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ΠΕΡΙΛΗΨΗ 
 

Καηαλεκεκέλα δίθηπα ηα νπνία απαξηίδνληαη από έλαλ κεγάιν αξηζκό θόκβσλ, π.ρ. 
Δίθηπα Αζύξκαησλ Αηζζεηήξσλ, πξνζσπηθνί ππνινγηζηέο, θνξεηνί ππνινγηζηέο, 
έμππλα ηειέθσλα, θιπ., νη νπνίνη ζπλεξγάδνληαη κε ζθνπό ηελ επίηεπμε ελόο θνηλνύ 
ζηόρνπ, απνηεινύλ κηα ππνζρόκελε ηερλνινγία ε νπνία βξίζθεη εθαξκνγή ζε πνιιά 
κνληέξλα πξνβιήκαηα. Τππηθά παξαδείγκαηα ηέηνησλ εθαξκνγώλ είλαη ηα εμήο: 
θαηαλεκεκέλε επίβιεςε πεξηβάιινληνο, εύξεζε αθνπζηηθήο πεγήο, εθηίκεζε θάζκαηνο, 
θιπ. Σπλεξγαηηθνί κεραληζκνί δύλαληαη λα βειηηώζνπλ ζεκαληηθά ηελ δηαδηθαζία 
εθκάζεζεο, κέζσ ηεο νπνίαο νη θόκβνη επηηπγράλνπλ ηνλ θνηλό ζηόρν ηνπο. 

Η παξνύζα δηαηξηβή κειεηά ην πξόβιεκα ηεο πξνζαξκνζηηθήο κάζεζεο ζε 
θαηαλεκεκέλα δίθηπα, εζηηάδνληαο ζην πξόβιεκα ηεο θαηαλεκεκέλεο εθηίκεζεο 
παξακέηξσλ. Έλα ζύλνιν από θόκβνπο ιακβάλνπλ πιεξνθνξία, ε νπνία ζρεηίδεηαη κε 
ζπγθεθξηκέλεο παξακέηξνπο, θαη ε εθηίκεζε ησλ ελ ιόγσ παξακέηξσλ απνηειεί ηνλ 
ζηόρν καο.  Πξνο απηήλ ηελ θαηεύζπλζε, νη θόκβνη ιακβάλνπλ ππόςε ηόζν ηηο ηνπηθέο 
κεηξήζεηο, όζν θαη ηελ πιεξνθνξία ε νπνία ιακβάλεηαη από ηελ ζπλεξγαζία κε ηνπ ο 
ππόινηπνπο θόκβνπο ηνπ δηθηύνπ. Σηα πιαίζηα ηεο παξνύζαο δηαηξηβήο, ε ζπλεξγαζία 
κεηαμύ ησλ θόκβσλ αθνινπζεί ηελ θηινζνθία ηεο θαηαλεκεκέλεο βειηηζηνπνίεζεο 
κέζσ δηάρπζεο θαη νη πξνηεηλόκελνη αιγόξηζκνη αλήθνπλ ζηελ νηθνγέλεηα APSM. 
Αξρηθά, εύξσζηνη αιγόξηζκνη κε βάζε ηνλ APSM πξνηείλνληαη. Ο ζηόρνο είλαη ε 
«ελαξκόληζε» ηεο πιεξνθνξίαο, ε νπνία ιακβάλεηαη από ηελ γεηηνληά, κε ηελ ηνπηθή 
πιεξνθνξία. Η ελ ιόγσ «ελαξκόληζε» επηηπγράλεηαη κέζσ πξνβνιήο ηεο  
πιεξνθνξίαο ηεο γεηηνληάο πάλσ ζε έλα θπξηό ζύλνιν, ην νπνίν θαηαζθεπάδεηαη κε 
βάζε ηνπηθέο κεηξήζεηο. Σηελ ζπλέρεηα, αληηκεησπίδεηαη ζελάξην θαηά ην νπνίν έλα 
ππνζύλνιν ησλ θόκβσλ ηνπ δηθηύνπ δπζιεηηνπξγεί θαη παξάγεη κεηξήζεηο, νη νπνίεο 
έρνπλ ππνβαζκηζηεί ζεκαληηθά από ηνλ ζόξπβν. Γηα ηελ επίιπζε ηνπ ελ ιόγσ 
πξνβιήκαηνο γίλεηαη ρξήζε ηεο ζπλάξηεζεο θόζηνπο Huber, ε νπνία είλαη εύξσζηε 
ζηελ ύπαξμε αθξαίσλ ηηκώλ ζνξύβνπ. Επηπιένλ, κειεηήζεθε ην πξόβιεκα ηεο 
πξνζαξκνζηηθήο εθηίκεζεο αξαηώλ δηαλπζκάησλ ζηα πιαίζηα ηεο θαηαλεκεκέλεο 
κάζεζεο. Οη θόκβνη ηνπ δηθηύνπ αλαδεηνύλ άγλσζην, αξαηό δηάλπζκα, ην νπνίν 
απνηειείηαη από κηθξό αξηζκό κε κεδεληθώλ ζπληειεζηώλ. Πεξηνξηζκνί ζηαζκηζκέλεο l1 

