Homogenization of Maxwell's equations in bianisotropic materials

Eftychia Argyropoulou,A.loannidis,I.Stratis

Hellenic-Swedish Workshop, Athens, Greece

Let Ω be a domain in \mathbb{R}^{3} and $\partial \Omega$ Lipschitz. We consider the typical Maxwell problem with equations

$$
\begin{align*}
\frac{\partial}{\partial t} D(x, t) & =\operatorname{curl} H(x, t)+F(x, t) \tag{1}\\
\frac{\partial}{\partial t} B(x, t) & =-\operatorname{curl} E(x, t)+G(x, t) \tag{2}
\end{align*}
$$

Let Ω be a domain in \mathbb{R}^{3} and $\partial \Omega$ Lipschitz. We consider the typical Maxwell problem with equations

$$
\begin{align*}
\frac{\partial}{\partial t} D(x, t) & =\operatorname{curl} H(x, t)+F(x, t) \tag{1}\\
\frac{\partial}{\partial t} B(x, t) & =-\operatorname{curl} E(x, t)+G(x, t) \tag{2}
\end{align*}
$$

with $E(x, 0)=E^{0}(x)$ and $H(x, 0)=H^{1}(x)$ and the boundary condition $\hat{\eta}(x) \times E(x, t)=0$. The problem is supplemented with the constitutive relations

Let Ω be a domain in \mathbb{R}^{3} and $\partial \Omega$ Lipschitz. We consider the typical Maxwell problem with equations

$$
\begin{align*}
\frac{\partial}{\partial t} D(x, t) & =\operatorname{curl} H(x, t)+F(x, t) \tag{1}\\
\frac{\partial}{\partial t} B(x, t) & =-\operatorname{curl} E(x, t)+G(x, t) \tag{2}
\end{align*}
$$

with $E(x, 0)=E^{0}(x)$ and $H(x, 0)=H^{1}(x)$ and the boundary condition $\hat{\eta}(x) \times E(x, t)=0$. The problem is supplemented with the constitutive relations

$$
\begin{align*}
& D(x, t)=\eta E+\xi H+\eta_{d} \star E+\xi_{d} \star H \tag{3}\\
& B(x, t)=\zeta E+\mu H+\zeta_{d} \star E+\mu_{d} \star H \tag{4}
\end{align*}
$$

where η, ξ, ζ and μ are 3×3 matrices. Likely $\eta_{d}, \xi_{d}, \zeta_{d}$ and μ_{d} are also 3×3 matrices.

$$
\begin{aligned}
& \text { Let } u:=(E, H)^{T}, J:=(F, G)^{T}, d:=(D, B)^{T}, \\
& u^{0}(x):=\left(E^{0}(x), H^{0}(x)\right)^{T},
\end{aligned}
$$

$$
A(x):=\left(\begin{array}{ll}
\eta & \xi \\
\zeta & \mu
\end{array}\right), G_{d}(x, t):=\left(\begin{array}{cc}
\eta_{d} & \xi_{d} \\
\zeta_{d} & \mu_{d}
\end{array}\right)
$$

$$
\text { and } M:=\left(\begin{array}{cc}
0 & \text { curl } \\
- \text { curl } & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Let } u:=(E, H)^{T}, J:=(F, G)^{T}, d:=(D, B)^{T}, \\
& u^{0}(x):=\left(E^{0}(x), H^{0}(x)\right)^{T},
\end{aligned}
$$

$$
A(x):=\left(\begin{array}{ll}
\eta & \xi \\
\zeta & \mu
\end{array}\right), G_{d}(x, t):=\left(\begin{array}{cc}
\eta_{d} & \xi_{d} \\
\zeta_{d} & \mu_{d}
\end{array}\right)
$$

and $M:=\left(\begin{array}{cc}0 & \text { curl } \\ - \text { curl } & 0\end{array}\right)$ then the system becomes $(P 1)$

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left(A(x) u(x, t)+\left(G_{d} \star u\right)(x, t)\right)=M u(x, t)+J(x, t) \tag{5}\\
u(x, 0)=u^{0}(x) \\
\hat{\eta} \times u(x, t)=0 .
\end{array}\right.
$$

Purpose: The study of the E / H field which is the solution of problem (1) when the domain Ω is filled with a material whose periodic microstructure is described by the matrices A, G_{d}.

Purpose: The study of the E / H field which is the solution of problem (1) when the domain Ω is filled with a material whose periodic microstructure is described by the matrices A, G_{d}.

We assume that all the fields which are functions of the spatial variable x and the time variable t are considered to be functions of the time variable t in a suitable Banach space.

Purpose: The study of the E / H field which is the solution of problem (1) when the domain Ω is filled with a material whose periodic microstructure is described by the matrices A, G_{d}.

We assume that all the fields which are functions of the spatial variable x and the time variable t are considered to be functions of the time variable t in a suitable Banach space.

