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Formulation

Let Q be a domain in R3 and 9Q Lipschitz. We consider the typical
Maxwell problem with equations

0
ED(X, t) = curl H(x, t) + F(x, t) (1)

0
aB(X, t) = —curl E(x,t) + G(x, t) (2)
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Let Q be a domain in R3 and 9Q Lipschitz. We consider the typical
Maxwell problem with equations

0
ED(X, t) = curl H(x, t) + F(x,t) (1)
0
EB(X’ t) = —curl E(x,t) + G(x, t) (2)

with E(x,0) = E%(x) and H(x,0) = H!(x) and the boundary condition
f(x) x E(x, t) = 0. The problem is supplemented with the constitutive
relations
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Let Q be a domain in R3 and 9Q Lipschitz. We consider the typical
Maxwell problem with equations

0
ED(X, t) = curl H(x, t) + F(x,t) (1)
0
EB(X’ t) = —curl E(x,t) + G(x, t) (2)

with E(x,0) = E%(x) and H(x,0) = H!(x) and the boundary condition
f(x) x E(x, t) = 0. The problem is supplemented with the constitutive
relations

D(x,t)=nE+E&H+ng*xE+&xH (3)
B(x,t) =CE+uH+ (g *E+pg*xH (4)

where 1, &, and p are 3 x 3 matrices. Likely ng,&4,(q and pg are also
3 x 3 matrices.
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Formulation

Let u:=( ,H)T, J

= (F, G)T, d = (D, B)T,
uO(x

A(x) = (Z Z) L Galx, t) = (Ud §d>

Cd fid
and M := 0 curl then the system becomes (P1)
" \—curl 0 y

gt (AG)u(x, 1) + (Gg * u)(x, 1)) = Mu(x, t) + J(x, t)
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Formulation

Purpose: The study of the E/H field which is the solution of problem (1)
when the domain  is filled with a material whose periodic microstructure
is described by the matrices A, G4.
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Formulation

Purpose: The study of the E/H field which is the solution of problem (1)
when the domain  is filled with a material whose periodic microstructure

is described by the matrices A, G4.

We assume that all the fields which are functions of the spatial variable x
and the time variable t are considered to be functions of the time variable

t in a suitable Banach space.
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Formulation

Purpose: The study of the E/H field which is the solution of problem (1)
when the domain  is filled with a material whose periodic microstructure
is described by the matrices A, G4.

We assume that all the fields which are functions of the spatial variable x
and the time variable t are considered to be functions of the time variable
t in a suitable Banach space.

We also assume that matrix A is symmetric and coercive i.e

xTA(x)x > B|x|?, forany x € R
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The mathematical problem

Theorem 1

Let A€ L(Q;R3) and Gy € W?1(0, T; L°(Q; R3)) be 6 x 6 matrices,
u® € Xpy := Ho(curl, Q) x H(curl, Q) and J € WL(0, T; L2(Q2; R®)) be
6-vectors then the problem (P1) has unique solution

ue WH(0, T; L*(;R®) N L>(0, T; Xm)

which satisfies the estimate

|ull oo 0, T:xu) + || HL°° o,7:2(re)) < c([[Jlwri(o, T:r2(:re)) + 14°1x,,)

(6)

where c is a positive constant which depends on ||Al|;~ and ||Ggl| 1.
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The mathematical problem

The proof of the previous theorem which is one of the main results of this
work is based upon the method " Faedo-Galerkin”. We search for solution
of problem P1 in subsets of Xy, of finete dimension with dense union in
Xm.
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We obtain the existence of the solution using the following lemma:
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The mathematical problem

The proof of the previous theorem which is one of the main results of this
work is based upon the method " Faedo-Galerkin”. We search for solution

of problem P1 in subsets of Xy, of finete dimension with dense union in
Xm.

