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In the present study, the proteome of a strain of S. enterica serovar Enteritidis PT4, grown either as biofilm on
stainless steel surface or as free-floating (planktonic) in Brain Heart (BH) broth, was investigated in order to
detect the strong differences in whole-cell protein expression patterns between the two growth styles. The
proteins extracted from both types of cells were subjected to 2-D PAGE, followed by in-gel tryptic digestion,
extraction, subsequent MALDI-TOF mass spectrometry (MS) analysis and finally database searches for pro-
tein identification. Using this approach, 30 proteins were identified as differentially expressed between the
two growth modes on an “on-off” basis, that is, proteins that were detected in one case but not in the
other. In particular, 20 and 10 proteins were identified in biofilm and planktonic-grown cells, respectively.
The group of proteins whose expression was visible only during biofilm growth included proteins involved
in global regulation and stress response (ArcA, BtuE, Dps, OsmY, SspA, TrxA, YbbN and YhbO), nutrient trans-
port (Crr, DppA, Fur and SufC), degradation and energy metabolism (GcvT, GpmA, RibB), detoxification (SseA
and YibF), DNA metabolism (SSB), curli production (CsgF), and murein synthesis (MipA). To summarize, this
study demonstrates that biofilm growth of S. Enteritidis causes distinct changes in protein expression and
offers valuable new data regarding some of the proteins presumably involved in this process. The putative
role of these proteins in the maintenance of a biofilm community in Salmonella and other bacteria is
discussed.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Salmonellae represent a group of Gram-negative bacteria that are
recognized worldwide as major zoonotic pathogens for both humans
and animals. In the EU, salmonellosis was the second most commonly
reported zoonotic infection in 2009, with 108,614 human cases con-
firmed and a case fatality rate of 0.08%, which approximately corre-
sponds to 90 human deaths (EFSA-ECDC, 2011). The two most
common Salmonella serotypes, implicated in the majority of outbreaks,
are Typhimurium and Enteritidis (52.3% and 23.3%, respectively, of all
known serovars in human cases). The native habitat of salmonellae is
considered to be the intestinal tract of taxonomically diverse group of
vertebrates, fromwhich salmonellae can spread to other environments
through faeces.

Interestingly, salmonellae have been shown to survive for extended
periods of time in non-enteric habitats, including biofilms on abiotic sur-
faces (Giaouris et al., 2012;White et al., 2006). A biofilm can be broadly
defined as a microbially derived sessile community characterized by
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cells that are attached to a substratum or interface or to each other, are
embedded in a matrix of extracellular polymeric substances (EPS) that
they have produced, and exhibit an altered phenotype with respect to
growth rate and gene transcription (Donlan and Costerton, 2002). It
has been observed that the antimicrobial resistance of biofilm cells is
significantly increased compared to planktonic cells (Mah and O'Toole,
2001; Wong et al., 2010). The general features of biofilms also apply
for Salmonella, which is able to form biofilms on both biotic and abiotic
surfaces (for an overview on Salmonella biofilms, see Steenackers et al.,
2011). Thus, biofilm formation enhances the capacity of pathogenic Sal-
monella bacteria to survive stresses that are commonly encountered
within food processing and/or during host infection.

In the food industry, biofilms may create a persistent source of
product contamination, leading to serious hygienic problems and
also economic losses due to food spoilage (Brooks and Flint, 2008).
Improperly cleaned surfaces promote soil build-up and, in the pres-
ence of water, contribute to the development of bacterial biofilms
which may contain pathogenic microorganisms, such as Salmonella.
Cross contamination occurs when cells detach from biofilm structure
once food passes over contaminated surfaces or through aerosols
originating from contaminated equipment (Kusumaningrum et al.,

http://dx.doi.org/10.1016/j.ijfoodmicro.2012.12.023
mailto:stagiaouris@aegean.gr
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.12.023
http://www.sciencedirect.com/science/journal/01681605


106 E. Giaouris et al. / International Journal of Food Microbiology 162 (2013) 105–113
2003). Till now, there is only limited information on the presence
of Salmonella in biofilms in real food processing environments
(Rasschaert et al., 2007). However, numerous studies have shown
that Salmonella can easily attach and form biofilms on various
food-contact surfaces, such as stainless steel, plastic and rubber (for
a review see Giaouris et al., 2012). Taking into account that all these
surfaces are commonly encountered in farms, slaughter houses, in-
dustrial food processing facilities, and kitchens, it is obvious that the
risk for public health is serious.

Scientific interest in the process of bacterial biofilm formation has
erupted in recent years and studies on themolecular biology and phys-
iology of biofilm cells have begun to shed light on the driving forces be-
hind the transition to the biofilm mode of existence (Fux et al., 2005;
Ghigo, 2003; Irie and Parsek, 2008; Sauer, 2003; Smith et al., 2009). Re-
garding S. enterica, there are a number of interesting studies occupied
with its cellular physiology inside a biofilm (Bhowmick et al., 2011;
Brown et al., 2001; Kim and Wei, 2009; Malcova et al., 2008; Römling,
2005; White et al., 2010; Zakikhany et al., 2010). In this bacterium,
the expression of the main extracellular matrix components stabiliz-
ing the biofilm structure (curli fimbriae and cellulose) is dependent
on the transcriptional regulator CsgD, whose transcription seems
to be influenced by a variety of regulatory stimuli (Gerstel and
Römling, 2003). Interestingly, White et al. (2010) showed by compar-
ing extracellular matrix-embedded, wild-type S. Typhimurium and the
matrix-deficient csgD mutant (using a combined metabolomics and
transcriptomics approach) that the two populations present distinct
metabolite and gene expression patterns, with wild-type cells express-
ing genes mainly involved in gluconeogenesis and stress-resistance
pathways.

