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Abstract. In this paper, we study certain properties of the stable homology groups of mod-
ules over an associative ring, which were defined by Vogel [12]. We compute the kernel of
the natural surjection from stable homology to complete homology, which was itself defined
by Triulzi [21]. This computation may be used in order to formulate conditions under which
the two theories are isomorphic. Duality considerations reveal a connection between stable
homology and the complete cohomology theory defined by Nucinkis [19]. Using this connec-
tion, we show that the vanishing of the stable homology functors detects modules of finite
flat or injective dimension over Noetherian rings. As another application, we characterize the
coherent rings over which stable homology is balanced, in terms of the finiteness of the flat
dimension of injective modules.
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0. Introduction

The classical Tate cohomology theory of finite groups (cf. [3, Chapter XII]) has been gener-
alized to modules over any ring R by Mislin [18]. Using an approach that involves the notion

of satellites, he defined for any left R-module M the complete cohomology functor Êxt
∗
R(M, )

and a natural transformation Ext∗R(M, ) −→ Êxt
∗
R(M, ) as the projective completion of the

ordinary Ext functor Ext∗R(M, ); Mislin’s approach is heavily influenced by Gedrich and Gru-
enberg’s theory of terminal completions [11]. As an immediate consequence of the definition,

we note that the complete cohomology groups Êxt
∗
R(M,N) vanish if pdRN <∞. Equivalent

descriptions of the complete cohomology functors have been independently formulated by Vo-
gel in [12] and by Benson and Carlson in [2]. Using the approach by Benson and Carlson, it

follows that the elements in the kernel of the canonical map HomR(M,N) −→ Êxt
0

R(M,N)
are those R-linear maps f : M −→ N , which are such that the map Ωnf : ΩnM −→ ΩnN
induced by f between the n-th syzygy modules of M and N factors through a projective

Research supported by a GSRT/Greece excellence grant, cofunded by the ESF/EU and National Resources.
1

Mar 13 2015 8:53:10 EDT
Vers. 1 - Sub. to TRAN



2 IOANNIS EMMANOUIL AND PANAGIOTA MANOUSAKI

module for n≫ 0. In particular, M has finite projective dimension if and only if the complete

cohomology functor Êxt
∗
R(M, ) is identically zero; in fact, it only suffices to assume that the

group Êxt
0

R(M,M) be trivial (cf. [16, §4.2]).
Using the dual approach, Nucinkis has defined in [19] for any left R-module N the complete

cohomology functor Ẽxt
∗
R( , N) and a natural transformation Ext∗R( , N) −→ Ẽxt

∗
R( , N), as

the injective completion of the Ext functor Ext∗R( , N). The complete cohomology groups

Ẽxt
∗
R(M,N) vanish if M has finite injective dimension. Equivalent descriptions of these func-

tors may be obtained by using the dual approaches to those by Vogel and Benson and Carlson.

It follows that the elements in the kernel of the canonical map HomR(M,N) −→ Ẽxt
0

R(M,N)
are those R-linear maps f : M −→ N , which are such that the map Σnf : ΣnM −→ ΣnN
induced by f between the n-th cosyzygy modules of M and N factors through an injective
module for n≫ 0. In particular, N has finite injective dimension if and only if the complete

cohomology functor Ẽxt
∗
R( , N) is identically zero; in fact, it only suffices to assume that the

group Ẽxt
0

R(N,N) be trivial (cf. [19, Theorem 3.7]).
If M,N are two left R-modules, then a natural question to ask is whether the complete

cohomology groups Êxt
∗
R(M,N) and Ẽxt

∗
R(M,N) are isomorphic to each other. The inherent

asymmetry in the definition of these groups suggests that a positive answer to this question
shouldn’t come for free; instead, it should reflect the presence of a homological finiteness
condition of some kind. This is indeed the case: Nucinkis has proved in [19, Theorem 5.2]
that the following conditions are equivalent on R:

(i) the groups Êxt
∗
R(M,N) and Ẽxt

∗
R(M,N) are (naturally) isomorphic for all left R-modules

M,N and
(ii) any projective (resp. injective) left R-module has finite injective (resp. projective) di-

mension.
If condition (ii) holds, then (as shown by Gedrich and Gruenberg in [11]) the invariants silpR,
the supremum of the injective lengths of projective left R-modules, and spliR, the supremum
of the projective lengths of injective left R-modules, are both finite and equal to each other.
The common value of these invariants is closely related to the finiteness of the so-called Goren-
stein projective and injective dimensions of left R-modules; the reader may consult [8, §4] for
more details on this issue.
Things appear to be more complicated for homology. Given a right R-module M and a left

R-module N , Vogel has defined in [12] the stable homology groups T̃or
R

∗ (M,N), by using a
projective (or flat) resolution of M and an injective resolution of N . It is an immediate con-

sequence of their definition, that the groups T̃or
R

∗ (M,N) vanish if M has finite flat dimension
or else if N has finite injective dimension. Motivated by the corresponding results concern-
ing complete cohomology, one may ask whether these homological finiteness conditions are

equivalent to the vanishing of the functors T̃or
R

∗ (M, ) and T̃or
R

∗ ( , N). Some special cases of
this problem have been examined in [4]. We shall prove the following result, which gives an
affirmative answer to both questions, in the case of Noetherian rings.

Theorem A. Let R be a left Noetherian ring.

(i) A right R-module M has finite flat dimension if and only if the functors T̃or
R

∗ (M, ) are
identically zero.
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(ii) A left R-module N has finite injective dimension if and only if the functors T̃or
R

∗ ( , N)
are identically zero.

Given a right R-module M and a left R-module N , we may define the stable homology groups

T̃or
Ro

∗ (N,M), using an injective resolution of M and a projective (or flat) resolution of N . A

natural question to ask is whether the stable homology groups T̃or
R

∗ (M,N) and T̃or
Ro

∗ (N,M)
are isomorphic to each other, i.e. whether stable homology is balanced. As in the case of
complete cohomology, the inherent asymmetry in the definition of these groups suggests that
a homological finiteness condition of some kind should be involved in the answer. In this
direction, we shall prove the following result.

Theorem B. Let R be a ring, which is left and right coherent. Then, the following conditions
are equivalent:

(i) The stable homology groups T̃or
R

∗ (M,N) and T̃or
Ro

∗ (N,M) are (naturally) isomorphic
for any right R-module M and any left R-module N .
(ii) Any injective left or right R-module has finite flat dimension.

The implication (ii)→(i) is valid over any ring; this is essentially shown in [4, Theorem 4.2]. We
note that if condition (ii) holds, then (as shown in [9, Corollary 2.5] and under no assumption
on R) the invariants sfliR and sfliRo, the suprema of the flat lengths of injective left (resp.
right) R-modules are both finite and equal to each other. The common value of these invariants
is closely related to the finiteness of the so-called Gorenstein flat dimensions of left and right
R-modules; the reader may consult [8, §5] for more details on this issue.
Our main technical tool for proving Theorems A and B is a description of the stable homol-

ogy groups, in terms of a certain inverse system of abelian groups. In order to be more precise,
we note that Triulzi has defined in [21] for any right R-module M the complete homology

functor T̂or
R

∗ (M, ) and a natural transformation T̂or
R

∗ (M, ) −→ TorR∗ (M, ), as the injective

completion of the Tor functor TorR∗ (M, ). The complete homology groups T̂or
R

∗ (M,N) vanish

if the left R-module N has finite injective dimension. It turns out that the group T̂or
R

n (M,N)
may be computed as the limit of the inverse system (TorRn+i(M,ΣiN))i, where ΣiN denotes
the i-th cozyzygy module of N . The universal property of complete homology provides us

with a natural map T̃or
R

∗ (M,N) −→ T̂or
R

∗ (M,N), which is always surjective; this has been
proved by Triulzi. We shall identify its kernel as a certain lim

←−
1 -group; it will turn out that

the kernel in degree n is the group lim
←−i

1TorRn+i+1(M,ΣiN). First of all, this computation gives

a systematic way of examining conditions under which stable homology is isomorphic with
complete homology. In this way, we are able to reinterpret some of the results obtained in [5,
§2]. On the other hand, this description of the stable homology groups may be also used in
order to analyze their vanishing. This circle of ideas, coupled with the duality between stable
homology and Nucinkis’ complete cohomology, will lead to the proofs of Theorems A and B.
The contents of the paper are as follows: In Section 1, we record a description of Nucinkis’

complete cohomology, in terms of a decreasing filtration of the total Hom complex, which is
associated with injective resolutions of both variables. This description will be used in order
to establish the duality with stable homology. In the next section, we examine the kernel of
the natural map from stable to complete homology, by using a description of the former, in
terms of a decreasing filtration of the total tensor product complex, which is associated with
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a flat (resp. injective) resolution of the first (resp. second) variable. We use some generalities
involving the homology of complexes endowed with such decreasing filtrations, that have been
collected in the Appendix at the end of the paper. In Section 3, we examine conditions that
imply the vanishing of the lim

←−
1 -term appearing as the kernel of the natural map from stable

to complete homology. In Sections 4 and 5, we examine the vanishing of the stable homology
groups and prove Theorem A, by using the duality between stable homology and Nucinkis’
complete cohomology. Finally, in Section 6, we study the balance of stable homology and use
the vanishing criteria obtained in the previous sections, in order to prove the characterization
presented in Theorem B.