We obtain the existence of the solution using the following lemma:

Lemma 2

If A, R are m X m matrices with matrix A symmetric and coercive,
K € Wri(0, T;R™) and B € W"1(0, T;R™),r = 1,2 then the integral
equation Voltera

AU(t) + /t(K(t —s)— R)U(s)ds = B(t), telo,T]
0

has a unique solution U(t) € W"1(0, T,R™).
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The mathematical problem

The proof of the previous theorem which is one of the main results of this
work is based upon the method " Faedo-Galerkin”. We search for solution

of problem P1 in subsets of Xy, of finete dimension with dense union in
Xm.

We obtain the existence of the solution using the following lemma:

Lemma 2

If A, R are m X m matrices with matrix A symmetric and coercive,
K € Wri(0, T;R™) and B € W"1(0, T;R™),r = 1,2 then the integral
equation Voltera

AU(t) + /t(K(t —s)— R)U(s)ds = B(t), telo,T]
0

has a unique solution U(t) € W"1(0, T,R™).

In order to proof the lemma we need the Fredholm theory.
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Proof of Theorem 1

Step 1: Existence of approximate solution u,, of u.
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Proof of Theorem 1

Step 1: Existence of approximate solution u,, of u.
We start with a sequence e, €p,...,€n,... of of linear independent

components of Xy : uv,, = Xy where V,, =< e1,e,--- >, me N*,

Looking for a solution of the form

um(t) = P (t)ex

m
k=1

we have to use the previous lemma.
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we have to use the previous lemma.
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Proof of Theorem 1

Step 1: Existence of approximate solution u,, of u.

We start with a sequence e, €p,...,€n,... of of linear independent
components of Xy : uv,, = Xy where V,, =< e1,e,--- >, me N*,
Looking for a solution of the form

= Z h[("(t)ek

k=1

we have to use the previous lemma.
Step 2: Estimates Fisrtly, we prove the following equality

/Qcclit(A(X)Um(t))Um(t)dX—i-/ :t(Gd( t)*xum(t))um(t) /J Um(t

which results from the main equation of problem P1 and the relations
Hcurl E — Ecurl H =div(E x H), fH(E x H) = H(#} x E) and the perfect
boudary condition 7 x E.
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Proof of Theorem 1

Step 3: We prove the equality

(ACYan(e) (1)) = =2 [ (6(5)  un(). ()
_ 2/0t(Gd(0)um(s), () ds
+(A(X)Um(0)vum(0))+2/(J(S),Um(s))ds- (8)
0

We obtain the above relation by using some other equlities and after some
suitable integrations.
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Proof of Theorem 1

Step 4: We estimate each term of the equation (8) and by using the
coercivity of A, the Cauchy-Schwartz inequality , the theory of norms and
the relation 2ab < ea? + %b2 for € > 0 we deduce that

2 (1) < 2] Al ]2 + §HJ||L2 + ; /0 2(s)8(s)ds (9

where 3 is a constant, 6(s) := 2(, |1G(0)|| e do + || G4(0)|| ) and
Vin($) := supo<r<s||um(r)|l -
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Proof of Theorem 1

Step 4: We estimate each term of the equation (8) and by using the
coercivity of A, the Cauchy-Schwartz inequality , the theory of norms and
the relation 2ab < ea? + %b2 for € > 0 we deduce that

2 (1) < 2] Al ]2 + §HJ||L2 + ; /0 2(s)8(s)ds (9

where 3 is a constant, 6(s) := 2(, |1G(0)|| e do + || G4(0)|| ) and
Vm(S) := supo<r<s||um(r)||2. From Gronwall inequality we have

lum()l2 < ey/lluoliZz + 9172 < e(lluollZ2 + 19117:)
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Proof of Theorem 1

Step 4: We estimate each term of the equation (8) and by using the
coercivity of A, the Cauchy-Schwartz inequality , the theory of norms and
the relation 2ab < ea? + %b2 for € > 0 we deduce that

2 (1) < 2] Al ]2 + §HJ||L2 + ; /0 2(s)8(s)ds (9

where 3 is a constant, 6(s) := 2(, |1G(0)|| e do + || G4(0)|| ) and
Vm(S) := supo<r<s||um(r)||2. From Gronwall inequality we have

lum(t)ll 2 < ey/lluollZ + 1112 < c(lluollZ + [[4]17:)
and we obtain the estimate

lumlo= (0, T, L2(R2, R®)) < {llwollxys + ]l13(0,7.12(2,00) }-
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Proof of Theorem 1