Several other studies with various food-related bacteria have also
shown that biofilm cells differ physiologically from their planktonic
counterparts, presenting a modified and distinct protein expression
(Dykes et al., 2003; Hefford et al., 2005; Kalmokoff et al., 2006;
Oosthuizen et al., 2002; Planchon et al., 2009; Sampathkumar et al.,
2006; Trémoulet et al., 2002). Regarding Salmonella, Hamilton et al.
(2009) discovered, when determined the transcriptomic and proteo-
mic profiles of biofilms of S. Typhimurium, that 124 detectable pro-
teins were differentially expressed in the biofilm compared to the
planktonic cells, and that 10% of the S. Typhimurium genome (433
genes) showed a 2-fold or more change in the biofilm compared with
the planktonic cells. The genes that were significantly up-regulated im-
plicated certain cellular processes in biofilm development, including
amino acid metabolism, cell motility, global regulation and tolerance
to stress. Two other studies have used a proteomic approach to identify
S. Enteritidis proteins that are differentially regulated during biofilm
growth on glass coverslips in response to disinfectant and different
flowing rates (Mangalappalli-Illathu et al., 2008a,b). In addition, prote-
omic approaches have also been used to investigate the response of
Salmonellae to food related antimicrobials (Di Pasqua et al., 2010) and
other stressful conditions (Encheva et al., 2009).

An improved understanding of the physiological responses taking
place inside a Salmonella biofilm, can be of value to work out the rel-
ative roles of benefits and forces that drive the switch to this sessile
mode of growth. In order to contribute to the current knowledge of
molecular changes occuring in Salmonella biofilms under environ-
mental conditions relevant to food processing, mature biofilms of S.
Enteritiditis PT4 formed on stainless steel and planktonic cultures of
the same age were comparatively investigated in the present study
by a proteomic analysis.

2. Materials and methods

2.1. Bacterial strain and preparation of inoculum

Salmonella enterica subsp. enterica serovar Enteritidis phage type
(PT) 4 strain P167807, kindly provided by the School of Biomedical
and Molecular Sciences of the Surrey University (Surrey, UK), was
used in this study. This strain was selected due to its prevalence in
cases of human salmonellosis, mainly associated with the consump-
tion of raw shell egg products (Cowden et al., 1989). Before utiliza-
tion, the microorganism was stored frozen (at –80 °C) in bead vials
(Protect; Technical Service Consultants Ltd, Heywood, Lancashire,
UK) and was then resuscitated by adding one bead to 100 ml of
Brain Heart Infusion broth (BHI; LAB M; International Diagnostics
Group Plc, Bury, Lancashire, UK) in a conical flask and incubating at
37 °C for 18 h, at which time late exponential phase was attained
(preculture). Working culture was prepared by adding a 100-μl ali-
quot of the preculture to 100 ml of BHI broth and incubating at
37 °C for 18 h. Cells from the final working culture were harvested
by centrifugation (5000 ×g, 10 min, at 4 °C), washed twice with 1/4
Ringer solution (Ringer's tablets; Merck, Darmstadt, Germany) and fi-
nally resuspended in 1/4 Ringer solution (ca. 108 CFU/ml), in order to
be used as inoculum for the biofilm development assay.

2.2. Abiotic surface and biofilm development

Stainless steel (SS) coupons (50×20×1 mm, type AISI-304;
Halyvourgiki Inc., Athens, Greece) were the abiotic substrates used
for biofilm development. The coupons were initially soaked in ace-
tone (overnight), to remove any manufacturing process debris and
grease. Coupons were then washed in commercial detergent solution,
rinsed thoroughly with tap water followed by distilled water and
air-dried.

To produce biofilms, cleaned SS coupons were individually placed
in 50 ml polypropylene centrifuge tubes (length, 114.4 mm; outside
diameter, 29.1 mm; Corning Inc., Amsterdam, the Netherlands) each
containing 25 ml of growth medium, in such a way that the upper
part of each metallic surface (ca. 2 mm) was exposed to the air-
liquid interface, since this interface provides a selectively advanta-
geous niche for Salmonella biofilm formation (Giaouris and Nychas,
2006). Growth medium used to support biofilm development was
BHI broth (pH 7.4; 0.5% w/v NaCl). Centrifuge tubes with SS coupons
were autoclaved at 121 °C for 15 min. After sterilization and cooling,
growthmedia were inoculated with Salmonella to yield initial bacteri-
al populations of ca. 103 CFU/ml. Inoculated tubes were subsequently
incubated at 20 °C for 6 days (144 h) under static conditions, without
any nutrient refreshment, to allow biofilm development on the cou-
pons. Incubation conditions applied here were the ones found to pro-
vide the maximum number of biofilm cells according to previous
results (Giaouris et al., 2005).

2.3. Recovery of planktonic cells

On the 6th day of incubation, 1 ml of planktonic culture in plastic
centrifuge tubes containing the SS coupons was collected. The
advanced stationary phase cells were subsequently harvested by cen-
trifugation (5000 ×g, 10 min, at 4 °C) and used directly for protein
extraction.

2.4. Recovery of biofilm cells from the coupons

On the 6th day of incubation, SS coupons – carrying S. Enteritidis
biofilm cells on them – were carefully removed from plastic centri-
fuge tubes using sterile forceps and were thereafter rinsed two
times by pipetting 10 ml of 1/4 Ringer solution (each time onto
each coupon), in order to remove the loosely attached cells. After
this rinsing procedure, coupons were individually introduced in
new sterile plastic centrifuge tube containing 40 ml of 1/4 Ringer so-
lution and 30 sterile glass beads (diameter, 3 mm). The plastic tube
was then vortexed for 2 min, at maximum speed, to detach biofilm
cells from the coupons. Detached cells were subsequently collected
by centrifugation (5000 ×g, 10 min, at 4 °C) and used directly for



107E. Giaouris et al. / International Journal of Food Microbiology 162 (2013) 105–113
protein extraction. In addition, the number of viable biofilm cells was
estimated by serial decimal dilutions, plating onto Tryptone Soy Agar
(TSA; LAB M) and counting colonies after 24 h at 37 °C.

