The eigenvalue problem for a bianisotropic cavity

Eftychia Argyropoulou, Andreas D .loannidis

National and Kapodistrian University of Athens, Greece Linnaeus University, Sweden

PIERS 2013, Stockholm, Sweden

Let Ω be filled with a bianisotropic material.

Let $\boldsymbol{\Omega}$ be filled with a bianisotropic material.

Bianisotropic materials: optically active, meaning they can twist the polarization of light in either refraction or transmission. This is a consequence of the fact that electric and magnetic fields are coupled.

Let $\boldsymbol{\Omega}$ be filled with a bianisotropic material.

Bianisotropic materials: optically active, meaning they can twist the polarization of light in either refraction or transmission. This is a consequence of the fact that electric and magnetic fields are coupled.

We consider the most general case of a linear medium where the constitutive relations are

$$D = \varepsilon E + \xi H, \tag{1}$$
$$B = \zeta E + \mu H. \tag{2}$$

Let $\boldsymbol{\Omega}$ be filled with a bianisotropic material.

Bianisotropic materials: optically active, meaning they can twist the polarization of light in either refraction or transmission. This is a consequence of the fact that electric and magnetic fields are coupled.

We consider the most general case of a linear medium where the constitutive relations are

$$D = \varepsilon E + \xi H, \tag{1}$$
$$B = \zeta E + \mu H. \tag{2}$$

 ε , ξ , ζ and μ : 3 × 3 matrices, having as entries complex functions of the position vector r and the angular frequency ω .

In the six vector notation, the problem is stated as follows:

$$i\omega \begin{bmatrix} \varepsilon & \xi \\ \zeta & \mu \end{bmatrix} e = \begin{bmatrix} 0 & \text{curl} \\ -\text{curl} & 0 \end{bmatrix} e, \qquad (3)$$

and can be considered as a generalized eigenvalue problem, where ω acts as the eigenvalue and $e := (E, H)^T$ as the eigenvector.

In the six vector notation, the problem is stated as follows:

$$i\omega \begin{bmatrix} \boldsymbol{\varepsilon} & \boldsymbol{\xi} \\ \boldsymbol{\zeta} & \boldsymbol{\mu} \end{bmatrix} \mathbf{e} = \begin{bmatrix} \mathbf{0} & \operatorname{curl} \\ -\operatorname{curl} & \mathbf{0} \end{bmatrix} \mathbf{e},$$
 (3)

and can be considered as a generalized eigenvalue problem, where ω acts as the eigenvalue and $e := (E, H)^T$ as the eigenvector.

<u>Remark</u>: The matrix in the left hand side depends on the eigenvalue ω .

The formal eigenvalue problem under consideration is written as

$$\Omega e = \omega M(\omega)e.$$
 (*)

The formal eigenvalue problem under consideration is written as

$$Qe = \omega M(\omega)e.$$
 (*)

where

$$\mathsf{M}=\mathsf{M}(\omega):=egin{bmatrix} oldsymbol{arepsilon}&oldsymbol{\xi}\ oldsymbol{\zeta}&oldsymbol{\mu}\end{bmatrix},$$

is the material matrix and

The formal eigenvalue problem under consideration is written as

$$Qe = \omega M(\omega)e.$$
 (*)

where

$$\mathsf{M} = \mathsf{M}(\omega) := egin{bmatrix} arepsilon & m{\xi} \ m{\zeta} & m{\mu} \end{bmatrix},$$

is the material matrix and

$$Q := \mathsf{i} \begin{bmatrix} 0 & \mathsf{curl} \\ -\mathsf{curl} & 0 \end{bmatrix}$$

is the (formally self-adjoint) Maxwell operator.

We are now going to formulate (\star) in a Hilbert space setting. We focus in the case of a cavity, and more precisely,

Assumption 1

 Ω is a bounded Lipschitz domain in \mathbb{R}^3 .

We are now going to formulate (\star) in a Hilbert space setting. We focus in the case of a cavity, and more precisely,

Assumption 1

 Ω is a bounded Lipschitz domain in \mathbb{R}^3 .

