The eigenvalue problem for a bianisotropic cavity

Eftychia Argyropoulou, Andreas D. .loannidis

National and Kapodistrian University of Athens, Greece Linnaeus University, Sweden

PIERS 2013, Stockholm, Sweden

Let Ω be filled with a bianisotropic material.

Let Ω be filled with a bianisotropic material.
Bianisotropic materials: optically active, meaning they can twist the polarization of light in either refraction or transmission. This is a consequence of the fact that electric and magnetic fields are coupled.

Let Ω be filled with a bianisotropic material.
Bianisotropic materials: optically active, meaning they can twist the polarization of light in either refraction or transmission. This is a consequence of the fact that electric and magnetic fields are coupled.

We consider the most general case of a linear medium where the constitutive relations are

$$
\begin{align*}
& D=\varepsilon E+\boldsymbol{\xi} H \tag{1}\\
& B=\boldsymbol{\zeta} E+\boldsymbol{\mu} H . \tag{2}
\end{align*}
$$

Let Ω be filled with a bianisotropic material.
Bianisotropic materials: optically active, meaning they can twist the polarization of light in either refraction or transmission. This is a consequence of the fact that electric and magnetic fields are coupled.

We consider the most general case of a linear medium where the constitutive relations are

$$
\begin{align*}
& D=\varepsilon E+\boldsymbol{\xi} H \tag{1}\\
& B=\zeta E+\mu H . \tag{2}
\end{align*}
$$

$\varepsilon, \boldsymbol{\xi}, \boldsymbol{\zeta}$ and $\boldsymbol{\mu}: 3 \times 3$ matrices, having as entries complex functions of the position vector r and the angular frequency ω.

In the six vector notation, the problem is stated as follows:

$$
\mathrm{i} \omega\left[\begin{array}{cc}
\boldsymbol{\varepsilon} & \boldsymbol{\xi} \tag{3}\\
\boldsymbol{\zeta} & \boldsymbol{\mu}
\end{array}\right] \mathrm{e}=\left[\begin{array}{cc}
0 & \text { curl } \\
- \text { curl } & 0
\end{array}\right] \mathrm{e},
$$

and can be considered as a generalized eigenvalue problem, where ω acts as the eigenvalue and $\mathrm{e}:=(E, H)^{T}$ as the eigenvector.

In the six vector notation, the problem is stated as follows:

$$
\mathrm{i} \omega\left[\begin{array}{cc}
\varepsilon & \boldsymbol{\xi} \tag{3}\\
\boldsymbol{\zeta} & \boldsymbol{\mu}
\end{array}\right] \mathrm{e}=\left[\begin{array}{cc}
0 & \text { curl } \\
- \text { curl } & 0
\end{array}\right] \mathrm{e},
$$

and can be considered as a generalized eigenvalue problem, where ω acts as the eigenvalue and $\mathrm{e}:=(E, H)^{T}$ as the eigenvector.

Remark: The matrix in the left hand side depends on the eigenvalue ω.

The formal eigenvalue problem under consideration is written as

$$
\mathrm{Qe}=\omega \mathrm{M}(\omega) \mathrm{e}
$$

The formal eigenvalue problem under consideration is written as

$$
\mathrm{Qe}=\omega \mathrm{M}(\omega) \mathrm{e}
$$

where

$$
\mathrm{M}=\mathrm{M}(\omega):=\left[\begin{array}{ll}
\boldsymbol{\varepsilon} & \boldsymbol{\xi} \\
\boldsymbol{\zeta} & \boldsymbol{\mu}
\end{array}\right]
$$

is the material matrix and

The formal eigenvalue problem under consideration is written as

$$
Q \mathrm{e}=\omega \mathrm{M}(\omega) \mathrm{e}
$$

where

$$
\mathrm{M}=\mathrm{M}(\omega):=\left[\begin{array}{ll}
\boldsymbol{\varepsilon} & \boldsymbol{\xi} \\
\boldsymbol{\zeta} & \boldsymbol{\mu}
\end{array}\right]
$$

is the material matrix and

$$
\mathcal{Q}:=\mathrm{i}\left[\begin{array}{cc}
0 & \text { curl } \\
- \text { curl } & 0
\end{array}\right]
$$

is the (formally self-adjoint) Maxwell operator.

