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Abstract—Cell tracking enables data extraction from time-
lapse "cell movies" and promotes modeling biological processes 
at the single-cell level. We introduce a new fully automated 
computational strategy to track accurately cells across frames 
in time-lapse movies. Our method is based on a dynamic 
neighborhoods formation and matching approach, inspired by 
motion estimation algorithms for video compression. Moreover, 
it exploits "divide and conquer" opportunities to solve 
effectively the challenging cells tracking problem in 
overcrowded bacterial colonies. Using cell movies generated by 
different labs we demonstrate that the accuracy of the 
proposed method remains very high (exceeds 97%) even when 
analyzing large overcrowded microbial colonies.  

I. INTRODUCTION 

Data analysis of time lapse microscopy "cell movies" is 
an important tool allowing us to "zoom in" and observe 
dynamic biological processes at the single-cell level [1]. 
Recent studies have noted its importance for investigating 
how stochasticity (biological "noise") affects gene 
regulation, aspects of cell growth, cell proliferation etc. [2]. 
Mathematical models are important to form and test 
hypotheses for such phenomena [3]. Time-lapse movies can 
provide an abundance of time course data, extremely 
valuable for mathematical models' calibration and 
validation. However, the accurate, automated segmentation 
and tracking of individual cells, as they grow, move and 
divide in expanding bacterial colonies, remain major 
challenges [4]. Manual cell counting and tracking across 
frames is extremely laborious and error prone. Therefore, 
automation strategies are essential before we can add time-
lapse image analysis in the arsenal of high throughput 
methods for systems microbiology. 

Finding correspondences, or matches, between objects 
across successive image frames is a fundamental problem in 
computer vision [5] and video compression [6]. The problem 
becomes more complicated if an unknown transformation 
deforms the objects in different frames. This is often the case 
in time-lapse cell movies, since cells grow, proliferate, and 
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push each other! Establishing cells correspondence across 
frames can become very complicated, especially when the 
frame rate is low and cells move a lot across frames. In 
addition, limitations of image capturing and pre-processing 
(segmentation) introduce deformations in extracted cell 
curvatures, making cell matching even harder. 

Several software packages support the segmentation and 
tracking of cells in time lapse movies. Among them we 
mention TLM-Tracker [7], CellTracer [8], and Schnitzcells 
[9]. TLM-Tracker [7] employs two overlap based algorithms 
for tracking, namely overlapping boxes and overlapping 
regions, and allows users to choose among them based on 
the tracking problem complexity. CellTracer [8] uses 
neighboring cells information to compute likelihood scores 
for cells' identity between successive time steps and then 
applies an integer programming based method to generate 
cell correspondences and construct the colony's lineage tree. 
Schnitzcells [9] segments cells and tracks them in a frame-
to-frame manner using an energy function optimization 
method [10]. However, all the aforementioned tools suffer 
from several limitations, the most important being, (i) lack 
of tracking automation and, (ii) lack of accuracy in 
overcrowded regions. They often require intense human 
involvement to be able to track cells in frames with 
considerable cell movement and/or cells overpopulation. 

We introduce a new, fully automated approach 
overcoming the above limitations. In conjunction with our 
accurate cell segmentation algorithms that proceed cell 
tracking (to be presented elsewhere), it enables high 
throughput analysis and efficient estimation of single-cell 
properties in growing microbial communities, thus forming 
the basis for the development of a single-cell micro-
environment analytics platform. Besides their robustness, 
even in overcrowded micro-colonies, the proposed 
methodology offers several new capabilities: tracking of 
multiple micro-colonies in the field of view, lineage trees 
construction for each micro-colony, visualization on the tree 
of single-cell properties as they evolve in time (e.g. cell 
length, area, distance from the colony's centroid, GFP 
intensity, etc.), visualization of cell tracks across frames etc. 
To the best of our knowledge, our approach, which is 
inspired by motion estimation for video compression [6] 
[11], is the only one based on a dynamic ad hoc cell 
neighborhood formation and optimal matching following a 
divide and conquer strategy. 
The rest of the paper is organized as follows. In Section II 
we present an overview of the developed tracking strategy. 
In Section III we show that it is accurate and outperforms 
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Figure 1. Schematic overview of the proposed tracking methodology. (1) 
Cells correspondence in frame t (ft) and frame t+1 (ft+1), (2) Dilation of cell 
c and cell neighborhood definition, (3) Definition of the search region in ft, 
(4) Optimal matching, (5) Matching validity check. 
state-of-the art methods when colonies become 
overcrowded. Finally, in Section IV we summarize our 
findings and point to work in progress. 