λόξκαο θαζώο θαη πξνβνιέο κεηαβιεηήο κεηξηθήο, νη νπνίεο επλνύλ αξαηέο ιύζεηο 
ρξεζηκνπνηνύληαη. Τέινο, πξνηείλνληαη αιγόξηζκνη, νη νπνίνη νδεγνύλ ζε κείσζε ηεο 
πιεξνθνξίαο πνπ απνζηέιεηαη ζην δίθηπν,  πεξηνξίδνληαο ηηο εθηηκήζεηο λα βξίζθνληαη 
πάλσ ζε έλαλ Krylov ππόρσξν.  

Οη πξνηεηλόκελνη αιγόξηζκνη έρνπλ πςειή απόδνζε ελώ ηαπηόρξνλα νη απαηηνύκελνη 
πόξνη εύξνπο δώλεο θαη ε πνιππινθόηεηα παξακέλνπλ ζε ινγηθά επίπεδα. 

 

ΘΕΜΑΣΙΚΗ ΠΕΡΙΟΧΗ:. Επεμεξγαζία Σήκαηνο 

ΛΕΞΕΙ΢ ΚΛΕΙΔΙΑ: Μεραληθή εθκάζεζε, πξνζαξκνζηηθή κάζεζε, θαηαλεκεκέλνη 

αιγόξηζκνη, πξνβνιέο 





Abstract

Distributed networks comprising a large number of nodes, e.g., Wireless Sensor Net-

works, Personal Computers (PC’s), laptops, smart phones, etc., which cooperate with each

other in order to reach a common goal, constitute a promising technology for several appli-

cations. Typical examples include: distributed environmental monitoring, acoustic source

localization, power spectrum estimation, etc. Sophisticated cooperation mechanisms can

significantly benefit the learning process, through which the nodes achieve their common

objective.

In this dissertation, the problem of adaptive learning in distributed networks is studied,

focusing on the task of distributed estimation. A set of nodes sense information related to

certain parameters and the estimation of these parameters constitutes the goal. Towards this

direction, nodes exploit locally sensed measurements as well as information springing from

interactions with other nodes of the network. Throughout this dissertation, the cooperation

among the nodes follows the diffusion optimization rationale and the developed algorithms

belong to the APSM algorithmic family.

First, robust APSM–based techniques are proposed. The goal is to “harmonize” the

spatial information, received from the neighborhood, with the locally sensed one. This

“harmonization” is achieved by projecting the information of the neighborhood onto a convex

set, constructed via the locally sensed measurements. Next, the scenario, in which a subset

of the node set is malfunctioning and produces measurements heavily corrupted with noise,

is considered. This problem is attacked by employing the Huber cost function, which is

resilient to the presence of outliers. In the sequel, we study the issue of sparsity–aware

adaptive distributed learning. The nodes of the network seek for an unknown sparse vector,

which consists of a small number of non–zero coefficients. Weighted ℓ1–norm constraints

are embedded, together with sparsity–promoting variable metric projections. Finally, we

propose algorithms, which lead to a reduction of the communication demands, by forcing

the estimates to lie within lower dimensional Krylov subspaces. The derived schemes serve

a good trade-off between complexity/bandwidth demands and achieved performance.



Subject Area: Signal Processing.

Keywords: Machine Learning, adaptive learning, distributed algorithms, projections.

Symeon N. Chouvardas



 

 

 

 

 

 

 

 

To my family. 

 

 





Acknowledgments

First and foremost, I would like to express my deep gratitude to my advisor Prof. Sergios

Theodoridis for offering me the opportunity to pursue my PhD degree at the University of

Athens. I am really grateful for his continuous guidance and support throughout these years.

With his deep knowledge on the fields of signal processing and machine learning, and, of

course, his good sense of humor, working with him was a real pleasure. I am really proud of

being his student.

In addition, I would like to thank my dissertation co-advisors Prof. Nicholas Kalouptsidis

and Dr. Stavros Perantonis. I owe a deep gratitude to Prof. Nicholas Kalouptsidis for his

guidance, collaboration and the fruitful discussions on the field of Compressed Sensing.

Due thanks also go to the rest of my dissertation committee: Prof. Konstantinos Berberidis,

Assistant Prof. Eleftherios Kofidis, Prof. Petros Maragkos and Dr. Athanasios Rontogiannis.

I would also like to thank Assistant Prof. Konstantinos Slavakis for his support and for

sharing with me his expertise on the field of convex optimization. Furthemore, I would like

to express my gratidute to Dr. Ioannis Kopsinis for the collaboration and for the discussions

we had on the field of Adaptive Learning. Special thanks go to Dr. Gerasimos Mileounis

for the perfect cooperation we had on the field of sparsity–aware learning. I would also

like to thank the current and former members of the lab: Dr. Theodoros Giannakopoulos,

Dr. Alexandros Katsiotis, Dr. Konstantinos Xenoulis, Dr. Konstantinos Rizogiannis, Dr.