We also assume that matrix A is symmetric and coercive i.e

$$
x^{T} A(x) x \geq \beta|x|^{2}, \text { for any } x \in \mathbb{R}^{6} .
$$

Theorem 1
Let $A \in L^{\infty}\left(\Omega ; \mathbb{R}^{36}\right)$ and $G_{d} \in W^{2,1}\left(0, T ; L^{\infty}\left(\Omega ; \mathbb{R}^{36}\right)\right)$ be 6×6 matrices, $u^{0} \in X_{M}:=H_{0}($ curl,$\Omega) \times H(\operatorname{curl}, \Omega)$ and $J \in W^{1,1}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right)$ be 6 -vectors then the problem ($P 1$) has unique solution

$$
u \in W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right) \cap L^{\infty}\left(0, T ; X_{m}\right)
$$

which satisfies the estimate

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(0, T ; X_{M}\right)}+\left\|\frac{d u}{d t}\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right)} \leq c\left(\|J\|_{W^{1,1}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right)}+\left\|u^{0}\right\|_{X_{M}}\right) \tag{6}
\end{equation*}
$$

where c is a positive constant which depends on $\|A\|_{L^{\infty}}$ and $\left\|G_{d}\right\|_{L^{\infty}}$.

The proof of the previous theorem which is one of the main results of this work is based upon the method "Faedo-Galerkin". We search for solution of problem $P 1$ in subsets of X_{M} of finete dimension with dense union in X_{M}.

The proof of the previous theorem which is one of the main results of this work is based upon the method "Faedo-Galerkin". We search for solution of problem $P 1$ in subsets of X_{M} of finete dimension with dense union in X_{M}.

We obtain the existence of the solution using the following lemma:

The proof of the previous theorem which is one of the main results of this work is based upon the method "Faedo-Galerkin". We search for solution of problem $P 1$ in subsets of X_{M} of finete dimension with dense union in X_{M}.

We obtain the existence of the solution using the following lemma:

Lemma 2

If A, R are $m \times m$ matrices with matrix A symmetric and coercive, $K \in W^{r, 1}\left(0, T ; \mathbb{R}^{m^{2}}\right)$ and $B \in W^{r, 1}\left(0, T ; \mathbb{R}^{m}\right), r=1,2$ then the integral equation Voltera

$$
A U(t)+\int_{0}^{t}(K(t-s)-R) U(s) d s=B(t), \quad t \in[0, T]
$$

has a unique solution $U(t) \in W^{r, 1}\left(0, T, \mathbb{R}^{m}\right)$.

The proof of the previous theorem which is one of the main results of this work is based upon the method "Faedo-Galerkin". We search for solution of problem $P 1$ in subsets of X_{M} of finete dimension with dense union in X_{M}.

We obtain the existence of the solution using the following lemma:

Lemma 2

If A, R are $m \times m$ matrices with matrix A symmetric and coercive, $K \in W^{r, 1}\left(0, T ; \mathbb{R}^{m^{2}}\right)$ and $B \in W^{r, 1}\left(0, T ; \mathbb{R}^{m}\right), r=1,2$ then the integral equation Voltera

$$
A U(t)+\int_{0}^{t}(K(t-s)-R) U(s) d s=B(t), \quad t \in[0, T]
$$

has a unique solution $U(t) \in W^{r, 1}\left(0, T, \mathbb{R}^{m}\right)$.
In order to proof the lemma we need the Fredholm theory.

Step 1: Existence of approximate solution u_{m} of u.

Step 1: Existence of approximate solution u_{m} of u. We start with a sequence $e_{1}, e_{2}, \ldots, e_{m}, \ldots$ of of linear independent components of $X_{M}: \cup \bar{V}_{m}=X_{M}$ where $V_{m}=<e_{1}, e_{2}, \cdots>, m \in \mathbb{N}^{*}$. Looking for a solution of the form

$$
u_{m}(t)=\sum_{k=1}^{m} h_{k}^{m}(t) e_{k}
$$

we have to use the previous lemma.

Step 1: Existence of approximate solution u_{m} of u.
We start with a sequence $e_{1}, e_{2}, \ldots, e_{m}, \ldots$ of of linear independent components of $X_{M}: \cup \bar{V}_{m}=X_{M}$ where $V_{m}=<e_{1}, e_{2}, \cdots>, m \in \mathbb{N}^{*}$. Looking for a solution of the form

$$
u_{m}(t)=\sum_{k=1}^{m} h_{k}^{m}(t) e_{k}
$$

we have to use the previous lemma. Step 2: Estimates

Step 1: Existence of approximate solution u_{m} of u. We start with a sequence $e_{1}, e_{2}, \ldots, e_{m}, \ldots$ of of linear independent components of $X_{M}: \cup \bar{V}_{m}=X_{M}$ where $V_{m}=<e_{1}, e_{2}, \cdots>, m \in \mathbb{N}^{*}$. Looking for a solution of the form

