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Abstract—Nowadays a number of different three-dimensional
(3D) systems compete in the field of capturing and delivering
autostereoscopic (ASt) 3D content. Integral Imaging (InI) is
a promising ASt technique that provides both horizontal and
vertical parallax as well as high quality realistic 3D content.
In this work we propose an InI preprocessing method for
identification and accurate segmentation of the grid structure
in Integral Images (InIms) generated using lens arrays (LAs)
containing circular lenses. In the proposed method we utilize
the gradient augmented circular hough transform to accurately
detect circular regions in the acquired integral image (InIm).
Subsequently by using a triangulation scheme followed by a
statistical approach we accurately estimate the grid line structure
of the utilized LA. This results in the accurate segmentation of
the circular shaped elemental images (EIs) contained in the InIm,
a process vital for the effectiveness of the InI methodology. We
provide experimental results over artificial as well as optically
acquired InIms to evaluate the accuracy of the method using
objective metrics.

I. INTRODUCTION

In recent years ASt imaging is quickly gaining ground
due to the increased demand for glasses-free 3D content as
well as the rapid development in display and image acqui-
sition technologies. Amongst available ASt methods InI is
a promising technique that was initially formulated by the
Nobel laureate G. Lippman back in 1908 [1]. In the recent
years it has attracted great users interest due to the ability of
providing simultaneous horizontal and vertical (2D) parallax
along with full color, adequate resolution, and support for
multiple simultaneous viewers.

The setup utilized for capturing InIms is shown in Fig. 1(a)
and it is assembled from a charged coupled device (CCD) and
a lens array (LA) [2] [3]. The corresponding Ast display setup
based on the InI technique is shown in Fig. 1(b) and consists
of a liquid crystal display (LCD) and a LA.

During the capturing stage, an LA is placed between the
CCD and the photographed object, and an elemental image
(EI) is formed, on the CCD plane, behind each one of the
lenses comprising the LA. The InIm formed on the CCD plane
during this stage is subsequently projected during display
through an appropriate LA as described above. This process

Fig. 1. (a) Integral Imaging acquisition, (b) InI display setup.

results in a realistic 3D object that appears floating between
the viewer and the LA.

Existing LA configurations are characterized by various
lens packing topologies as well as lens shapes. The currently
existing InI setups are shown in Fig. 2 where we observe that
different regular lens shapes can be utilized such as circular,
square, hexagonal and triangular. Furthermore the lens packing
topology can be either square or hexagonal, an approach aimed
to improving the percentage of the utilized CCD surface.

An important problem during the capturing procedure is
the existence of slight misalignment between the LA and the
CCD planes. This misalignment introduces distortions that
alter the expected position of the EIs in the acquired InIm.
Additional defects in the LA surface results in slight lens size
variability and this has the side effect of producing EIs that
feature variation in size.

In an InI based display setup that assumes accurate and
exact dimensions as well as correct positioning of the received
EIs these errors propagate and resut in degrading the 3D effect,
or completely destroying the projected 3D image. Furthermore
since 3D reconstruction of the initially photographed object [4]
as well as 2D view rendering and refocusing [5] and InIm
compression [6] methodologies rely on accurate positioning
of the EIs it is obvious that a preprocessing stage is required
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Fig. 2. Various LAs consisting of (a) circular, (b) square, (c) hexagonal,
triangular lenses.

for the rectification of these aberrations. In order to illustrate
the large image quality deterioration resulting from even slight
misalignment we used the method in [5] to visualize a 2D
misrotated and corrected image. The results of this process for
a frontal 2D view are depicted in Fig. 3.

Fig. 3. (a) Correctly rotated InIm using the proposed methodology. (b)
Uncorrected InIm acquired with a misrotated LA. The borders in (a), (b)
are shown for illustration purposes. (c) Frontal view generated from the InIm
in (a). (d) Frontal view generated from the InIm in (b).

The primary goal of the preprocessing stage is the accurate
identification of lines forming the grid that identifies the ac-
quired InIm structure. Using these lines accurate segmentation
of the formed EIs is possible, and all the acquisition errors can
be corrected before propagating in the display setup.

Various methods have been proposed for correcting geo-
metric distortions in LA configurations containing square and
hexagonal lenses. All these methods detect and register grid
lines and using this metric information transformation matrices
are formed that are subsequently applied in the correction
procedure. In [7] a method based on the Hough transform was
shown that estimated rotation, position and size information

for EIs using square lenses. A perspective rectification method
also utilizing the Hough transform was shown in [8]. The
work in [9] is an improved and statistically based perspective
rectification method aimed to square lens InIms. The method
proposed in [10] is a generalization of [9] when applied to
LAs containing hexagonal lenses.

Fig. 4. Acquired InIm containing circular EIs and obvious rotational distor-
tion. The interstitial mask used during the LA construction generates clear
dark areas between the circular EIs.