Stylianos Tzikopoulos, Evangelos Logaras and Dimitrios Manatakis. I could not forget my

good friends Anastasios Kagkadis and Aristofanis Sakarellos for their endless encouragement

and support throughout these years.

I would like to dedicate this dissertation to my parents, Niko and Katerina, my brother

Michalis, my sister Antonia for always being there for me, and my niece Maria-Katerina for

bringing so much happiness to our family.

Symeon N. Chouvardas





List of Publications

Journal Publications

• S. Chouvardas, K. Slavakis, and S. Theodoridis. Adaptive robust distributed learning

in diffusion sensor networks. IEEE Transactions on Signal Processing, 59(10):4692–

4707, 2011.

• S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis. A sparsity promoting

adaptive algorithm for distributed learning. IEEE Transactions on Signal Processing,

60(10):5412 –5425, Oct. 2012.

• S. Chouvardas, K. Slavakis, and S. Theodoridis. Trading off complexity with commu-

nication costs in distributed adaptive learning via Krylov subspaces for dimensionality

reduction. IEEE Journal of Selected Topics in Signal Processing, 7(2):257–273, 2013.

• Symeon Chouvardas, Konstantinos Slavakis, Sergios Theodoridis, and Isao Yamada.

Stochastic analysis of hyperslab–based adaptive projected subgradient method under

bounded noise. To appear in IEEE Signal Processing Letters, 2013.

Conference Publications

• S. Chouvardas, K. Slavakis, and S. Theodoridis. A novel adaptive algorithm for

diffusion networks using projections onto hyperslabs. In CIP, pages 393–398. IEEE,

2010 (best student paper award).

• Symeon Chouvardas, Konstantinos Slavakis, and Sergios Theodoridis. Trading off

communications bandwidth with accuracy in adaptive diffusion networks. In ICASSP,

pages 2048–2051. IEEE, 2011.

Symeon N. Chouvardas



• Symeon Chouvardas, Konstantinos Slavakis, Yannis Kopsinis, and Sergios Theodoridis.

Sparsity-promoting adaptive algorithm for distributed learning in diffusion networks.

In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pages

1084–1088. IEEE, 2012.

• Symeon Chouvardas, Gerasimos Mileounis, Nicholaos Kalouptsidis, and Sergios Theodor-

idis. A greedy sparsity–promoting LMS for distributed adaptive learning in diffusion

networks. In Proc. of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2013.

• Symeon Chouvardas, Gerasimos Mileounis, Nicholaos Kalouptsidis, and Sergios Theodor-

idis. Training-Based and Blind Algorithms for Sparsity-Aware Distributed Learning.

In Proceedings of the European Signal Processing Conference (EUSIPCO), 2013.

Symeon N. Chouvardas



Contents

1 Introduction 31

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Basic Concepts of Distributed Signal Processing 41

2.1 Brief Historical Remarks and Recent Research Trends in Distributed Signal

Processing and Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . 41

2.1.1 History of Research in WSNs . . . . . . . . . . . . . . . . . . . . . . 41

2.1.2 Research trends and Applications involving Distributed Learning . . 43

2.2 Basic Principles of Distributed Learning and Diffusion optimization . . . . . 45

2.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2 Networks and Neighborhoods . . . . . . . . . . . . . . . . . . . . . . 46

2.2.3 Distributed Learning via Diffusion Optimization . . . . . . . . . . . . 48

2.3 Applications of Distributed Learning and Diffusion optimization . . . . . . . 53

2.3.1 Distributed Learning met in nature . . . . . . . . . . . . . . . . . . . 53

2.3.2 Distributed Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.3 Spectral Sensing for Cognitive Radios . . . . . . . . . . . . . . . . . 61

3 Adaptive Filtering 65

3.1 The LMS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Convergence of the Diffusion based LMS . . . . . . . . . . . . . . . . 68

3.2 Recursive Least Squares Algorithm . . . . . . . . . . . . . . . . . . . . . . . 71

Symeon N. Chouvardas



CONTENTS

3.2.1 Diffusion Recursive Least Squares . . . . . . . . . . . . . . . . . . . . 74

3.3 The Adaptive Projected Subgradient Method . . . . . . . . . . . . . . . . . 76

3.3.1 Basic Concepts of Convex Analysis and the POCS Algorithm. . . . . 78

88

3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Adaptive Robust Algorithms for Distributed Learning 97

4.1 Diffusion Adaptive Algorithm Using Projections onto Hyperslabs . . . . . . 98

4.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Introducing Robustness to Cope with a Failure of Nodes . . . . . . . . . . . 103