$$
u_{m}(t)=\sum_{k=1}^{m} h_{k}^{m}(t) e_{k}
$$

we have to use the previous lemma.
Step 2: Estimates Fisrtly, we prove the following equality
$\int_{\Omega} \frac{d}{d t}\left(A(x) u_{m}(t)\right) u_{m}(t) d x+\int_{\Omega} \frac{d}{d t}\left(G_{d}(t) \star u_{m}(t)\right) u_{m}(t)=\int_{\Omega} J(t) u_{m}(t) d x$
which results from the main equation of problem $P 1$ and the relations H curl $E-E$ curl $H=\operatorname{div}(E \times H), \hat{\eta}(E \times H)=H(\hat{\eta} \times E)$ and the perfect boudary condition $\hat{\eta} \times E$.

Step 3: We prove the equality

$$
\begin{align*}
\left(A(x) u_{m}(t), u_{m}(t)\right) & =-2 \int_{0}^{t}\left(\dot{G}(s) \star u_{m}(s), u_{m}(s)\right) d s \\
& -2 \int_{0}^{t}\left(G_{d}(0) u_{m}(s), u_{m}(s)\right) d s \\
& +\left(A(x) u_{m}(0), u_{m}(0)\right)+2 \int_{0}^{t}\left(J(s), u_{m}(s)\right) d s . \tag{8}
\end{align*}
$$

We obtain the above relation by using some other equlities and after some suitable integrations.

Step 4: We estimate each term of the equation (8) and by using the coercivity of A, the Cauchy-Schwartz inequality, the theory of norms and the relation $2 a b \leq \epsilon a^{2}+\frac{1}{\epsilon} b^{2}$ for $\epsilon>0$ we deduce that

$$
\begin{equation*}
v_{m}^{2}(t) \leq \frac{2}{\beta}\|A\|_{L^{\infty}}\left\|u^{0}\right\|^{2}+\frac{4}{\beta}\|J\|_{L^{2}}+\frac{2}{\beta} \int_{0}^{t} v_{m}^{2}(s) \theta(s) d s \tag{9}
\end{equation*}
$$

where β is a constant, $\theta(s):=2\left(\int_{0}^{s}\|\dot{G}(\sigma)\|_{L^{\infty}} d \sigma+\left\|G_{d}(0)\right\|_{L^{\infty}}\right)$ and $v_{m}(s):=\sup _{0 \leq r \leq s}\left\|u_{m}(r)\right\|_{L^{2}}$.

Step 4: We estimate each term of the equation (8) and by using the coercivity of A, the Cauchy-Schwartz inequality, the theory of norms and the relation $2 a b \leq \epsilon a^{2}+\frac{1}{\epsilon} b^{2}$ for $\epsilon>0$ we deduce that

$$
\begin{equation*}
v_{m}^{2}(t) \leq \frac{2}{\beta}\|A\|_{L^{\infty}}\left\|u^{0}\right\|^{2}+\frac{4}{\beta}\|J\|_{L^{2}}+\frac{2}{\beta} \int_{0}^{t} v_{m}^{2}(s) \theta(s) d s \tag{9}
\end{equation*}
$$

where β is a constant, $\theta(s):=2\left(\int_{0}^{s}\|\dot{G}(\sigma)\|_{L^{\infty}} d \sigma+\left\|G_{d}(0)\right\|_{L^{\infty}}\right)$ and $v_{m}(s):=\sup _{0 \leq r \leq s}\left\|u_{m}(r)\right\|_{L^{2}}$. From Gronwall inequality we have

$$
\left\|u_{m}(t)\right\|_{L^{2}} \leq c \sqrt{\left\|u_{0}\right\|_{L^{2}}^{2}+\|J\|_{L^{1}}^{2}} \leq c\left(\left\|u_{0}\right\|_{L^{2}}^{2}+\|J\|_{L^{1}}^{2}\right)
$$

Step 4: We estimate each term of the equation (8) and by using the coercivity of A, the Cauchy-Schwartz inequality, the theory of norms and the relation $2 a b \leq \epsilon a^{2}+\frac{1}{\epsilon} b^{2}$ for $\epsilon>0$ we deduce that

$$
\begin{equation*}
v_{m}^{2}(t) \leq \frac{2}{\beta}\|A\|_{L^{\infty}}\left\|u^{0}\right\|^{2}+\frac{4}{\beta}\|J\|_{L^{2}}+\frac{2}{\beta} \int_{0}^{t} v_{m}^{2}(s) \theta(s) d s \tag{9}
\end{equation*}
$$

where β is a constant, $\theta(s):=2\left(\int_{0}^{s}\|\dot{G}(\sigma)\|_{L^{\infty}} d \sigma+\left\|G_{d}(0)\right\|_{L^{\infty}}\right)$ and $v_{m}(s):=\sup _{0 \leq r \leq s}\left\|u_{m}(r)\right\|_{L^{2}}$. From Gronwall inequality we have