To our best knowledge there are currently no proposed
methods for the automatic processing and EI segmentation of
InIms captured from LAs with circular lenses. An important
characteristic of such setups that we utilize in the presented
work is the black area between the circular lenses as shown
in Fig. 4.

In particular this area is intentional since during the LA
construction process to suppress the unwanted light emitted
from the gaps between the circular lens apertures a special
interstitial mask is used [11]. The results in an intense contrast
difference between the mask and the circular EI content that
forms clear circular shapes in the acquired InIm.

To this end we propose a robust processing and segmen-
tation methodology for circular EIs. Our approach is based
on the gradient based circular hough transform [12] which
is used to extract the center coordinates of a subset of the
circular EIs. These coordinates are subsequently fed into a
triangulation scheme which generates a part of the distorted
InIm grid. By using a statistical approach on the resulting
segments we estimate rotation and EI size information and
finally reconstruct and overlay an optimal undistorted grid
providing transverse as well as longitudinal structure to the
underlying EIs. The details of our methodology are outlined
in the following sections.

II. LENS DETECTION

On a grayscale version of the acquired color InIm we
employ a circle detection process that uses the gradient based
circular Hough transform. The details of the Hough transform
when generalized to circles are elaborated as follows:

The coordinates (x, y) of a point belonging to a circle with
radius r and center (a1, a2) can be written in parametric form



as 
t ∈ [0, 2π]

x = a1 + r cos(t)

y = a2 + r sin(t)

(1)

which can be rewritten as:
t ∈ [0, 2π]

a1 = x− r cos(t)

a2 = y − r sin(t)

(2)

Because of the above equations and according to [12], it is
evident that the Hough transform when extended to circles re-
quires a three-dimensional accumulator space C = (a1, a2, r).

Fig. 5. (a) Each edge pixel (x,y) in the input image (left) is mapped to a
circular locus on the accumulator space (right). The intersection point (red)
of the circular loci in the accumulator is the center of the detected circle in
the input image. (b) The gradient information in the input image shortens the
circular loci to arcs.

The classic circular Hough transform operates on the edge
version of the input image acquired using the Canny edge
detection algorithm. Under known radius r0, every edge pixel
(x, y) belonging to a circle with center (a1, a2) in the input
image generates a circle with center (x, y) in the two dimen-
sional accumulator space (a1, a2) as shown in Fig. 5(a).

The intersection point of all the created circular loci in the
accumulator space is the center of the detected circle in the
input image. This detection approach can be further optimized
by noticing that the gradient information existing in the input
image is also the gradient of the accumulator space. For a
circle (a1, a2, r) with analytic equation F it is valid that:

F : (x− a1)2 + (y − a2)2 = r2 (3)
∂F
∂x = 2(x− a1)
∂F
∂y = 2(y − a2)
∂F
∂a1

= −2(x− a1)
∂F
∂a2

= −2(y − a2)

(4)

The gradient vector is always pointing towards the detected
circle centre. Therefore by using a small angle tolerance for
every point of the gradient operator, the circular loci of the
accumulator space are limited to intersecting arcs shown in
Fig. 5(b). This makes the location of the intersection much

more computationally efficient with an added reduction on
false detections.

Therefore the circle detection approach we followed can be
outlined as follows:
• Calculate the gradient vector and its direction for all

pixels (x, y) of the input image.
• Apply Canny edge detection on the input image.
• For every edge pixel register arcs on the accumulator

space using the gradient angle information.
• Locate the intersections forming peaks in the accumulator

space.
This process is repeated for successive discrete values of r
contained in an expected interval [rmin, rmax]. We select the
value r0 corresponding to the accumulator space generating
the sharpest peaks. This results in accurately registering circles
in the input InIm corresponding to boundaries between the
detected EIs and the interstitial mask.

III. ROTATION ANGLE ESTIMATION

After completion of the circle detection process the calcu-
lated radius of the circular lenses is estimated as r0. Therefore

Fig. 6. (a) Delaunay triangulation on the detected circles centers, (b) The
reconstructed and InIm grid that segments the EIs.

we form the sequence{
[x(i), y(i)]

}
, i = 1 . . . N (5)

of the estimated circle centers. These are subsequently used
as input to a Delaunay triangulation scheme that connects the
centers resulting in a number of M line segments as seen in
Fig. 6(a). Each segment is denoted as s = (xs, ys, xe, ye),
where xs, ys are the start point coordinates and xe, ye are the
end point coordinates. All these segments form the sequence:

{Si} =
{

[xs(i), ys(i), xe(i), ye(i)]
}
, i = 1 . . .M (6)

Subsequently we calculate the corresponding sequence {θi}
that contains the angle formed between each segment in {Si}
and the x−axis. Due to the nature of the utilized triangulation
scheme it is expected that in {θi} three dominant populations
will occur corresponding to segments with ideal angle values
of 0◦, 45◦, 90◦. This is demonstrated in the histogram calcu-
lated for {θi} that is shown in Fig. 7.