Step 5: Existence of the solution
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Proof of Theorem 1

Step 5: Existence of the solution We proved that the sequencies

um,dc‘l’tf",m 1,2,... are bounded in the separable Banach space
L%(0, T, L2(Q,IR{6)), therefore (Eberlein-Smuljan) there are subsequencies

such that (we keep the same symbols) :
Um — uin L0, T, L?(Q, R®))
dum du

o AH 00 2 6
el L>(0, T, L“(2,R®))

and as a result u € W1°(0, T, L2(Q,R?)).
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L%(0, T, L2(Q,IR{6)), therefore (Eberlein-Smuljan) there are subsequencies

such that (we keep the same symbols) :
Um — uin L0, T, L?(Q, R®))
du du
T in L>°(0, T, L(Q,R®
e g ML T L(2,RY)
and as a result u € W1>(0, T, L?(©2,R%)). Now, from
9 (Aum + Gy * tm) = Mup, + j we obtain
% Jo(Aum + Gy * um)ejdx = — [, Mupeidx + [ jejdx.Taking into
consideration the uniqueness of the weak* limit, the density of V,, in X'
and the density of Xy in L2(;R®) we have

d
/(Au+ Gd*u)vdx:/ /\/luvdx+/jvdx for v.e Xpy.
dt Jo Q Q
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Step 5: Existence of the solution We proved that the sequencies

um,dc‘l’tf",m 1,2,... are bounded in the separable Banach space
L%(0, T, L2(Q,IR{6)), therefore (Eberlein-Smuljan) there are subsequencies

such that (we keep the same symbols) :
Um — uin L0, T, L?(Q, R®))
du du
T in L>°(0, T, L(Q,R®
e g ML T L(2,RY)
and as a result u € W1>(0, T, L?(©2,R%)). Now, from
9 (Aum + Gy * tm) = Mup, + j we obtain
% Jo(Aum + Gy * um)ejdx = — [, Mupeidx + [ jejdx.Taking into
consideration the uniqueness of the weak* limit, the density of V,, in X'
and the density of Xy in L2(;R®) we have

d
/(Au+ Gd*u)vdx:/ /\/luvdx+/jvdx for v.e Xpy.
dt Jo Q Q

We conclude that u is a weak solution of the initial problem in
L>(0, T, L2(Q; R®)) and supplemented with the above convergences

provide the necessary smoothness in u.
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Conservation Law

The solution u satisfies the conservation law

: /Q (Au, u)dx — /O t /Q  « udxdls + /0 t /Q G(0)u(s) - u(s)dxds

+/0t/Q(G*u(s))ds.u(s)dxds: ;/QAuO.ude
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Conservation Law

The solution u satisfies the conservation law

: /Q (Au, u)dx — /O t /Q  « udxdls + /0 t /Q G(0)u(s) - u(s)dxds

+/0t/Q(G*u(s))ds.u(s)dxds: ;/QAuO.ude

Proof.
The proof is based on the definition of the field

E(x,t) = %d(x, t).u(x,t),

on the property of Maxwell's operator [,(Mu)udx =0 and on

9 (Au,u) = 2(Au, i), &(Gy* u,u) = (G * u~+ Gy(0)u, u) + (Gy * u, 1)
where (4,.) is the Ly inner product in Q and f is always the derivate
referred to time t. O
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Homogenization

We assume that Q is filled with a material whose microstructure is of
period € > 0.

The constitutive parameters A¢, G5 and the initial data u“0, j have the
regularity that theorem 1 requests.
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Homogenization

We assume that € is filled with a material whose microstructure is of
period € > 0.

The constitutive parameters A¢, G5 and the initial data u“0, j have the
regularity that theorem 1 requests.

As a result,for any € > 0 there is a sequence of electromagnetic fields u®
which are solutions of the evolution problem,

%(AeuE + Gixu) = Mu*—j (0, T) xQ
uf(0,x) = u%(x), Q

fi(x) x ui(t,x) =0,(0, T) x 0R.
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Homogenization

We assume that € is filled with a material whose microstructure is of
period € > 0.