$$
\left\|u_{m}(t)\right\|_{L^{2}} \leq c \sqrt{\left\|u_{0}\right\|_{L^{2}}^{2}+\|J\|_{L^{1}}^{2}} \leq c\left(\left\|u_{0}\right\|_{L^{2}}^{2}+\|J\|_{L^{1}}^{2}\right)
$$

and we obtain the estimate

$$
\left\|u_{m}\right\|_{L^{\infty}}\left(0, T, L^{2}\left(\Omega, R^{6}\right)\right) \leq\left\{\left\|u_{0}\right\|_{X_{M}}+\|J\|_{L^{1}\left(0, T, L^{2}\left(\Omega, R^{6}\right)\right)}\right\} .
$$

Step 5: Existence of the solution

Step 5: Existence of the solution We proved that the sequencies $u_{m}, \frac{d u_{m}}{d t}, \mathrm{~m}=1,2, \ldots$ are bounded in the separable Banach space $L^{\infty}\left(0, T, L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right)$, therefore (Eberlein-Smuljan) there are subsequencies such that (we keep the same symbols) :

$$
\begin{aligned}
u_{m} & \rightharpoonup u \text { in } L^{\infty}\left(0, T, L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right) \\
\frac{d u_{m}}{d t} & \rightharpoonup \frac{d u}{d t} \text { in } L^{\infty}\left(0, T, L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right)
\end{aligned}
$$

and as a result $u \in W^{1, \infty}\left(0, T, L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right)$.

Step 5: Existence of the solution We proved that the sequencies $u_{m}, \frac{d u_{m}}{d t}, \mathrm{~m}=1,2, \ldots$ are bounded in the separable Banach space $L^{\infty}\left(0, T, L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right)$, therefore (Eberlein-Smuljan) there are subsequencies such that (we keep the same symbols) :

$$
\begin{aligned}
u_{m} & \rightharpoonup u \text { in } L^{\infty}\left(0, T, L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right) \\
\frac{d u_{m}}{d t} & \rightharpoonup \frac{d u}{d t} \text { in } L^{\infty}\left(0, T, L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right)
\end{aligned}
$$

and as a result $u \in W^{1, \infty}\left(0, T, L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right)$. Now, from $\frac{d}{d t}\left(A u_{m}+G_{d} \star u_{m}\right)=M u_{m}+j$ we obtain $\frac{d}{d t} \int_{\Omega}\left(A u_{m}+G_{d} \star u_{m}\right) e_{i} d x=-\int_{\Omega} M u_{m} e_{i} d x+\int_{\Omega} j e_{i} d x$. Taking into consideration the uniqueness of the weak* limit, the density of V_{m} in $\mathcal{X}_{\mathcal{M}}$ and the density of $\mathcal{X}_{\mathcal{M}}$ in $L^{2}\left(\Omega ; \mathbb{R}^{6}\right)$ we have

$$
\frac{d}{d t} \int_{\Omega}\left(A u+G_{d} \star u\right) v d x=\int_{\Omega} M u v d x+\int_{\Omega} j v d x \text { for } v \in X_{M}
$$

Step 5: Existence of the solution We proved that the sequencies $u_{m}, \frac{d u_{m}}{d t}, \mathrm{~m}=1,2, \ldots$ are bounded in the separable Banach space $L^{\infty}\left(0, T, L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right)$, therefore (Eberlein-Smuljan) there are subsequencies such that (we keep the same symbols) :

$$
\begin{aligned}
u_{m} & \rightharpoonup u \text { in } L^{\infty}\left(0, T, L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right) \\
\frac{d u_{m}}{d t} & \rightharpoonup \frac{d u}{d t} \text { in } L^{\infty}\left(0, T, L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right)
\end{aligned}
$$

and as a result $u \in W^{1, \infty}\left(0, T, L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right)$. Now, from $\frac{d}{d t}\left(A u_{m}+G_{d} \star u_{m}\right)=M u_{m}+j$ we obtain $\frac{d}{d t} \int_{\Omega}\left(A u_{m}+G_{d} \star u_{m}\right) e_{i} d x=-\int_{\Omega} M u_{m} e_{i} d x+\int_{\Omega} j e_{i} d x$. Taking into consideration the uniqueness of the weak* limit, the density of V_{m} in $\mathcal{X}_{\mathcal{M}}$ and the density of $\mathcal{X}_{\mathcal{M}}$ in $L^{2}\left(\Omega ; \mathbb{R}^{6}\right)$ we have

$$
\frac{d}{d t} \int_{\Omega}\left(A u+G_{d} \star u\right) v d x=\int_{\Omega} M u v d x+\int_{\Omega} j v d x \text { for } v \in X_{M}
$$

We conclude that u is a weak solution of the initial problem in $L^{\infty}\left(0, T, L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right)$ and supplemented with the above convergences provide the necessary smoothness in u.

