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Abstract: Plant cytosolic glutathione transferases (GSTs) are an ancient enzyme superfamily with multiple and diverse 
functions which are important in counteracting biotic and abiotic stress. GSTs play an important role in catalyzing the 
conjugation of xenobiotics and endogenous electrophilic compounds with glutathione (GSH), such as pesticides, chemical 
carcinogens, environmental pollutants, which leads to their detoxification. GSTs not only catalyze detoxification reactions 
but they are also involved in GSH-dependent isomerization reactions, in GSH-dependent reduction of organic hydroper-
oxides formed during oxidative stress, biosynthesis of sulfur-containing secondary metabolites, and exhibit thioltrans-
ferase and dehydroascorbate reductase activity. This review focuses on plant GSTs, and attempts to give an overview of 
the new insights into the catalytic function and structural biology of these enzymes. 
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1. INTRODUCTION 

 GSTs are ubiquitous enzymes in aerobic organisms and 
are encoded by large gene families of cytosolic, mitochon-
drial, and microsomal proteins. GSTs catalyze the conjuga-
tion of reduced glutathione ( -L-Glu-L-Cys-Gly; GSH) via 
the sulfhydryl group, to electrophilic centers on a wide vari-
ety of compounds, both endogenous and xenobiotic [1-4]. 
The conjugation of GSH to these endogenous compounds 
serves several important roles: (a) limit and restrict the reac-
tivity of the chemicals; (b) increases their solubility and fa-
cilitates their membrane transport and elimination from the 
cell and organism; and (c) in some cases, it leads to the for-
mation of secondary metabolites or essential biological me-
diators [1,5]. 

 The GSTs comprise a complex enzyme superfamily that 
has been subdivided into a number of classes based on a va-
riety of criteria (e.g. amino acid/nucleotide sequence, and 
immunological, kinetic and structural properties) [6]. GST 
genes and proteins from mammalian sources have been well 
characterized, but studies of GSTs from non-mammalian 
sources such as plants and microorganisms have revealed the 
existence of several different classes (for more details see 
Sheehan et al., 2001 [6]). For example, the plant soluble 
GSTs according to their sequence relatedness, immunologi-
cal cross reactivities, kinetic properties and genome organi-
zations can be subdivided into the following distinct classes:  
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phi (F), tau (U), zeta (Z), theta (T), lambda ( ), dehy-
droascorbate reductase (DHAR), and tetrachlorohydroqui-
none dehalogenase (TCHQD) [4-10]. The majority of the 
plant GSTs belongs to the tau (GSTU) and phi (GSTF) 
classes, which are plant specific. 

 GSTs are known as promiscuous enzymes capable of 
catalyzing the conjugation of GSH with a broad range of 
electrophilic substrates [11-13]. GSTs exhibit wide substrate 
specificity toward electrophile molecules including organic 
halides, organic hydroperoxides, epoxides, arene oxides, - 
and -unsaturated carbonyls, organic nitrate esters, and or-
ganic thiocyanates [14]. GSTs not only catalyze the conjuga-
tion of GSH to electrophilic compounds but they also have 
more functions. For example, some members are involved in 
GSH-dependent isomerization reactions (e.g. in GSH-
dependent isomerization of maleylacetoacetate to fumary-
lacetoacetate), in the synthesis of sulfur-containing secon-
dary metabolites such as volatiles and glucosinolates, and the 
conjugation, transport and storage of reactive oxylipins, phe-
nolics and flavonoids [5]. It is widely assumed that the func-
tional promiscuity of GSTs correlates with structural flexi-
bility, which allows for recognition of diverse structures at 
minimal energetic cost [15]. Typical GST-catalyzed reac-
tions are schematized in Fig. (1).  

 GSTs play a crucial role in the protection of cells from a 
wide range of biotic and abiotic stresses, including pathogen 
attack, xenobiotic and heavy metal toxins, oxidative stress 
and UV radiation [16-20]. Their role in stress tolerance in 
plants is less characterized than their detoxification function 
[21], however, GSTs are thought to be evolved as part of the 
cell protection system against oxygen toxicity [22,23]. The 
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Fig. (1). A: Glutathione conjugation to a generic xenobiotic (X) catalyzed by a GST, results in the formation of a glutathione-S conjugate. B: 
Typical GST-catalyzed reactions. (1): nucleophilic aromatic substitution with 1-chloro-2,4-dinitrobenzene, (2): Michael-type addition reac-
tion with ethacrynic acid, (3): hydroperoxide reduction with cumene hydroperoxide.  
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Fig. (2). Catalytic activity in relation to the antioxidant function of GSTs: a) peroxidase activity, b) GSH-dependent thioltransferase activity, 
and c) dehydroascorbate reductase activity.  
 
antioxidant catalytic function of GSTs [9] is displayed 
through peroxidase (GPxs) [24], thioltransferase and dehy-
droascorbate reductase activity [21,25,26] (Fig. 2).  

