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Formulation

Let Ω be a domain in R3 and ∂Ω Lipschitz. We consider the typical
Maxwell problem with equations

∂

∂t
D(x , t) = curlH(x , t) + F (x , t) (1)

∂

∂t
B(x , t) = − curlE (x , t) + G (x , t) (2)

with E (x , 0) = E 0(x) and H(x , 0) = H1(x) and the boundary condition
η̂(x)× E (x , t) = 0. The problem is supplemented with the constitutive
relations

D(x , t) = ηE + ξH + ηd ? E + ξd ? H (3)

B(x , t) = ζE + µH + ζd ? E + µd ? H (4)

where η, ξ, ζ and µ are 3× 3 matrices. Likely ηd , ξd , ζd and µd are also
3× 3 matrices.
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Formulation

Let u := (E ,H)T , J := (F ,G )T , d := (D,B)T ,
u0(x) := (E 0(x),H0(x))T ,

A(x) :=

(
η ξ
ζ µ

)
,Gd(x , t) :=

(
ηd ξd
ζd µd

)

and M :=

(
0 curl
− curl 0

)

then the system becomes (P1)


∂
∂t (A(x)u(x , t) + (Gd ? u)(x , t)) = Mu(x , t) + J(x , t)

u(x , 0) = u0(x)

η̂ × u(x , t) = 0.

(5)
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Formulation

Purpose: The study of the E/H field which is the solution of problem (1)
when the domain Ω is filled with a material whose periodic microstructure
is described by the matrices A,Gd .

We assume that all the fields which are functions of the spatial variable x
and the time variable t are considered to be functions of the time variable
t in a suitable Banach space.

We also assume that matrix A is symmetric and coercive i.e

xTA(x)x ≥ β|x |2, for any x ∈ R6.
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The mathematical problem

Theorem 1

Let A ∈ L∞(Ω;R36) and Gd ∈W 2,1(0,T ; L∞(Ω;R36)) be 6× 6 matrices,
u0 ∈ XM := H0(curl,Ω)× H(curl,Ω) and J ∈W 1,1(0,T ; L2(Ω;R6)) be
6-vectors then the problem (P1) has unique solution

u ∈W 1,∞(0,T ; L2(Ω;R6)) ∩ L∞(0,T ;Xm)

which satisfies the estimate

‖u‖L∞(0,T ;XM) + ‖du
dt
‖L∞(0,T ;L2(Ω;R6)) ≤ c(‖J‖W 1,1(0,T ;L2(Ω;R6)) + ‖u0‖XM

)

(6)
where c is a positive constant which depends on ‖A‖L∞ and ‖Gd‖L∞ .
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The mathematical problem

The proof of the previous theorem which is one of the main results of this
work is based upon the method ”Faedo-Galerkin”. We search for solution
of problem P1 in subsets of XM of finete dimension with dense union in
XM .

We obtain the existence of the solution using the following lemma:

Lemma 2

If A,R are m ×m matrices with matrix A symmetric and coercive,
K ∈W r ,1(0,T ;Rm2

) and B ∈W r ,1(0,T ;Rm),r = 1, 2 then the integral
equation Voltera

AU(t) +

∫ t

0
(K (t − s)− R)U(s)ds = B(t), t ∈ [0,T ]

has a unique solution U(t) ∈W r ,1(0,T ,Rm).

In order to proof the lemma we need the Fredholm theory.
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Proof of Theorem 1

Step 1: Existence of approximate solution um of u.

We start with a sequence e1, e2, . . . , em, . . . of of linear independent
components of XM : ¯∪Vm = XM where Vm =< e1, e2, · · · >, m ∈ N∗.
Looking for a solution of the form

um(t) =
m∑

k=1

hmk (t)ek

we have to use the previous lemma.
Step 2: Estimates Fisrtly, we prove the following equality∫

Ω

d

dt
(A(x)um(t))um(t)dx +

∫
Ω

d

dt
(Gd(t)?um(t))um(t) =

∫
Ω
J(t)um(t)dx

(7)
which results from the main equation of problem P1 and the relations
H curlE − E curlH = div(E × H), η̂(E × H) = H(η̂ × E ) and the perfect
boudary condition η̂ × E .
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Proof of Theorem 1

Step 3: We prove the equality

(A(x)um(t), um(t)) = −2

∫ t

0
(Ġ (s) ? um(s), um(s))ds

− 2

∫ t

0
(Gd(0)um(s), um(s))ds

+ (A(x)um(0), um(0)) + 2

∫ t

0
(J(s), um(s))ds. (8)

We obtain the above relation by using some other equlities and after some
suitable integrations.
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Proof of Theorem 1

Step 4: We estimate each term of the equation (8) and by using the
coercivity of A, the Cauchy-Schwartz inequality , the theory of norms and
the relation 2ab ≤ εa2 + 1

εb
2 for ε > 0 we deduce that

v2
m(t) ≤ 2

β
‖A‖L∞‖u0‖2 +

4

β
‖J‖L2 +

2

β

∫ t

0
v2
m(s)θ(s)ds (9)

where β is a constant, θ(s) := 2(
∫ s

0 ‖Ġ (σ)‖L∞dσ + ‖Gd(0)‖L∞) and
vm(s) := sup0≤r≤s‖um(r)‖L2 .