We further assume that the "wall" $\Gamma := \partial \Omega$ is perfect conducting,

Assumption 2

 $\hat{n} \times E = \mathbf{0} \text{ on } \Gamma.$

The domain of $\ensuremath{\mathbb{Q}}$ is

$$D(\mathfrak{Q}) := H_0(\operatorname{curl}; \Omega) \times H(\operatorname{curl}; \Omega).$$

and $\mathfrak{X} := L^2(\Omega; \mathbb{C}^3) \times L^2(\Omega; \mathbb{C}^2).$

The domain of Q is

$$D(\mathfrak{Q}) := H_0(\operatorname{curl}; \Omega) imes H(\operatorname{curl}; \Omega).$$

and $\mathfrak{X} := L^2(\Omega; \mathbb{C}^3) \times L^2(\Omega; \mathbb{C}^2).$

Proposition 1

 $\ensuremath{\mathbb{Q}}$ is a selfadjoint operator.

The domain of Q is

$$D(\mathfrak{Q}) := H_0(\operatorname{curl}; \Omega) \times H(\operatorname{curl}; \Omega).$$

and $\mathfrak{X} := L^2(\Omega; \mathbb{C}^3) \times L^2(\Omega; \mathbb{C}^2).$

Proposition 1

 $\ensuremath{\mathbb{Q}}$ is a selfadjoint operator.

Assumption 3

The entries of ε , ξ , ζ and μ are $L^{\infty}(\Omega)$ functions (with respect to r).

The domain of Q is

$$D(\mathfrak{Q}) := H_0(\operatorname{curl}; \Omega) \times H(\operatorname{curl}; \Omega).$$

and $\mathfrak{X} := L^2(\Omega; \mathbb{C}^3) \times L^2(\Omega; \mathbb{C}^2).$

Proposition 1

 Ω is a selfadjoint operator.

Assumption 3

The entries of ε , ξ , ζ and μ are $L^{\infty}(\Omega)$ functions (with respect to r).

Corollary 1 M defines a bounded multiplication operator on \mathfrak{X} . The domain of $\ensuremath{\mathbb{Q}}$ is

$$D(\mathfrak{Q}) := H_0(\operatorname{curl}; \Omega) \times H(\operatorname{curl}; \Omega).$$

and $\mathfrak{X} := L^2(\Omega; \mathbb{C}^3) \times L^2(\Omega; \mathbb{C}^2).$

Proposition 1

 $\ensuremath{\mathbb{Q}}$ is a selfadjoint operator.

Assumption 3

The entries of ε , ξ , ζ and μ are $L^{\infty}(\Omega)$ functions (with respect to r).

Corollary 1

M defines a bounded multiplication operator on \mathfrak{X} .

Proposition 2 $H^1(\Omega) \hookrightarrow L^2(\Omega)$ with a compact injection. The spectrum of Ω is discrete and consists of a sequence of eigenvalues with no accumulation point.

The spectrum of Ω is discrete and consists of a sequence of eigenvalues with no accumulation point.

Actually, the non-zero eigenvalues of $\mathcal{Q},$ appear as a bilateral sequence $(\omega_n^0)_{n\in\mathbb{Z}^*}.$

The spectrum of Ω is discrete and consists of a sequence of eigenvalues with no accumulation point.

Actually, the non-zero eigenvalues of Q, appear as a bilateral sequence $(\omega_n^0)_{n\in\mathbb{Z}^*}$.

 $(\omega_n^0)_{n\in\mathbb{N}^*}$ is an increasing sequence of non-negative numbers, thus diverging at infinity, and $\omega_{-n}^0 = -\omega_n^0$.

The spectrum of $\ensuremath{\Omega}$ is discrete and consists of a sequence of eigenvalues with no accumulation point.

Actually, the non-zero eigenvalues of Q, appear as a bilateral sequence $(\omega_n^0)_{n\in\mathbb{Z}^*}$.

 $(\omega_n^0)_{n \in \mathbb{N}^*}$ is an increasing sequence of non-negative numbers, thus diverging at infinity, and $\omega_{-n}^0 = -\omega_n^0$.

Each ω_n^0 , $n \neq 0$, is counted as many times as its multiplicity.

 $\omega_0^0 := 0$ is always an eigenvalue but needs a special treatment, since the kernel ker Ω is infinite dimensional.

To each ω_n^0 , n = 1, 2, ..., corresponds one normalized eigenvector $e_n := (E_n, H_n)^T$, which is obtained by solving an eigenvalue problem for the negative vector Laplacian.