4.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendices 111

Appendix A Consensus Matrix and the Consensus Subspace 111

Appendices 113

Appendix B Proof of Theorem 1 113

B.1 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.2 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.3 Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.4 Proof of Theorem 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 A Sparsity–Promoting Projection–Based Algorithm for Distributed Learn-

ing 123

5.1 Sparsity–Aware Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.1 Sparsity–Promoting Adaptive Algorithms . . . . . . . . . . . . . . . 125

5.2 Set–theoretic Estimation Approach and Variable Metric Projections . . . . . 125

5.3 Proposed Algorithmic Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Appendices 140

Symeon N. Chouvardas



CONTENTS

Appendix C Basic Concepts Of Convex Analysis Employing Weighted Inner

Products 140

Appendices 141

Appendix D Variable Metric Projection onto the Weighted ℓ1 Ball 141

Appendices 142

Appendix E Proof of Theorem 1 142

E.1 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

E.2 Asymptotic optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

E.3 Asymptotic Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

E.4 Strong Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Dimensionality Reduction in Distributed Adaptive Learning via Krylov

Subspaces 151

6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.1 Krylov Subspaces and the Reduced Rank Wiener Solution . . . . . . 153

6.1.2 Set–theoretic estimation: the reduced rank case . . . . . . . . . . . . 155

6.2 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.1 Enhancing the Information Flow . . . . . . . . . . . . . . . . . . . . 158

6.2.2 The Algorithmic Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.3 Whitening the input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Appendices 177

Appendix F Projection Operators Onto Subspaces 177

Appendices 178

Appendix G Proof of Claim 1 178

Appendices 179

Symeon N. Chouvardas



CONTENTS

Appendix H Proof of Claim 2 179

Appendices 180

Appendix I Proof of Theorems 1 and 2 180

I.1 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

I.2 Asymptotic Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

I.3 Asymptotic Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

I.4 Strong Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7 Conclusions and Future Work 187

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

List of Abbreviations 191

List of Symbols 193

Bibliography 195

Symeon N. Chouvardas



List of Tables

4.1 Convergence Properties of Adaptive Distributed Algorithms . . . . . . . . . 103

6.1 Steady State distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2 Squared Distance from the Consensus Subspace. . . . . . . . . . . . . . . . . 172

Symeon N. Chouvardas





List of Figures

1.1 (a) Illustration of a centralized network with an FC. Circles denote the nodes

and the square denotes the FC. (b) A decentralized network. . . . . . . . . . 34

2.1 Illustration of an ad–hoc network. . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Illustration of a node, the target source and the direction vectors. . . . . . . 54

3.1 Illustration of a hyperslab and the projection of a point onto it. . . . . . . . 77

3.2 Illustration of a gradient and two subgradients of a convex function. Note

that in w1 the function is differentiable, so there exists a unique supporting

hyperplane, which is tangent to the graph of the function, whereas in w2 the

function is not differentiable and there exist more than one hyperplanes, that

support the graph of the function. . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 The projection and the relaxed projection operators. . . . . . . . . . . . . . 80

3.4 (a) The geometry of a halfspace. Its boundary is a hyperplane. (b) A closed

ball B[c,δ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Sequential formulation of the POCS algorithm. Each iteration takes us closer

to the intersection of the convex sets. . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Parallel formulation of the POCS algorithm. Each iteration takes us closer

to the intersection of the convex sets. . . . . . . . . . . . . . . . . . . . . . . 83

3.7 Geometrical illustration of the algorithm. The point wn is projected onto

Cn, Cn−1, a convex combination of these projection is computed. The occur-

ring vector from this step is projected onto the constraint set. . . . . . . . . 85

3.8 (a) A cost function whose 0-th level set is a hyperslab. (b) A cost function

and the supporting hyperplane generated by the differential. . . . . . . . . . 86

Symeon N. Chouvardas



LIST OF FIGURES

3.9 MSD performance for the first experiment. . . . . . . . . . . . . . . . . . . . 95

3.10 MSD performance for the second experiment. . . . . . . . . . . . . . . . . . 95

3.11 MSD curves for the 2nd experiment. Only a single iteration is plotted, since

Theorem 4 does not involve the expectation operator, where the averaging of

independent iterations is necessary. . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Illustration of an iteration for the case of q = 2. The aggregate is projected

onto an external hyperslab and the result, zk,n, is used in the adaptation

step. Note that zk,n is projected onto Sk,n and Sk,n−1, and the projections are

combined together. The update estimate, wk,n+1 lies closer to the intersection

of the hyperslabs, compared to ϕk,n. Note, also, that the hyperslab S ′
k,n

contains Sk,n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Illustration of the cost functions Θ̃(·), Θ̂(·). The aggregate, ϕk,n, is projected

onto H
′−
k,n, which is the intersection of the hyperplane associated with the

subgradient at Θ̂(ϕk,n) with the space Rm, to provide zk,n. In the sequel, zk,n
is used into the adaptation step. . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 (a) MSE for experiment 1. (b) MSD for experiment 1. (c) The statistics of

the network’s regressors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 (a) MSE for experiment 2. (b) MSD for experiment 2. (c) The statistics of

the network’s regressors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 (a) MSE for experiment 3. (b) MSD for experiment 3. (c) The statistics of

the network’s regressors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 (a) MSE for experiment 4 by considering all the nodes of the network. (b)