Notations and terminology.
(i) All direct and inverse systems examined in this paper are indexed by the ordered set N

of natural numbers.
(ii) If R is a ring, then we denote by Ro its opposite ring. We do not distinguish between

left (resp. right) R-modules and right (resp. left) Ro-modules.
(iii) For any left R-module M we shall denote by ΩM the kernel of an epimorphism from

a projective module onto M . Even though ΩM is not uniquely determined by M , Schanuel’s
lemma implies uniqueness up to projective direct summands. The iterates ΩiM , i ≥ 0, are
defined inductively by letting Ω0M = M and ΩiM = ΩΩi−1M for all i > 0. If P∗ −→M −→ 0
is a projective resolution of M , then ΩiM is identified with the image of the differential
Pi −→ Pi−1 for all i > 0.
(iv) Dually, for any left R-module M we shall denote by ΣM the cokernel of a monomor-

phism from M into an injective module; Schanuel’s lemma implies uniqueness up to injective
direct summands. The iterates ΣiM , i ≥ 0, are defined inductively by letting Σ0M = M and
ΣiM = ΣΣi−1M for all i > 0. If 0 −→M −→ I∗ is an injective resolution of M , then ΣiM is
identified with the image of the differential I i−1 −→ I i for all i > 0.
(v) We denote by D the Pontryagin duality functors from the category of left (resp. right)

R-modules to the category of right (resp. left) R-modules, which are both defined by letting
M 7→ Hom(M,Q/Z). We shall often use in the sequel Lambek’s equality fdRoM = idRDM ,
which is valid for any right R-module M ; cf. [17, Theorem 4.9]. We shall also use the fact
that the functor D maps injective right R-modules onto flat left R-modules, in the special
case where the ring R is right coherent; for a proof of that assertion, the reader may consult
[22, Lemma 3.1.4].
(vi) For any complex X of left R-modules and any integer i, we shall denote by X[−i] the

i-fold suspension of X. In particular, if M is a left R-module, then we denote by M [i] the
complex consisting of M in degree i and zeroes elsewhere.

1. The injective completion of the contravariant Hom functor

Let R be a ring and consider two left R-modules N,L. Nucinkis has defined in [19] the

complete cohomology groups Ẽxt
∗
R(N,L), by evaluating the injective completion Ẽxt

∗
R( , L)

of the cohomological functor Ext∗R( , L) to N . These groups vanish if N is injective and are
universal (in a certain sense) with that property.
Nucinkis’ construction of these complete cohomology groups involves the left satellites of

the contravariant Ext functor Ext∗R( , L), a notion due to Cartan and Eilenberg [3, Chapter
III]. There is a concrete description of complete cohomology, which may be expressed in terms
of an injective resolution 0 −→ N −→ I∗ of N . If ΣiN is the corresponding i-th cosyzygy
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module of N for all i ≥ 0, then the short exact sequence

0 −→ ΣiN −→ I i −→ Σi+1N −→ 0

induces connecting homomorphisms

(1) din : Extn+i
R (ΣiN,L) −→ Extn+i+1

R (Σi+1N,L)

for all n, i with i ≥ 0. We may consider the direct system (Extn+i
R (ΣiN,L))i with structure

maps given by the connecting homomorphisms din as above; it turns out that

(2) Ẽxt
n

R(N,L) = lim
−→i

Extn+i
R (ΣiN,L)

for all n (see the proof of [19, Theorem 3.6]). The complete cohomology groups defined above
admit two other equivalent descriptions: one of them follows an idea by Benson and Carlson
[2] and the other one is due to Vogel [12]. Using the approach by Benson and Carlson, one

may prove that Ẽxt
0

R(N,N) = 0 if and only if idRN <∞ (cf. [19, Theorem 3.7]).
In the sequel, we shall use yet another description of Nucinkis’ complete cohomology groups

Ẽxt
∗
R(N,L), which may be formulated in terms of an injective resolution 0 −→ N −→ I∗ of

N and an injective resolution 0 −→ L −→ J∗ of L. For all i ≥ 0 we consider the subcomplex
I≥i ⊆ I∗, which coincides with I in (cohomological) degrees j ≥ i and vanishes in degrees
j < i. We note that the exactness of the sequence

0 −→ ΣiN −→ I i −→ I i+1 −→ . . .

may be reformulated by saying that the inclusion ΣiN ↪→ I i induces a quasi-isomorphism
ΣiN [i] −→ I≥i for all i ≥ 0. The short exact sequence of cochain complexes of left R-modules

0 −→ I≥i+1 −→ I≥i −→ I i[i] −→ 0

induces a short exact sequence of complexes of abelian groups

0 −→ HomR

(
I i[i], J∗

)
−→ HomR

(
I≥i, J∗

) ci−→ HomR

(
I≥i+1, J∗

)
−→ 0.

We note that the cochain map denoted by ci above is just the restriction along the inclusion
I≥i+1 ⊆ I≥i. We are interested in the additive maps

cni : Hn
(
HomR

(
I≥i, J∗

))
−→ Hn

(
HomR

(
I≥i+1, J∗

))
,

which are induced in cohomology by the cochain map ci for all n, i with i ≥ 0. These induce
a direct system of abelian groups

(
Hn

(
HomR

(
I≥i, J∗

)))
i, whose colimit we describe below.

Proposition 1.1. Let the notation be as above.
(i) The quasi-isomorphism ΣiN [i] −→ I≥i induces an isomorphism of abelian groups

Hn
(
HomR

(
I≥i, J∗

)) ∼−→ Extn+i
R (ΣiN,L)

for all n, i with i ≥ 0.
(ii) There is a commutative diagram of abelian groups

Hn
(
HomR

(
I≥i, J∗

)) ∼−→ Extn+i
R (ΣiN,L)

cni ↓ ↓ dni

Hn
(
HomR

(
I≥i+1, J∗

)) ∼−→ Extn+i+1
R (Σi+1N,L)

for all n, i with i ≥ 0. Here, the horizontal isomorphisms are those defined in (i), whereas dni
is the connecting homomorphism (1).

(iii) There is a natural isomorphism Ẽxt
n

R(N,L) ≃ lim
−→i

Hn
(
HomR

(
I≥i, J∗

))
for all n.
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For the proof, we shall need the following auxiliary result.

Lemma 1.2. Let J∗ be a left bounded cochain complex of injective left R-modules.
(i) For any acyclic complex of left R-modules C∗ the complex of abelian groups HomR(C

∗, J∗)
is acyclic as well.
(ii) Any quasi-isomorphism f : X∗ −→ Y ∗ of complexes of left R-modules induces a quasi-

isomorphism f t : HomR(Y
∗, J∗) −→ HomR(X

∗, J∗) of complexes of abelian groups.
Proof. (i) A cocycle of degree n of the complex HomR(C

∗, J∗) is precisely a cochain map form
C∗ to the n-fold suspension of J∗. Moreover, the cocycles which are coboundaries are precisely
those cochain maps that are null-homotopic. It follows that the acyclicity of HomR(C

∗, J∗)
is merely a reformulation of the fact that any cochain map from an acyclic complex to a left
bounded complex of injective modules is null-homotopic.
(ii) This is an immediate consequence of (i), since the mapping cone C∗ = cone(f) of the

quasi-isomorphism f is acyclic and the complex HomR(C
∗, J∗) is identified with the mapping

cone of the cochain map f t : HomR(Y
∗, J∗) −→ HomR(X

∗, J∗). �

Proof of Proposition 1.1. (i) Since J∗ is a left bounded cochain complex of injective modules,
Lemma 1.2(ii) implies that the quasi-isomorphism ΣiN [i] −→ I≥i induces a quasi-isomorphism

HomR

(
I≥i, J∗

)
−→HomR

(
ΣiN [i], J∗

)
for all i ≥ 0. This finishes the proof, since

Hn
(
HomR

(
ΣiN [i], J∗

))
= Hn+i

(
HomR

(
ΣiN, J∗

))
= Extn+i

R (ΣiN,L)

for all n, i with i ≥ 0.
(ii) The isomorphism Hn

(
HomR

(
I≥i, J∗

))
≃ Extn+i

R (ΣiN,L) established in (i) identifies an

element ξ ∈ Extn+i
R (ΣiN,L), which is represented by a linear map f : ΣiN −→ Σn+iL, with

the class of the (unique up to homotopy) cochain map (f j)j≥i : I
≥i −→ J∗[−n] lifting f

0 −→ ΣiN −→ I i −→ I i+1 −→ I i+2 −→ . . .
f ↓ f i ↓ f i+1 ↓ f i+2 ↓

0 −→ Σn+iL −→ Jn+i −→ Jn+i+1 −→ Jn+i+2 −→ . . .