We are now going to formulate (\star) in a Hilbert space setting. We focus in the case of a cavity, and more precisely,

Assumption 1
Ω is a bounded Lipschitz domain in \mathbb{R}^{3}.

We are now going to formulate (\star) in a Hilbert space setting. We focus in the case of a cavity, and more precisely,

Assumption 1
Ω is a bounded Lipschitz domain in \mathbb{R}^{3}.

We further assume that the "wall" $\Gamma:=\partial \Omega$ is perfect conducting, Assumption 2 $\hat{n} \times E=0$ on 「.

The domain of Q is

$$
D(Q):=H_{0}(\text { curl } ; \Omega) \times H(\text { curl } ; \Omega) .
$$

and $X:=L^{2}\left(\Omega ; \mathbb{C}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{C}^{2}\right)$.

The domain of Q is

$$
D(Q):=H_{0}(\text { curl } ; \Omega) \times H(\text { curl } ; \Omega) .
$$

and $X:=L^{2}\left(\Omega ; \mathbb{C}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{C}^{2}\right)$.
Proposition 1
Q is a selfadjoint operator.

The domain of Q is

$$
D(Q):=H_{0}(\text { curl } ; \Omega) \times H(\text { curl } ; \Omega) .
$$

and $X:=L^{2}\left(\Omega ; \mathbb{C}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{C}^{2}\right)$.
Proposition 1
Q is a selfadjoint operator.

Assumption 3
The entries of $\boldsymbol{\varepsilon}, \boldsymbol{\xi}, \boldsymbol{\zeta}$ and $\boldsymbol{\mu}$ are $L^{\infty}(\Omega)$ functions (with respect to r).

The domain of Q is

$$
D(Q):=H_{0}(\text { curl } ; \Omega) \times H(\text { curl } ; \Omega) .
$$

and $X:=L^{2}\left(\Omega ; \mathbb{C}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{C}^{2}\right)$.
Proposition 1
Q is a selfadjoint operator.

Assumption 3
The entries of $\varepsilon, \boldsymbol{\xi}, \boldsymbol{\zeta}$ and $\boldsymbol{\mu}$ are $L^{\infty}(\Omega)$ functions (with respect to r).

Corollary 1
M defines a bounded multiplication operator on X.

The domain of Q is

$$
D(Q):=H_{0}(\text { curl } ; \Omega) \times H(\operatorname{curl} ; \Omega) .
$$

and $X:=L^{2}\left(\Omega ; \mathbb{C}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{C}^{2}\right)$.
Proposition 1
Q is a selfadjoint operator.

Assumption 3
The entries of $\boldsymbol{\varepsilon}, \boldsymbol{\xi}, \boldsymbol{\zeta}$ and $\boldsymbol{\mu}$ are $L^{\infty}(\Omega)$ functions (with respect to r).

Corollary 1

M defines a bounded multiplication operator on X.

Proposition 2
$H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ with a compact injection.

The spectrum of Q is discrete and consists of a sequence of eigenvalues with no accumulation point.

The spectrum of Q is discrete and consists of a sequence of eigenvalues with no accumulation point.

Actually, the non-zero eigenvalues of \mathcal{Q}, appear as a bilateral sequence $\left(\omega_{n}^{0}\right)_{n \in \mathbb{Z}^{*}}$.

The spectrum of Q is discrete and consists of a sequence of eigenvalues with no accumulation point.

Actually, the non-zero eigenvalues of \mathcal{Q}, appear as a bilateral sequence $\left(\omega_{n}^{0}\right)_{n \in \mathbb{Z}^{*}}$.
$\left(\omega_{n}^{0}\right)_{n \in \mathbb{N}^{*}}$ is an increasing sequence of non-negative numbers, thus diverging at infinity, and $\omega_{-n}^{0}=-\omega_{n}^{0}$.

The spectrum of Q is discrete and consists of a sequence of eigenvalues with no accumulation point.

Actually, the non-zero eigenvalues of Q, appear as a bilateral sequence $\left(\omega_{n}^{0}\right)_{n \in \mathbb{Z}^{*}}$.
$\left(\omega_{n}^{0}\right)_{n \in \mathbb{N}^{*}}$ is an increasing sequence of non-negative numbers, thus diverging at infinity, and $\omega_{-n}^{0}=-\omega_{n}^{0}$.