The constitutive parameters A¢, G5 and the initial data u“0, j have the
regularity that theorem 1 requests.

As a result,for any € > 0 there is a sequence of electromagnetic fields u®
which are solutions of the evolution problem,

%(AeuE + GG+ u) = Mu® —j, (0, T) x Q
uf(0,x) = u%(x), Q
fi(x) x ui(t,x) =0,(0, T) x 0R.

Purpose: The study of the asymptotic behavior of solution u¢ under the
following assumptions:

o u0% — 1Y strongly in Xy
o J¢— Jstrongly in WLL(0, T; L2(Q; RY))
e A¢, G§ are periodic matrices
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Periodic Unfolding Operator

Let € > 0.We assume Y = (0,1)3
23:=mecZ: e(m+Y)CQ
Q= U e(m+Y)

meZ?

Ne :=Q — Q.
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Periodic Unfolding Operator

Let € > 0.We assume Y = (0,1)3
23:=mecZ: e(m+Y)CQ
Q= U e(m+Y)

meZ?

Ne :=Q — Q.

Definition 3

The periodic unfolding operator 7¢ : L2(; R) — L2(Q x Y;R) is defined
by

v(e[X] +ey), x€Q,yeY

0, xeEN,yeY

(Tev)(x,y) = {
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Periodic Unfolding Operator

We can apply the unfolding operator on functions with entries functions or
matrices and we have that

(TeA%)(x,y) = Aly)

(TeG)(x, y,t) = G(y, t).

Eftychia Argyropoulou b ization of M II's i 13-14 November 2013 14 /19




Periodic Unfolding Operator

We can apply the unfolding operator on functions with entries functions or

matrices and we have that
(TA)(x,y) = Aly)
(TeG)(x,y,t) = G(y, t).

From the previous definitions we deduce the following properties:
e T(au+ bv) = aTcu+ bTcv
o Te(uv) = ( u)(Tev)
o [ u(x)dx 1 foY (Teu)(x, y)dydx.
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Periodic Unfolding Operator

Theorem 4
© For any v € [2(Q),we have T.v — v in L2(Q x Y)
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Periodic Unfolding Operator

Theorem 4
Q For any v € L?(Q),we have Tov — v in L2(Q x Y)

Q Ifve e L2(Q): ||v¥| 2 for any € > O then there is v € L2(Q x Y) and
subsequence {v¢} of {v¢} such that: Tove — v in [2(Q x Y)
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Periodic Unfolding Operator

Theorem 4
Q For any v € L?(Q),we have Tov — v in L2(Q x Y)

Q Ifve e L2(Q): ||v¥| 2 for any € > O then there is v € L2(Q x Y) and
subsequence {v¢} of {v¢} such that: Tove — v in L[2(Q x Y)

Q Ifuc € H(curl,Q) : [[u||H(cun,) < ¢ for any € > O then there are
three fields u, v, w which u € H(curl,Q), v € L3(Q, H}.(Y; R)),
W e L2(Q, H;e,(Y; R3)),div, w = 0 and subsequence {u‘} of {u‘} in
order to have the following convergences:

u® — u in H(curl, Q)
Teu® = u+Vyv in L*(Q x Y;R?)
Te(curl u€) — curly u +curl, w in L3(Q x Y;R3).
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Periodic Unfolding Operator

Theorem 4
Q For any v € L?(Q),we have Tov — v in L2(Q x Y)

Q Ifve e L2(Q): ||v¥| 2 for any € > O then there is v € L2(Q x Y) and
subsequence {v¢} of {v¢} such that: Tove — v in L[2(Q x Y)

Q Ifuc € H(curl,Q) : [[u||H(cun,) < ¢ for any € > O then there are
three fields u, v, w which u € H(curl,Q), v € L3(Q, H}.(Y; R)),
W e L2(Q, H;e,(Y; R3)),div, w = 0 and subsequence {u‘} of {u‘} in
order to have the following convergences:

u® — u in H(curl, Q)
Teu® = u+Vyv in L*(Q x Y;R?)
Te(curl u€) — curly u +curl, w in L3(Q x Y;R3).