II. CELL TRACKING APPROACH 

A. The general idea 
After cells segmentation is completed and in order to 

construct the lineage tree of a colony, we need to solve the 
cell tracking problem. Suppose that a colony in frame t (to be 
called ft from now on) has m cells and in the next frame t+1 
(ft+1) it has n cells. Cell correspondence relations (matches) 
can be: 1-to-1 (father-to-daughter; proliferation), 1-to-2 
(father-to-daughters; division), and even 1-to-N, N>2 (father 
to N cells/objects; e.g. over-segmentation error).  The general 
idea of our approach is first for every unmatched cell c in the 
current frame ft+1 to define an appropriate neighborhood of 
cells. Then using the covariance structure of this 
neighborhood to define a search region in the previous frame 
ft, and search inside it for the best matching of the cell 
neighborhood's image, in order to establish an optimal 
correspondence of cells in the neighborhood. Finally the 
algorithm validates the cells matching result before repeating 
the same procedure until all cells are matched (have been 
assigned a father). Our method is inspired by motion 
estimation [11], a basic operation for video compression [6]. 

B. Processing Stages 

The objective of the algorithm is to locate candidate fathers 
(cells in ft) for each daughter cell c of the current frame ft+1. 
In the sequel we focus w.l.o.g. on a cell c in ft+1 to describe 
how the algorithm works. For example in Fig. 1 Panel 1 right 
cell c=4.1 (in ft+1) should be matched to its father cell 4 (in ft). 
Stage 1. Cell neighborhood Definition: For each cell c in 
the current frame ft+1 we find unmatched cells with centroids 
inside a hypothetical disk centered at c with radius R equal to 
the average length of cells in ft+1. For example let's assume 

that for cell c=4.1 this disk includes all colored cells (in ft+1), 
see Fig. 1 Panel 1 right. The algorithm then dilates cell c by 
using a disk structuring element [12] of radius r equal to the 
average cell width (see Fig. 1 Panel 2 left). Then it identifies 
the cells "touched" by the dilated cell c. These cells are the 
first order neighbors of c (Fig. 1 Panel 2 right). Then, it may 
apply the same dilation procedure again to the first order 
neighbors in order to find the second order neighbors of c, 
and so on. This recursion is repeated L times, where L is an 
upper bound for the layers of neighbors considered, resulting 
in the definition of the neighborhood of c (called Nt+1). The 
value of L depends on the location of c and the size of the 
colony, and is larger for cells close to the colony's centroid.  

Stage 2. Search area definition (Fig. 1 Panel 3): In order 
to match efficiently the defined neighborhood Nt+1 with 
candidate neighborhoods within the previous frame ft, we 
should first define an appropriate search area St in ft. Initially 
we estimate the covariance of the pixels matrix of cells in 
Nt+1 and use it to compute the Mahalanobis distance [13] of 
each pixel of ft to the image of the centroid of Nt+1 into ft (see 
the cross in Fig. 1, Panel 3 left).  Then we find the k nearest 
neighbor (kNN) pixels [13] to the centroid image (green area 
Fig. 1, Panel 3 left). Finally we select uniformly a subset of l 
points, among the kNNs, to form the set of points, St, for the 
candidate centroids of the best neighborhood in ft i.e. the one 
matching optimally Nt+1. We remark that parameters l and k 
take values proportional to the size of the size of Nt+1 in 
pixels. As it is apparent the algorithm exploits the orientation 
of Nt+1 (covariance structure) to estimate the direction of its 
motion between consecutive frames and thus constrain the 
number of candidate matchings to be evaluated. 

Stage 3. Compute/Evaluate the candidate matchings: 
We now place the image of the centroid of Nt+1 to each point 
in St and create l score matrices, Sl, having |Nt+1| rows and m 
columns each. The (i,j)-th  element of  a score matrix is the 
overlap score of the ith cell in Nt+1 and the jth cell of ft defined 
as: 
              Sij= area൫c(i,t+1)∩c(j,t)൯ area൫c(i,t+1)∪c(j,t)൯ൗ . (1) 
Then for each Sl we also compute its overall overlap score  
                             

1

ij
1

max
t

l j
i N

O S
 

  , (2) 

i.e. the sum of maximum overlap scores of each cell in Nt+1 
(ith row) with a cell in ft (jth column). This maximum 
establishes a candidate correspondence between each cell i in 
Nt+1 (daughter cell) to one and only one cell j in ft (father 
cell). When considering all rows of the score matrix this 
leads to a candidate matching of  all cells of neighborhood  
Nt+1 to father cells in the previous frame ft.              