The restriction ci[(f
j)j≥i] is the cochain map (f j)j≥i+1 : I≥i+1 −→ J∗[−n] which lifts the

linear map g : Σi+1N −→ Σi+n+1L induced from f i by passage to the quotients

0 −→ ΣiN −→ I i −→ Σi+1N −→ 0
f ↓ f i ↓ g ↓

0 −→ Σn+iL −→ Jn+i −→ Σn+i+1L −→ 0

The proof is complete, since the linear map g represents the image in Extn+i+1
R (Σi+1N,L) of

ξ under the connecting homomorphism

din : Extn+i
R (ΣiN,L) −→ Extn+i+1

R (Σi+1N,L).

(iii) In view of equation (2), this is an immediate consequence of (ii) above, which identifies
the direct system

(
Hn

(
HomR

(
I≥i, J∗

)))
i, with structure maps given by the cni ’s, with the

direct system
(
Extn+i

R (ΣiN,L)
)
i, with structure maps given by the dni ’s. �

Remark 1.3. There is a similar description of Mislin’s complete cohomology Êxt, in terms of a
decreasing filtration of the total Hom complex, which is associated with projective resolutions
of both variables; cf. [5, Lemma A.3].
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2. The relation between stable and complete homology

Let R be a ring and consider a right R-module M and a left R-module N . Vogel has defined

in [12] the stable homology groups T̃or
R

∗ (M,N). If P∗ −→M −→ 0 is a projective resolution
of M and 0 −→ N −→ I∗ an injective resolution of N , then

T̃or
R

n (M,N) = Hn+1

(
P∗ ⊗̃R I∗

)
for all n. Here, P∗ ⊗̃R I∗ is the complex of abelian groups whose group of chains in degree n
is the quotient of the direct product

∏
i−j=n Pi⊗R Ij modulo the direct sum

⊕
i−j=n Pi⊗R Ij.

The reader may consult [12] and [4] for several basic properties of the stable homology groups.

We shall now recall some of these properties: The stable homology groups T̃or
R

∗ (M,N) may
be computed by replacing the projective resolution P∗ −→ M −→ 0 of M in the definition
above by any flat resolution F∗ −→M −→ 0 of M ; we have

T̃or
R

n (M,N) = Hn+1

(
F∗ ⊗̃R I∗

)
for all n. Consequently, the groups T̃or

R

∗ (M,N) vanish if either M has finite flat dimension
or else if N has finite injective dimension.

The complete homology groups T̂or
R

∗ (M,N) were defined by Triulzi in [21] as the evaluation

of the injective completion T̂or
R

∗ (M, ) of the ordinary Tor functor TorR∗ (M, ) to the left R-
module N . These groups vanish if N is injective and are universal (in a certain sense) with
that property. Triulzi’s construction involves the notion of right satellites of functors, which
is due to Cartan and Eilenberg [3, Chapter III]. There is a concrete description of complete
homology, which may be expressed in terms of an injective resolution 0 −→ N −→ I∗ of N .
Indeed, given such a resolution, we may consider the corresponding cosyzygy modules ΣiN ,
i ≥ 0, and note that the short exact sequence

0 −→ ΣiN −→ I i −→ Σi+1N −→ 0

induces connecting homomorphisms

(3) δin : TorRn+i+1(M,Σi+1N) −→ TorRn+i(M,ΣiN)

for all n, i with i ≥ 0. We may consider the inverse system (TorRn+i(M,ΣiN))i with structure
maps given by the connecting homomorphisms δin as above; it turns out that

(4) T̂or
R

n (M,N) = lim
←−i

TorRn+i(M,ΣiN),

whereas the canonical map T̂or
R

n (M,N) −→ TorRn (M,N) is identified with the natural pro-
jection of the limit

lim
←−i

TorRn+i(M,ΣiN) −→ TorRn+0(M,Σ0N)

for all n (cf. [5, Lemma 1.7]).

In order to relate the stable homology groups T̃or
R

∗ (M,N) to the complete homology groups

T̂or
R

∗ (M,N), we shall use yet another description of the latter, which may be formulated in
terms of a flat resolution F∗ −→M −→ 0 of M and an injective resolution 0 −→ N −→ I∗ of
N (cf. [4, §2.4]). As in the previous section, we consider for all i ≥ 0 the subcomplex I≥i ⊆ I∗,
which coincides with I∗ in (cohomological) degrees j ≥ i and vanishes in degrees j < i. We
recall that the inclusion ΣiN ↪→ I i induces a quasi-isomorphism ΣiN [i] −→ I≥i for all i ≥ 0.
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Since I≥i+1 is a subcomplex of I≥i, it follows that F∗ ⊗R I≥i+1 is a subcomplex of F∗ ⊗R I≥i;
we shall denote by γi the inclusion F∗ ⊗R I≥i+1 ↪→ F∗ ⊗R I≥i for all i ≥ 0. We also consider
the additive maps γi

n : Hn

(
F∗ ⊗R I≥i+1

)
−→ Hn

(
F∗ ⊗R I≥i

)
, which are induced by the γi’s in

homology for all n, i with i ≥ 0.

Proposition 2.1. Let the notation be as above.
(i) The quasi-isomorphism ΣiN [i] −→ I≥i induces an isomorphism of abelian groups

TorRn+i(M,ΣiN)
∼−→ Hn

(
F∗ ⊗R I≥i

)
for all n, i with i ≥ 0.
(ii) There is a commutative diagram of abelian groups

TorRn+i+1(M,Σi+1N)
∼−→ Hn

(
F∗ ⊗R I≥i+1

)
δin ↓ ↓ γi

n

TorRn+i(M,ΣiN)
∼−→ Hn

(
F∗ ⊗R I≥i

)
for all n, i with i ≥ 0. Here, the horizontal isomorphisms are those defined in (i), whereas δin
is the connecting homomorphism (3).

(iii) There is a natural isomorphism T̂or
R

n (M,N) ≃ lim
←−i

Hn(F∗ ⊗R I≥i) for all n.

Proof. The flat resolution F∗ −→ M −→ 0 of the right R-module M induces, by applying
the Pontryagin duality functor D, an injective resolution 0 −→ DM −→ DF∗ of the left
R-module DM .
(i) Proposition 1.1(i) implies that the quasi-isomorphism ΣiN [i] −→ I≥i induces an isomor-

phism of abelian groups

Hn
(
HomR

(
I≥i, DF∗

)) ∼−→ Extn+i
R (ΣiN,DM)

for all n, i with i ≥ 0. In view of the standard Hom-tensor duality, the latter isomorphism is
precisely that obtained by applying the Pontryagin duality functor D to the additive map

TorRn+i(M,ΣiN) −→ Hn

(
F∗ ⊗R I≥i

)
in the statement. Since Q/Z is faithfully injective (as an abelian group), it follows that the
latter map is bijective, as needed.
(ii) We argue as in (i) above: Since the abelian group Q/Z is faithfully injective, it suffices

to verify the commutativity of the diagram, which is obtained from that in the statement of
(ii), by applying the Pontryagin duality functor D. Invoking the standard Hom-tensor duality,
the latter diagram is identified with

Extn+i+1
R (Σi+1N,DM)

∼←− Hn
(
HomR

(
I≥i+1, DF∗

))
dni ↑ ↑ cni

Extn+i
R (ΣiN,DM)

∼←− Hn
(
HomR

(
I≥i, DF∗

))
Here, the functor D maps the connecting homomorphism δin (resp. γi

n) onto the connect-
ing homomorphism dni (resp. onto cni ). The proof is completed, since the latter diagram is
commutative, as shown in Proposition 1.1(ii).
(iii) In view of equation (4), this is an immediate consequence of (ii) above, which identifies

the inverse system
(
Hn

(
F∗ ⊗R I≥i

))
i, with structure maps given by the γi

n’s, with the inverse

system
(
TorRn+i(M,ΣiN)

)
i, with structure maps given by the δin’s. �

We are now ready to state and prove the following result, establishing the relation between
stable and complete homology.
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ON THE STABLE HOMOLOGY OF MODULES 9

Theorem 2.2. Let R be a ring and consider a right R-module M and a left R-module N .
Then, for all n there is a short exact sequence

0 −→ lim
←−i

1TorRn+i+1(M,ΣiN) −→ T̃or
R

n (M,N)
∂−→ T̂or

R

n (M,N) −→ 0,

which is natural in both M and N . Here, ΣiN , i ≥ 0, are the cosyzygy modules of N that
are associated with any injective resolution of it, whereas the structure maps of the inverse
systems

(
TorRn+i(M,ΣiN)

)
i are the connecting homomorphisms δin in (3) for all n.