 Proteins able to participate in unrelated biological proc-
esses have been grouped under the generic name of moon-
lighting proteins [27,28]. Work with different organisms has 
uncovered a great number of GST isoenzymes that are able 
to participate in unrelated biological processes. In addition to 
their role in catalyzing the conjugation of electrophilic sub-
strates to GSH, these enzymes also carry out a range of other 
functions. Different activities of GST isoenzymes include 
their role as modulators of signal transduction pathways that 
control cell proliferation and cell death, regulation of the 
metabolic pathways, bind non-catalytically and transfer a 
wide range of endogenous and exogenous ligands 
[5,6,29,30,31]. For example, the isoenzyme GSTP1-1 from 
human is an ubiquitously expressed protein that plays an 
important role in the detoxification and xenobiotics metabo-
lism. This isoenzyme, has been associated with the develop-
ment of tumor resistance to anticancer drugs, acts as a re-
pressor of JNK and other protein kinases involved in stress 
response, cell proliferation, and apoptosis, and plays an im-
portant regulatory role in TNF- -induced signaling by form-
ing ligand-binding interactions with TRAF2 [32,33]. An-
other example of moonlight activity comes from the protein 
Ure2 [34]. Ure2 is an important regulator of nitrogen catabo-
lite repression, the process that controls the utilization of 
available nitrogen sources by S. cerevisiae. Ure2 does not 
have a typical GST substrate specificity but belongs to a sub-
set of GST proteins that exhibits glutathione peroxidase ac-
tivity and are active against different oxidants [35].  

2. ANTIOXIDANT CATALYTIC FUNCTION OF GSTs 

 GSH can function as an antioxidant and as a substrate or 
cofactor of GSTs [7,36-41]. GSH is mainly known for its 
antioxidant function against Reactive Oxygen Species (ROS) 
and hydrogen peroxide (H2O2) [42,43]. The high concentra-
tion of ROS can lead to a non-controlled oxidation of DNA, 
proteins and membrane lipids which can cause disruption of 
metabolism and cellular structure destruction [41,44].  

 Plant GSTs exhibit GSH-dependent peroxidase activity 
(GPx , EC 1.11.1.9) [24,45] and act protectively against cy-

totoxicity by reducing organic hydroperoxides of fatty acids 
and nucleic acids to monohydroxyalcohols which are less 
toxic [1,10,25]. This reaction is important as prevents the 
formation of cytotoxic aldehyde derivatives from organic 
hydroperoxides degradation [10]. 

 Plant GSTs with GPx activity contribute to defence 
against oxidative injury during various stresses, including 
oxidative stress, pathogen attack, herbicide treatment, and to 
abiotic stresses [46]. It was suggested that in addition to the 
direct protective effect of the GPx activity, the enhanced 
tolerance may be due to the GPx-mediated increase in GSSG 
concentration in the cells, which then function as a signal to 
activate further protective stress responses [47-49]. 

 The GPxs in plants can be divided into three types. These 
are the selenium-dependent GPxs identified in Aloe vera 
[50], the non-selenium dependent phospholipids hydroperox-
ide glutathione peroxidases (PHGPxs) and glutathione trans-
ferases showing glutathione peroxidase activity [51]. The 
selenium-dependent GPxs composed of four 16 kDa subunits 
contain selenocysteine at the catalytic site and appears to be 
similar to mammalian cytosolic GPx. PHGPx contain cys-
teine at the catalytic site and appears to be different to the 
mammalian type PHGPxs. These enzymes can be widely 
found in plant cells including chloroplasts, mitochondria, 
cytoplasm, peroxisome and apoplast [51-53].  