Stage 4. Determine the optimal matching (Fig.1 Panels 
4): We choose the candidate neighborhood in ft with the 
highest overall score Ol, to be called the Nt. Then we create a 
new matrix S෠ which has |Nt+1| rows and |Nt|  columns and 
its elements are defined as: 

                    S෠ij= ൜
Sij if cell	i corresponds to	cell	j			
0	otherwise                                

.           (3) 

The nominal case for this matrix is to contain columns with 
one or two non-zero elements, because each father cell 
should correspond to at most two daughter cells. 



  

 
Figure 2. Lineage Tree Visualization of cell area evolving with time as 
cells grow and divide. Triangular (circular) nodes depict time points 
(resolution 5 min) in the life of an external i.e. on micro-colony’s boundary 
(internal) cell. 

Stage 5. Validate the optimal matching (Fig.1 Panels 
5-6): Considering the aforementioned expected nominal 
behavior, we assess the validity of the optimal matching by 
estimating the total overlap score for each father cell j in Nt: 
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If for every cell j=1,2,...	|Nt|, the score Oj is greater than a 
threshold T and less than 1 (maximum overlap) the optimal 
matching is accepted; all cells in Nt+1 and Nt are considered 
matched and removed from the cells-to-match and fathers’ 
lists respectively. Otherwise, the optimal matching is 
rejected and all cells in Nt+1 are marked as "problematic". If 
the same cell has been marked repeatedly (e.g. 3 times) it is 
removed from the cells-to-match list and placed in an 
exclusion list. This scheme allows us to continue the 
processing while also separating difficult cells-to-match 
cases, usually cells that were divided or moved radically 
between consecutive frames. The algorithm will revisit these 
"problematic" cells and try to find their fathers again at the 
end of the process, when the problem has become simpler, 
i.e. when the large majority of cells have been matched. 

We repeat this process until each cell in ft+1 is either 
matched with a cell in ft or removed from the cells-to-match 
list. At this point we try again to match the excluded 
"problematic" cells by following the same five-stage 
process. If this fails to match all remaining cells, we lower 
the threshold T, reset the excluded cells list and repeat the 
same process. Finally, when all cells in two consecutive 
frames are matched, or T is down to 0.5, the algorithm 
proceeds with the next pair of frames until all pairs have 
been processed. Any unmatched cells at this point are most 
probably over-segmentation artifacts. 

C. Construction of the Lineage and Division Trees  
As the algorithm tracks cells across frames it 

simultaneously creates a lineage tree, keeping record of the 
attributes of each individual cell (see Fig. 2). When a 
tracking step is completed, the algorithm searches the tree to 
find the father of each matched cell and inserts a new node 
under it. At the end, the algorithm returns as many lineage 
trees as the number of cells in the initial frame. Given these 
lineage trees, our method generates recursively another 

useful tree structure, the so called divisions’ tree. Division 
trees record only cell division events and each node depicts 
an individual cell's "life attribute" (e.g. the average cell 
length). 
 

III. RESULTS AND DISCUSSION 

A. Evaluation 

Two cell movies created by different labs were used in 
the comparative evaluation. The first movie starts with four 
S. Typhimurium cells which grow to become four discrete 
micro-colonies with ~200 cells each [3]. The second movie 
shows an E. Coli micro-colony of ~50 cells [9].  The 
tracking ground truth for both movies was determined by 
experts. In order to evaluate the proposed method, we 
compared its performance to that of Schnitzcells [9]. since 
this is the most recent software package and gives 
satisfactory tracking results for both movies. However, 
Schnitzcells failed to segment the first movie, so to evaluate 
the tracking methods fairly we provided as input to 
Schnitzcells the manually refined results of our 
segmentation algorithms (not discussed in this paper).  