The solution u satisfies the conservation law

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}(A u, u) d x & -\int_{0}^{t} \int_{\Omega} j \cdot u d x d s+\int_{0}^{t} \int_{\Omega} G(0) u(s) \cdot u(s) d x d s \\
& +\int_{0}^{t} \int_{\Omega}(\dot{G} \star u(s)) d s \cdot u(s) d x d s=\frac{1}{2} \int_{\Omega} A u^{0} \cdot u^{0} d x
\end{aligned}
$$

The solution u satisfies the conservation law

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}(A u, u) d x & -\int_{0}^{t} \int_{\Omega} j \cdot u d x d s+\int_{0}^{t} \int_{\Omega} G(0) u(s) \cdot u(s) d x d s \\
& +\int_{0}^{t} \int_{\Omega}(\dot{G} \star u(s)) d s \cdot u(s) d x d s=\frac{1}{2} \int_{\Omega} A u^{0} \cdot u^{0} d x
\end{aligned}
$$

Proof.
The proof is based on the definition of the field

$$
E(x, t)=\frac{1}{2} d(x, t) \cdot u(x, t)
$$

on the property of Maxwell's operator $\int_{\Omega}(M u) u d x=0$ and on
$\frac{d}{d t}(A u, u)=2(A u, \dot{u}), \frac{d}{d t}\left(G_{d} \star u, u\right)=\left(\dot{G}_{d} \star u+G_{d}(0) u, u\right)+\left(G_{d} \star u, \dot{u}\right)$ where $(.,$.$) is the L_{2}$ inner product in Ω and \dot{f} is always the derivate referred to time t.

We assume that Ω is filled with a material whose microstructure is of period $\epsilon>0$.
The constitutive parameters $A^{\epsilon}, G_{d}^{\epsilon}$ and the initial data $u^{\epsilon, 0}, j^{\epsilon}$ have the regularity that theorem 1 requests.

We assume that Ω is filled with a material whose microstructure is of period $\epsilon>0$.
The constitutive parameters $A^{\epsilon}, G_{d}^{\epsilon}$ and the initial data $u^{\epsilon, 0}, j^{\epsilon}$ have the regularity that theorem 1 requests.
As a result,for any $\epsilon>0$ there is a sequence of electromagnetic fields u^{ϵ} which are solutions of the evolution problem,

$$
\begin{gathered}
\frac{d}{d t}\left(A^{\epsilon} u^{\epsilon}+G_{d}^{\epsilon} \star u^{\epsilon}\right)=M u^{\epsilon}-j^{\epsilon},(0, T) \times \Omega \\
u^{\epsilon}(0, x)=u^{0, \epsilon}(x), \Omega \\
\hat{\eta}(x) \times u_{1}^{\epsilon}(t, x)=0,(0, T) \times \partial \Omega
\end{gathered}
$$

We assume that Ω is filled with a material whose microstructure is of period $\epsilon>0$.
The constitutive parameters $A^{\epsilon}, G_{d}^{\epsilon}$ and the initial data $u^{\epsilon, 0}, j^{\epsilon}$ have the regularity that theorem 1 requests.
As a result,for any $\epsilon>0$ there is a sequence of electromagnetic fields u^{ϵ} which are solutions of the evolution problem,

$$
\begin{gathered}
\frac{d}{d t}\left(A^{\epsilon} u^{\epsilon}+G_{d}^{\epsilon} \star u^{\epsilon}\right)=M u^{\epsilon}-j^{\epsilon},(0, T) \times \Omega \\
u^{\epsilon}(0, x)=u^{0, \epsilon}(x), \Omega \\
\hat{\eta}(x) \times u_{1}^{\epsilon}(t, x)=0,(0, T) \times \partial \Omega
\end{gathered}
$$

Purpose: The study of the asymptotic behavior of solution u^{ϵ} under the following assumptions:

- $u^{\epsilon, 0} \rightarrow u^{0}$ strongly in X_{M}
- $J^{\epsilon} \rightarrow J$ strongly in $W^{1,1}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right)$
- $A^{\epsilon}, G_{d}^{\epsilon}$ are periodic matrices

Let $\epsilon>0$. We assume $Y=(0,1)^{3}$

$$
\begin{aligned}
& \mathbb{Z}_{\epsilon}^{3}:=m \in \mathbb{Z}^{3}: \epsilon(m+Y) \subset \Omega \\
& \Omega_{\epsilon}:=\bigcup_{m \in \mathbb{Z}_{\epsilon}^{3}} \epsilon(m+Y) \\
& \Lambda_{\epsilon}:=\Omega-\Omega_{\epsilon}
\end{aligned}
$$