MSD for experiment 4. (c) Average MSE computed over the healthy nodes. . 110

5.1 Illustration of a hyperslab, the standard metric projection of a vector w onto

it, denoted by PSn(w), and the variable metric projection onto it. . . . . . . 127

5.2 Illustration of a weighted ℓ1 ball (solid line magenta) and an unweighted ℓ1

ball (dashed line blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Symeon N. Chouvardas



LIST OF FIGURES

5.3 Geometrical interpretation of the algorithm. The number of hyperslabs onto

which ϕk,n is projected, using variable metric projections, is q = 2. The result

of these two projections, which are illustrated by the dash dotted black line,

is combined (red line) and the result is projected (solid black line) onto the

sparsity promoting weighted ℓ1 ball, in order to produce the next estimate. . 133

5.4 MSD for the experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 MSD for the experiment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 MSD for the experiment 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.7 MSD for the experiment 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.8 Squared distance from the consensus subspace, for experiment 5. . . . . . . . 139

6.1 Illustration of a hierarchical network with L = 5. The solid lines denote the

simple communication links, whereas the dashed-dotted ones the hierarchical

communication links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2 (a) Geometrical illustration of the algorithm for q = 1. The aggregate ϕk,n,

which belongs in the subspace, is projected onto the intersection of the sub-

space and the hyperslab, generated by the measurement data. (b) The algo-

rithmic scheme in the reduced dimension space, i.e., RD. . . . . . . . . . . . 162

6.3 Illustration of KD(R′, r′), M̂ and the connection between points that belong

to them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4 Average MSE for the first experiment. . . . . . . . . . . . . . . . . . . . . . 171

6.5 Average EMSE for the second experiment. . . . . . . . . . . . . . . . . . . . 173

6.6 Average MSE for the third experiment. . . . . . . . . . . . . . . . . . . . . . 174

6.7 Average MSE for the fourth experiment. . . . . . . . . . . . . . . . . . . . . 175

6.8 Average MSE for the fifth experiment. . . . . . . . . . . . . . . . . . . . . . 175

6.9 Average MSE for the sixth experiment. . . . . . . . . . . . . . . . . . . . . . 176

Symeon N. Chouvardas





Preface

This research has been co-financed by the European Union (European Social Fund- 
ESF)  and  Greek  national  funds  through  the  Operational  Program  “Education  and 
Lifelong Learning” of the National Strategic Reference Framework (NSRF)- Research 
Funding Program: Heracleitus II. Investing in knowledge society through the European 
Social Fund. 





Chapter 1

Introduction

This dissertation deals with the problem of adaptive learning in distributed networks. In the

introduction chapter, we present the motivation of this study, the related work, the objectives,

as well as an outline for this work.

1.1 Motivation

Distributed networks comprising a number of connected nodes, e.g., Personal Computers

(PC’s), laptops, smart phones, surveillance cameras and microphones, wireless sensor net-

works etc., which exchange information in order to reach a common goal, are envisioned to

play a central role in many applications. Typical examples of emergent applications involving

distributed networks are: distributed environmental monitoring, acoustic source localization,

power spectrum estimation, target tracking, surveillance, traffic control, patient monitoring

and hospital surveillance, just to name a few [2,12,36,55,111]. All the previously mentioned

applications share in common the fact that the nodes are deployed over a geographic region

providing spatial diversity to the obtained measurements. Henceforth, the development of

algorithms and node cooperation mechanisms, which exploit the information diversity over

time and space, so that a common objective to be reached, becomes essential.

In this dissertation, the problem of distributed processing is studied with a focus on

the distributed estimation task. A number of nodes, which are spread over a geographic

region, sense information related to certain parameters; the estimation of these parameters

comprises our goal. The main idea behind distributed processing is that the nodes exchange
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information among them and make decisions/computations in a collaborative way instead of

working individually, using solely the information that is locally sensed. It is by now well

established, that the cooperation among the nodes leads to better results compared to the

case where they act as individual learners, see for example [28,88,138]. The need to develop

node cooperation mechanisms is increased due to the presence of noise in the majority of

applications. More specifically, the measurements observed at each node are corrupted by

noise, and this fact adds further uncertainty on the obtained estimates of the unknown target

parameters. This uncertainty can be reduced via the cooperation of the nodes.

The network topology is dictated by several parameters, such as, geographical constraints,

privacy constraints, etc., and determines the type of cooperation among the nodes. In the

sequel, we present two popular network topologies. Depending on the existence or absence

of a central node, also known as Fusion Center (FC), the networks are classified in two main

subcategories, the centralized and the decentralized, respectively.