By using a tolerance of 20◦ we isolate the intervals
[−20◦, 20◦] and [70◦, 110◦], locate their peak values and keep



Fig. 7. Histogram for the sequence {θi} containing the Delaunay segment
angles.

the segments inside a 1◦ around them. These peaks correspond
to the ideal edges of 0◦, 90◦ in the distorted InIm grid.

Therefore we form the corresponding horizontal and vertical
segment populations denoted as Sh, Sv , we calculate the
values

xh =
mean

(
∆x{Sh}

)
+ mean

(
∆y{Sv}

)
2

(7)

yh =
mean

(
∆y{Sh}

)
+ mean

(
∆x{Sv}

)
2

(8)

and we finally calculate the optimal rotation matrix R as:

R =

(
cos θ sin θ
− sin θ cos θ

)
= − 1√

x2h + y2h

(
xh yh
−yh xh

)
(9)

After R is applied we use the following method in order to
segment the EIs by identifying individual EI rows and columns
as shown in Fig. 6(b).

IV. GRID RECONSTRUCTION

Following the estimation of θ, a hierarchical clustering
procedure [13] is applied twice in order to assign the detected
center coordinates in columns and rows.

From the sequence of centers in (5) we use their x-
coordinates and form NV vertical classes (columns). These
are subsequently sorted and relabeled according to their mean
value and they are defined by the following equations:

Xv(j) : v = 1, 2, . . . NX j = 1, 2, . . . Nv (10)∣∣Xv(j)−Xv(j′)
∣∣ < r0 ∀ j, j′ (11)

Xv(j) < Xv′(j′)⇒ v < v′ ∀ j, j′ (12)

where v denotes the index of a class in a population of NX

formed classes, j denotes the index of an element inside the
class and r0 is the radius used as the clustering threshold. It
is obvious that:

NX∑
v=1

Nv = N (13)

Similarly and using the same clustering threshold, a number
of MY horizontal classes (rows) are formed containing only
y-coordinates, and they are also relabeled according to their
mean value:

Yh(j) : h = 1, 2, . . .MY j = 1, 2, . . .Mh (14)∣∣Yh(j)− Yh(j′)
∣∣ < r0 ∀ j, j′ (15)

Yh(j) < Yh′(j′)⇒ h < h′ ∀ j, j′ (16)

MY∑
h=1

Mh = N (17)

Subsequently we evaluate the parameters x0, y0, h to fit a
grid of equidistant vertical and horizontal lines to the formed
classes. Using the columns shown in Fig. 8 we form the

Fig. 8. Registration of a grid with interline distance h starting at (x0, y0).

following equations that consist of an overdetermined 2N × 3
linear system (OLS):

x0 + 1 · h = X1(j), j = 1, 2, . . . N1

x0 + 2 · h = X2(j), j = 1, 2, . . . N2

...
x0 +NX · h = XNX

(j), j = 1, 2, . . . NNX

(18)

Using the rows we also form the corresponding OLS:

y0 + 1 · h = Y1(j), j = 1, 2, . . .M1

y0 + 2 · h = Y2(j), j = 1, 2, . . .M2

...
y0 +MY · h = YMY

(j), j = 1, 2, . . .MMY

(19)

These two systems are combined and expressed in vector form
as:

Q

x0y0
h

 = b (20)

Q =

(
0 1 Vec1
1 0 Vec2

)
(21)

b =

(
VecY
VecX

)
(22)

The vectors of the previous equations are defined as:

Vec1 =


1× ones(N1,1)
2× ones(N2,1)

...
NX × ones(NNX

, 1)

 (23)

Vec2 =


1× ones(M1,1)
2× ones(M2,1)

...
MY × ones(MMY

, 1)

 (24)



VecY =


[X1(j), j = 1, 2, . . . N1]T

[X2(j), j = 1, 2, . . . N2]T

...
[XNX

(j), j = 1, 2, . . . NNX
]T

 (25)

VecX =


[Y1(j), j = 1, 2, . . .M1]T

[Y2(j), j = 1, 2, . . .M2]T

...
[YMY

(j), j = 1, 2, . . .MMY
]T

 (26)

Finally the solution is found in a least squares sense by
minimizing ∣∣∣∣∣∣

∣∣∣∣∣∣Q
x0y0
h

− b

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(27)

using the pseudoinverse of Q. In order to segment the EIs the
calculated grid is shifted by h/2 as shown in Fig 6(b).