2.5. Protein extraction

The total protein extraction procedure was performed twice, both
for planktonic- and biofilm-derived samples. Each sample replicate
was derived from independent bacterial cultures. All chemicals used
in proteomic analysis were purchased from Bio-Rad (Bio-Rad Laborato-
ries Inc., Athens, Greece), unless otherwise stated. Initially, collected
pellets of both planktonic and sessile bacteria were washed two times
with 1/4 Ringer solution by centrifugation (5000 ×g, 10 min, at 4 °C)
and resuspended at a concentration of ca. 108 cells/ml in 1 ml of lysis
buffer (8 M urea, 4% CHAPS, 40 mM Tris, 2 mM TBP and 0.2% Bio-Lyte
3/10 ampholyte). Total cellular proteins were extracted by sonicating
cells resuspended in lysis buffer thrice for 15 s each at 40 Ω amplitude
on ice with 1 min interval between pulses. The suspension was
centrifuged (16,000 ×g, 10 min; Eppendorf benchtop centrifuge) to re-
move unbroken cells and cell debris. The supernatant was then treated
with 0.1 volume of buffer containing 50 mM MgCl2, 1 mg/ml DNase I
(Invitrogen) and 0.25 mg/ml RNase A (Invitrogen) for 15 min in ice.
The reaction was stopped by mixing it with 3 volumes of ice-cold ace-
tone. Proteins were then precipitated for 2 h at−20 °C. The precipitate
was collected by centrifugation (16,000 ×g, 10 min) and dried to re-
move residual acetone. The protein pellet was resuspended in isoelec-
tric focusing (IEF) buffer containing 8 M urea, 2% CHAPS, 50 mM DTT,
and 0.2% Bio-Lyte 3/10 ampholyte. Protein concentration was deter-
mined according to dye-binding assay of Bradford (1976). Protein sam-
ples were stored at −20 °C until further analysis.

2.6. Two dimensional (2-D) gel electrophoresis

2-D electrophoresis was performed as described by O'Farrell
(1975), with some modifications described thereafter (Görg et al.,
2009). Three gels were run per sample replicate resulting in total of
6 gels per growth condition (biofilm versus planktonic).

2.6.1. Isoelectric focusing (IEF)
Eighteen-centimeter ReadyStrip™ immobilized pH gradient 4–7

(IPG) strips (Bio-rad) were rehydrated with 315 μl of IEF buffer (com-
position as above plus 0.001% bromophenol blue) containing 400 μg
of total protein for 16 h at room temperature. Isoelectric focusing
was performed using a PROTEAN® IEF Cell system (Bio-Rad) with
the following steps: (i) 250 V with rapid increase for 30 mins,
(ii) 5000 V with linear increase for 12 h, and a final focusing step
(iii) at 5000 V with rapid increase for 16 h (total~80–90 kVh).
Following isoelectric focusing, the IPG strips were equilibrated twice
for 20 min each in 6 ml of equilibration buffer (50 mM Tris/HCl
pH 8.8, 6 M urea, 30% glycerol, 2% SDS and traces of bromophenol
blue), in the presence of 10 mg/ml DTT for the first equilibration,
and in the presence of 25 mg/ml iodoacetamide for the second
equilibration.

2.6.2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE)

The second dimensional separation was a vertical sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and was
performed in a PROTEAN® Plus Dodeca Cell system (Bio-Rad). Equili-
brated isoelectric focusing strips were placed on top of a uniform 12%
SDS-polyacrylamide gel and sealed with 0.5% low melting point aga-
rose, according to manufacturer instructions. Second-dimension sepa-
ration was carried out at 8–10 mA per gel constant current at room
temperature for 12 h. Following electrophoresis, proteins in each gel
were fixed in fixing solution (45% methanol and 1% glacial acetic acid)
for at least 4 h and stained with home-made colloidal Coomassie [34%
methanol, 0.5% glacial acetic acid, 17% (w/v) (NH4)2SO4, 0.1% (w/v)
Coomassie G250] overnight. The 2-DE protein patterns were recorded
as digitalized images using a scanner.