• In the centralized networks, all the nodes, but the central one, collect information

related to the parameters to be estimated and then they transmit it to the FC. The

latter processes the data, and the resulting estimate is communicated back to all the

nodes. This topology is illustrated in Fig. 1.1. The estimates computed in centralized

networks are optimal in the sense that all the available information is used for their

computation. Distributed networks, which include an FC, encounter the following

limitations. First of all, the existence of a central node is not always possible due to

geographical constraints and due to the large amount of energy and communications

bandwidth, which is needed by this topology, see e.g., [55]. Furthermore, networks

obeying the centralized topology lack robustness, since if the FC fails, which could

happen for instance if in a Wireless Sensor Network (WSN) setup the battery runs

out, then the network collapses. It should also be pointed out that since the FC makes

all the essential computations, its computational power has to be considerably high.

However, in applications such as WSNs, one usually employs cheap sensors of limited

computational power and henceforth the existence of an FC is not feasible. Last but

not least, in many cases, e.g., medical applications, Internet studies, etc., privacy has

to be preserved. That is, the nodes are not “willing” to exchange raw data but only

their learning results [48].
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• In the decentralized topology (Fig. 1.1), the FC does not exist, and each node of

the network performs computations by exploiting: a) the local measurements which

are sensed from the environment, b) the information which is received from the rest

of the nodes, with which communication is possible. Each node is able to transmit

and receive data coming from a subset of nodes; these comprise its neighborhood. In

decentralized networks, the following issues have to be taken into consideration:

– Performance: A performance close to the optimal, that is the one associated with

the centralized networks, which use all the available data, has to be achieved.

In other words, despite the fact that direct communication among some of the

nodes cannot be established, sophisticated cooperation mechanisms have to be

developed, in order to “push” the performance to be as close as possible to the

ideal scenario.

– Robustness to possible failures: As it has been already mentioned, a major draw-

back of the centralized topology is that if the FC fails then the network collapses.

Decentralized networks have to be constructed so as to be robust against possible

node failures.

– Bandwidth and complexity constraints: The amount of transmitted information

has to be as small as possible, in order to keep the bandwidth low. Furthermore,

since in decentralized networks a central processing unit with powerful computa-

tional capabilities is not present and usually cheap processing units comprise the

nodes, low-complexity schemes have to be developed.

– Adaptivity: In many applications, such as, source localization, spectrum sensing,

etc, the nodes of the network are tasked to estimate non–stationary parameters,

i.e., parameters which vary with time. Batch estimation algorithms, which use

all the available training data simultaneously, cannot attack such problems. To

this end, adaptive techniques have to be developed, where the data are observed

sequentially, one per (discrete) time instance, and operate in an online fashion for

updating and improving the estimates.

In decentralized networks, in which the nodes are tasked to estimate adaptively an un-

known parameter, there are two cooperation strategies which can be adopted. The diffusion
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(a) (b)

Figure 1.1: (a) Illustration of a centralized network with an FC. Circles denote the nodes
and the square denotes the FC. (b) A decentralized network.

and the consensus–based ones. In the former, the available information at each node, which

comprises the node’s local information, as well as the information received by the neigh-

borhood, is diffused by adopting a proper cooperation protocol. In the latter, constraints

are embedded, which force the estimates, which are obtained at the nodes, to be the same.

These concepts will be explained in more detail in Chapter 2.

In this work, adaptive distributed algorithms for robust parameter estimation are devel-

oped. The diffusion rationale is adopted and the algorithms serve a good trade-off between

the complexity/bandwidth demands and performance.

1.2 Related Work

Decentralized processing has attracted a big interest during the 80’s and the 90’s, e.g.,

[10, 135]. Nevertheless, the task of distributed adaptive filtering was first studied in 2006

by Lopes and Sayed, [92, 93]. In these works, an incremental network is considered, i.e., a

network where each node is able to communicate with one neighbor and the nodes lie in

a cyclic pattern (see also Chapter 2). The algorithm, which is employed for the unknown

parameter estimation, is the Least Mean Squares (LMS). Algorithms for adaptive learning

in incremental networks have been proposed in the context of the Recursive Least Squares

(RLS) algorithm, e.g., [121], and the Affine Projection Algorithm (APA), e.g., [89, 90].

Apart from the incremental topology, the task of adaptive distributed learning has been

studied in the context of the so–called ad–hoc networks. In these networks, each node is
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able to communicate with a subset of the node set. As it will become clear later on, the

ad–hoc topology has an easier practical implementation compared to the incremental one.

For this reason, such networks have been extensively studied in the literature over the past

years. The first study was carried out by Lopes and Sayed, [94]. The authors there proposed

and studied a diffusion based LMS. The theoretical properties of the diffusion LMS, in a

unified way, were presented in [28]. Diffusion RLS based schemes have been proposed in the

work [27], and diffusion based Kalman filtering has been studied in [29]. A diffusion based

algorithm, which follows the set–theoretic viewpoint has been proposed in the context of the

diffusion–based Adaptive Projected Subgradient Method (APSM) in [31].