 Plant theta and tau class GSTs exhibit high GPx activi-
ties toward organic hydroperoxides [54]. For example, the 
isoenzymes from wheat [16], peas [8], soybean [55], mono-
cot weeds such as Alopecurus myosuroides (blackgrass), and 
dicot weeds such as Arabidopsis thaliana [51,56] display 
wide substrate specificity towards organic hydroperoxides. 
In particular, the phi and tau class GSTs from Arabidopsis 
thaliana have shown high peroxidase activity with linoleic 
acid hydroperoxides (13-hydroperoxy-9,11,15-
octadecatrienoic acid and 13-hydroperoxy-9,11-
octadecadienoic acid) [56].  

 The isoenzymes of the GST-like class with dehy-
droascorbate reductase (DHAR) activity catalyze the reduc-
tion of dehydroascorbate (DHA) to ascorbic acid using GSH. 
Members of this class have already been found in Arabidop-
sis [9], rice and soybean [21]. The DHARs do not exhibit 
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GSH conjugating activity. Unlike most other GSTs, DHARs 
are monomeric and form mixed disulfides with GSH [9]. 

 Members of the lambda and DHARs classes of GSTs, 
exhibit thioltransferase activity using the 2-hydroxyethyl 
disulfide (HED) as a substrate [9]. In cases of oxidative 
stress, when there is a lack of GSH, some protein thiols are 
S-thiolated making protein-thiol disulfides (Fig. 3). This 
modification affects the activity of the proteins or enzymes. 
Whereas many proteins are active when the key sulfhydryls 
are in the thiol form, others require them to be in the oxi-
dized, disulfide form [57,58]. For example, glutathione di-
sulfide (GSSG) can activate enzymes such as glucose-6-
phosphatase, acid phosphatase, -aminolaevulinate syn-
thetase, creatine kinase, etc. On the other hand, glutathione 
disulfide inhibits glycogen synthetase, pyruvate kinase, 
adenylate cyclase, phosphorylase/phosphatase, ribonucleo-
tide reductase, phosphofructokinase, etc [10,57,59,60,61].  

3. STRUCTURE OF GSTs 

 GSTs belong to the thioredoxin superfamily (also includ-
ing thioredoxin, glutaredoxin, and disulfide-bond formation 
facilitator) classified by the common GSH binding domain-
adopted thioredoxin fold (Fig. 4) [62,63]. So far, the avail-
able three-dimensional (3D) that have been solved can be 
summarized as follows: (i) one phi class GSTs from 
Arabodopsis thaliana [64], two from maize ( mGSTF1 and 
ZmGSTF3) [65,66], (ii) a zeta class GST from Arabodopsis 
thaliana [67], (iii) and three tau class GSTs, one from wheat 
( aGSTU4) active in herbicide detoxification [19], one from 
rice (OsGSTU1), and more recently one from Glycine max 
(GmGSTU4-4) [68,69]. Because of the important role of the 
tau class GSTs, the structure of the GmGSTU4-4 [68,69] 
will be presented and discussed with regards to the other 
plant classes. 

3.1. Overall Structure 

 Each soluble GST is, in general, active as dimer of ap-
proximately 23–30 kDa subunits of and an average length of 
200–250 aminoacids [70] (Fig. 4). Sequence identity within 
class is typically >40%. For example, sequence identity 
within tau class GSTs is shown in Fig. (5a). Interclass identi-
ties are significantly lower, usually <20% in plants (Fig. 5b). 

Although there is little sequence similarity between enzymes 
of different classes, there is significant conservation in over-
all structure (Fig. 6). 

 Each subunit adopts the same folding pattern, which is 
called ‘GST fold’, and consists of two distinct domains: the 
N-terminal domain (approximately one third of the protein 
sequence), consisting of -strands and -helices as secondary 
structure elements, usually , similar to the thiore-
doxin fold [63,64,71] and the all helical C-terminal domain 
composed of -helices arranged in a right-handed spiral (Fig. 
4) [23,72,73]. Each subunit has an independent active site, 
consisting of two regions: a GSH binding site (G-site) in the 
N-terminal domain and a xenobiotic (hydrophobic) substrate 
binding site (H-site) in the C-terminal domain 
[19,65,66,68,69,74] (Fig. 4a,c). 

3.2. Interactions Between Subunits 

 The interactions that are involved in assembling the qua-
ternary structure of GSTs include salt bridges, hydrogen 
bonds, hydrophilic and hydrophobic interactions, including a 
lock-and-key motif that physically anchors the two subunits 
together [75-77]. The lock-and-key motif is a common fea-
ture of GSTs of the tau, phi, alpha, mu and pi classes 
[67,75,76]. Only subunits with the same interfacing type 
appear to be compatible for dimerization. Subunits from dif-
ferent classes of GST are not able to dimerize because of the 
incompatibility of the interfacial residues [78,79].  