2.7. In-gel tryptic digestion and protein identification by MALDI-TOF
mass spectrometry (MS)

Protein differences between the two growth conditions (biofilm
versus planktonic) on 2-D gels were manually detected and subse-
quently protein spots of interestweremanually excised. Spotswere ini-
tially treatedwith destaining solution [50 mMammoniumbicarbonate,
30% acetonitrile (ACN)]; rinsed with d.d. H2O, dehydrated using a
speed-vacuum instrument, and incubated overnight with 3–5 μl/spot
trypsin (Roche; proteomics grade, 10 μg/ml in 10 mM ammonium bi-
carbonate) at room temperature. Peptides were extracted with 10 μl/
spot of extraction solution [50% ACN, 0.1% trifluoroacetic acid (TFA)].
Peptide-containing solutions were applied on a 384 steel MALDI target
(Bruker) followedby1 μl of standards containingMatrix [50%ACN, 0.1%
TFA, 0.3% (w/v) cyano-4-hydroxycinnamic acid, 10 pmol/ml bradykinin
fragment 1–8 (m/z 904.4861) and 20 pmol/ml adrenocorticotropic
hormone fragment 18–39 (m/z 2465.1983)]. MALDI ULTRAFLEX
(Bruker Daltonics) was used for spectra acquisition using the software
controller BrukerDaltonics FlexControl Version 2.2. The instrument, op-
erated in Reflector Mode, was calibrated using 400 laser shots accumu-
lated from external standards. Spectra were acquired using a laser
power range of 45% – 65% and a detection range of 900 – 3500 m/z. A
total of 8×50-laser shots were accumulated for each spot. The spectra
accumulationwas done after their automatic evaluation. All spectra an-
alyzed had a resolution higher than 6500 in the range 1200–2700 m/z.
For Spectra Processing Bruker Daltonics FlexAnalysis 8 Version 2.2 was
used with SNAP algorithm for detection, Centroid algorithm for editing
and Savitzky Golay algorithm for smoothing. The S/N ratio in the spectra
analyzedwas at least 2.5, and a quality factor threshold of 50was select-
ed. Background Peak removalwas performed based on the contaminant
peak list provided by Bruker Daltonics containing Tryptic auto-digest
peaks and common keratin fragment peaks. A local Mascot Server
Version 2.0 was used for protein identification. Several identification
cycles were performed and the most stringent parameters used were
the following: Swissprot/TrEMBL and NCBI databases, proteobacteria
and mammalian, trypsin with zero and one missed cleavage,
carbamidomethylation and methionine oxidation as fixed and variable
modifications respectively, and 25 ppm error tolerance. Identified pro-
teins had at least 4 peptides below 10 ppm. Gene ontology (GO) anno-
tations were automatically acquired and manually processed from
European Bioinformatics Institut (EBI; http://www.ebi.ac.uk/EGO).

3. Results and discussion

Till now, numerous studies with various microorganisms have
demonstrated that biofilm formation triggers the expression of specif-
ic sets of proteins, compared to planktonic cells (Dykes et al., 2003;
Hefford et al., 2005; Kalmokoff et al., 2006; Oosthuizen et al., 2002;
Planchon et al., 2009; Sauer and Camper, 2001; Silva et al., 2011;
Trémoulet et al., 2002). However, nothing is yet known about the pro-
teomic profile inside a Salmonella biofilm formed on stainless steel
(SS), an abiotic substratum commonly used in food processing equip-
ment. In order to better understand the cellular mechanisms sustain-
ing a surface-associated lifestyle of S. Enteritidis in food related
environments, the differential protein patterns of this bacterium culti-
vated as biofilm on SS versus planktonic mode were comparatively
studied in the present work.

Initially, biofilm, as well as planktonic cultures were set up. The
environmental conditions used here to support biofilm development
(batch system, 6 days, 20 °C, coupons partially submerged in broth,
static incubation) have already been shown to promote Salmonella
surface-associated growth (Giaouris et al., 2005). In order to compare

http://www.ebi.ac.uk/EGO
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protein expression between biofilm and planktonic bacteria, the
latter were also grown under exactly the same conditions. Under
such conditions Salmonella reached a sessile population of ca.
106 CFU/cm2, and a planktonic population of ca. 109 CFU/ml. These
high levels of populations permitted the easy isolation of sufficient
quantities of cells for the proteomic analysis. It is worth noting that,
by the end of incubation period, dense pellicle formation was ob-
served at the air-liquid interface in the incubation tubes containing
the SS coupons. This pellicle, mainly composed of cellulose, is strongly
correlated with the biofilm forming capacity of Salmonella and some
other bacteria as well (Scher et al., 2005; Spiers et al., 2003).

Total protein extracts were successfully isolated from both types
of cells (biofilm and planktonic), and reproducible protein patterns
were obtained for each case. Subsequently, strong differences
between the two protein profiles were detected manually on an
"on-off" basis, that is proteins detected in one case but not in the
other. Sixty-one protein spots, that were visible solely to the one of
the two growth modes, were selected and analyzed by MALDI-TOF
MS. These spots were specifically chosen as they were abundant
and clearly separated from other spots, in order to facilitate unambig-
uous identification. In particular, in samples derived from planktonic
cultures there was an attempt to identify a total number of 20 protein
spots. The identification of 10 different proteins above confidence
levels (ID score>50) was achieved for the planktonic cell extracts
(Table 1). In biofilm derived samples, 20 different proteins were iden-
tified with certainty (ID score>50) out of a total number of 41 pro-
tein spots tested (Table 2). All these 30 identified proteins were
analyzed by BLASTP (http://blast.ncbi.nlm.nih.gov/; Altschul et al.,
1997), in order to compare them to protein sequence databases and
find regions of similarity and therefore reveal their possible function
and evaluate their presumptive importance in biofilm formation.

The 20 proteins whose expression was visible only in the
biofilm-derived samples could be classified into the following five cat-
egories, based on their function: (a) proteins involved in global regu-
lation and stress response (ArcA, BtuE, Dps, OsmY, SspA, TrxA, YbbN
and YhbO); (b) proteins involved in nutrient transport (Crr, DppA,
Fur and SufC); (c) proteins involved in degradation and energymetab-
olism (GcvT, GpmA and RibB); (d) proteins involved in detoxification
(SseA and YibF) and (e) proteins involved in various processes, such as
DNA metabolism (SSB), curli production (CsgF) and murein synthesis
(MipA). In a similar proteomic study with S. Typhimurium SL1344
(grown either as biofilm on silicone rubber tubing in a modified
batch system at 25 °C for 72 h, or as planktonic cells), Hamilton et al.
(2009) discovered that the expression of 124 proteins was altered
(>2-fold), with the expression of 59 proteins increasing and 65 pro-
teins decreasing during suface-associated growth compared to plank-
tonic growth. In that study, 24 proteins up-regulated in the biofilm
Table 1
List of 10 proteins identified by MALDI-TOF MS whose expression was visible only during p

s/n ExPASy
access. no.