Let $\epsilon>0$. We assume $Y=(0,1)^{3}$

$$
\begin{aligned}
& \mathbb{Z}_{\epsilon}^{3}:=m \in \mathbb{Z}^{3}: \epsilon(m+Y) \subset \Omega \\
& \Omega_{\epsilon}:=\bigcup_{m \in \mathbb{Z}_{\epsilon}^{3}} \epsilon(m+Y) \\
& \Lambda_{\epsilon}:=\Omega-\Omega_{\epsilon}
\end{aligned}
$$

Definition 3

The periodic unfolding operator $\mathcal{T}_{\epsilon}: L^{2}(\Omega ; \mathbb{R}) \rightarrow L^{2}(\Omega \times Y ; \mathbb{R})$ is defined by

$$
\left(\mathcal{T}_{\epsilon} v\right)(x, y):= \begin{cases}v\left(\epsilon\left[\frac{x}{\epsilon}\right]+\epsilon y\right), & x \in \Omega_{\epsilon}, y \in Y \\ 0, & x \in \Lambda_{\epsilon}, y \in Y\end{cases}
$$

We can apply the unfolding operator on functions with entries functions or matrices and we have that

$$
\begin{aligned}
\left(\mathcal{T}_{\epsilon} A^{\epsilon}\right)(x, y) & =A(y) \\
\left(\mathcal{T}_{\epsilon} G^{\epsilon}\right)(x, y, t) & =G(y, t)
\end{aligned}
$$

We can apply the unfolding operator on functions with entries functions or matrices and we have that

$$
\begin{aligned}
\left(\mathcal{T}_{\epsilon} A^{\epsilon}\right)(x, y) & =A(y) \\
\left(\mathcal{T}_{\epsilon} G^{\epsilon}\right)(x, y, t) & =G(y, t)
\end{aligned}
$$

From the previous definitions we deduce the following properties:

- $\mathcal{T}_{\epsilon}(a u+b v)=a \mathcal{T}_{\epsilon} u+b \mathcal{T}_{\epsilon} v$
- $\mathcal{T}_{\epsilon}(u v)=\left(\mathcal{T}_{\epsilon} u\right)\left(\mathcal{T}_{\epsilon} v\right)$
- $\int_{\Omega} u(x) d x=\frac{1}{|Y|} \int_{\Omega \times Y}\left(\mathcal{T}_{\epsilon} u\right)(x, y) d y d x$.

Theorem 4

(1) For any $v \in L^{2}(\Omega)$, we have $\mathcal{T}_{\epsilon} v \rightarrow v$ in $L^{2}(\Omega \times Y)$

Theorem 4

(1) For any $v \in L^{2}(\Omega)$, we have $\mathcal{T}_{\epsilon} v \rightarrow v$ in $L^{2}(\Omega \times Y)$
(2) If $v^{\epsilon} \in L^{2}(\Omega):\left\|v^{\epsilon}\right\|_{L^{2}}$ for any $\epsilon>0$ then there is $v \in L^{2}(\Omega \times Y)$ and subsequence $\left\{v^{\epsilon}\right\}$ of $\left\{v^{\epsilon}\right\}$ such that: $\mathcal{T}_{\epsilon} v^{\epsilon} \rightharpoonup v$ in $L^{2}(\Omega \times Y)$

Theorem 4

(1) For any $v \in L^{2}(\Omega)$, we have $\mathcal{T}_{\epsilon} v \rightarrow v$ in $L^{2}(\Omega \times Y)$
(2) If $v^{\epsilon} \in L^{2}(\Omega):\left\|v^{\epsilon}\right\|_{L^{2}}$ for any $\epsilon>0$ then there is $v \in L^{2}(\Omega \times Y)$ and subsequence $\left\{v^{\epsilon}\right\}$ of $\left\{v^{\epsilon}\right\}$ such that: $\mathcal{T}_{\epsilon} v^{\epsilon} \rightharpoonup v$ in $L^{2}(\Omega \times Y)$
(3) If $u^{\epsilon} \in H(\operatorname{curl}, \Omega):\left\|u^{\epsilon}\right\|_{H(\text { curl }, \Omega)} \leq c$ for any $\epsilon>0$ then there are three fields u, v, w which $u \in H(c u r l, \Omega), v \in L^{2}\left(\Omega, H_{p e r}^{1}(Y ; R)\right)$, $W \in L^{2}\left(\Omega, H_{p e r}^{1}\left(Y ; \mathbb{R}^{3}\right)\right)$, $\operatorname{div}_{y} w=0$ and subsequence $\left\{u^{\epsilon}\right\}$ of $\left\{u^{\epsilon}\right\}$ in order to have the following convergences:

$$
\begin{aligned}
u^{\epsilon} & \rightharpoonup u \text { in } H(\operatorname{curl}, \Omega) \\
\mathcal{T}_{\epsilon} u^{\epsilon} & \rightharpoonup u+\nabla_{y} v \text { in } L^{2}\left(\Omega \times Y ; \mathbb{R}^{3}\right) \\
\mathcal{T}_{\epsilon}\left(\operatorname{curl}^{u^{\epsilon}}\right) & \rightharpoonup \operatorname{curl}_{x} u+\operatorname{curl}_{y} w \text { in } L^{2}\left(\Omega \times Y ; \mathbb{R}^{3}\right) .
\end{aligned}
$$