Another family of algorithms, proposed in the literature, is the consensus–based ones.

The main objective in these methodologies is to force the nodes to consensus; or in other

words to converge to the same estimate. The classical non–adaptive consensus based estima-

tion algorithms, e.g., [115], required two time scales: a time scale in which the nodes average

their estimates, and a second one for updating them using the locally sensed information.

This is impractical in real–time adaptive learning. However, fully adaptive consensus–based

LMS schemes have been proposed in the studies: [98, 123] and consensus based RLS algo-

rithms in [97, 98]. The paper in [136] carries out a comparative study both in experimental

as well as theoretical terms, in which the diffusion–based LMS schemes were proved to out-

perform, in terms of convergence speed, their consensus counterparts.

Recently, the topic of sparsity–aware adaptive distributed learning has drawn a consid-

erable attention. The goal is the estimation of a possibly time–varying unknown parameter

vector, which is assumed to be sparse, i.e., it has a small number of non–zero coefficients.

An LMS based algorithm for sparsity–aware learning can be found in [49, 50].

Adaptive algorithms in ad–hoc networks, which adopt the diffusion rationale, have been

proposed for modeling the behavior of bee swarms, fish schools, bird formations, mobile

networks, etc, see e.g., [25, 88, 138, 139]. Another issue, which is dealt in the studies [23, 24]

is the hierarchy of the network. More specifically, different transmission capabilities are

assigned to a subset of the node set, depending on their position on the network and the

goal is to enhance the network flow.

All the previously mentioned adaptive distributed algorithms consider the case of linear

parameter estimation. More precisely, it is assumed that the data obtained at each node
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are related via an unknown vector, which is the one to be estimated from the nodes of the

network. The study in [32] proposes a diffusion–based technique for minimizing general

cost functions. Finally, [34] treats the case where nodes are tasked to minimize general cost

functions in a scenario where the communication among them is non–ideal.

1.3 Objectives

The main objective of this dissertation is to develop algorithms in the context of adaptive

estimation in distributed networks. The diffusion rationale is adopted and the proposed

algorithms belong to the APSM algorithmic family. Our effort can be divided in the following

research areas:

• Study and development of adaptive techniques, which are tasked to “harmonize”, i.e., to

bring “close”, the spatial information, received from the neighborhood, with the locally

sensed one. A challenge, which arises in distributed learning, is that despite the fact

that the nodes share a common objective, the statistics of the locally sensed information

may differ significantly from node to node. In adaptive distributed learning, this can

lead to slow convergence speed of the developed algorithms. This motivated us to

propose a technique, [40,41], through which this problem is overcome. More specifically,

following the diffusion rationale, the information coming from the network is fused

under some certain protocol. In order to harmonize this information with the locally

sensed data, the fused information is projected onto a set, which is constructed by

exploiting the local measurements. We observed experimentally that this enhances

significantly the performance of the algorithm.

• Development of schemes which are robust to cope with possible node failures:

The scenario where a subset of the node set is malfunctioning is often met in real

world applications involving distributed networks. Therefore, there is a strong need to

develop techniques, which bypass the information transmitted from these nodes and

rely on the information coming from the “healthy” ones. More analytically, the sce-

nario in which a number of nodes sense measurements, which are heavily corrupted

by noise, was considered in [41]. The problem is successfully solved by adopting the
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Huber cost function, [70], which is drawn from the “armory” of the robust statistics

theory. Employing this cost function, the contribution of the corrupted nodes is re-

duced significantly and the performance of the scheme is enhanced, compared to the

case where classical cost functions are used for the parameter estimation.

• Sparsity–aware adaptive distributed learning: The adaptive estimation of sparse vectors

in ad–hoc networks is an issue of significant importance, since a plethora of signals met

in nature adhere to sparse representations. Typical examples of such signals, which

are also met in the distributed estimation problems, are sparse echo signals, sparse

wireless channels, just to name a few, e.g., [19]. As it is by now well documented in

the literature, e.g., [4, 21, 82], the estimation of sparse vectors is aided by the use of

the so–called ℓ1 norm constraints (see Chapter 5). A more sophisticated route is the

use of weighted ℓ1 norm constraints [22]. Having the weighted ℓ1 norm constraints as a

kick–off point, we developed an APSM based algorithm for distributed learning, which

exploits the sparsity of the unknown vector to be estimated, e.g., [39, 45]. For further

performance enhancement, the notion of proportionality, e.g., [8, 54], is also adopted.

To this end, different weights are assigned to different coefficients of the computed

estimates and the goal is to lead the small coefficients to diminish faster. A theoretical

analysis is carried out, and numerical examples verify the powerful performance of the

proposed scheme.