Gene
name

Gene locusa Protein nameb

1 B5QTN0 nmpC SEN1483 Outer membrane porin protein (OmpD)
2 B5QXR6 tufA SEN3273

SEN3930
Elongation factor (EF-Tu)

3 B5R492 fabI SEN1332 Enoyl-[acyl-carrier-protein] reductase [NADH]
4 B5QW86 pepQ SEN3778 Xaa-Pro dipeptidase
5 B5R2Q2 lpdA SEN0158 Dihydrolipoyl dehydrogenase
6 B5R2U1 manX SEN1207 Mannose-specific IIAB component
7 B5QZX1 basR SEN4063 Two-component response regulator
8 B5QX91 pagC SEN1803 Outer membrane invasion protein (PagC)
9 B5R505 ynaF SEN1400 Putative uncharacterized protein YnaF
10 B5QUS3 atpC SEN3678 ATP synthase epsilon chain

a Corresponds to NCBI reference sequence NC_011294.1 of S. enterica serovar Enteritidis
b Corresponds to the name submitted to protein knowledgebase UniProtKB (http://www
c According to database and literature searches.
d Theoretical values obtained from ExPASy bioinformatics tool “Compute pI/Mw” (http:/
were finally identified, in which they were included proteins involved
in cell motility, amino acid and carbohydrate metabolism, as well as
proteins of unassigned function. In another comparative study with
S. Enteritidis ATCC4931 (cultivated for 168 h in flow cells using glass
coverslips as substrata for attached growth), Mangalappalli-Illathu
et al. (2008a) identified 32 differentially-expressed proteins between
biofilm and planktonic cells (of which 14 proteins were up-regulated
and 18 were down-regulated in biofilms). Major up-regulated pro-
teins included those involved in degradation and energy metabolism,
protein translation and modification, RNA synthesis andmodification,
DNA transcription and adaptation. In the related species Escherichia
coli, Trémoulet et al. (2002) found that 14 proteins were up- and 3
down-regulated in cells grown as biofilm for 7 days at 20 °C on glass
fiber filter disks compared to planktonic cells of the same age. For a
better overview and comparison of the results derived fromproteomic
studies on Salmonella biofilm formation reader is reffered to Table S1
(supplementary file). Suprisingly, from the 20 “biofilm proteins” iden-
tified here, only 3 (Crr, DppA and GpmA) had also been previously
found to be up-regulated in Salmonella biofilm cells compared to
planktonic cells. However, it should be noted that a direct comparison
of the results between all these studies may be not appropriate, since
the dynamic and environmental conditions for biofilm formation used
in each study (bacterial serotype and strain, support material, biofilm
incubation temperature and growth conditions) are quite different.
Such biological and technical differences should greatly impact upon
protein expression, and therefore the identification of biofilm related
proteins, complicating the comparison of proteomic data between
the different studies. Despite this, it is still interesting that half
(10 out of 20) of the “biofilm proteins”, which were identified here,
have also been found to be implicated in biofilm formation and/or
other related events in other bacteria (ArcA, Dps, TrxA, Crr, DppA,
GpmA, RibB, SseA, Ssb and MipA; see Table S2, supplementary file).

In S. Typhimurium transcriptome analyses have recently shown that
the global response regulator ArcA (aerobic respiratory control) directly
or indirectly, regulates 392 genes (8.5% of the genome), while it mainly
serves as a regulator/modulator of genes involved in aerobic/anaerobic
energy metabolism and motility (Evans et al., 2011). An arcA mutant
was non-motile, lacked flagella and was as virulent in mice as the
wild-type strain. In E. coli, ArcAwas also found to be important for com-
petitiveness in biofilms (Junker et al., 2006). Interestingly, it has also
been reported that, although arcAmutants of Shewanella oneidensis are
capable of forming wild-type biofilms, they are compromised in their
ability to undergo oxygen-depletion-induced detachment (Thormann
et al., 2005). In the facultative anaerobic pathogen of the porcine respi-
ratory tract Actinobacillus pleuropneumoniae, an arcA deletion mutant
was attenuated and deficient in autoaggregation and biofilm formation
under oxygen-deprived growth conditions (Buettner et al., 2008).
lanktonic growth.

Protein class/functionc Peptide
coverage

Theoreticald pI/
molec. mass (Da)

Transport (porin) 18 4.66/39695.5
Protein biosynthesis (elongation factor) 54 5.30/43283.5

Fatty acid biosynthesis (oxidoreductase) 46 5.57/27774.8
Dipeptidase (prolidase) 27 5.78/50170.2
Oxidoreductase 44 5.87/50639.4
Sugar transporter (PEP phosphotransferase system) 41 5.82/35017.5
DNA-binding transcriptional regulator 68 5.84/25053.5
Virulence (invasion) 52 6.83/20231.6
Putative universal stress protein 58 5.93/15714.2
ATP synthesis 62 5.84/15064.3

str. P125109 complete genome (Thomson et al., 2008).
.uniprot.org/).

/web.expasy.org/compute_pi/).

http://blast.ncbi.nlm.nih.gov/
http://web.expasy.org/compute_pi/
http://web.expasy.org/compute_pi/


Table 2
List of 20 proteins identified by MALDI-TOF MS whose expression was visible only during biofilm growth.

s/n ExPASy
access. no.