To each ω_n^0 , n = 1, 2, ..., corresponds one normalized eigenvector $e_n := (E_n, H_n)^T$, which is obtained by solving an eigenvalue problem for the negative vector Laplacian.

The eigenvector for $\omega_{-n}^0 = -\omega_n^0$ is then given by $e_{-n}^0 = (E_n, -H_n)^T$.

To each ω_n^0 , n = 1, 2, ..., corresponds one normalized eigenvector $e_n := (E_n, H_n)^T$, which is obtained by solving an eigenvalue problem for the negative vector Laplacian.

The eigenvector for $\omega_{-n}^0 = -\omega_n^0$ is then given by $e_{-n}^0 = (E_n, -H_n)^T$.

<u>Remark</u>: Eigenvectors corresponding to different eigenvalues are orthogonal, so $(e_n^0)_{n \in \mathbb{Z}^*}$ can be chosen as an orthonormal sequence.

Let now
$$\mathcal{H} := [..., e_{-n}, ..., e_{-2}, e_{-1}, e_1, e_2, ..., e_n, ...].$$

The restriction of Ω on \mathcal{H} is denoted by $\Omega_{\mathcal{H}}$. $\Omega_{\mathcal{H}}$ is both the restriction and the part of Ω on \mathcal{H} . Actually, it is the spectrum of $\Omega_{\mathcal{H}}$ that is discrete and one can strictly prove that.

Let now
$$\mathcal{H} := [..., e_{-n}, ..., e_{-2}, e_{-1}, e_1, e_2, ..., e_n, ...].$$

The restriction of Ω on \mathcal{H} is denoted by $\Omega_{\mathcal{H}}$. $\Omega_{\mathcal{H}}$ is both the restriction and the part of Ω on \mathcal{H} . Actually, it is the spectrum of $\Omega_{\mathcal{H}}$ that is discrete and one can strictly prove that.

Proposition 3

 $\mathfrak{Q}_{\mathfrak{H}}$ is a self-adjoint operator in \mathfrak{H} and has compact inverse $\mathfrak{Q}_{\mathfrak{H}}^{-1}$. The sequence of eigenvalues of $\mathfrak{Q}_{\mathfrak{H}}$ is $(\omega_n^0)_{n \in \mathbb{Z}^*}$ and the sequence of the corresponding eigenvectors is $(e_n^0)_{n \in \mathbb{Z}^*}$. The latter is an orthonormal basis for \mathfrak{H} .

Then (*) is restricted in \mathcal{H} and is written $e = \omega \Omega_{\mathcal{H}}^{-1} M(\omega)e$.

Then (*) is restricted in \mathcal{H} and is written $e = \omega \Omega_{\mathcal{H}}^{-1} M(\omega) e$.

Let $\mathcal{F}(\omega) := \omega \mathfrak{Q}_{\mathcal{H}}^{-1} \mathsf{M}(\omega)$; we then conclude to the eigenvalue problem for a linear pencil

$$(I - \mathcal{F}(\omega))\mathbf{e} = 0$$
 (4)

Then (*) is restricted in \mathcal{H} and is written $e = \omega \Omega_{\mathcal{H}}^{-1} M(\omega) e$.

Let $\mathcal{F}(\omega) := \omega \mathfrak{Q}_{\mathcal{H}}^{-1} \mathsf{M}(\omega)$; we then conclude to the eigenvalue problem for a linear pencil

$$(I - \mathcal{F}(\omega))\mathbf{e} = 0$$
 (4)

 $\mathfrak{F}(\omega)$: is a compact operator in \mathfrak{X} .

Consider an open and connected set $D \subset \mathbb{C}$ and an operator-valued function $F : D \to \mathcal{B}(X)$.

Consider an open and connected set $D \subset \mathbb{C}$ and an operator-valued function $F : D \to \mathcal{B}(X)$.

Definition 2

An ω is called eigenvalue of the pencil $I - F(\cdot)$ if the equation $F(\omega)x = x$ has non trivial solutions. A non trivial solution of $F(\omega)x = x \ \omega \in S$, is called an eigenvector corresponding to ω and the linear span of the eigenvectors is called the eigenspace corresponding to ω . We have the following important result

Proposition 4 (Analytic Fredholm Alternative)

Let F be analytic and $F(\omega) \in \mathcal{K}(X)$ for all $\omega \in D$. Then either

a) I – F(
$$\omega$$
) is not injective for every $\omega\in D$,

b) $(I - F(\omega))^{-1} \in \mathcal{B}(X)$ for all $\omega \in D \setminus S$, where $S \subset \mathbb{C}$ is a countable set without any limit point.