Proof. Let F∗ −→ M −→ 0 be a flat resolution of M and 0 −→ N −→ I∗ an injective
resolution of N . We consider the subcomplexes I≥i ⊆ I∗, i ≥ 0, which were defined above
and note that these provide us with a decreasing filtration of I∗

I∗ = I≥0 ⊇ I≥1 ⊇ I≥2 ⊇ . . . ⊇ I≥i ⊇ . . . .

We also consider the induced filtration of the complex F∗ ⊗R I∗

F∗ ⊗R I∗ = F∗ ⊗R I≥0 ⊇ F∗ ⊗R I≥1 ⊇ F∗ ⊗R I≥2 ⊇ . . . ⊇ F∗ ⊗R I≥i ⊇ . . . .

Having fixed the degree n, the associated decreasing filtration of the abelian group of n-chains
(F∗ ⊗R I∗)n =

⊕
j Fj+n ⊗R Ij =

⊕
j≥0 Fj+n ⊗R Ij of the complex F∗ ⊗R I∗ is presented below⊕

j≥0Fj+n ⊗R Ij ⊇
⊕

j≥1Fj+n ⊗R Ij ⊇
⊕

j≥2Fj+n ⊗R Ij ⊇ . . . ⊇
⊕

j≥iFj+n ⊗R Ij ⊇ . . . .

It follows readily that this filtration of the complex F∗⊗R I
∗ is Hausdorff (cf. Definition A.1 of

the Appendix). We wish to identify the complex lim
←−i

1
(
F∗ ⊗ I≥i

)
. As noted in the discussion

preceding Lemma A.2, the abelian group of n-chains of the latter complex is the cokernel of
the natural map

(5) (F∗ ⊗R I∗)n −→ lim
←−i

[
(F∗ ⊗R I∗)n/

(
F∗ ⊗R I≥i

)
n

]
.

Since (F∗ ⊗R I∗)n =
⊕

j≥0 Fj+n⊗R Ij and
(
F∗ ⊗R I≥i

)
n =

⊕
j≥i Fj+n⊗R Ij, we conclude that

(F∗ ⊗R I∗)n/
(
F∗ ⊗R I≥i

)
n =

⊕i−1
j=0Fj+n ⊗R Ij =

∏i−1
j=0Fj+n ⊗R Ij

for all n, i with i ≥ 0. It follows easily from this that the group lim
←−i

[
(F∗ ⊗R I∗)n/

(
F∗ ⊗R I≥i

)
n

]
is isomorphic with the direct product

∏
j≥0 Fj+n⊗R Ij, in such a way that the map (5) above

is identified with the natural inclusion⊕
j≥0Fj+n ⊗R Ij ↪→

∏
j≥0Fj+n ⊗R Ij.

We therefore conclude that the complex lim
←−i

1
(
F∗ ⊗ I≥i

)
coincides with the complex F∗ ⊗̃R I∗,

that computes the stable homology groups T̃or
R

∗ (M,N). Hence, applying Corollary A.3 of the
Appendix to the special case of the Hausdorff filtration of F∗ ⊗R I∗ given by the F∗ ⊗ I≥i’s,
we obtain for all n a short exact sequence of abelian groups

0 −→ lim
←−i

1Hn+1

(
F∗ ⊗R I≥i

)
−→ Hn+1

(
F∗ ⊗̃R I∗

) ∂−→ lim
←−i

Hn

(
F∗ ⊗R I≥i

)
−→ 0.

Proposition 2.1(ii) implies that the inverse system
(
Hn

(
F∗ ⊗R I≥i

))
i, with structure maps

given by the γi
n’s, is isomorphic with the inverse system

(
TorRn+i(M,ΣiN)

)
i, with structure

maps given by the δin’s. Hence, the exact sequence above reduces to that in the statement of
the Theorem and the proof is complete. �
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10 IOANNIS EMMANOUIL AND PANAGIOTA MANOUSAKI

Remark 2.3. Keeping the same notation as above, we note that for all n the map

∂ : T̃or
R

n (M,N) −→ T̂or
R

n (M,N),

i.e. the map

∂ : Hn+1

(
F∗ ⊗̃R I∗

)
−→ lim

←−i
Hn

(
F∗ ⊗R I≥i

)
resulting from the short exact sequence in Corollary A.3 of the Appendix, coincides with that
defined by Triulzi; cf. [21, Lemma 6.2.9]. An explicit description of this map can be also found
in [5, §2.5].

3. Isomorphism criteria

Having proved Theorem 2.2, one may look for conditions implying that the natural sur-
jection from stable homology to complete homology is bijective. An answer to this problem
may have important consequences for the two homology theories. For example, if the functors

T̃or
R

∗ (M, ) and T̂or
R

∗ (M, ) are naturally isomorphic, then:
(i) stable homology has the universal property inherited by the fact that it is naturally

isomorphic with the injective completion of the functor TorR∗ (M, ) and
(ii) complete homology is a homological δ-functor, since it is naturally isomorphic with a

functor that is computed as the homology of a complex (cf. [4, §2.4 and §2.5]).
In the present section, we shall obtain two types of conditions under which the natural map

from stable homology to complete homology is bijective. We should point out that the results
presented in Propositions 3.1 and 3.3 below are not new; they have been already proved in [5].
Our goal is to provide alternative proofs for these results, by using the identification of the

kernel of the canonical map ∂ : T̃or −→ T̂or. In other words, we shall approach the problem
by looking for conditions that imply the vanishing of the lim

←−
1 -term in the short exact sequence

of Theorem 2.2.
Grothendieck introduced in [13] a simple condition for an inverse system of abelian groups

(Ai)i that implies the vanishing of lim
←−i

1Ai, the so-called Mittag-Leffler condition. We say

that the inverse system (Ai)i satisfies the Mittag-Leffler condition if the decreasing filtration
induced on Ai by the images of the structure maps from Aj, j ≥ i, is eventually constant for
all i. In other words, we demand that for all i there exists j(i) ≥ i, such that the image of
the structure map Aj(i) −→ Ai is equal to the image of the structure map Ak −→ Ai for all
k ≥ j(i); in that case, the image A′i of the map Aj(i) −→ Ai is referred to as the stable image.
It is clear that the Mittag-Leffler condition is satisfied if the structure maps Ai −→ Ai−1 are
surjective for all i≫ 0.

Proposition 3.1. Let R be a ring and consider a right R-module M . We assume that one of
the following two conditions is satisfied:
(i) There exists an integer m, such that the functors TorRi (M, ) vanish on all injective left

R-modules for all i > m.1

(ii) All injective left R-modules have finite flat dimension.2

Then, the natural map ∂ : T̃or
R

∗ (M,N) −→ T̂or
R

∗ (M,N) is bijective for all left R-modules N .

1In the terminology of [10], this condition says that the module M has finite copure flat dimension.
2In that case, there is an upper bound on the flat lengths of injective left R-modules; in the terminology of

[9] (see also [6] and [15]), this condition says that the invariant sfliR is finite.

Mar 13 2015 8:53:10 EDT
Vers. 1 - Sub. to TRAN



ON THE STABLE HOMOLOGY OF MODULES 11

Proof. Let 0 −→ N −→ I∗ be an injective resolution of the left R-module N . Then, both
assumptions (i) and (ii) imply that there exists an integerm, such that the groups TorRi (M, Ij)
vanish for all i > m and all j. Denoting by ΣiN , i ≥ 0, the corresponding cosyzygy modules
of N , the exact sequence of abelian groups

TorRn+i+1(M,Σi+1N)
δin−→ TorRn+i(M,ΣiN) −→ TorRn+i(M, I i),

which is induced by the short exact sequence of left R-modules

0 −→ ΣiN −→ I i −→ Σi+1N −→ 0,

implies that the connecting homomorphism

δin : TorRn+i+1(M,Σi+1N) −→ TorRn+i(M,ΣiN)

is surjective for all i > m−n. It follows from the preceding discussion that the inverse system(
TorRn+i(M,ΣiN)

)
i satisfies the Mittag-Leffler condition and hence lim

←−i
1TorRn+i(M,ΣiN) = 0

for all n. Invoking Theorem 2.2, this completes the proof. �

Another type of condition on an inverse system that implies the vanishing of the corresponding
lim
←−

1 is obtained by dualizing a direct system, by means of a contravariant exact functor which

maps direct sums onto direct products. We shall illustrate this by considering the Pontryagin
duality functor D. We note that any direct system (Bi)i of abelian groups with structure
maps λi : Bi −→ Bi+1 induces an inverse system of abelian groups (DBi)i, with structure
maps Dλi : DBi+1 −→ DBi for all i.