3.3. GSH Binding Site (G-site) 

 In each monomer the G-site is located in a polar region, 
formed by the beginning of helices H1, H2, and H3 in the N-
terminal domain, (Figs. 4A, 7) [68]. The G-site contains spe-
cific residues critical for GSH binding and catalytic activity. 
In particular, a highly conserved, catalytically essential Ser 
of the tau (Ser13 in GmGSTU4-4) [68,80], phi, zeta, and 
theta classes plant and of insect delta class GSTs and Tyr of 
the mammalian alpha, mu, pi classes GSTs have a crucial 
role in the mechanism of GSH activation [6]. The Ser/Tyr 
hydroxyl group acts as hydrogen bond donor to the thiol 
group of GSH, contributing to stabilization of reactive thio-
late anion which is the nucleophile group for the electro-
philic substrate [72,81]. GSTs that belong to the, omega, 

 

Fig. (3). Thioltransferase activity plays regulatory and protective role through reversible thiolation and dethiolation reactions. 
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beta and lambda classes contain instead of Ser/Tyr, a cata-
lytically essential Cys, which is involved in forming a mixed 

disulfide with GSH [9].  

 The analysis of crystal structures of soluble GSTs clearly 
demonstrates that, several active-site residues and a func-
tionally conserved electron-sharing network contributes to 
the formation and stabilization of the thiolate anion. Amino 
acids mainly with positive charges for instance Arg18 ( -
helix H1) located at the bottom of the G-site, which is con-
served among all tau GST sequences, although not involved 
directly in the formation of the G-site, seems to have an indi-
rect role in GSH binding, and in stabilization of G-site archi-
tecture through a network of hydrogen bonds and electro-
static interactions [68].  

3.4. Electrophilic Binding Site (H-Site) 

 The H-site is composed of non-conserved residues from 
the C-terminal domain (Figs. 4 and 7B). In general, the H-
site of GSTs exhibits a low degree of sequence identity that 
determines substrate specificity (Fig. 5A). For example, the 
H-site of GmGSTU4-4 is typically hydrophobic, and is built 
predominantly by hydrophobic residues from the C-terminal 
domain: helix H4a, (Tyr107, Arg111), helix H6 (Trp163) 
helix H9 (Phe208, Leu212, Lys215 and Leu216), and Phe10 
and Leu37 from the N-terminal domain [68,69].  

3.5. Ligand Binding Site (L-Site) 

 In addition to their catalytic function GSTs act as ligand-
binding proteins and bind hydrophobic molecules (azo-dyes, 
bilirubin, heme, polycyclic aromatic hydrocarbons, steroids, 
thyroid hormones, plant hormones and flavonoids) in a non-
substrate manner into a distinct site. This site is termed L-
site [7,68,82-87]. 

 Little information is available about the exact localization 
and the nature of the L-site in GSTs. Variation in the loca-
tion of L-site between different GST isoenzymes is a well-
known feature of GSTs. For example, the L-site in 
GmGSTU4-4 was found to bind the molecule (4-
nitrophenyl) methanethiol [68] and is located in a hydropho-
bic surface pocket formed by Trp11, Arg20, Tyr30, Tyr32, 
Leu199 and Pro200 (Fig. 8). The main binding residues 
(Trp11, Arg20, Tyr30 and Tyr32) are, in general, conserved 
within the tau GST family (Fig. 5A). On the other hand, the 
L-site of GST from Schistosoma japonica [82] is located at 
the dimer interface. In the case of the Arabidopsis enzyme 
[88], the L-site is located next to the G-site between the side 
chains of helices 3’’/ 3’’’ and 5’’, whereas the L-site of 
the human pi class GST and the maize GST I is located into 
the H-site [83,86]. 