From Gronwall inequality we have

‖um(t)‖L2 ≤ c
√
‖u0‖2

L2 + ‖J‖2
L1 ≤ c(‖u0‖2

L2 + ‖J‖2
L1)

and we obtain the estimate

‖um‖L∞(0,T , L2(Ω,R6)) ≤ {‖u0‖XM
+ ‖J‖L1(0,T ,L2(Ω,R6))}.
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Proof of Theorem 1

Step 5: Existence of the solution

We proved that the sequencies

um,dumdt ,m=1,2,... are bounded in the separable Banach space
L∞(0,T , L2(Ω;R6)), therefore (Eberlein-Smuljan) there are subsequencies
such that (we keep the same symbols) :

um ⇀ u in L∞(0,T , L2(Ω,R6))

dum
dt

⇀
du

dt
in L∞(0,T , L2(Ω,R6))

and as a result u ∈W 1,∞(0,T , L2(Ω,R6)). Now, from
d
dt (Aum + Gd ? um) = Mum + j we obtain
d
dt

∫
Ω(Aum + Gd ? um)eidx = −

∫
Ω Mumeidx +

∫
Ω jeidx .Taking into

consideration the uniqueness of the weak* limit, the density of Vm in XM
and the density of XM in L2(Ω;R6) we have

d

dt

∫
Ω

(Au + Gd ? u)vdx =

∫
Ω
Muvdx +

∫
Ω
jvdx for v ∈ XM .

We conclude that u is a weak solution of the initial problem in
L∞(0,T , L2(Ω;R6)) and supplemented with the above convergences
provide the necessary smoothness in u.
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Conservation Law

The solution u satisfies the conservation law

1

2

∫
Ω

(Au, u)dx −
∫ t

0

∫
Ω
j � udxds +

∫ t

0

∫
Ω
G (0)u(s) � u(s)dxds

+

∫ t

0

∫
Ω

(Ġ ? u(s))ds � u(s)dxds =
1

2

∫
Ω
Au0 � u0dx

Proof.

The proof is based on the definition of the field

E (x , t) =
1

2
d(x , t) � u(x , t),

on the property of Maxwell’s operator
∫

Ω(Mu)udx = 0 and on
d
dt (Au, u) = 2(Au, u̇), d

dt (Gd ? u, u) = (Ġd ? u + Gd(0)u, u) + (Gd ? u, u̇)

where (�, �) is the L2 inner product in Ω and ḟ is always the derivate
referred to time t.
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Homogenization

We assume that Ω is filled with a material whose microstructure is of
period ε > 0.
The constitutive parameters Aε, G ε

d and the initial data uε,0, jε have the
regularity that theorem 1 requests.

As a result,for any ε > 0 there is a sequence of electromagnetic fields uε

which are solutions of the evolution problem,

d

dt
(Aεuε + G ε

d ? u
ε) = Muε − jε, (0,T )× Ω

uε(0, x) = u0,ε(x),Ω

η̂(x)× uε1(t, x) = 0, (0,T )× ∂Ω.

Purpose: The study of the asymptotic behavior of solution uε under the
following assumptions:

uε,0 → u0 strongly in XM

Jε → J strongly in W 1,1(0,T ; L2(Ω;R6))

Aε, G ε
d are periodic matrices
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Periodic Unfolding Operator

Let ε > 0.We assume Y = (0, 1)3

Z3
ε := m ∈ Z3 : ε(m + Y ) ⊂ Ω

Ωε :=
⋃

m∈Z3
ε

ε(m + Y )

Λε := Ω− Ωε

Definition 3

The periodic unfolding operator Tε : L2(Ω;R)→ L2(Ω× Y ;R) is defined
by

(Tεv)(x , y) :=

{
v(ε[ xε ] + εy), x ∈ Ωε, y ∈ Y

0, x ∈ Λε, y ∈ Y
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Periodic Unfolding Operator

We can apply the unfolding operator on functions with entries functions or
matrices and we have that

(TεAε)(x , y) = A(y)

(TεG ε)(x , y , t) = G (y , t).