Lemma 3.2. Let (Bi)i be a direct system of abelian groups and consider the associated inverse

system (DBi)i, as above. Then, lim
←−i

DBi ≃ D
(
lim
−→i

Bi

)
and lim

←−i
1DBi = 0.

Proof. The colimit B = lim
−→i

Bi fits into a short exact sequence

0 −→
⊕

iBi
1−λ−→

⊕
iBi −→ B −→ 0,

where 1 − λ is the map (bi)i 7→ (bi − λi−1bi−1)i, (bi)i ∈
⊕

iBi. Applying the duality functor
D to the above sequence, we obtain the short exact sequence

0 −→ DB −→
∏

iDBi
1−Dλ−→

∏
iDBi −→ 0.

It follows readily that lim
←−i

DBi = DB and lim
←−i

1DBi is the trivial group. �

If M,K are two right R-modules, then we may define the additive map

Φ : M ⊗R DK −→ DHomR(M,K),

by letting Φ(m ⊗ f) be the operator which is given by g 7→ f(g(m)), g ∈ HomR(M,K), for
all m ∈ M and f ∈ DK. The map Φ is natural in M,K and has been introduced by Cartan
and Eilenberg in [3, Chapter VI, §5]. It is bijective if M is finitely presented.
Having fixed a right R-module K, we consider for any right R-module M a projective

resolution P∗ −→M −→ 0. Then, the natural transformation Φ induces a chain map

Φ : P∗ ⊗R DK −→ DHomR(P∗, K).

By applying homology, we obtain additive maps

Φi : Tor
R
i (M,DK) −→ DExtiR(M,K),
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12 IOANNIS EMMANOUIL AND PANAGIOTA MANOUSAKI

i ≥ 0, which do not depend upon the particular choice of the projective resolution of M . The
Φi’s are natural in both M and K and commute with the connecting homomorphisms which
are associated with any short exact sequence of right R-modules

0 −→ K ′ −→ K −→ K ′′ −→ 0.

If M is of type FP∞, i.e. if M admits a projective resolution P∗ −→M −→ 0, which consists
of finitely generated (projective) modules in each degree, then the Φi’s are bijective for all i.

Proposition 3.3. Let R be a ring and consider a right R-module M of type FP∞. Then, the

natural map ∂ : T̃or
R

∗ (M,DK) −→ T̂or
R

∗ (M,DK) is bijective for any right R-module K.

Proof. Let F∗ −→ K −→ 0 be a flat resolution of the right R-module K and denote by
Ki the image of the differential Fi −→ Fi−1 for all i ≥ 1. Then, 0 −→ DK −→ DF∗ is an
injective resolution of the left R-module DK and DKi is identified with the corresponding
i-th cosyzygy module ΣiDK for all i ≥ 1. It follows from the discussion above that the inverse
system

(
TorRn+i(M,DKi)

)
i, whose structure maps are connecting homomorphisms induced by

the short exact sequences

0 −→ DKi −→ DFi −→ DKi+1 −→ 0,

is isomorphic with the inverse system
(
DExtn+i

R (M,Ki)
)
i, which is induced by applying the

duality functor D to the direct system
(
Extn+i

R (M,Ki)
)
i, whose structure maps are connecting

homomorphisms induced by the short exact sequences

0 −→ Ki+1 −→ Fi −→ Ki −→ 0.

It follows from Lemma 3.2 that

lim
←−i

1TorRn+i(M,DKi) = lim
←−i

1DExtn+i
R (M,Ki) = 0

for all n and hence the proof is finished by invoking Theorem 2.2. �

Remark 3.4. Keeping the same notation as in the proof of Proposition 3.3, we note that the

groups T̃or
R

n (M,DK) ≃ T̂or
R

n (M,DK) are isomorphic with the limit

lim
←−i

TorRn+i(M,DKi) = lim
←−i

DExtn+i
R (M,Ki).

As noted in Lemma 3.2, the latter limit is identified with the Pontryagin dual of the colimit
lim
−→i

Extn+i
R (M,Ki) of the direct system

(
Extn+i

R (M,Ki)
)
i. This identification is valid for any

flat resolution F∗ −→ K −→ 0 of the right R-module K. Assuming that the flat modules Fi

are in fact projective (so that F∗ −→ K −→ 0 is a projective resolution of K), it follows that
Ki = ΩiK is the i-th syzygy module of K for all i ≥ 1. Then, as shown in [18, §4], the colimit

lim
−→i

Extn+i
R (M,Ki) = lim

−→i
Extn+i

R (M,ΩiK)

is isomorphic with Mislin’s complete cohomology group Êxt
n

R(M,K). The identification of the

D-dual of that group with T̃or
R

n (M,DK) ≃ T̂or
R

n (M,DK) has been noted during the proof
of [5, Theorem 2.14].
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ON THE STABLE HOMOLOGY OF MODULES 13

4. Vanishing criteria

As another application of Theorem 2.2, we may study the vanishing of stable homology. It
will turn out that duality considerations reveal an interesting connection between the vanishing

of the stable homology functors T̃or and that of Nucinkis’ complete cohomology functors Ẽxt.
Let (Ai)i be an inverse system of abelian groups with structure maps τi : Ai+1 −→ Ai,

i ≥ 0. The duality functor D may be used in order to construct a direct system of abelian
groups (DAi)i, with structure maps Dτi : DAi −→ DAi+1, i ≥ 0. We say that the inverse
system (Ai)i is essentially zero if for all i there exists j(i) ≥ i, such that the structure map
Aj(i) −→ Ai is the zero map. The limit of an essentially zero inverse system is clearly trivial;

moreover, since such a system satisfies the Mittag-Leffler condition, its lim
←−

1 is also trivial.

Lemma 4.1. Let (Ai)i be an inverse system of abelian groups. Then, the following conditions
are equivalent:

(i) lim
←−i

A
(X)
i = lim

←−i
1A

(X)
i = 0 for any set X.

(ii) lim
←−i

Ai = lim
←−i

1A
(N)
i = 0.

(iii) The inverse system (Ai)i is essentially zero.

(iv) lim
−→i

D
(
A

(X)
i

)
= 0 for any set X.

Proof. It is clear that (i)→(ii). We shall complete the proof, by showing that (ii)→(iii)→(i)
and (iii)↔(iv).

(ii)→(iii): As shown in [7], the triviality of the group lim
←−i

1A
(N)
i implies that (Ai)i satisfies

the Mittag-Leffler condition. Let (A′i)i be the inverse system of stable images of (Ai)i; we
note that the structure maps A′i+1 −→ A′i are surjective for all i. Since (A′i)i is a subsystem
of (Ai)i, we have lim

←−i
A′i ⊆ lim

←−i
Ai and hence lim

←−i
A′i = 0. It follows readily that A′i = 0 for all i

and hence the inverse system (Ai)i is essentially zero, as needed.

(iii)→(i): Since (Ai)i is assumed to be essentially zero, the system
(
A

(X)
i

)
i is essentially

zero for any set X. As we have noted above, this implies that lim
←−i

A
(X)
i = lim

←−i
1A

(X)
i = 0.

(iii)→(iv): In view of our assumption, for any i there exists j(i) ≥ i, such that the structure

map Aj(i) −→ Ai is trivial. It follows that the map A
(X)
j(i) −→ A

(X)
i is trivial for any set X. By

applying the duality functor D, we conclude that the map D
(
A

(X)
i

)
−→ D

(
A

(X)
j(i)

)
is trivial

as well. It follows readily that lim
−→i

DA
(X)
i = 0.

(iv)→(iii): Since the abelian group Q/Z is faithfully injective, we may choose X, in such a
way that Ai admits a monomorphism fi into the direct product ∆ =(Q/Z)X for all i.3 We note

that the direct system
(
D
(
A

(X)
i

))
i may be identified with the direct system (Hom(Ai,∆))i,

which is obtained from (Ai)i by applying the contravariant functor Hom( ,∆). Having fixed

i, the vanishing of the colimit lim
−→i

Hom(Ai,∆) = lim
−→i

D
(
A

(X)
i

)
implies that the image of the

element fi ∈ Hom(Ai,∆) must vanish in the group Hom(Aj,∆) for a suitable j ≥ i; in other

words, the composition Aj −→ Ai
fi−→ ∆ must be the zero map. Since fi is injective, this can

3Any abelian group A may be embedded into the direct product of Hom(A,Q/Z) copies of Q/Z. Hence, X
may be chosen to be any set of cardinality exceeding

∑
i cardHom(Ai,Q/Z).
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14 IOANNIS EMMANOUIL AND PANAGIOTA MANOUSAKI

be true only if the structure map Aj −→ Ai is already zero. Therefore, we have proved that
the inverse system (Ai)i is essentially zero, as needed. �

Proposition 4.2. Let R be a ring and consider a right R-module M and a left R-module N .