Each $\omega_{n}^{0}, n \neq 0$, is counted as many times as its multiplicity.
$\omega_{0}^{0}:=0$ is always an eigenvalue but needs a special treatment, since the kernel $\operatorname{ker} Q$ is infinite dimensional.

Let us now focus on the corresponding eigenvectors.

Let us now focus on the corresponding eigenvectors.
To each $\omega_{n}^{0}, n=1,2, \ldots$, corresponds one normalized eigenvector $\mathrm{e}_{n}:=\left(E_{n}, H_{n}\right)^{T}$, which is obtained by solving an eigenvalue problem for the negative vector Laplacian.

Let us now focus on the corresponding eigenvectors.
To each $\omega_{n}^{0}, n=1,2, \ldots$, corresponds one normalized eigenvector $\mathrm{e}_{n}:=\left(E_{n}, H_{n}\right)^{T}$, which is obtained by solving an eigenvalue problem for the negative vector Laplacian.

The eigenvector for $\omega_{-n}^{0}=-\omega_{n}^{0}$ is then given by $e_{-n}^{0}=\left(E_{n},-H_{n}\right)^{T}$.

Let us now focus on the corresponding eigenvectors.
To each $\omega_{n}^{0}, n=1,2, \ldots$, corresponds one normalized eigenvector $\mathrm{e}_{n}:=\left(E_{n}, H_{n}\right)^{T}$, which is obtained by solving an eigenvalue problem for the negative vector Laplacian.

The eigenvector for $\omega_{-n}^{0}=-\omega_{n}^{0}$ is then given by $\mathrm{e}_{-n}^{0}=\left(E_{n},-H_{n}\right)^{T}$.
Remark: Eigenvectors corresponding to different eigenvalues are orthogonal, so $\left(e_{n}^{0}\right)_{n \in \mathbb{Z}^{*}}$ can be chosen as an orthonormal sequence.

Let now $\mathcal{H}:=\overline{\left[\ldots, \mathrm{e}_{-n}, \ldots, \mathrm{e}_{-2}, \mathrm{e}_{-1}, \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}, \ldots\right]}$.
The restriction of Q on \mathcal{H} is denoted by $Q_{\mathcal{H}}$. $Q_{\mathcal{H}}$ is both the restriction and the part of Q on \mathcal{H}. Actually, it is the spectrum of $Q_{\mathcal{H}}$ that is discrete and one can strictly prove that.

Let now $\mathcal{H}:=\overline{\left[\ldots, \mathrm{e}_{-n}, \ldots, \mathrm{e}_{-2}, \mathrm{e}_{-1}, \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}, \ldots\right]}$.
The restriction of \mathcal{Q} on \mathcal{H} is denoted by $Q_{\mathcal{H}}$. $Q_{\mathcal{H}}$ is both the restriction and the part of \mathcal{Q} on \mathcal{H}. Actually, it is the spectrum of $Q_{\mathcal{H}}$ that is discrete and one can strictly prove that.

Proposition 3

$Q_{\mathcal{H}}$ is a self-adjoint operator in \mathcal{H} and has compact inverse $Q_{\mathcal{H}}^{-1}$. The sequence of eigenvalues of $Q_{\mathcal{H}}$ is $\left(\omega_{n}^{0}\right)_{n \in \mathbb{Z}^{*}}$ and the sequence of the corresponding eigenvectors is $\left(e_{n}^{0}\right)_{n \in \mathbb{Z}^{*}}$. The latter is an orthonormal basis for \mathcal{H}.

Then (\star) is restricted in \mathcal{H} and is written $e=\omega \mathcal{Q}_{\mathcal{H}}^{-1} M(\omega) \mathrm{e}$.

Then (\star) is restricted in \mathcal{H} and is written $e=\omega \mathcal{Q}_{\mathcal{H}}^{-1} M(\omega) \mathrm{e}$.