 The precise role of L-site is unclear. However, it has 
been proposed that binding of non-substrate ligands to GST 
prevents modification (e.g. degradation, oxidation) of the 
molecules in vivo. Another possibility is that GST prevents 
cellular damage that may be caused by cytotoxic and geno-
toxic compounds. The other possibility is that binding to L-
site may help to the delivery of the ligands to specific cellu-
lar protein receptors or compartments [83,84,86,68]. Lu and 
Atkins (2004) have demonstrated the possible antioxidant 
role for the ligandin activity of GSTs [29]. More recently, 
Dixon and Edwards have shown that GSTUs from Arabidop-
sis thaliana are able to bind tightly thioester of faty acids 

A 

 
B 

 
 
C 

 
Fig. (4). A cartoon representation of the tau class GmGSTU4-4 
monomer ( ), dimer (B) and the substrate binding site (C). Secon-
dary structure elements and the location of G- and H-site are la-
belled. The water molecules are represented by spheres. The bound 
inhibitor S-(p-nitrobenzyl)-glutathione (Nb-GSH) is shown in a 
stick representation. The figures were produced using PyMol. 
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Fig. (5). Contd…. 

 
Fig. (5). A: Sequence alignment of members of the tau family of GSTs compared with the secondary structure of GmGSTU4-4 (PDB code 
2VO4) produced using ESPript (http://espript.ibcp.fr/ESPript/ESPript/). GmGSTU4-4 numbering is shown above the alignment. Alpha heli-
ces and beta strands are represented as helices and arrows, respectively, and beta turns are marked with TT. Conserved areas are shown 
shaded. A column is framed, if more than 70 % of its residues are similar according to physico-chemical properties. This sequence alignment 
was created using the following sequences (NCBI accession numbers are in parentheses): GmGSTU4-4: Glycine max (AAC18566), NtGST: 
Nicotiana tabacum (CAA39707), VvGST: Vitis vinifera (XP_002263395), MtGST: Medicago truncatula (ACJ85907), HvGST: Hordeum 

vulgare (ABI18247). B: Sequence alignment of representative members of the Arabidopsis thaliana GST family (phi, theta, DHAR, lambda 
and tau). Conserved areas are shown shaded. A column is framed, if more than 70 % of its residues are similar according to physico-chemical 
properties. This sequence alignment was created using the following sequences (NCBI accession numbers are in parentheses): AtGST Phi 
(NP_171792); AtGST theta (NP_198937); AtDHAR (Q9FWR4); AtGST zeta (Q9ZVQ3); AtGST tau (AAS76278); AtGST lambda 
(NP_191064). C: Phylogenetic analysis of representative members of the Arabidopsis thaliana GST family (phi, theta, DHAR, lambda and 
tau) (TreeDyn program run at http://www.phylogeny.fr/).  

 

Fig. (6). Ribbon representations of the structures of the GST classes: alpha (PDB code: 1gse), mu (PDB code: 1hna), pi (PDB code: 1glp), 
theta (PDB code: 1ljr), zeta (PDB code: 1fw1), omega (PDB code: 1eem), sigma (PDB code: 1mou), kappa (PDB code: 1yzx), phi (PDB 
code: 1aw9), tau (PDB code: 1gwc). The figure was produced using PyMol. 
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A 

 

B 

 

Fig. (7). Cartoon representation of the G- and H-site of GmGSTU4-4 with the inhibitor S-(p-nitrobenzyl)-glutathione. Amino acid side chains 
that contribute directly to G and H-site formation are shown in a stick representation. The figure was produced using PyMol. 

 

Fig. (8). A representation of the putative L-site of GmGSTU4-4 with the ligand (4-nitrophenyl)-methanethiol. The ligand (4-nitrophenyl)-
methanethiol is represented as a stick. The figure was produced using PyMol. 
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with varied chain length (C(6) to C(18)), oxygen content, and 
desaturation, with K(d) approximately 1 M [89]. The strong 
and binding of various fatty acids by each GSTU and the 
conservation in binding observed in the different hosts sug-
gest that GSTUs have selective roles in binding and conju-
gating these unstable metabolites in vivo. In addition, the 
same group of researchers has shown that the ability of GSTs 
to act as ligand binding proteins of porphyrins in vitro [90] 
results in highly specific interactions with porphyrinogen 
intermediates, which can be demonstrated in both plants and 
bacteria in vivo [91]. 

4. ACKNOWLEDGMENT 

ABBREVIATIONS 

CDNB = 1-chloro-2,4-dinitrobenzene 

GSH = Glutathione 

GST = Glutathione transferase 

G-site = GSH binding site 

GPx = Glutathione peroxidase 

H-site = Hydrophobic binding site; S-(p-
nitrobenzyl)-glutathione 

Nb-GSH = Sec, Selenocysteine 

ROS = Reactive Oxygen Species 
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