If T̃or
R

n (M,N) = T̃or
R

n−1
(
M (N), N

)
= 0 for some n, then Ẽxt

n

R(N,DM) = 0.

Proof. We fix an injective resolution 0 −→ N −→ I∗ of the left R-module N and consider
the corresponding cosyzygy modules ΣiN , i ≥ 0. We also consider the inverse system of
abelian groups (Ai)i, with Ai = TorRn+i(M,ΣiN) for all i ≥ 0 and structure maps given by
connecting homomorphisms which are induced by the short exact sequences

0 −→ ΣiN −→ I i −→ Σi+1N −→ 0.

In view of Theorem 2.2, the vanishing of the groups T̃or
R

n (M,N) and T̃or
R

n−1
(
M (N), N

)
implies

that lim
←−i

Ai = lim
←−i

1A
(N)
i = 0. On the other hand, the group Ẽxt

n

R(N,DM) is isomorphic with

the colimit of the direct system
(
Extn+i

R (ΣiN,DM)
)
i, whose structure maps are connecting

homomorphisms which are induced by the short exact sequences above. Since the latter system
may be naturally identified with the direct system (DAi)i, we may invoke Lemma 4.1 in order

to conclude that Ẽxt
n

R(N,DM) = lim
−→i

Extn+i
R (ΣiN,DM)= lim

−→i
DAi = 0. �

Corollary 4.3. Let R be a ring and consider a right R-module M . Then, the following
conditions are equivalent:

(i) T̃or
R

∗ ( , DM) = 0,

(ii) T̃or
R

0 (M,DM) = T̃or
R

−1
(
M (N), DM

)
= 0 and

(iii) fdRoM <∞.

Proof. (i)→(ii): This is obvious.
(ii)→(iii): The vanishing of the stable homology groups implies, in view of Proposition 4.2,

that Ẽxt
0

R(DM,DM) = 0 and hence idRDM <∞. The result follows since fdRoM = idRDM .

(iii)→(i): Since idRDM = fdRoM <∞, the stable homology functors T̃or
R

∗ ( , DM) vanish
identically. �

Proposition 4.4. Let R be a ring and consider a right R-module M and a left R-module N .
Then, the following conditions are equivalent:

(i) T̃or
R

∗
(
M (X), N

)
= 0 for any set X,

(ii) T̃or
R

∗
(
M (N), N

)
= 0 and

(iii) Ẽxt
∗
R

(
N,D

(
M (X)

))
= 0 for any set X.

Proof. The proof proceeds along the same lines as that of Proposition 4.2. We fix an
injective resolution 0 −→ N −→ I∗ of the left R-module N and consider the corresponding
cosyzygy modules ΣiN , i ≥ 0, and the inverse system of abelian groups

(
TorRn+i(M,ΣiN)

)
i for

all n. Then, Theorem 2.2 implies that conditions (i) and (ii) in the statement are equivalent
to the following two conditions respectively:
(a) lim

←−i
TorRn+i(M,ΣiN)(X) = lim

←−i
1TorRn+i(M,ΣiN)(X) = 0 for all n and any set X,

(b) lim
←−i

TorRn+i(M,ΣiN)(N) = lim
←−i

1TorRn+i(M,ΣiN)(N) = 0 for all n.

On the other hand, for any set X the direct system
(
Extn+i

R

(
ΣiN,D

(
M (X)

)))
i, whose colimit

is the complete cohomology group Ẽxt
n

R

(
N,D

(
M (X)

))
, may be naturally identified with the
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ON THE STABLE HOMOLOGY OF MODULES 15

induced direct system
(
D
(
TorRn+i(M,ΣiN)(X)

))
i. Hence, condition (iii) in the statement is

equivalent to
(c) lim

−→i
D
(
TorRn+i(M,ΣiN)(X)

)
= 0 for all n and any set X.

It follows that the equivalence of the three conditions in the statement is an immediate con-
sequence of Lemma 4.1. �

Corollary 4.5. Let R be a ring and consider a left R-module N . Then, the following condi-
tions are equivalent:

(i) T̃or
R

∗ ( , N) = 0 and

(ii) Ẽxt
∗
R(N,D ) = 0. �

5. Vanishing criteria over Noetherian rings

In this section, we shall restrict our attention to the case where the ring R is left Noetherian,
in order to obtain clean characterizations of modules for which the partial stable homology
functors vanish. As we have already noted before, it is an immediate consequence of the

definition of stable homology that the functors T̃or
R

∗ (M, ) vanish identically if M is a right

R-module of finite flat dimension, whereas the functors T̃or
R

∗ ( , N) vanish identically if N is
a left R-module of finite injective dimension. We shall prove that both of these implications
may be reversed, in the case where R is left Noetherian.

We begin with the functors T̃or
R

∗ (M, ), where M is a right R-module. In order to examine
their vanishing, we shall need the following variants of Propositions 4.2 and 4.4.

Proposition 5.1. Let R be a left Noetherian ring and consider a right R-module M and a

left R-module N . If T̃or
R

n (M,N) = T̃or
R

n−1
(
M,N (N)

)
= 0 for some n, then Ẽxt

n

R(N,DM) = 0.
Proof. We fix an injective resolution 0 −→ N −→ I∗ of the left R-module N and consider

the corresponding cosyzygy modules ΣiN , i ≥ 0. In view of our hypothesis on R, the direct
sum of injective left R-modules is also injective (cf. [1]). Therefore, 0 −→ N (N) −→ I∗(N) is an
injective resolution of the left R-module N (N); the corresponding cosyzygy modules Σi

(
N (N)

)
are thereby identified with (ΣiN)(N) for all i ≥ 0.
From this point on, the proof proceeds as that of Proposition 4.2. We consider the inverse

system of abelian groups (Ai)i with Ai = TorRn+i(M,ΣiN) for all i ≥ 0 and structure maps
given by connecting homomorphisms which are induced by the short exact sequences

0 −→ ΣiN −→ I i −→ Σi+1N −→ 0.

In view of Theorem 2.2, the vanishing of the groups T̃or
R

n (M,N) and T̃or
R

n−1
(
M,N (N)

)
implies

that lim
←−i

Ai = lim
←−i

1A
(N)
i = 0. On the other hand, the group Ẽxt

n

R(N,DM) is isomorphic with

the colimit of the direct system
(
Extn+i

R (ΣiN,DM)
)
i, whose structure maps are connecting

homomorphisms which are induced by the short exact sequences above. Since the latter system
may be naturally identified with the induced direct system (DAi)i, we may invoke Lemma 4.1

in order to conclude that Ẽxt
n

R(N,DM) = lim
−→i

Extn+i
R (ΣiN,DM)= lim

−→i
DAi = 0. �

Proposition 5.2. Let R be a left Noetherian ring and consider a right R-module M and a
left R-module N . Then, the following conditions are equivalent:

(i) T̃or
R

∗
(
M,N (X)

)
= 0 for any set X,
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16 IOANNIS EMMANOUIL AND PANAGIOTA MANOUSAKI

(ii) T̃or
R

∗
(
M,N (N)

)
= 0 and

(iii) Ẽxt
∗
R

(
N (X), DM

)
= 0 for any set X.

Proof. We fix an injective resolution 0 −→ N −→ I∗ of the left R-module N and consider
the corresponding cosyzygy modules ΣiN , i ≥ 0. As in the proof of Proposition 5.1, our
hypothesis on R implies that 0 −→ N (X) −→ I∗(X) is an injective resolution of the left R-
module N (X) for any set X and hence the corresponding cosyzygy modules Σi

(
N (X)

)
are

identified with (ΣiN)(X) for all i ≥ 0.
From this point on, the proof proceeds as that of Proposition 4.4. Invoking Theorem 2.2,

we conclude that conditions (i) and (ii) in the statement are equivalent to the following two
conditions respectively:
(a) lim

←−i
TorRn+i(M,ΣiN)(X) = lim

←−i
1TorRn+i(M,ΣiN)(X) = 0 for all n and any set X.

(b) lim
←−i

TorRn+i(M,ΣiN)(N) = lim
←−i

1TorRn+i(M,ΣiN)(N) = 0 for all n.

On the other hand, for any set X the direct system
(
Extn+i

R

(
(ΣiN)(X), DM

))
i, whose colimit

is the complete cohomology group Ẽxt
n

R

(
N (X), DM

)
, may be naturally identified with the

induced direct system
(
D
(
TorRn+i(M,ΣiN)(X)

))
i. Hence, condition (iii) in the statement is

equivalent to
(c) lim

−→i
D
(
TorRn+i(M,ΣiN)(X)

)
= 0 for all n and any set X.