Let $\mathcal{F}(\omega):=\omega Q_{\mathcal{H}}^{-1} M(\omega)$; we then conclude to the eigenvalue problem for a linear pencil

$$
\begin{equation*}
(I-\mathcal{F}(\omega)) \mathrm{e}=0 \tag{4}
\end{equation*}
$$

Then (\star) is restricted in \mathcal{H} and is written $e=\omega \mathcal{Q}_{\mathcal{H}}^{-1} M(\omega) \mathrm{e}$.

Let $\mathcal{F}(\omega):=\omega Q_{\mathcal{H}}^{-1} M(\omega)$; we then conclude to the eigenvalue problem for a linear pencil

$$
\begin{equation*}
(I-\mathcal{F}(\omega)) \mathrm{e}=0 \tag{4}
\end{equation*}
$$

$\mathcal{F}(\omega)$: is a compact operator in X.

Consider an open and connected set $D \subset \mathbb{C}$ and an operator-valued function $F: D \rightarrow \mathcal{B}(X)$.

Consider an open and connected set $D \subset \mathbb{C}$ and an operator-valued function $F: D \rightarrow \mathcal{B}(X)$.

Definition 2

An ω is called eigenvalue of the pencil $I-F(\cdot)$ if the equation $F(\omega) x=x$ has non trivial solutions. A non trivial solution of $F(\omega) x=x \omega \in S$, is called an eigenvector corresponding to ω and the linear span of the eigenvectors is called the eigenspace corresponding to ω.

We have the following important result
Proposition 4 (Analytic Fredholm Alternative)
Let F be analytic and $F(\omega) \in \mathcal{K}(X)$ for all $\omega \in D$. Then either
a) I $-F(\omega)$ is not injective for every $\omega \in D$,
or
b) $(I-F(\omega))^{-1} \in \mathcal{B}(X)$ for all $\omega \in D \backslash S$, where $S \subset \mathbb{C}$ is a countable set without any limit point.

Remark: In case (b), the operator-valued function $(I-F(\cdot))^{-1}$ is analytic in $D \backslash S$, meromorphic in D and the residues at the poles are finite rank operators.

We now focus in the special case $F(\omega):=A B(\omega), \omega \in D$, where A is compact self-adjoint and $B(\omega) \in \mathcal{B}(X)$. We treat the equation in an abstract sense in an arbitrary seperable Hilbert space X.

We now focus in the special case $F(\omega):=A B(\omega), \omega \in D$, where A is compact self-adjoint and $B(\omega) \in \mathcal{B}(X)$. We treat the equation in an abstract sense in an arbitrary seperable Hilbert space X.

The spectral theorem ensures that A is represented as

$$
\begin{equation*}
A x=\sum_{n} \lambda_{n}\left\langle x, e_{n}^{0}\right\rangle e_{n}^{0} \tag{5}
\end{equation*}
$$

where $\left(\lambda_{n}\right)$ is the sequence of (non-zero real) eigenvalues of A, in an absolutely descending order and counted as many times as their multiplicity, and $\left(e_{n}^{0}\right)$ is the sequence of corresponding eigenvectors.

We now focus in the special case $F(\omega):=A B(\omega), \omega \in D$, where A is compact self-adjoint and $B(\omega) \in \mathcal{B}(X)$. We treat the equation in an abstract sense in an arbitrary seperable Hilbert space X.

The spectral theorem ensures that A is represented as

$$
\begin{equation*}
A x=\sum_{n} \lambda_{n}\left\langle x, e_{n}^{0}\right\rangle e_{n}^{0} \tag{5}
\end{equation*}
$$

where $\left(\lambda_{n}\right)$ is the sequence of (non-zero real) eigenvalues of A, in an absolutely descending order and counted as many times as their multiplicity, and $\left(e_{n}^{0}\right)$ is the sequence of corresponding eigenvectors.

The latter is an orthonormal basis for $\overline{R(A)}$. Here we assume that A has infinitely many eigenvalues and thus $\lambda_{n} \rightarrow 0$.