<u>Remark</u>: In case (b), the operator-valued function $(I - F(\cdot))^{-1}$ is analytic in $D \setminus S$, meromorphic in D and the residues at the poles are finite rank operators.

We now focus in the special case $F(\omega) := AB(\omega)$, $\omega \in D$, where A is compact self-adjoint and $B(\omega) \in \mathcal{B}(X)$. We treat the equation in an abstract sense in an arbitrary separable Hilbert space X.

We now focus in the special case $F(\omega) := AB(\omega)$, $\omega \in D$, where A is compact self-adjoint and $B(\omega) \in \mathcal{B}(X)$. We treat the equation in an abstract sense in an arbitrary separable Hilbert space X.

The spectral theorem ensures that A is represented as

$$Ax = \sum_{n} \lambda_n \left\langle x, e_n^0 \right\rangle e_n^0, \tag{5}$$

where (λ_n) is the sequence of (non-zero real) eigenvalues of A, in an absolutely descending order and counted as many times as their multiplicity, and (e_n^0) is the sequence of corresponding eigenvectors.

We now focus in the special case $F(\omega) := AB(\omega)$, $\omega \in D$, where A is compact self-adjoint and $B(\omega) \in \mathcal{B}(X)$. We treat the equation in an abstract sense in an arbitrary separable Hilbert space X.

The spectral theorem ensures that A is represented as

$$Ax = \sum_{n} \lambda_n \left\langle x, e_n^0 \right\rangle e_n^0, \tag{5}$$

where (λ_n) is the sequence of (non-zero real) eigenvalues of A, in an absolutely descending order and counted as many times as their multiplicity, and (e_n^0) is the sequence of corresponding eigenvectors.

The latter is an orthonormal basis for $\overline{R(A)}$. Here we assume that A has infinitely many eigenvalues and thus $\lambda_n \to 0$.

$$\sum_{n} \lambda_n \left\langle B(\omega) x, e_n^0 \right\rangle e_n^0 = \sum_{n} \left\langle x, e_n^0 \right\rangle e_n^0,$$

or, equivalently, as

$$\sum_{n} \lambda_n \left\langle B(\omega) x, e_n^0 \right\rangle e_n^0 = \sum_{n} \left\langle x, e_n^0 \right\rangle e_n^0,$$

or, equivalently, as

$$\sum_{n} \lambda_n \left\langle x, \left(B(\omega) - \frac{1}{\lambda_n} I \right)^* e_n^0 \right\rangle e_n^0 = 0.$$
 (6)

$$\sum_{n} \lambda_n \left\langle B(\omega) x, e_n^0 \right\rangle e_n^0 = \sum_{n} \left\langle x, e_n^0 \right\rangle e_n^0,$$

or, equivalently, as

$$\sum_{n} \lambda_n \left\langle x, \left(B(\omega) - \frac{1}{\lambda_n} I \right)^* e_n^0 \right\rangle e_n^0 = 0.$$
 (6)

14 / 21

Let $f_n = f_n(\omega) := \left(B(\omega) - \frac{1}{\lambda_n}I\right)^* e_n^0 = \left(B(\omega)^* - \frac{1}{\lambda_n}I\right)e_n^0$. The LHS of (6) is a multiplier operator

$$S = S(\omega) := \sum_{n} \lambda_n \langle \cdot, f_n \rangle e_n^0,$$

corresponding to sequences $(\lambda_n) \subset \mathbb{R}$, $(f_n) \subset X$, $(e_n) \subset X$, where (λ_n) is bounded, (f_n) is a sequence and (e_n) is an orthonormal basis.

Proposition 5

The following are equivalent:

- a) S is injective.
- b) (f_n) is a complete sequence, i.e., $\overline{[f_1, f_2, ..., f_n, ...]} = X$.
- c) $\langle x, f_n \rangle = 0$ for every n, implies x = 0.

Proposition 5

The following are equivalent:

a) S is injective.

b) (f_n) is a complete sequence, i.e., $\overline{[f_1, f_2, ..., f_n, ...]} = X$.

c) $\langle x, f_n \rangle = 0$ for every n, implies x = 0.