It follows that the equivalence of the three conditions in the statement is an immediate con-
sequence of Lemma 4.1. �

We can now state and prove the following result, which complements Corollary 4.3 (under the
presence of the additional assumption that R is left Noetherian).

Theorem 5.3. Let R be a left Noetherian ring. Then, the following conditions are equivalent
for a right R-module M :

(i) T̃or
R

∗ (M, ) = 0,

(i’) T̃or
R

0 (M,DM) = T̃or
R

−1
(
M, (DM)(N)

)
= 0,

(ii) T̃or
R

∗ ( , DM) = 0,

(ii’) T̃or
R

0 (M,DM) = T̃or
R

−1
(
M (N), DM

)
= 0,

(iii) Ẽxt
∗
R( , DM) = 0 and

(iv) fdRoM <∞.

Proof. The equivalence between conditions (ii), (ii’) and (iv) was established in Corollary
4.3 (without any Noetherian assumption on R), whereas the equivalence between (i) and (iii)
follows from Proposition 5.2. Of course, it is obvious that (i)→(i’) and he have already noted
that the implication (iv)→(i) is an immediate consequence of the definition of stable homology
(without any Noetherian assumption on R). Therefore, it only remains to prove that (i’)→(iv).
In order to prove the latter implication, assume that (i’) holds. Then, Proposition 5.1 implies

that Ẽxt
0

R(DM,DM) = 0 and hence fdRoM = idRDM <∞, as needed. �

We shall now turn our attention to the case of the stable homology functors T̃or
R

∗ ( , N), where
N is a left R-module. In order to examine whether their vanishing implies the finiteness of
idRN , we shall employ an injectivity criterion, which involves the notion of purity. We recall
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ON THE STABLE HOMOLOGY OF MODULES 17

that a short exact sequence of left R-modules

0 −→ L′
i−→ L −→ L′′ −→ 0

is called pure if the induced sequence of abelian groups

0 −→ HomR(C,L
′) −→ HomR(C,L) −→ HomR(C,L

′′) −→ 0

is exact for any finitely presented left R-module C. In that case, we also say that i is a pure
monomorphism. The condition defining purity is easily seen to be equivalent to the following
assertion: If f : A −→ B is a linear map whose cokernel coker f is finitely presented and

A
f−→ B

a ↓ ↓ b

L′
i−→ L

is a commutative diagram of left R-modules, then there exists a linear map g : B −→ L′ with
a = gf . We note that for any left R-module L the natural map νL : L −→ D2L is a pure
monomorphism; for a proof of that assertion, the reader may consult [20, §II.1.1.5].

Lemma 5.4. Let R be a left Noetherian ring. Then, the following conditions are equivalent
for a left R-module L:
(i) L is injective,
(ii) the natural map νL : L −→ D2L factors through an injective module and
(iii) there is a pure monomorphism i : L −→ N , which factors through an injective module.
Proof. Since the implications (i)→(ii)→(iii) are obvious, it only remains to prove that

(iii)→(i). To that end, we fix a pure monomorphism i : L −→ N that factors as the composi-

tion L
a−→ I

b−→ N , where I is an injective module. We shall prove that L is injective, using
Baer’s criterion: We consider a left ideal A ⊆ R and a linear map f : A −→ L. Since I is
injective, the composition af : A −→ I extends to a linear map g : R −→ I. We now consider
the following diagram

A
j−→ R

f ↓ ↓ bg

L
i−→ N

where j : A −→ R is the inclusion map. We note that this diagram is commutative, since
if = (ba)f = b(af) = b(gj) = (bg)j. The ring R being left Noetherian, the left ideal A is
finitely generated and hence the cokernel coker j = R/A is finitely presented. Therefore, the
purity of i implies the existence of a linear map h : R −→ L, such that f = hj, as needed. �

We can now state and prove the following result, which complements Corollary 4.5 (under the
presence of the additional assumption that R is left Noetherian).

Theorem 5.5. Let R be a left Noetherian ring. Then, the following conditions are equivalent
for a left R-module N :

(i) T̃or
R

∗ ( , N) = 0,

(i’) T̃or
R

0 (DN,N) = T̃or
R

−1
(
(DN)(N), N

)
= 0,

(ii) Ẽxt
∗
R(N,D ) = 0,

(ii’) Ẽxt
0

R(N,D2N) = 0 and
(iii) idRN <∞.
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18 IOANNIS EMMANOUIL AND PANAGIOTA MANOUSAKI

Proof. The equivalence between conditions (i) and (ii) was established in Corollary 4.5.
The implication (i)→(i’) is obvious, whereas Proposition 4.2 implies that (i’)→(ii’). We have
already pointed out that the implication (iii)→(i) is an immediate consequence of the definition
of stable homology. All of the above are valid without any Noetherian assumption on the ring
R. We shall complete the proof by showing that (ii’)→(iii); it is for this implication that we
shall use our assumption that R is left Noetherian.

Let us therefore assume that Ẽxt
0

R(N,D2N) = 0 and proceed to show that idRN is finite.
We consider an injective resolution 0 −→ N −→ I∗ of N and the corresponding cosyzygy
modules ΣiN , i ≥ 0. Being left Noetherian, the ring R is left coherent; therefore, it follows
that DI∗ −→ DN −→ 0 is a flat resolution of the right R-module DN . Applying the functor
D once more, it follows that 0 −→ D2N −→ D2I∗ is an injective resolution of the left R-
module D2N . The corresponding cosyzygy modules Σi(D2N) are identified with the modules
D2(ΣiN) for all i ≥ 0. Let νN : N −→ D2N be the natural map; invoking the naturality of
ν, we may lift νN to the cochain map νI∗ : I

∗ −→ D2I∗. In this way, the linear map which is
induced by νN between the corresponding cosyzygy modules is identified with the natural map

νΣiN : ΣiN −→ D2(ΣiN) for all i ≥ 0. Since the complete cohomology group Ẽxt
0

R(N,D2N)

is trivial, the image of νN under the canonical map HomR(N,D2N) −→ Ẽxt
0

R(N,D2N) must
necessarily vanish. Hence, using the approach to complete cohomology by Benson and Carl-
son, we may conclude that the linear map which is induced by νN between the corresponding
cosyzygy modules factors through an injective module in sufficiently large degrees. In other
words, the linear map νΣiN : ΣiN −→ D2(ΣiN) factors through an injective module for all
i≫ 0. Since R is left Noetherian, Lemma 5.4 implies that ΣiN is an injective module for all
i≫ 0; it follows that N has finite injective dimension, as needed. �

Remark 5.6. If R is an Artin algebra and N a finitely generated left R-module, the equiva-
lence between conditions (i) and (iii) in Theorem 5.5 was proved in [4, Proposition 5.1].

6. Balance of stable homology

The definition of the stable homology groups T̃or
R

∗ (M,N), where M is a right R-module
and N is a left R-module, has a built-in asymmetry, as it involves a flat resolution of M and an
injective resolution of N . We could have used an injective resolution of M and a flat resolution

of N , in order to define the stable homology groups T̃or
Ro

∗ (N,M). There is no a priori reason
for the latter groups to coincide with the former ones; we say that stable homology is balanced

for the pair (M,N) if the groups T̃or
R

n (M,N) and T̃or
Ro

n (N,M) are isomorphic for all n.
An analogous lack of symmetry is also present in the definition of the complete cohomology

groups. The theory introduced by Mislin, which is based on projective modules (projective
completions of functors, projective resolutions of modules), is not necessarily isomorphic with
the dual theory, which was introduced by Nucinkis and is itself based on injective modules
(injective completions of functors, injective resolutions of modules). In fact, Nucinkis has
proved in [19, Theorem 5.2] that the two complete cohomology theories agree for all pairs of
left R-modules if and only if all injective (resp. projective) left R-modules have finite projective
(resp. injective) dimension. If this is the case, Gedrich and Gruenberg have shown in [11] that
the invariants silpR, the supremum of the injective lengths of projective left R-modules, and
spliR, the supremum of the projective lengths of injective left R-modules, are both finite and
equal to each other.
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ON THE STABLE HOMOLOGY OF MODULES 19

Our goal in this section is to examine the homological counterpart of the above result,
describing conditions under which stable homology is balanced for any pair of (left and right)
coefficient modules. If this is the case, we say that stable homology is balanced over R. It
appears that this problem is closely related to the finiteness of the flat dimension of injective
modules. If R is a ring, such that all injective left and all injective right R-modules have finite
flat dimension, then the invariants sfliR and sfliRo, the suprema of the flat lengths of injective
left and right R-modules respectively, are both finite and equal to each other; for a proof, see
[9, Corollary 2.5].
A Tate flat resolution of the left R-module N is an acyclic complex of flat left R-modules,

which remains acyclic upon tensoring with any injective right R-module and coincides with a
flat resolution of N in sufficiently large degrees. Tate flat resolutions of right R-modules are
defined analogously.