By using the above theorem and and the conservation law for the solution
u¢ we have the next theorem:
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Periodic Unfolding Operator
Theorem 5

If u(x,t), x € Q, t > 0 the unique solution of (Py) in

Whee(0, T; L2(S; R8)) N L>=°(0, T; Xm) and u, v, w satisfying theorem 4

we obtain

1

5 | A+ Vo) (u(e) + T ()
Qxy

// /Q><Y (t1 = s)(u(s) + Vyv(s))(u(tr) + Vyv(t1))
//va s) + Vyv(s))(u(s) + Vyv(s))
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Periodic Unfolding Operator
Theorem 5

If u(x,t), x € Q, t > 0 the unique solution of (Py) in

Whee(0, T; L2(S; R8)) N L>=°(0, T; Xm) and u, v, w satisfying theorem 4
we obtain

1

5 | A+ Vo) (u(e) + T ()
Qxy

// /Q><Y (t1 = s)(u(s) + Vyv(s))(u(tr) + Vyv(t1))
//va s) + Vyv(s))(u(s) + Vyv(s))

The solution u€ satisfies the uniform bound

[[u HL"O(O,T:XM)_"HFHLW(O,T;B(Q;R%) < c(1 9 wrro, 72 (re) + 140 xy)
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Periodic Unfolding Operator

Now we are in position to state and prove the next important result:
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Periodic Unfolding Operator

Now we are in position to state and prove the next important result:

Theorem 6

Let A° € L=®(; R3®) and G5 € W21(0, T; L>(Q2; R3)) be two matrices
satisfying assumption 3 stated before.Also, the initial condition u° and
the source J¢ satisfy assumptions 1,2 respectively then if we assume u® to
be the solution if (Py) there exists three fields u, v, w with

u€ WH(0, T; L2(;R®)) () L0, T, Xu)

ve Wh(0, T; L2(Q; Hp (Y3 R?))
w e L0, T; L2(; H;er(Y;]R6))

V.
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Periodic Unfolding Operator

Now we are in position to state and prove the next important result:

Theorem 6

Let A° € L=®(; R3®) and G5 € W21(0, T; L>(Q2; R3)) be two matrices
satisfying assumption 3 stated before.Also, the initial condition u° and
the source J¢ satisfy assumptions 1,2 respectively then if we assume u® to
be the solution if (Py) there exists three fields u, v, w with

u€ WH(0, T; L2(;R®)) () L0, T, Xu)

ve Wh(0, T; L2(Q; Hp (Y3 R?))
w e L0, T; L2(; H;er(Y;]R6))

i) which are limits as follows

u® — u weakly* in L*(0, T; Xum)
Teu® — u+ Vv strongly in H(0, T; L>(Qx;R®))
Te(curl u€) — curl, u + curl, w  strongly in L[?((0, T) x Q x Y;R®)
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Periodic Unfolding Operator

i) which solve the evolution problem:

%(A(Y)(U(& t) + Vyv(x,y;1))) + (Ga * (u+ V,yv)(t))
= Myu(x, t) + Myw(x,y, t) + J(x, t)
u(0) + V,v(x,y,0) = u°

ﬁxulzo
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Periodic Unfolding Operator

i) which solve the evolution problem:

%(A(Y)(U(Xy t) + Vyv(x,y;1))) + (Ga * (u+ V,yv)(t))
= Myu(x, t) + Myw(x,y, t) + J(x, t)

u(0) + V,v(x,y,0) = u°
ﬁ X uy = 0

Proof.

Step 1: weak convergence

Step 2: boundary condition

Step 3: strong convergence Ol
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Periodic Unfolding Operator

Thank you!

Eftychia Argyropoulou b ization of M II's i 13-14 November 2013 19 /19




	Formulation
	The mathematical problem
	Proof of Theorem 1
	Conservation Law
	Homogenization
	Periodic Unfolding Operator