Corollary 3

 ω is an eigenvalue of $I - F(\cdot)$ if and only if the sequence $(f_n(\omega))$ is not complete. The corresponding eigenspace is ker $S(\omega)$. Moreover, $x \in \ker S(\omega)$ if and only if $\langle x, f_n(\omega) \rangle = 0$ for every n and, consequently,

ker
$$\mathcal{S}(\omega) = [f_1(\omega), f_2(\omega), ..., f_n(\omega), ...]^{\perp}$$
 .

Let us now consider the inverse problem, that is to reconstruct the operator $B(\cdot)$ from the knowledge of the eigenelements of the problem $F(\omega)x = x$. Actually, let us assume that ω is an eigenvalue with corresponding eigenspace ker $S(\omega)$. Then

$$\ker S(\omega)^{T} = \overline{[f_1(\omega), f_2(\omega), ..., f_n(\omega), ...]},$$

and assume that there is a way to calculate the sequence $(f_n(\omega))$.

Let us now consider the inverse problem, that is to reconstruct the operator $B(\cdot)$ from the knowledge of the eigenelements of the problem $F(\omega)x = x$. Actually, let us assume that ω is an eigenvalue with corresponding eigenspace ker $S(\omega)$. Then

$$\ker S(\omega)^T = \overline{[f_1(\omega), f_2(\omega), ..., f_n(\omega), ...]},$$

and assume that there is a way to calculate the sequence $(f_n(\omega))$.

The straightforward relation

$$\langle B(\omega)e_n^0, e_m^0 \rangle = \langle e_n^0, f_m(\omega) \rangle + \frac{\delta_{nm}}{\lambda_n},$$
 (7)

 $(\delta_{nm} \text{ stands for the Kronecker delta})$ allows the recovery of the operator $B(\omega)$.

$$(I - \mathcal{F}(\omega))\mathbf{e} = \mathbf{0} \tag{8}$$

where $\mathfrak{F}(\omega) := \omega \mathfrak{Q}_{\mathfrak{H}}^{-1} \mathsf{M}(\omega)$.

$$(I - \mathcal{F}(\omega))\mathbf{e} = \mathbf{0} \tag{8}$$

where $\mathcal{F}(\omega) := \omega \mathcal{Q}_{\mathcal{H}}^{-1} \mathsf{M}(\omega)$.

Assumption 4

M is an analytic function $D \ni \omega \mapsto M(\omega) \in \mathcal{B}(\mathcal{X})$, where D is a domain in the complex plane, such that $0 \in D$.

$$(I - \mathcal{F}(\omega))\mathbf{e} = \mathbf{0} \tag{8}$$

where $\mathcal{F}(\omega) := \omega \mathcal{Q}_{\mathcal{H}}^{-1} \mathsf{M}(\omega)$.

Assumption 4

M is an analytic function $D \ni \omega \mapsto M(\omega) \in \mathcal{B}(\mathcal{X})$, where D is a domain in the complex plane, such that $0 \in D$.

Consequently, \mathfrak{F} defines an analytic function $D \ni \omega \mapsto \mathfrak{F}(\omega) \in \mathcal{K}(\mathfrak{X})$.

$$(I - \mathcal{F}(\omega))\mathbf{e} = \mathbf{0} \tag{8}$$

where $\mathcal{F}(\omega) := \omega \mathcal{Q}_{\mathcal{H}}^{-1} \mathsf{M}(\omega)$.

Assumption 4

M is an analytic function $D \ni \omega \mapsto M(\omega) \in \mathcal{B}(\mathcal{X})$, where D is a domain in the complex plane, such that $0 \in D$.

Consequently, \mathfrak{F} defines an analytic function $D \ni \omega \mapsto \mathfrak{F}(\omega) \in \mathcal{K}(\mathfrak{X})$.

Moreover, for $\omega_0 = 0$, $\mathfrak{F}(\omega_0) = 0$ and thus $I - \mathfrak{F}(\omega_0)$ is invertible.

Proposition 6

The pencil $I - \mathcal{F}(\cdot)$ has countably many eigenvalues with finite dimensional corresponding eigenspaces. They form a sequence (ω_n) of non-zero complex numbers, diverging at infinity.

Proposition 6

The pencil $I - \mathcal{F}(\cdot)$ has countably many eigenvalues with finite dimensional corresponding eigenspaces. They form a sequence (ω_n) of non-zero complex numbers, diverging at infinity.

