



### Comparative genomics among dairy strains of Streptococcus thermophilus and Streptococcus macedonicus

#### Voula Alexandraki<sup>1</sup>, Athanasia Sarafianou<sup>1,2</sup>, Maria Kazou<sup>1</sup>, Rania Anastasiou<sup>1</sup>, Nikos C. Papandreou<sup>2</sup>, Stavros J. Hamodrakas<sup>2</sup>, Bruno Pot<sup>3, 4, 5, 6</sup>, Pierre Renault<sup>7</sup>, Effie Tsakalidou<sup>1</sup> and Konstantinos Papadimitriou<sup>1,\*</sup>

 <sup>1</sup> Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
<sup>2</sup> Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01 Athens, Greece
<sup>3</sup> Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), F-59019 Lille, France
<sup>4</sup> Inserm U1019, F-59019 Lille, France
<sup>5</sup> CNRS UMR8204, F-59021 Lille, France
<sup>6</sup> Univ Lille de Nord France, F-59000 Lille, France
<sup>7</sup> Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France



### Laying the background: Fermented foods and Microorganisms





#### Laying the background: Fermented foods and Microorganisms





### Laying the background: Streptococci and Fermented foods

- Carnobacterium
- Enterococcus
- Lactococcus
- Lactobacillus
- Leuconostoc
- Oenococcus
- Pediococcus
- Streptococcus
- Weissella





#### Laying the background: Streptococci and Fermented foods





### Laying the background: Streptococci and Fermented foods

• Streptococci that can be found growing in milk belong to the *Streptococcus bovis/Streptococcus equinus* complex (SBSEC)





• Greek Streptococcus thermophilus ACA-DC 29

• French Streptococcus macedonicus 679

• Comparative genomics between strains of *S. thermophilus* and *S. macedonicus* 



#### Comparative genomics of S. thermophilus



ACA-DC 29

- RAST
- BASyS
- FGenesB
- MetaGeneAnnotator
- Manual curation
- GenePrimp (check)





### **ACA-DC 29 CNRZ 1066** ASCC 1275 JIM 8232 LMD-9 LMG 18311 **MN-ZLW-002 ND03**





### Comparative genomics of *S. thermophilus*



#### Comparative genomics of S. thermophilus











Comparative genomics of *S. thermophilus* 

P HSCBB

### **Comparative genomics of** *S. thermophilus*





## Representative genomic traits of *S. thermophilus* ACA-DC 29 potentially involved in technological properties of strarters





# Representative genomic traits of *S. thermophilus* ACA-DC 29 potentially involved in technological properties of strarters





• Greek Streptococcus thermophilus ACA-DC 29

• French Streptococcus macedonicus 679

• Comparative genomics between strains of *S. thermophilus* and *S. macedonicus* 





**ACA-DC 198** 

679 vs ACA-DC 198

**33MO vs ACA-DC 198** 





















#### S. macedonicus pangenome





# Representative genomic traits of *S. macedonicus* 679 potentially involved in technological properties of strarters









- Extra lactose operon
- Proteolytic system



# Representative genomic traits of *S. macedonicus* 679 potentially involved in technological properties of strarters



| CRISPR arrays of S. macedonicus strains |        |         |
|-----------------------------------------|--------|---------|
| Strain                                  | CRISPR | Spacers |
| 679                                     | 1      | 11      |
| ACA-DC 198                              | 1      | 49      |
| 33MO                                    | 2      | 3       |
|                                         |        | 36      |



• Greek Streptococcus thermophilus ACA-DC 29

• French Streptococcus macedonicus 679

• Comparative genomics between strains of *S. thermophilus* and *S. macedonicus* 



## Comparative genomics between strains of *S. thermophilus* and *S. macedonicus*





# Comparative genomics between strains of *S. thermophilus* and *S. macedonicus*

#### S. thermophilus ACA-DC 29



Streptococcus macedonicus ACA-DC 198

#### S. macedonicus ACA-DC 198



# Comparative genomics between strains of *S. thermophilus* and *S. macedonicus*

- *S. macedonicus* ACA-DC 198 carries in its CRISPR spacers that may confer resistance to known phages of *S. thermophilus*
- *S. macedonicus* ACA-DC 198 carries genes potentially acquired by horizontal gene transfer from *S. thermophilus* (e.g. type III RM system)
- *S. thermophilus* ACA-DC 29 carries genes potentially acquired by horizontal gene transfer from *S. macedonicus*

data not shown



### Conclusions

- Both *S. thermophilus* and *S. macedonicus* species include very closely related strains
- Sequencing of more strains is necessary since unique genes can always be found in their genomes
- *S. thermophilus* and *S. macedonicus* are diverge species but they both present traits of adaptation to the milk environment
- Both *S. thermophilus* and *S. macedonicus* seem to have been adapted to the milk environment using similar strategies



#### The present work was cofinanced by the European Social Fund

#### and the National resources EPEAEK and YPEPTH

through the Thales project





# Thank you for your attention