The problem $F(\omega) x=x$, i.e., $A B(\omega) x=x$, since $x \in R(A)$, can now be written as

The problem $F(\omega) x=x$, i.e., $A B(\omega) x=x$, since $x \in R(A)$, can now be written as

$$
\sum_{n} \lambda_{n}\left\langle B(\omega) x, e_{n}^{0}\right\rangle e_{n}^{0}=\sum_{n}\left\langle x, e_{n}^{0}\right\rangle e_{n}^{0}
$$

or, equivalently, as

The problem $F(\omega) x=x$, i.e., $A B(\omega) x=x$, since $x \in R(A)$, can now be written as

$$
\sum_{n} \lambda_{n}\left\langle B(\omega) x, e_{n}^{0}\right\rangle e_{n}^{0}=\sum_{n}\left\langle x, e_{n}^{0}\right\rangle e_{n}^{0}
$$

or, equivalently, as

$$
\begin{equation*}
\sum_{n} \lambda_{n}\left\langle x,\left(B(\omega)-\frac{1}{\lambda_{n}} I\right)^{*} e_{n}^{0}\right\rangle e_{n}^{0}=0 \tag{6}
\end{equation*}
$$

The problem $F(\omega) x=x$, i.e., $A B(\omega) x=x$, since $x \in R(A)$, can now be written as

$$
\sum_{n} \lambda_{n}\left\langle B(\omega) x, e_{n}^{0}\right\rangle e_{n}^{0}=\sum_{n}\left\langle x, e_{n}^{0}\right\rangle e_{n}^{0},
$$

or, equivalently, as

$$
\begin{equation*}
\sum_{n} \lambda_{n}\left\langle x,\left(B(\omega)-\frac{1}{\lambda_{n}} I\right)^{*} e_{n}^{0}\right\rangle e_{n}^{0}=0 \tag{6}
\end{equation*}
$$

Let $f_{n}=f_{n}(\omega):=\left(B(\omega)-\frac{1}{\lambda_{n}} l\right)^{*} e_{n}^{0}=\left(B(\omega)^{*}-\frac{1}{\lambda_{n}} I\right) e_{n}^{0}$. The LHS of (6) is a multiplier operator

$$
S=S(\omega):=\sum_{n} \lambda_{n}\left\langle\cdot, f_{n}\right\rangle e_{n}^{0}
$$

corresponding to sequences $\left(\lambda_{n}\right) \subset \mathbb{R},\left(f_{n}\right) \subset X,\left(e_{n}\right) \subset X$, where $\left(\lambda_{n}\right)$ is bounded, $\left(f_{n}\right)$ is a sequence and $\left(e_{n}\right)$ is an orthonormal basis.

Proposition 5

The following are equivalent:
a) S is injective.
b) $\left(f_{n}\right)$ is a complete sequence, i.e., $\overline{\left[f_{1}, f_{2}, \ldots, f_{n}, \ldots\right]}=X$.
c) $\left\langle x, f_{n}\right\rangle=0$ for every n, implies $x=0$.

Proposition 5

The following are equivalent:
a) S is injective.
b) $\left(f_{n}\right)$ is a complete sequence, i.e., $\overline{\left[f_{1}, f_{2}, \ldots, f_{n}, \ldots\right]}=X$.
c) $\left\langle x, f_{n}\right\rangle=0$ for every n, implies $x=0$.

Corollary 3

ω is an eigenvalue of $I-F(\cdot)$ if and only if the sequence $\left(f_{n}(\omega)\right)$ is not complete. The corresponding eigenspace is ker $S(\omega)$. Moreover, $x \in \operatorname{ker} S(\omega)$ if and only if $\left\langle x, f_{n}(\omega)\right\rangle=0$ for every n and, consequently,

$$
\operatorname{ker} S(\omega)=\left[f_{1}(\omega), f_{2}(\omega), \ldots, f_{n}(\omega), \ldots\right]^{\perp}
$$

Let us now consider the inverse problem, that is to reconstruct the operator $B(\cdot)$ from the knowledge of the eigenelements of the problem $F(\omega) x=x$. Actually, let us assume that ω is an eigenvalue with corresponding eigenspace ker $S(\omega)$. Then

$$
\operatorname{ker} S(\omega)^{T}=\overline{\left[f_{1}(\omega), f_{2}(\omega), \ldots, f_{n}(\omega), \ldots\right]}
$$

and assume that there is a way to calculate the sequence $\left(f_{n}(\omega)\right)$.