Gene
name

Gene
locusa

Protein nameb Protein class/functionc Peptide
coverage

Theoreticald pI/
molec. mass (Da)

Globar regulation and stress response
1 B5R3D0 arcA SEN4354 Global response regulator Two-component response regulator 49 5.29/27262.9
2 B5QVW0 btuE SEN1703 Glutathione peroxidase Response to oxidative stress 77 5.08/20453.4
3 B5QXT6 dps SEN0776 DNA protection during starvation protein DNA starvation/stationary phase protection 68 5.71/18717.2
4 B5R2J1 osmY SEN4323 Putative periplasmic protein Osmotically inducible gene 48 5.78/21449.1
5 B5R0L5 sspA SEN3175 Stringent starvation protein A Transcriptional activator (induced by starvation) 31 5.22/24248.8
6 B5QVH3 trxA SEN3721 Thioredoxin 1 Chaperone, oxidoreductase, oxidoprotectant, virulence 47 4.67/11806.6
7 B5QU93 ybbN SEN0485 Thioredoxin-like protein Chaperone, oxidoreductase 41 4.63/31768.0
8 B5QZU1 yhbO SEN3104 Putative uncharacterized protein YhbO Stress response (multiple stresses) 46 5.02/18871.4

Nutrient transport
9 B5R4E2 crr SEN2414 Pts system, glucose-specific IIA component Sugar transporter (PEP phosphotransferase system) 55 4.73/18247.0
10 B5R4L8 dppA SEN3454 Periplasmic dipeptide transport protein Dipeptide ABC transporter 45 5.74/58491.3
11 B5QWD7 fur SEN0657 Ferric uptake regulation protein Ferric uptake regulator, pathogenicity 66 5.56/17039.1
12 B5QVT1 sufC SEN1674 Putative ABC transport ATP-binding subunit Cysteine desulferase ATPase, Fe-S biogenesis 55 4.81/27715.6

Degradation and energy metabolism
13 B5QXI2 gcvT SEN2898 Aminomethyltransferase Degradation of glycine 40 5.27/40259.8
14 B5QX43 gpmA SEN0717 Phosphoglyceromutase Carbohydrate degradation (glycolysis) 44 5.78/28493.3
15 B5QZ31 ribB SEN3037 3,4-dihydroxy-2-butanone 4-phosphate synthase Riboflavin biosynthesis 39 4.89/23310.4

Detoxification
16 B5R592 sseA SEN2513 Putative thiosulfate sulfurtransferase 3-mercaptopyruvate sulfurtransferase 52 4.75/30831.8
17 B5R5B7 yibF SEN3506 Putative glutathione transferase Putative Se metabolism and detoxification 46 5.38/22544.1

Various processes
18 B5QZ80 ssb SEN4025 Single-stranded DNA-binding protein DNA replication, repair, recombination 31 5.46/19074.1
19 B5QY25 csgF SEN1908 Assembly/transport component in curli production Curli production (assembly) 47 5.64/15158.9
20 B5QWL5 mipA SEN1766 Putative outer membrane protein Synthesis of murein-sacculus 64 5.51/27992.0

a Corresponds to NCBI reference sequence NC_011294.1 of S. enterica serovar Enteritidis str. P125109 complete genome (Thomson et al., 2008).
b Corresponds to the name submitted to protein knowledgebase UniProtKB (http://www.uniprot.org/).
c According to database and literature searches.
d Theoretical values obtained from ExPASy bioinformatics tool “Compute pI/Mw” (http://web.expasy.org/compute_pi/).
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Dps is a ferritin-like protein with DNA-binding properties that is ca-
pable of offering protection during oxidative stress and during times of
nutritional deprivation. Using microarray and qRT-PCR analyses,
Bhomkar et al. (2010) demonstrated that FimH-mediated adhesion of
E. coli to biocompatible substrates led to the induction of dps among
bound cells relative to unbound cells. Strong induction of this gene dur-
ing biofilm growth of E. coli in urine has also been shown (Hancock and
Klemm, 2007). Interestingly, exposure of E. coli to environmental bacte-
riophages resulted in rapid selection for phage-tolerant subpopulations
displaying increased biofilm formation and producing large amounts of
the Dps protein in the outer membrane (Lacqua et al., 2006). In the
common airway commensal and opportunistic pathogen Haemophilus
influenzae, Dpswas found to promote survivalwithin biofilm communi-
ties, aswell as resistance to host clearance in vivo (Pang et al., 2012). The
importance of this protein both for biofilm formation and poultry colo-
nization by Campylobacter jejuni has also been shown (Theoret et al.,
2012). In another study with E. coli strains, Dps was found to have a pu-
tative role in attachment in a strain- and substrate-dependent manner
(Goulter-Thorsen et al., 2011).

In S. Typhimurium, trxA encodes thioredoxin 1 which (together with
thioredoxin 2) is involved as antioxidant in defense against oxidative
stresses, such as exposure to hydrogen peroxide and hydroxyl radicals.
Additionally, Negrea et al. (2009) have reported that Trx1 is required
for the proper activity of Salmonella pathogenicity island (SPI2) type III
secretion system,while a trxAmutant of S. Typhimuriumwas attenuated
for virulence inmice (Peters et al., 2010). Interestingly, Trx1was also in-
cluded in the list of proteins up-regulated in S. Enteritidis planktonic and
biofilm cells exposed to benzalkonium chloride (Mangalappalli-Illathu
and Korber, 2006; Mangalappalli-Illathu et al., 2008b).

Crr is the glucose-specific component of phosphoenolpyruvate
(PEP) phosphotransferase (PTS) system. An S. Typhimurium mutant
unable to catabolize glucose due to deletion of crr showed reduced
replication within murine macrophages (Bowden et al., 2009).
GpmA is a phospoglyceromutase which catalyzes the interconversion
of 2-phosphoglycerate to 3-phosphoglycerate during glycolysis. In
agreement with current results, these two proteins (Crr, GpmA) also
became up-regulated in 168 h-old S. Enteritidis biofilms relative to a
planktonic cell control (Mangalappalli-Illathu et al., 2008a).

The dipeptide permease (Dpp) transports dipeptides across the
E. coli cytoplasmic membrane with high affinity, allowing a wide vari-
ety of dipeptides to enter. The periplasmic dipeptide-binding protein
DppA acts as the initial receptor for dipeptides during their uptake
through this system and also plays a role in chemotaxis toward dipep-
tides (Dunten and Mowbray, 1995). Interestingly, DppA was one of
the 12 proteins up-regulated during short-term adaptation of E. coli
to glucose-limitation (Wick et al., 2001) and was also included in the
list of proteins up-regulated (10-fold) during biofilm growth of
S. Typhimurium on silicone rubber tubing (Hamilton et al., 2009).