Evaluation was performed following two methods.  First, 
we evaluated the two algorithms using a frame-based 
approach, similar to the one proposed in [14], based on the 
estimated Tracker Detection Rate (TDR) defined as: 

TDR=TP/GT,         (5) 
where True Positives (TP) is the number of frames with no 
tracking errors (i.e. cell-to-cell correspondences that were 
undetected or non-existing) and ground truth (GT) is the 
total number of frames in the movie. As we can see in 
Figure 3(a), the proposed method exhibits very high TDR 
for both datasets, over 98.7%. Moreover, it outperforms 
Schnitzcells even when using their own movie. As we 
observe in Fig. 3(b), Schnitzcells made errors mainly in the 
last frames where the micro-colonies become overcrowded 
and tracking becomes very difficult. So, to investigate the 
overpopulation effects we focused in the last few frames 
(79-86) and evaluated the two algorithms using also a tracks 
based approach, a more strict variation of the one presented  
in [14][15]. Here we consider as ground truth (GT) tracks 
with trajectory and lifespan extending to, or beginning after, 
the 79th frame. Specifically, we estimated the Error Rate 
(ER) that is defined as: 
                              ER=(FAT+TDF)/GT , (6) 
where False Alarm Track (FAT) is the number of non-
existing but detected tracks (a track is considered non-
existing when it differs at least in one time point from the 
ground truth), and Track Detection Failure (TDF) is the 
number of existing but undetected tracks. Again, in both 
movies the proposed method exhibited an extremely low 
ER, under 1%, and an advantage higher than 3.3% relatively 
to the best currently available cell tracking approach. 
Moreover, our method exhibits a very low ER even in highly 
overcrowded micro-colonies. It seems that the divide and 
conquer strategy we follow is better than global optimization 



  

 
Figure 3. Evaluation. (a) Top: Frame based TDR of the methods under 
evaluation in E. coli and S. Typhimurium cell movies. Bottom: Error Rate 
for the last frames 79-85 with severe overcrowding. (b) Error distribution of 
Schnitzcells (red) and proposed method (blue) in the S. Typhi. movie. More 
than 50% of the errors occur in the last two frame pair matchings. 

methods in such situations. As cell numbers increase 
exponentially, it is more probable for global optimization 
methods to get trapped to local minima. 

TABLE I.  EVALUATION ON OVERCROWDED MICRO-COLONY 

 TP FAT TDF ACC ER 

Proposed 911 21 21 97.7% 4.5% 

Moreover, in order to check if the proposed method 
remains robust when the overcrowded colonies become very 
large we assessed its performance (Table I) considering  two 
consecutive frames  of a salmonella cell movie (frames 75 
and 76, GT=932 cell matches). We observe that our method 
achieves very high Accuracy (over 97%) and very low ER 
(under 5%). Due to lack of space we provide in [16] the two 
successive image frames used (5 min. apart).  We mark cells 
on the same track using the same color. Gray cells are those 
that were not matched correctly. We remark that most errors 
occur close to the large colony’s boundaries, which indicates 
that our approach is indeed robust to severe over-population 
occurring at the colony's central region. Cells on the 
boundary exhibit usually higher mobility, so it is expected 
for some tracking errors to occur in the periphery, especially 
if the frame rate is small. 

B. Tracks Visualization   
Figure 4 illustrates how our method can constitute a 

useful visual analytics tool to microbiologists. Here, we 
visualize with pseudo-color single-cell tracks allowing us to 
assess how each cell's distance from the colony's centroid 
varies with time during its lifespan. We observe that more 
distant cells exhibit, on average, higher mobility (higher 
track "slopes") than cells near the centroid. This is expected 
and conforms to physical rules since boundary cells can 
move unconstrained compared to internal cells. The scatter 
plot quantifies the correlation of cell’s velocity to cell’s 
maximum distance from the colony's centroid. 

IV. CONCLUSIONS AND FUTURE WORK 
We presented a new divide-and-conquer cell tracking 

strategy inspired by block matching motion estimation for 
video compression. It can be used to track bacteria 
automatically and quantify at the single-cell level how their 
morphological and expression characteristics evolve with 
time. The algorithm is shown to outperform state of the art 
methods in overcrowded colonies. Moreover the single-cell  

 
Figure 4. Each colored line corresponds to a cell track depicting the cell's 
distance from the colony’s centroid as a function of time (time-series). Max. 
distance from colony centroid and cell velocity are correlated (scatterplot, 
Spearman Correlation ≈ 0.54). 

attributes extracted from analyzed time-lapse movies can be 
visualized over lineage trees or cell track trajectories which 
can help microbiologists formulate new hypothesis for 
further experimental or modeling work. 

We currently work on combining cell segmentation and 
cell tracking algorithms into a closed loop system in order to 
improve their accuracy and robustness. The structure of the 
lineage tree can help us identify and correct segmentation 
errors (e.g. due to over-segmentation) which in turn can 
improve cell tracking. This is especially useful since there is 
no automatic way to assess cell segmentation quality, while 
there are several ways to assess tracking quality. 
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