Let us now consider the inverse problem, that is to reconstruct the operator $B(\cdot)$ from the knowledge of the eigenelements of the problem $F(\omega) x=x$. Actually, let us assume that ω is an eigenvalue with corresponding eigenspace ker $S(\omega)$. Then

$$
\operatorname{ker} S(\omega)^{T}=\overline{\left[f_{1}(\omega), f_{2}(\omega), \ldots, f_{n}(\omega), \ldots\right]}
$$

and assume that there is a way to calculate the sequence $\left(f_{n}(\omega)\right)$.
The straightforward relation

$$
\begin{equation*}
\left\langle B(\omega) e_{n}^{0}, e_{m}^{0}\right\rangle=\left\langle e_{n}^{0}, f_{m}(\omega)\right\rangle+\frac{\delta_{n m}}{\lambda_{n}}, \tag{7}
\end{equation*}
$$

($\delta_{n m}$ stands for the Kronecker delta) allows the recovery of the operator $B(\omega)$.

We now return to problem

$$
\begin{equation*}
(I-\mathcal{F}(\omega)) \mathrm{e}=0 \tag{8}
\end{equation*}
$$

where $\mathcal{F}(\omega):=\omega Q_{\mathcal{H}}^{-1} M(\omega)$.

We now return to problem

$$
\begin{equation*}
(I-\mathcal{F}(\omega)) \mathrm{e}=0 \tag{8}
\end{equation*}
$$

where $\mathcal{F}(\omega):=\omega \mathcal{Q}_{\mathcal{H}}^{-1} M(\omega)$.
Assumption 4
M is an analytic function $D \ni \omega \mapsto \mathrm{M}(\omega) \in \mathcal{B}(X)$, where D is a domain in the complex plane, such that $0 \in D$.

We now return to problem

$$
\begin{equation*}
(I-\mathcal{F}(\omega)) \mathrm{e}=0 \tag{8}
\end{equation*}
$$

where $\mathcal{F}(\omega):=\omega Q_{\mathscr{H}}^{-1} \mathrm{M}(\omega)$.
Assumption 4
M is an analytic function $D \ni \omega \mapsto \mathrm{M}(\omega) \in \mathcal{B}(X)$, where D is a domain in the complex plane, such that $0 \in D$.

Consequently, \mathcal{F} defines an analytic function $D \ni \omega \mapsto \mathcal{F}(\omega) \in \mathcal{K}(X)$.

We now return to problem

$$
\begin{equation*}
(I-\mathcal{F}(\omega)) \mathrm{e}=0 \tag{8}
\end{equation*}
$$

where $\mathcal{F}(\omega):=\omega Q_{\mathscr{H}}^{-1} \mathrm{M}(\omega)$.
Assumption 4
M is an analytic function $D \ni \omega \mapsto \mathrm{M}(\omega) \in \mathcal{B}(X)$, where D is a domain in the complex plane, such that $0 \in D$.

Consequently, \mathcal{F} defines an analytic function $D \ni \omega \mapsto \mathcal{F}(\omega) \in \mathcal{K}(X)$.
Moreover, for $\omega_{0}=0, \mathcal{F}\left(\omega_{0}\right)=0$ and thus $I-\mathcal{F}\left(\omega_{0}\right)$ is invertible.

The Analytic Fredholm Alternative then gives

The Analytic Fredholm Alternative then gives
Proposition 6
The pencil I- $\mathcal{F}(\cdot)$ has countably many eigenvalues with finite dimensional corresponding eigenspaces. They form a sequence $\left(\omega_{n}\right)$ of non-zero complex numbers, diverging at infinity.

The Analytic Fredholm Alternative then gives
Proposition 6
The pencil I- $\mathcal{F}(\cdot)$ has countably many eigenvalues with finite dimensional corresponding eigenspaces. They form a sequence $\left(\omega_{n}\right)$ of non-zero complex numbers, diverging at infinity.
ω_{n} : an eigenfrequency of the cavity
The above result reveals that such frequencies exist and are countably many.

The Analytic Fredholm Alternative then gives
Proposition 6
The pencil I $-\mathcal{F}(\cdot)$ has countably many eigenvalues with finite dimensional corresponding eigenspaces. They form a sequence $\left(\omega_{n}\right)$ of non-zero complex numbers, diverging at infinity.
ω_{n} : an eigenfrequency of the cavity
The above result reveals that such frequencies exist and are countably many.