Proposition 6.1. Let R be a ring and assume that the invariants sfliR and sfliRo are both
finite. Then, stable homology is balanced over R.
Proof. Assume that sfliR = n. Then, as shown in [8, Lemma 5.2], for any left R-module

N there exists an acyclic complex of flat left R-modules T∗, which coincides with a projective
resolution of N in degrees ≥ n. The finiteness of sfliRo implies that T∗ remains acyclic upon
tensoring with any injective right R-module; therefore, T∗ is a Tate flat resolution of N . A
symmetric argument shows that any right R-module M admits a Tate flat resolution as well.
Then, the balance of stable homology for the pair (M,N) follows from [4, Theorem 4.2]. �

We wish to prove that the sufficient condition for balance in Proposition 6.1 above is also
necessary, i.e. that stable homology is balanced over R only if all injective left and all injective
right R-modules have finite flat dimension. We shall prove below that this is indeed the case
if the ring R is coherent on both sides.

Proposition 6.2. Assume that stable homology is balanced over a ring R.
(i) If R is either left Noetherian or right coherent, then sfliRo <∞.
(ii) If R is either right Noetherian or left coherent, then sfliR <∞.
Proof. Since the balance of stable homology over a ring is a left-right symmetric condition,

it only suffices to prove assertion (i). To that end, we consider an injective right R-module M
and aim at proving that it has finite flat dimension.

The injectivity of M implies that the functors T̃or
R

∗ (M, ) ≃ T̃or
Ro

∗ ( ,M) vanish identically.
If R is left Noetherian, then Theorem 5.3 implies that fdRoM <∞.
Assuming that R is right coherent, the left R-moduleDM is flat. Then, the stable homology

functors T̃or
R

∗ ( , DM) ≃ T̃or
Ro

∗ (DM, ) vanish identically and hence the finiteness of the flat
dimension of M follows invoking Corollary 4.3. �
Theorem 6.3. Let R be a ring, which is both left and right coherent. Then, the following
conditions are equivalent:
(i) stable homology is balanced over R and
(ii) sfliR = sfliRo <∞.
Proof. The implication (i)→(ii) follows from Proposition 6.2, whereas the implication

(ii)→(i), which is valid over any ring, is proved in Proposition 6.1. �

Let R be a left Noetherian ring. Then, as shown by Iwanaga in [14], the left self-injective
dimension of R (i.e. the injective dimension of the left regular module R) is equal to sfliRo.
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20 IOANNIS EMMANOUIL AND PANAGIOTA MANOUSAKI

We say that a ring R is Iwanaga-Gorenstein if R is left and right Noetherian and has finite
left and right self-injective dimension.

Corollary 6.4. Let R be a ring, which is both left and right Noetherian. Then, the following
conditions are equivalent:
(i) stable homology is balanced over R and
(ii) R is Iwanaga-Gorenstein. �

Remarks 6.5. (i) For an Artin algebra R, Corollary 6.4 was proved in [4, Corollary 4.5].
(ii) Let R be a ring over which stable homology is balanced and consider a right R-module

M , for which either one of the following two conditions is satisfied:
(a) the left R-module DM has finite flat dimension or
(b) the right R-module M (N) has finite injective dimension.

Then, fdRoM <∞.

Indeed, assumption (a) implies that the functors T̃or
R

∗ ( , DM) ≃ T̃or
Ro

∗ (DM, ) vanish iden-
tically and hence Corollary 4.3 implies that M has finite flat dimension. On the other hand,

assumption (b) implies that the functors T̃or
R

∗
(
M (N),

)
≃ T̃or

Ro

∗
(
,M (N)

)
vanish identically.

Hence, Proposition 4.4 implies that the functors Ẽxt
∗
R( , DM) vanish identically. In particu-

lar, Ẽxt
0

R(DM,DM) = 0 and hence fdRoM = idRDM <∞.

Appendix A. Hausdorff filtrations on complexes and homology

We consider an inverse system of complexes of abelian groups (X i)i with structure chain
maps denoted by τ i : X i+1 −→ X i for all i ≥ 0. Let

1− τ :
∏

iX
i −→

∏
iX

i

be the chain map, whose component in degree n is the additive map
∏

iX
i
n −→

∏
iX

i
n, which

is given by (xi)i 7→ (xi − τ ixi+1)i, (xi)i ∈
∏

iX
i
n. Then, the complexes lim

←−i
X i and lim

←−i
1X i are

defined by means of the exact sequence

0 −→ lim
←−i

X i −→
∏

iX
i 1−τ−→

∏
iX

i −→ lim
←−i

1X i −→ 0.

We are interested in the special case where lim
←−i

X i is the zero complex; in other words, we

assume that lim
←−i

X i
n = 0 for all n. Then, we obtain a short exact sequence of complexes

0 −→
∏

iX
i 1−τ−→

∏
iX

i −→ lim
←−i

1X i −→ 0,

which induces a long exact sequence in homology

. . . −→ Hn+1

(
lim
←−i

1X i
)

∂−→
∏

iHn(X
i)

1−τ−→
∏

iHn(X
i) −→ Hn

(
lim
←−i

1X i
)
−→ . . .

Identifying the kernel and the cokernel of the additive map 1− τ :
∏

iHn(X
i) −→

∏
iHn(X

i)
as the lim

←−
and lim

←−i
1 of the inverse system of abelian groups (Hn(X

i))i respectively, we obtain

for all n a short exact sequence of abelian groups

0 −→ lim
←−i

1Hn+1(X
i) −→ Hn+1

(
lim
←−i

1X i
)

∂−→ lim
←−i

Hn(X
i) −→ 0.
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One source of examples of inverse systems of complexes of abelian groups with a vanishing
limit, is obtained by considering complexes endowed with a Hausdorff filtration, in the sense
of the following definition.

Definition A.1. A Hausdorff filtration of a complex of abelian groups X is a decreasing
sequence of subcomplexes X = X0 ⊇ X1 ⊇ X2 ⊇ . . . ⊇ X i ⊇ . . ., such that

∩
i X

i = 0 (i.e.,
such that

∩
i X

i
n = 0 for all n).

Let X be a complex of abelian groups endowed with a Hausdorff filtration (X i)i as above.
Then, we may consider (X i)i as an inverse system of complexes, with structure chain maps
the inclusions X i+1 ↪→ X i for all i ≥ 0; in view of our assumption on the filtration, we have
lim
←−i

X i =
∩

iX
i = 0. In order to identify lim

←−i
1X i, we consider the inverse system of complexes

(X/X i)i with structure chain maps X/X i+1 −→ X/X i induced by the identity of X for all
i ≥ 0. The projections πi : X −→ X/X i, i ≥ 0, induce a chain map

π : X −→ lim
←−i

X/X i

and we claim that the complex lim
←−i

1X i is isomorphic with the cokernel of π. In other words,

we claim that there is an exact sequence of complexes

(6) X
π−→ lim
←−i

X/X i −→ lim
←−i

1X i −→ 0.

Since kernels, cokernels and products of complexes are computed degreewise, it suffices to
show that for any degree n there is an exact sequence of abelian groups

Xn
π−→ lim
←−i

Xn/X
i
n −→ lim

←−i
1X i

n −→ 0.

Since Xn = X0
n ⊇ X1

n ⊇ X2
n ⊇ . . . ⊇ X i

n ⊇ . . . is a filtration of the abelian group Xn, the
identification of lim

←−i
1X i

n claimed above is a consequence of the following folklore result.

Lemma A.2. Let A be an abelian group, which is endowed with a decreasing filtration by
subgroups A = A0 ⊇ A1 ⊇ A2 ⊇ . . . ⊇ Ai ⊇ . . .. Then, lim

←−i
1Ai is the cokernel of the canonical

map A −→ lim
←−i

A/Ai.

Proof. This follows from the 6-term lim
←−

-lim
←−

1 exact sequence, which is induced from the

short exact sequence of inverse systems

0 −→ (Ai)i −→ (A)i −→ (A/Ai)i −→ 0,

since the constant system (A)i has lim
←−i

A = A and lim
←−i

1A = 0. �

The following result summarizes the discussion above.

Corollary A.3. Let X be a complex of abelian groups, endowed with a Hausdorff filtration
X = X0 ⊇ X1 ⊇ X2 ⊇ . . . ⊇ X i ⊇ . . .. Then, the complex lim

←−i
1X i is computed by the exact

sequence (6) and there is a short exact sequence of abelian groups

0 −→ lim
←−i

1Hn+1(X
i) −→ Hn+1

(
lim
←−i

1X i
)

∂−→ lim
←−i

Hn(X
i) −→ 0

for all n. �
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