V. EXPERIMENTS, RESULTS AND CONCLUSIONS

A. Acquired Images

The described method has been successfully applied on a
variety of artificially generated as well as optically acquired
images. In this work we demonstrate the evaluation results for
one optically acquired and two artificially generated InIms.

The optically acquired InIm is shown in Figs 4, 6 and has
been acquired using a Cannon EOS-500D camera using the
setup in [9]. It should be noted that lens distortion such as
barrel or pincushion has not been considered under the current
approach since it is automatically corrected using our camera’s
firmware. In case the used camera lacks this feature a variety of
software approaches can be utilized to remove lens distortion
before applying the current framework.

The two artificial InIms namely the “Dice” and the “3D
objects” in Fig. 9 were generated using the method described
in [14]. Subsequently all the InIms were slightly rotated and
the artificial InIms were further contaminated with Gaussian
noise of 20, 25, 30 dB in order to simulate non-ideal real world
capturing conditions.

B. Geometric Consistency Evaluation Measures

The circular Hough transform introduces some errors to
the estimation of the circle centers which in turn affect the
calculation of the rotation angle as well as the grid registration
process. The reconstructed square grid contains lines that
form 0◦ or 90◦ with the x-axis while the detected circle
centers present some coordinate perturbation instead of being
accurately aligned in the horizontal and vertical directions.

Therefore we introduce the two parameters ∆θ and d to
estimate the algorithm’s consistency. These parameters can
be automatically measured on the reconstructed grid. The
parameter ∆θ refers to the rotation matrix of (9) and measures
the angle estimation error in degrees with regards to the
ground-truth value. The parameter d is calculated as follows:
We calculate both the horizontal as well as the vertical distance
of each detected circle center from the reconstructed grid.
Ideally these distances should be equal to h/2. These values

are collected in the sequence d that is normalized to 1.
Subsequently d is evaluated using its standard deviation σd. It
must be noted that normalization was applied in order to avoid
using pixels as measurement units since the large number of
possible LA-CCD configurations offer numerous possibilities
in EI resolution.

C. Results

In this section we present the geometric parameter evalua-
tion results for the optically acquired InIm image in Fig. 4, as
well as the Dice and the 3D objects in Fig. 9. In Figs. 9(a)-(b)
we show the corresponding 2D rendered scenes for the “Dice”
and the “3D objects”. In Figs. 9(c)-(d) we show the acquired
and slightly rotated artificial InIm images while in Figs. 9(e)-
(f) we show the resulting images after correct rotation with
the corresponding registered square grid superimposed.

For the InIms in the evaluation set the angle estimation and
grid consistency results are shown in Tables I-III. It should be
noted that noise levels of 20, 25, 30 dB were used only for the
evaluation of the artificial InIms as there is no way of assessing
the real world noise conditions in an optical pickup procedure.
As shown in Tables I-III in the worst case scenario where the

TABLE I
GEOMETRIC CONSISTENCY OF THE REAL INIM

∆θ σd

0.26◦ 0.046

TABLE II
GEOMETRIC CONSISTENCY OF THE DICE

∆θ σd

noiseless 0.04◦ 0.015

30dB 0.06◦ 0.023

25dB 0.23◦ 0.035

20dB 0.37◦ 0.050

TABLE III
GEOMETRIC CONSISTENCY OF THE 3D OBJECTS

∆θ σd

noiseless 0.03◦ 0.011

30dB 0.05◦ 0.019

25dB 0.19◦ 0.022

20dB 0.28◦ 0.037

evaluated image had high noise levels, the angle estimation
error did not exceed 0.37◦ and the standard deviation σd
did not exceed 0.037. Therefore the geometric consistency
for all the evaluated images remains almost invariant despite
the utilized noise levels. Furthermore it is noticed that the
geometric evaluation for the optically acquired InIm is in line
with the raytraced InIm results.



Fig. 9. Artificial InIms: (a)-(b) are the photographed scenes of a “Dice” and the “3D objects”, (c)-(d) are the corresponding slightly rotated InIms, (e)-(f) are
the correctly rotated InIms with the registered grid superimposed.

VI. CONCLUSIONS

In this work we presented a robust methodology for skew
angle estimation as well as reconstruction of the grid structure
in InIms acquired from circular lens arrays. The presented
framework requires a minimal number of parameters and
results in the accurate segmentation of the EIs, a process vital
to InIm processing tasks.

By utilizing a statistical approach for the skew angle estima-
tion, possible misdetections do not contribute to the estimated
angle value. Subsequently by calculating the optimal overlaid
grid in a least squares sense we further enhance the method’s
robustness. The increased robustness of the proposed method
is also validated from the fact that the evaluation results are
almost invariant despite the use of variable textured scenes and
noise levels.

It should be noted that the method was presented for circular
LAs with square packing but could easily be augmented for
circular LAs with hexagonal packing.
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