The eigenvectors corresponding to an eigenfrequency ω_{n} are called the corresponding modes.

Eigenfrequencies and modes of the bianisotropic cavity
Let now $\mathcal{A}:=Q_{\mathcal{H}}^{-1}, \mathrm{~B}(\omega):=\omega \mathrm{M}(\omega)$.
The eigenvalues of \mathcal{A} are calculated as follows

$$
\lambda_{n}:=\frac{1}{\omega_{n}^{0}}, n= \pm 1, \pm 2, \ldots
$$

and the sequence of the corresponding eigenvectors is again $\left(e_{n}\right)$.

Eigenfrequencies and modes of the bianisotropic cavity
Let now $\mathcal{A}:=Q_{\mathcal{H}}^{-1}, \mathrm{~B}(\omega):=\omega \mathrm{M}(\omega)$.
The eigenvalues of \mathcal{A} are calculated as follows

$$
\lambda_{n}:=\frac{1}{\omega_{n}^{0}}, n= \pm 1, \pm 2, \ldots
$$

and the sequence of the corresponding eigenvectors is again $\left(e_{n}\right)$.
Consequently, one has the expansion

$$
\mathcal{A} \mathrm{x}=\sum_{n=-\infty}^{\infty} \lambda_{n}\left\langle\mathrm{x}, \mathrm{e}_{n}^{0}\right\rangle \mathrm{e}_{n}^{0}
$$

Let now $\mathcal{A}:=Q_{\mathcal{H}}^{-1}, \mathrm{~B}(\omega):=\omega \mathrm{M}(\omega)$.
The eigenvalues of \mathcal{A} are calculated as follows

$$
\lambda_{n}:=\frac{1}{\omega_{n}^{0}}, n= \pm 1, \pm 2, \ldots
$$

and the sequence of the corresponding eigenvectors is again $\left(e_{n}\right)$.
Consequently, one has the expansion

$$
\mathcal{A} \mathrm{x}=\sum_{n=-\infty}^{\infty} \lambda_{n}\left\langle\mathrm{x}, \mathrm{e}_{n}^{0}\right\rangle \mathrm{e}_{n}^{0}
$$

Now $\mathcal{F}(\omega)=\mathcal{A B}(\omega)$ and it is reformulated with the aim of the multiplier operator

$$
\mathcal{S} x=\mathcal{S}(\omega) x:=\sum_{n=-\infty}^{\infty} \lambda_{n}\left\langle x, f_{n}\right\rangle e_{n}^{0}
$$

where

$$
\mathrm{f}_{n}=\mathrm{f}_{n}(\omega):=\left(\mathrm{B}(\omega)-\frac{1}{\lambda_{n}} l\right)^{*} \mathrm{e}_{n}^{0}=\left(\bar{\omega} \mathrm{M}(\omega)^{*}-\omega_{n}^{0} l\right) \mathrm{e}_{n}^{0}, n= \pm 1, \pm 2, \ldots
$$

Proposition 7

$\omega \neq 0$ is an eigenfrequency of the cavity if and only if $\mathcal{S}(\omega)$ is not an injective operator, if and only if $\left(\mathrm{f}_{n}(\omega)_{n \in \mathbb{Z}^{*}}\right.$ is not complete. The corresponding subspace of modes is finite dimensional and is given by

$$
\operatorname{ker} \mathcal{S}(\omega)=\left[, \ldots, \mathrm{f}_{-n}(\omega), \ldots, \mathrm{f}_{-2}(\omega), \mathrm{f}_{-1}(\omega), \mathrm{f}_{1}(\omega), \mathrm{f}_{2}(\omega), \ldots, \mathrm{f}_{n}(\omega), \ldots\right]^{\perp}
$$

Moreover, the following equality applies

$$
\left\langle\mathrm{M}(\omega) \mathrm{e}_{n}^{0}, \mathrm{e}_{m}^{0}\right\rangle=\omega_{n}^{0}\left\langle e_{n}^{0}, f_{m}(\omega)\right\rangle+\delta_{n m},
$$

from which the material matrix can be recovered.

Thank you!

