨E2). By assumption, [[(E1∨E2)θ]]s(⊥IP) = true, for all s. Then, it either
holds that [[E1θ]]s(⊥IP) = true or [[E2θ]]s(⊥IP) = true. Without loss of generality, assume
that [[E1θ]]s(⊥IP) = true. By the induction hypothesis there exists an SLD-refutation
for P ∪ {← E1θ} with computed answer equal to the identity substitution. But then
P ∪ {← (E1θ ∨ E2θ)} has an SLD-refutation whose first step leads to ← (E1θ) using ε
and then proceeds according to the SLD-refutation of ← (E1θ). The computed answer
of this refutation is obviously the identity substitution.

Outer Induction Step: Assume the lemma holds when A0 has type ρ1 → · · · ρn−1 → o,
n ≥ 1. We establish the lemma for the case where A0 has type π = ρ1 → · · · ρn → o. We
distinguish the following cases:

Case 1: A0 = p (ie., A = pA1 · · ·An). This case is not applicable since ⊥IP(p) =⊥π and
therefore [[A]]s(⊥IP) = false, for all s.
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Case 2: A0 = Q (ie., A = QA1 · · ·An). If Q 6∈ dom(θ) then this case is not applicable
since it is not possible to have [[A]]s(⊥IP) = true, for all s (eg. take s(Q) =⊥π). If on the
other hand Q ∈ dom(θ), then θ(Q) is a basic expression of type π, ie., it is a non-empty
finite union of lambda abstractions. We demonstrate the case where θ(Q) is a single
lambda abstraction; the more general case is similar and omitted. Assume therefore
that θ(Q) = λV.E. Then, since [[(λV.E) (A1θ) · · · (Anθ)]]s(⊥IP) = true, by Lemma 7.14
we get that [[(E{V/A1θ}) (A2θ) · · · (Anθ)]]s(⊥IP) = true. By assumption, θ is a closed
substitution and therefore the only free variable that appears in E is V. Therefore,
[[((E{V/A1})A2 · · ·An)θ]]s(⊥IP) = true. By the outer induction hypothesis we get that
P ∪ {← ((E{V/A1})A2 · · ·An)θ} has an SLD-refutation using substitution δ, with com-
puted answer equal to the identity substitution. By the definition of SLD-resolution
we get that P ∪ {← (λV.E) (A1θ) · · · (Anθ))} has an SLD-refutation using the substitu-
tion εδ = δ; the computed answer of this refutation is the restriction of δ to the free
variables of ((λV.E)A1 · · ·An)θ which (by our previous discussion) gives the identity
substitution.

Case 3: A0 = λV.E (ie., A = (λV.E)A1 · · ·An. We can assume without loss of generality
that V 6∈ dom(θ) ∪ FV (range(θ)). Then, since [[(λV.Eθ) (A1θ) · · · (Anθ)]]s(⊥IP) = true, by
Lemma 7.14 we get that [[(Eθ{V/A1θ}) (A2θ) · · · (Anθ)]]s(⊥IP) = true. By the outer induc-
tion hypothesis P ∪ {← (Eθ{V/A1θ}) (A2θ) · · · (Anθ)} has an SLD-refutation using sub-
stitution δ, with computed answer equal to the identity substitution. By the definition
of SLD-resolution we get that P ∪ {← ((λV.Eθ) (A1θ) · · · (Anθ))} has an SLD-refutation
using the substitution εδ = δ; the computed answer of this refutation is the restriction
of δ to the free variables of ((λV.E)A1 · · ·An)θ which (by our previous discussion) gives
the identity substitution.

Case 4: A0 = (E′
∨
π E
′′) (ie., A = (E′

∨
π E
′′)A1 · · ·An), where π 6= o. The proof for this

case follows easily using the outer induction hypothesis.

Case 5: A0 = (E′
∧
π E
′′) (ie., A = (E′

∧
π E
′′)A1 · · ·An), where π 6= o. The proof for this

case follows easily using the outer induction hypothesis.

G. PROOF OF PROPOSITION 8.2
Proposition 8.2 Let P be a program and let F be a formula of H. Then, F is a logical
consequence of P under the proposed semantics iff F is a logical consequence of P under
the continuous semantics.

PROOF OUTLINE. We start by defining a relation ∼ between elements of our se-
mantic domains (Definition 5.1) and elements of the domains under the continuous
interpretation (see Subsection 8.2). Let f ∈ [[τ ]]D and f∗ ∈ [[τ ]]

∗
D. We write f ∼ f∗ if one

of the following holds:

— τ ∈ {ι, o} and f = f∗

— τ = ρ→ π and for every d ∈ FD(ρ) and d∗ ∈ [[ρ]]
∗
D such that d ∼ d∗, f(d) ∼ f∗(d∗).

One can show that ∼ is a bijection. We can then extend the ∼ relation on interpreta-
tions and states. In particular, given interpretations I and I∗ under the proposed and
the continuous semantics respectively, we write I ∼ I∗ iff for every p, I(p) ∼ I∗(p);
similarly for states s, s∗.

Consider now a program P and let I be an interpretation and s a state of P under
the proposed semantics and I∗, s∗ an interpretation and a state under the continuous
semantics such that I ∼ I∗ and s ∼ s∗. One can demonstrate the following lemma: for
every formula F it holds that [[F]]s(I) ∼ [[F]]

∗
s∗(I

∗). The proof is by a structural induction
on F. Actually, the interesting case is when F = (E1E2), where the algebraicity of the
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proposed semantics is used in order to establish the equivalence of the two semantics
of application. Then, one can establish the following lemma:

Lemma: Let S be a set of formulas of H and let I, I∗ be interpretations of H
under the proposed and continuous semantics respectively such that I ∼ I∗.
Then I is a model of S under the proposed semantics if and only if I∗ is a
model of S under the continuous semantics.

Suppose now that F is a logical consequence of P under the proposed semantics. Let
I∗ be a model of P under the continuous semantics. Assume that I denotes the unique
interpretation under the proposed semantics such that I ∼ I∗. By the above lemma
it follows that I is also a model of P under the proposed semantics. In addition, since
F is a logical consequence of P under the proposed semantics, we also have that I is
a model of F under the proposed semantics. But then, again by the above lemma, we
also get that I∗ is a model of F under the continuous semantics. Hence, F is a logical
consequence of P under the continuous semantics. The other direction of the lemma is
completely symmetrical.
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