Another up-regulated protein during biofilm growthwas RibB, a key
enzyme of the riboflavin biosynthesis pathway (Kumar et al., 2010). In
agreement with this observation, RibB protein was among the proteins
showing significant upregulation in Shewanella oneidensis biofilms
when compared to planktonic cells (De Vriendt et al., 2005).

One other protein expressed during biofilm growth was SseA
which is a 3-mercaptopyruvate sulfurtransferase. A role of sseA gene
in biotic surface colonization has previously been found in
S. Enteritidis, since a sseA mutant was unable to colonise liver and
spleen of mice 3 weeks post-infection (Karasova et al., 2009). In
S. Typhimurium, SseA was found necessary for the intracellular infec-
tion of both macrophages and epithelial cells and was required for
virulence in mice (Coombes et al., 2003).

The single-stranded DNA-binding protein (SSB) plays an impor-
tant role in DNA metabolism, such as DNA replication, repair and re-
combination (Huang et al., 2011). Strangely, this protein, although

http://web.expasy.org/compute_pi/
http://web.expasy.org/compute_pi/
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essential for cell survival, was found here to be expressed solely dur-
ing biofilm growth. It is likely that the low level of SSB in planktonic
cells was not detectable because of the manual method used for com-
parison of the protein levels in the two growth conditions. It's worth
noting that SSB was one of the 22 proteins found to be highly
overexpressed by cold shocked immomilized E. coli cells entrapped
in 2% w/v solution of agar (Perrot et al., 2001).

Ths MltA-interacting protein MipA of E. coli is known to be in-
volved in the metabolism of the murein sacculus (Vollmer et al.,
1999). Interestingly and in agreement with current results, MipA
had higher expression in sessile culture of E. coli O157 compared to
planktonic culture (Rivas et al., 2008).

Regarding the other 10 “biofilm proteins” found here (BtuE, OsmY,
SspA, YbbN, YhbO, Fur, SufC, GcvT, YibF and CsgF; Table 2), the first 5
(BtuE, OsmY, SspA, YbbN, YhbO) are known to play an essential role
in cellular stress responsemechanisms. Some representative studies re-
lated to the specific role of each one of these 10 proteins (mainly in
E. coli strains) are presented in Table S3 (suppementory file). Substan-
tial protection against the elevated oxidative stress that Salmonella
biofilms may face could be provided by BtuE protein identified in the
present study. BtuE from E. coli in vitro catalyzes the decomposition of
a variety of peroxides, mainly lipid peroxides, using thioredoxins A or
C as the reducing agents, while it was also shown that btuE, like other
E. coli antioxidant genes, is induced under oxidative stress conditions
(Arenas et al., 2010). The RpoS-regulated osmY gene encodes a periplas-
mic protein of unknown function that has been found to be induced by
both osmotic and growth phase signals (Yim and Villarejo, 1992). The
stringent starvation protein A (SspA) is a RNA polymerase-associated
protein and in E. coli has been found important for the stress response
during stationary phase and under nutrient-limited conditions
(Williams et al., 1994). In the same bacterium, SspA is also essential
for cell survival during acid-induced stress (Hansen et al., 2005). It is
suggested that thioredoxin-like protein YbbN functions in vivo in
E. coli as a chaperone rather than as an oxidoreductase and cooperates
with DnaK for the optimal expression of several cytoplasmic proteins
(Kthiri et al., 2008). YhbO protects E. coli cells against many environ-
mental stresses (Abdallah et al., 2007). In accordance with its role in
stress management, YhbO is overexpressed severalfold in stationary
phase and during hyperosmotic and acid stresses (Weber et al., 2006).

The Fur (ferric uptake regulator) protein is themain regulator of iron
homeostasis in many bacteria. In the Fe2+-bound form, E. coli Fur re-
presses genes involved in respiration, flagellar chemotaxis, the TCA
Table 3
List of 3 proteins (out of 10) whose expression was visible only during planktonic growth wh
events in other bacteria.

Protein Protein function Other published studies related to the putative role of g
and other microbial species

Strain(s) Experimental setup

TufA Protein biosynthesis
(elongation factor)

Salm. enterica
Enteritidis
ATCC4931

The influence of hydrodynamic condi
on the formation and maintenance of
biofilms formed by S. Enteritidis (on
coverslips in flow cells) was studied

YnaF Putatitve universal
stress protein

Salm. enterica
Enteritidis
ATCC4931

The influence of hydrodynamic condi
on the formation and maintenance of
biofilms formed by S. Enteritidis (on
coverslips in flow cells) was studied

Salm. enterica
Enteritidis
ATCC4931

The development of adaptive resistan
of S. Enteritidis biofilms following
exposure to benzalkonium chloride (
either continuously (1 μg ml−1) or
intermittently (10 μg ml−1 for 10 mi
was examined

AtpC ATP synthesis Escherichia coli
MG1655

E. coli wild type (WT) and rpoS muta
strains were used to compare biofilm
formation capacity (on glass surfaces
flow cells) and global gene expressio
cycle, glycolysis, methionine biosynthesis, phage DNA packaging, DNA
synthesis, purine metabolism, and redox stress resistance. As a major
regulator of gene expression, it also ultimately coordinates intracellular
iron levels withmany other cellular processes, including the expression
of S. entericapathogenicity island1 (SPI1) and the control of nitrate/nitrite
respiration by sensing cellular redox status (Teixidó et al., 2010, 2011).
SufC is an ATPase component of the SUF (mobilization of sulfur)
machinery, which is involved in the biosynthesis of Fe–S clusters,
required as cofactors in a wide range of critical cellular pathways
(Kitaoka et al., 2006). The sufABCDSE operon is required for de novo
Fe-S cluster biogenesis under iron starvation and oxidative stress condi-
tions in E. coli (Nachin et al., 2003; Outten et al., 2004).