Theorem 4

(1) For any $v \in L^{2}(\Omega)$, we have $\mathcal{T}_{\epsilon} v \rightarrow v$ in $L^{2}(\Omega \times Y)$
(2) If $v^{\epsilon} \in L^{2}(\Omega):\left\|v^{\epsilon}\right\|_{L^{2}}$ for any $\epsilon>0$ then there is $v \in L^{2}(\Omega \times Y)$ and subsequence $\left\{v^{\epsilon}\right\}$ of $\left\{v^{\epsilon}\right\}$ such that: $\mathcal{T}_{\epsilon} v^{\epsilon} \rightharpoonup v$ in $L^{2}(\Omega \times Y)$
(3) If $u^{\epsilon} \in H(\operatorname{curl}, \Omega):\left\|u^{\epsilon}\right\|_{H(\text { curl }, \Omega)} \leq c$ for any $\epsilon>0$ then there are three fields u, v, w which $u \in H(\operatorname{curl}, \Omega), v \in L^{2}\left(\Omega, H_{p e r}^{1}(Y ; R)\right)$, $W \in L^{2}\left(\Omega, H_{p e r}^{1}\left(Y ; \mathbb{R}^{3}\right)\right)$, $\operatorname{div}_{y} w=0$ and subsequence $\left\{u^{\epsilon}\right\}$ of $\left\{u^{\epsilon}\right\}$ in order to have the following convergences:

$$
\begin{aligned}
u^{\epsilon} & \rightharpoonup u \text { in } H(\operatorname{curl}, \Omega) \\
\mathcal{T}_{\epsilon} u^{\epsilon} & \rightharpoonup u+\nabla_{y} v \text { in } L^{2}\left(\Omega \times Y ; \mathbb{R}^{3}\right) \\
\mathcal{T}_{\epsilon}\left(\operatorname{curl}^{\epsilon} u^{\epsilon}\right) & \rightharpoonup \operatorname{curl}_{x} u+\operatorname{curl}_{y} w \text { in } L^{2}\left(\Omega \times Y ; \mathbb{R}^{3}\right) .
\end{aligned}
$$

By using the above theorem and and the conservation law for the solution u^{ϵ} we have the next theorem:

Theorem 5

If $u^{\epsilon}(x, t), x \in \Omega, t>0$ the unique solution of $\left(P_{H}\right)$ in $W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right) \cap L^{\infty}\left(0, T ; X_{M}\right)$ and u, v, w satisfying theorem 4 we obtain

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega \times Y} A\left(u(t)+\nabla_{y} v(t)\right)\left(u(t)+\nabla_{y} v(t)\right) \\
& +\int_{0}^{t} \int_{0}^{t_{1}} \int_{\Omega \times Y} \dot{G}\left(t_{1}-s\right)\left(u(s)+\nabla_{y} v(s)\right)\left(u\left(t_{1}\right)+\nabla_{y} v\left(t_{1}\right)\right) \\
& +\int_{0}^{t} \int_{\Omega \times Y} G(0)\left(u(s)+\nabla_{y} v(s)\right)\left(u(s)+\nabla_{y} v(s)\right) \\
& +\int_{0}^{t} \int_{\Omega \times Y} J(s) u(s)=\frac{1}{2} \int_{\Omega \times Y} A u^{0} u^{0} .
\end{aligned}
$$

Theorem 5

If $u^{\epsilon}(x, t), x \in \Omega, t>0$ the unique solution of $\left(P_{H}\right)$ in $W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right) \cap L^{\infty}\left(0, T ; X_{M}\right)$ and u, v, w satisfying theorem 4 we obtain

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega \times Y} A\left(u(t)+\nabla_{y} v(t)\right)\left(u(t)+\nabla_{y} v(t)\right) \\
& +\int_{0}^{t} \int_{0}^{t_{1}} \int_{\Omega \times Y} \dot{G}\left(t_{1}-s\right)\left(u(s)+\nabla_{y} v(s)\right)\left(u\left(t_{1}\right)+\nabla_{y} v\left(t_{1}\right)\right) \\
& +\int_{0}^{t} \int_{\Omega \times Y} G(0)\left(u(s)+\nabla_{y} v(s)\right)\left(u(s)+\nabla_{y} v(s)\right) \\
& +\int_{0}^{t} \int_{\Omega \times Y} J(s) u(s)=\frac{1}{2} \int_{\Omega \times Y} A u^{0} u^{0} .
\end{aligned}
$$