From the previous definitions we deduce the following properties:

Tε(au + bv) = aTεu + bTεv
Tε(uv) = (Tεu)(Tεv)∫

Ω u(x)dx = 1
|Y |
∫

Ω×Y (Tεu)(x , y)dydx .

Eftychia Argyropoulou Homogenization of Maxwell’s equations 13–14 November 2013 14 / 19



Periodic Unfolding Operator

We can apply the unfolding operator on functions with entries functions or
matrices and we have that

(TεAε)(x , y) = A(y)

(TεG ε)(x , y , t) = G (y , t).

From the previous definitions we deduce the following properties:

Tε(au + bv) = aTεu + bTεv
Tε(uv) = (Tεu)(Tεv)∫

Ω u(x)dx = 1
|Y |
∫

Ω×Y (Tεu)(x , y)dydx .

Eftychia Argyropoulou Homogenization of Maxwell’s equations 13–14 November 2013 14 / 19



Periodic Unfolding Operator

Theorem 4

1 For any v ∈ L2(Ω),we have Tεv → v in L2(Ω× Y )

2 If v ε ∈ L2(Ω) : ‖v ε‖L2 for any ε > 0 then there is v ∈ L2(Ω× Y ) and
subsequence {v ε} of {v ε} such that: Tεv ε ⇀ v in L2(Ω× Y )

3 If uε ∈ H(curl,Ω) : ‖uε‖H(curl,Ω) ≤ c for any ε > 0 then there are
three fields u, v ,w which u ∈ H(curl,Ω), v ∈ L2(Ω,H1

per (Y ;R)),
W ∈ L2(Ω,H1

per (Y ;R3)),divy w = 0 and subsequence {uε} of {uε} in
order to have the following convergences:

uε ⇀ u in H(curl,Ω)

Tεuε ⇀ u +∇yv in L2(Ω× Y ;R3)

Tε(curl uε) ⇀ curlx u + curly w in L2(Ω× Y ;R3).

By using the above theorem and and the conservation law for the solution
uε we have the next theorem:
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Periodic Unfolding Operator

Theorem 5

If uε(x , t), x ∈ Ω, t > 0 the unique solution of (PH) in
W 1,∞(0,T ; L2(Ω;R6))

⋂
L∞(0,T ;XM) and u, v ,w satisfying theorem 4

we obtain

1

2

∫
Ω×Y

A(u(t) +∇yv(t))(u(t) +∇yv(t))

+

∫ t

0

∫ t1

0

∫
Ω×Y

Ġ (t1 − s)(u(s) +∇yv(s))(u(t1) +∇yv(t1))

+

∫ t

0

∫
Ω×Y

G (0)(u(s) +∇yv(s))(u(s) +∇yv(s))

+

∫ t

0

∫
Ω×Y

J(s)u(s) =
1

2

∫
Ω×Y

Au0u0.

The solution uε satisfies the uniform bound

‖uε‖L∞(0,T ;XM)+‖du
ε

dt
‖L∞(0,T ;L2(Ω;R6)) ≤ c(‖Jε‖W 1,1(0,T ;L2(Ω,R6))+‖uε,0‖XM

)
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Periodic Unfolding Operator

Now we are in position to state and prove the next important result:

Theorem 6

Let Aε ∈ L∞(Ω;R36) and G ε
d ∈W 2,1(0,T ; L∞(Ω;R36)) be two matrices

satisfying assumption 3 stated before.Also, the initial condition uε,0 and
the source Jε satisfy assumptions 1,2 respectively then if we assume uε to
be the solution if (PH) there exists three fields u, v ,w with

u ∈W 1,∞(0,T ; L2(Ω;R6))
⋂

L∞(0,T ,XM)

v ∈W 1,∞(0,T ; L2(Ω;H1
per (Y ;R2))

w ∈ L∞(0,T ; L2(Ω;H1
per (Y ;R6))

i) which are limits as follows

uε ⇀ u weakly∗ in L∞(0,T ;XM)

Tεuε ⇀ u +∇yv strongly in H1(0,T ; L2(Ω×;R6))

Tε(curl uε) ⇀ curlx u + curly w strongly in L2((0,T )× Ω× Y ;R6)
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Periodic Unfolding Operator

ii) which solve the evolution problem:

d

dt
(A(y)(u(x , t) +∇yv(x , y , t))) + (Gd ? (u +∇yv)(t))

= Mxu(x , t) + Myw(x , y , t) + J(x , t)

u(0) +∇yv(x , y , 0) = u0

η̂ × u1 = 0

Proof.

Step 1: weak convergence
Step 2: boundary condition
Step 3: strong convergence
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Periodic Unfolding Operator

Thank you!
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