In E. coli, the gcvTHP operon encodes the glycine cleavage system,
which breaks down glycine to produce compounds involved in variety
of pathways, including methionine and purine biosynthesis (Stauffer
and Stauffer, 2005). YibF is a putative glutathione (GSH) transferase,
believed to be involved in Se metabolism and detoxification (Rife
et al., 2003). Finally, CsgF, which was found here to be expressed
only under biofilm conditions, is known to be involved in assemply
of curli fimbriae (Nenninger et al., 2009), which form, together with
cellulose, the two main matrix components of Salmonella biofilms
(Gerstel and Römling, 2003).

Strangely, among the 10 proteins whose expression was visible
here only in the planktonic-derived samples (NmpC, TufA, FabI,
PepQ, LpdA, ManX, BasR, PagC, YnaF and AtpC), two proteins were in-
cluded (TufA and YnaF) that, contrary to our results, were over-
expressed in 168 h-old S. Enteritidis biofilms relative to a planktonic
cell control (Mangalappalli-Illathu et al., 2008a) (Table 3). This clearly
indicates that biofilm communities seem to be very diverse and
unique, not just to the microorganism, but to the particular environ-
ment in which they are being formed. With regard to the other
“planktonic proteins”, there is only one protein (AtpC) with possible
involvement in biofilm events, besides its central role to ATP synthe-
sis. Thus, in a study comparing biofilm formation between E. coli wild
type and rpoS mutant strain, atpC gene was found to present in-
creased expression in the mutant strain biofilm, but not in the WT
strain biofilm (Ito et al., 2008). To the best of our knowledge, the
other 7 proteins, whose expression was found here to be visible
only during planktonic growth, have never been reported before in
any other biofilm related study.

To sum, present results clearly show that under surface-associated
growth Salmonella over-produces proteins mainly related to stress
ich, however, are also known to be implicated in biofilm formation and/or other related

ene/protein of interest in biofilm formation and/or other related events in Salmonella

Key conclusions (related
to gene/protein of interest)

Reference

tions

glass

→ TufA became up-regulated in 168 h-old
S. Enteritidis biofilms relative to a
planktonic cell control

Mangalappalli-Illathu et al.
(2008a)

tions

glass

→ YnaF became up-regulated in 168 h-old
S. Enteritidis biofilms relative to a
planktonic cell control

Mangalappalli-Illathu et al.
(2008a)

ce

BC)

n daily)

→ YnaF was included in the list of proteins
up-regulated in S. Enteritidis biofilm
cells exposed to BC

Mangalappalli-Illathu
and Korber (2006)

nt

in
n

→ atpC gene showed increased expression
in the mutant strain biofilm, but not in the
WT strain biofilm

Ito et al. (2008)



111E. Giaouris et al. / International Journal of Food Microbiology 162 (2013) 105–113
management, something rather expected, supporting the well
established view that biofilms are examples of multicellular behavior
which enhance the capacity of microorganisms to survive multiple
stresses (Anderson and O'Toole, 2008; Coenye, 2010; Fux et al., 2005;
Mah and O'Toole, 2001; Seneviratne et al., 2012). Thus, almost half
(8 out of 20) of the “biofilm proteins” identified here are known to be
implicated in stress response pathways (ArcA, BtuE, Dps, OsmY, SspA,
TrxA, YbbN and YhbO). Proteins involved in nutrient transport (Crr,
DppA, Fur and SufC), together with ones involved in the complementa-
ry processes of degradation and energy metabolism (GcvT, GpmA and
RibB) form the other important group of proteins found here to be in-
duced under biofilm conditions. Three of these last proteins (Crr,
DppA and GpmA) had also been previously found to be up-regulated
in Salmonella biofilms (Hamilton et al., 2009; Mangalappalli-Illathu
et al., 2008a;Table S1). Crr and DppA are involved in sugar and dipep-
tide membrane transport, respectively, while GpmA is a key enzyme
(phospoglyceromutase) of glycolysis pathway. Undoubtedly, this
small amount of proteins overlapping between the different Salmonella
biofilm studies significantly complicates our efforts to unravel the cellu-
lar physiology of this pathogenic bacterium under biofilm conditions.
Obviously, our research efforts to identify the core genes and/or pro-
teins that are required for survival of this pathogen on different surfaces
should continue preferably by using in combination approaches based
on transcriptomics, mutagenesis, metabolomics and proteomics to
study Salmonella biofilms grown in dissimilar model systems.

Overall, the results obtained here and in combination with other
previously published results (Hamilton et al., 2009; Mangalappalli-
Illathu et al., 2008a,b; White et al., 2010), extend our knowledge on
the physiology of Salmonella once being enclosed in a biofilm structure
formed on a typical food contact surface. However, although differential
protein expression was found between planktonic and sessile cells, fur-
ther investigations are undoubtedly required to determine the specific
role of each one of these identified proteins during biofilm growth of
this pathogen. In addition, we should always keep inmind that biofilms
are microbial communities known to present great genetic and physio-
logical hererogeneity, even those formed by the same microorganism
under different environmental conditions (Stewart and Franklin,
2008). Unambiguously, the ability to recognize “how and why” Salmo-
nella attach to food-contact surfaces and form biofilms on them is an
important area of focus, since a better understanding of this ability
may provide valuable ways toward the elimination of this pathogenic
bacterium from food processing environments and eventually lead to
reduced Salmonella-associated human illness.
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