The solution u^{ϵ} satisfies the uniform bound

$$
\left\|u^{\epsilon}\right\|_{L^{\infty}\left(0, T ; X_{M}\right)}+\left\|\frac{d u^{\epsilon}}{d t}\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\Omega ; R^{6}\right)\right)} \leq c\left(\left\|J^{\epsilon}\right\|_{W^{1,1}\left(0, T ; L^{2}\left(\Omega, \mathbb{R}^{6}\right)\right)}+\left\|u^{\epsilon, 0}\right\|_{X_{M}}\right)
$$

Now we are in position to state and prove the next important result:

Now we are in position to state and prove the next important result:
Theorem 6
Let $A^{\epsilon} \in L^{\infty}\left(\Omega ; \mathbb{R}^{36}\right)$ and $G_{d}^{\epsilon} \in W^{2,1}\left(0, T ; L^{\infty}\left(\Omega ; \mathbb{R}^{36}\right)\right)$ be two matrices satisfying assumption 3 stated before.Also, the initial condition $u^{\epsilon, 0}$ and the source J^{ϵ} satisfy assumptions 1,2 respectively then if we assume u^{ϵ} to be the solution if $\left(P_{H}\right)$ there exists three fields u, v, w with

$$
\begin{gathered}
u \in W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right) \bigcap L^{\infty}\left(0, T, X_{M}\right) \\
v \in W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; H_{p e r}^{1}\left(Y ; \mathbb{R}^{2}\right)\right)\right. \\
w \in L^{\infty}\left(0, T ; L^{2}\left(\Omega ; H_{p e r}^{1}\left(Y ; \mathbb{R}^{6}\right)\right)\right.
\end{gathered}
$$

Now we are in position to state and prove the next important result:
Theorem 6
Let $A^{\epsilon} \in L^{\infty}\left(\Omega ; \mathbb{R}^{36}\right)$ and $G_{d}^{\epsilon} \in W^{2,1}\left(0, T ; L^{\infty}\left(\Omega ; \mathbb{R}^{36}\right)\right)$ be two matrices satisfying assumption 3 stated before.Also, the initial condition $u^{\epsilon, 0}$ and the source J^{ϵ} satisfy assumptions 1,2 respectively then if we assume u^{ϵ} to be the solution if $\left(P_{H}\right)$ there exists three fields u, v, w with

$$
\begin{gathered}
u \in W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{6}\right)\right) \bigcap L^{\infty}\left(0, T, X_{M}\right) \\
v \in W^{1, \infty}\left(0, T ; L^{2}\left(\Omega ; H_{p e r}^{1}\left(Y ; \mathbb{R}^{2}\right)\right)\right. \\
w \in L^{\infty}\left(0, T ; L^{2}\left(\Omega ; H_{p e r}^{1}\left(Y ; \mathbb{R}^{6}\right)\right)\right.
\end{gathered}
$$

i) which are limits as follows

$$
\begin{aligned}
u^{\epsilon} & \rightharpoonup u \text { weakly }{ }^{*} \text { in } L^{\infty}\left(0, T ; X_{M}\right) \\
\mathcal{T}_{\epsilon} u^{\epsilon} & \rightharpoonup u+\nabla_{y} v \text { strongly in } H^{1}\left(0, T ; L^{2}\left(\Omega \times ; \mathbb{R}^{6}\right)\right) \\
\mathcal{T}_{\epsilon}\left(\text { curl } u^{\epsilon}\right) & \rightharpoonup \text { curl }_{x} u+\text { curl }_{y} w \text { strongly in } L^{2}\left((0, T) \times \Omega \times Y ; \mathbb{R}^{6}\right)
\end{aligned}
$$

ii) which solve the evolution problem:

$$
\begin{aligned}
\frac{d}{d t}(A(y)(u(x, t) & \left.\left.+\nabla_{y} v(x, y, t)\right)\right)+\left(G_{d} \star\left(u+\nabla_{y} v\right)(t)\right) \\
& =M_{x} u(x, t)+M_{y} w(x, y, t)+J(x, t) \\
u(0)+\nabla_{y} v(x, y, 0) & =u^{0} \\
\hat{\eta} \times u_{1} & =0
\end{aligned}
$$

ii) which solve the evolution problem:

$$
\begin{aligned}
\frac{d}{d t}(A(y)(u(x, t) & \left.\left.+\nabla_{y} v(x, y, t)\right)\right)+\left(G_{d} \star\left(u+\nabla_{y} v\right)(t)\right) \\
& =M_{x} u(x, t)+M_{y} w(x, y, t)+J(x, t) \\
u(0)+\nabla_{y} v(x, y, 0) & =u^{0} \\
\hat{\eta} \times u_{1} & =0
\end{aligned}
$$

Proof.

Step 1: weak convergence
Step 2: boundary condition
Step 3: strong convergence

Thank you!

