Antimicrobial activity of Melissa officinalis L. and Crocus sativus L. against oral pathogens: Detection of cellular structural changes by FT-IR.
Anastaski E.1, Zoumpopoulou G.2, Papadimitriou K.2, Tarantilis P.1, Polissiou M.1 and Tsaklidou E.2

1Laboratory of Chemistry, Department of Science, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
2Laboratory of Dairy Research, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece

Periodontal diseases and dental caries are common oral disorders in human population with a multifactorial etiology closely related with the development of dental plaque. The latter is composed of native oral microbiota and it is accumulated on tooth surfaces. Several antiseptic agents are used widely to inhibit bacterial growth [1,2]. However, these substances have adverse effects. In the current study, Melissa officinalis L. and Crocus sativus L. extracts were tested as potential natural antimicrobial agents. The antimicrobial activity of plants extracts was studied towards Gram-positive strains belonging to Streptococcus species related to the oral health. Fourier transform infrared spectroscopy (FT-IR) was applied in order to evaluate the changes in the cellular composition of target bacterial cells after their exposure to extracts of both plants.

Sample preparation. Plants were subjected to sequential extraction with petroleum ether, hexane, diethyl ether and methanol, as shown in figure 1.

All extracts were evaporated under reduced pressure and dried using rotary evaporator. Dried extracts were stored in labeled screw capped bottles at -20°C.

Screening of plants extracts against oral pathogens. Different concentrations of extracts were tested against six Streptococcus strains by the well diffusion assay (WDA).

Diethyl ether (DE) and methanol extracts (ME) of both plants induced the highest bactericidal effect against all tested bacteria, followed by petroleum ether (PE) and hexane extracts (HE) (Table 1).

Based on these results the methanolic extracts of both plants were selected for further investigation against three Streptococcus strains, namely Str. mutans LMG 14534, Str. oralis LMG 14532 and Str. sobrinus LMG 14641

FT-IR Analysis. Fourier transform infrared spectroscopy (FT-IR) was applied in the respective time period, where 99% of cell death was achieved, in order to evaluate the changes in the cellular composition of cells.

The FTIR spectrum of a biological system like bacteria is complex and consists of broad bands (Figure 3) that arise from the superposition of absorption peaks of various contributing macromolecules (proteins, lipids, polysaccharides, and nucleic acids) [3]. The FT-IR spectra of control cells were compared with the spectra of incubated with methanolic extracts in four different regions:

- Region I: 3000-2800 cm⁻¹ related to CH from fatty acids of the bacterial cell membrane
- Region II: 1800-1500 cm⁻¹ related to C=O and N–H from proteins
- Region III: 1500-1200 cm⁻¹ related to PO₃ from nucleic acids, as well as proteins and fatty acids
- Region IV: 1200-900 cm⁻¹ related to various absorptions of polysaccharides of the cell wall

Principal component analysis (PCA) of the second derivative transformed spectra was performed for each characteristic spectral region (Figure 4) [4].

PCA revealed structural changes among cells treated with the extracts or the control sample. The significant differences were observed in characteristic spectral regions correlated to the above cellular structural components.

The viability of Streptococcus cells was studied for 24 hours of incubation with 28 mg/mL (final concentration) methanolic plants extracts. 99% cell death of Str. sobrinus LMG 14641 was achieved in 4 hours, while for Str. mutans LMG 14534 and Str. oralis LMG 14532 within 6 hours for both plants extracts (Figure 2).

![Figure 2: Schematic plan of extraction procedure](image)

Table 1. Antimicrobial activity of Melissa officinalis L. and Crocus sativus L. extracts towards six Streptococcus strains as determined by the well diffusion assay

<table>
<thead>
<tr>
<th>Strain</th>
<th>PE (mg/mL)</th>
<th>HE (mg/mL)</th>
<th>DE (mg/mL)</th>
<th>ME (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Str. mutans LMG 14534</td>
<td>11</td>
<td>8</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Str. oralis LMG 14532</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Str. sobrinus LMG 14641</td>
<td>11</td>
<td>11</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Str. mutans LMG 14534</td>
<td>10</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Str. oralis LMG 14532</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>ND</td>
</tr>
<tr>
<td>Str. sobrinus LMG 14641</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>ND</td>
</tr>
</tbody>
</table>

Time killing studies of methanolic extracts against Str. mutans LMG 14534, Str. oralis LMG 14532 and Str. sobrinus LMG 14641. Antimicrobial activity was studied in vitro killing assays against target cells in the logarithmic phase of bacterial growth.

![Figure 3: Schematic plan of extraction procedure](image)

![Figure 4: PCA of second derivative transformed FT-IR spectra of Str. mutans LMG 14534 (A), Str. oralis LMG 14532 (B) and Str. sobrinus LMG 14641 (C) cells in the four characteristic spectral regions after their incubation with the control sample (MeOH 70%) (1); 28 mg/mL methanolic extract of Crocus sativus L. (2); 28 mg/mL methanolic extract of Melissa officinalis L. (3).

Conclusions. The results have shown that Melissa officinalis L. and Crocus sativus L. extracts consist of important secondary metabolites in the search for new effective antibacterial agents against the pathogens responsible for dental caries.

Diethyl ether and methanol extracts were more potent than petroleum ether and hexane extracts and were found to be prominently active.

FT-IR analysis along with chemometric analysis (PCA) of incubated Streptococcus cells revealed significant differences in all regions of spectra that correspond to cellular structural components.


This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.