 ω_n : an eigenfrequency of the cavity The above result reveals that such frequencies exist and are countably many.

Proposition 6

The pencil $I - \mathcal{F}(\cdot)$ has countably many eigenvalues with finite dimensional corresponding eigenspaces. They form a sequence (ω_n) of non-zero complex numbers, diverging at infinity.

 ω_n : an eigenfrequency of the cavity The above result reveals that such frequencies exist and are countably many.

The eigenvectors corresponding to an eigenfrequency ω_n are called the corresponding modes.

Eigenfrequencies and modes of the bianisotropic cavity

Let now $\mathcal{A} := \mathfrak{Q}_{\mathcal{H}}^{-1}$, $\mathsf{B}(\omega) := \omega \mathsf{M}(\omega)$. The eigenvalues of \mathcal{A} are calculated as follows

$$\lambda_{n}:=rac{1}{\omega_{n}^{0}}$$
 , $n=\pm1,\pm2,...,$

and the sequence of the corresponding eigenvectors is again (e_n) .

Eigenfrequencies and modes of the bianisotropic cavity

Let now $\mathcal{A} := \mathfrak{Q}_{\mathcal{H}}^{-1}$, $\mathsf{B}(\omega) := \omega \mathsf{M}(\omega)$. The eigenvalues of \mathcal{A} are calculated as follows

$$\lambda_{n}:=rac{1}{\omega_{n}^{0}}$$
 , $n=\pm1,\pm2,...,$

and the sequence of the corresponding eigenvectors is again (e_n) .

Consequently, one has the expansion

$$\mathcal{A}\mathbf{x} = \sum_{n=-\infty}^{\infty} \lambda_n \left\langle \mathbf{x}, \mathbf{e}_n^0 \right\rangle \mathbf{e}_n^0.$$

Eigenfrequencies and modes of the bianisotropic cavity

Let now $\mathcal{A} := \mathfrak{Q}_{\mathcal{H}}^{-1}$, $\mathsf{B}(\omega) := \omega \mathsf{M}(\omega)$. The eigenvalues of \mathcal{A} are calculated as follows

$$\lambda_{n}:=rac{1}{\omega_{n}^{0}}$$
 , $n=\pm1,\pm2,...,$

and the sequence of the corresponding eigenvectors is again (e_n) .

Consequently, one has the expansion

$$\mathcal{A}\mathbf{x} = \sum_{n=-\infty}^{\infty} \lambda_n \left\langle \mathbf{x}, \mathbf{e}_n^0 \right\rangle \mathbf{e}_n^0.$$

Now $\mathfrak{F}(\omega) = \mathcal{AB}(\omega)$ and it is reformulated with the aim of the multiplier operator

$$\mathbb{S} \mathsf{x} = \mathbb{S}(\omega) \mathsf{x} := \sum_{n=-\infty}^{\infty} \lambda_n \langle \mathsf{x}, \mathsf{f}_n \rangle \, \mathsf{e}_n^0,$$

 \sim

where

$$f_n = f_n(\omega) := \left(\mathsf{B}(\omega) - \frac{1}{\lambda_n}I\right)^* \mathsf{e}_n^0 = \left(\bar{\omega}\mathsf{M}(\omega)^* - \omega_n^0I\right)\mathsf{e}_n^0 , \ n = \pm 1, \pm 2, \dots$$

Proposition 7

 $\omega \neq 0$ is an eigenfrequency of the cavity if and only if $S(\omega)$ is not an injective operator, if and only if $(f_n(\omega)_{n\in\mathbb{Z}^*}$ is not complete. The corresponding subspace of modes is finite dimensional and is given by

$$\ker \mathbb{S}(\omega) = [,...,\mathsf{f}_{-n}(\omega),...,\mathsf{f}_{-2}(\omega),\mathsf{f}_{-1}(\omega),\mathsf{f}_{1}(\omega),\mathsf{f}_{2}(\omega),...,\mathsf{f}_{n}(\omega),...]^{\perp}$$

Moreover, the following equality applies

$$\langle \mathsf{M}(\omega)\mathsf{e}_n^0,\mathsf{e}_m^0\rangle = \omega_n^0 \langle e_n^0, f_m(\omega) \rangle + \delta_{nm},$$

from which the material matrix can be recovered.

Thank you!