• Adaptive schemes, which reduce the communication demands, in scenarios where a large

amount of information has to be disseminated over the network: In adaptive distributed

learning, the collaboration among the nodes of the network, through information ex-

change, turns out to be beneficial to the performance of the algorithms, compared to

the case where each one operates individually (see for example [28]). This comes at the

price of increased bandwidth demands, since the nodes have to transmit information

to their neighbors. As it will become clear throughout this dissertation, the number

of transmitted coefficients is mainly dictated by the dimensionality of the vector to

be estimated. Hence, in scenarios where this dimensionality is large, the bandwidth

demands become a burden. Motivated by this fact, in order to reduce the number of

transmitted coefficients, we propose in [42, 43], a technique for dimensionality reduc-
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tion, which is based on the following philosophy. Instead of seeking for the unknown

vector, we seek for the projection of it onto a lower dimensional subspace. Through this

procedure (see Chapter 6), the nodes transmit a number of coefficients, which is equal

to the dimension of the subspace. The involved subspaces are the so–called Krylov

subspaces, named after the Russian applied mathematician and naval engineer Alexei

Krylov, who published a study on this issue in 1931, [83]. The Krylov subspaces were

originally proposed for solving large systems of linear equations avoiding matrix inver-

sions, e.g., [117]. Nevertheless, they have been also used in the adaptive filtering task,

e.g., [154, 155]. Employing Krylov subspaces for dimensionality reduction in adaptive

learning, provides a good trade–off between the accuracy of the algorithms and the re-

duction, in the sense that even if the subspace is of a significantly reduced dimension,

compared to the original space in which the unknown vector lies, the performance of

the algorithm is not seriously degraded; this is due to the optimality associated with

the Krylov dimensionality reduction technique.

1.4 Outline

The present thesis is organized as follows:

• Chapter 2 presents the basic concepts of distributed signal processing.

• Chapter 3 reviews classical adaptive algorithms, i.e., the LMS and the RLS, as well as

their distributed counterparts. Furthermore, the basic notions and ideas of the main

algorithmic tool, which will be used in this study, i.e., the APSM, are discussed.

• Chapter 4 proposes an APSM based distributed algorithm, which follows the diffusion

rationale. The main goal of this scheme is the harmonization between the locally sensed

data, and the information observed from the neighborhood. Moreover, a distributed

APSM, which is robust to deal with malfunctioning nodes is studied. The algorithm

employs the Huber cost function.

• Chapter 5 develops a sparsity–promoting APSM based algorithm, for adaptive learning

in distributed networks. Sparsity is enforced via weighted ℓ1 norm constraints and

variable metric projections.
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• Chapter 6 proposes a technique, which reduces the amount of transmitted information,

throughout the network. The presented scheme builds upon concepts of the APSM al-

gorithmic family and the dimensionality reduction takes place via the Krylov subspace

rationale.

• Chapter 7 summarizes the main conclusions of this dissertation and presents possible

directions for future research.
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Chapter 2

Basic Concepts of Distributed Signal

Processing

In this chapter, the basic concepts and principles of distributed learning will be discussed.

We first present a short overview of the research in distributed signal processing, which was

mainly developed in the context of the wireless sensor network applications. Furthermore,

we discuss the problem of distributed optimization and we provide the necessary background

on networks. In the sequel, we describe how the diffusion rationale is employed in the

decentralized optimization task. Finally, we present some distributed learning problems and

we apply the previously described tools for their solution.

2.1 Brief Historical Remarks and Recent Research Trends

in Distributed Signal Processing and Wireless Sen-

sor Networks

2.1.1 History of Research in WSNs

The need to develop decentralized algorithms began to grow in the 60’s. This was a direct

consequence of several facts. The most important one, however, stemmed from the emergent

need for exploitation of the WSNs technology. As with many technologies, the research in

WSNs was driven by military applications. During the Cold War, a network of acoustic
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sensors, named Sound Surveillance System (SOSUS), was deployed on the ocean bottom, for

tracking Soviet submarines. This network was the ancestor of many modern WSNs used for

acoustic Signal Processing applications, e.g., the distributed echo cancellation system used

in Hands-Free technologies, [85], the video conferencing noise canceler [84], etc. Nowadays,

this system remains active and it is used for monitoring seismic and animal activity in the

ocean, [37, 106]. Another important distributed signal processing application, which was

developed during the Cold War, was the Airborne Warning and Control System (AWACS).

This system consisted of multiple radars, acting as nodes of the network, which sensed

information coming from the air and warned for possible hazards.

In the decade of the 80’s, the Defense Advanced Research Projects Agency (DARPA)

gave a boost in the distributed signal processing research field. The DARPA project was

based on the Arpanet [99], which was the predecessor of the Internet. In a nutshell, the

goal of this project was to study whether the basic principles of the Arpanet could be

extended to WSNs. The proposed network consisted of cheap sensors, which were spatially

distributed and collaborated with each other. A number of research challenges rose via

the DARPA, such as: artificial intelligence issues, distributed signal processing techniques,

routing methodologies, distributed software algorithms, just to name a few. These issues

were summarized and discussed in the workshop [1]. The application, which demonstrated

the results of the DARPA project, was the Distributed Acoustic Tracking problem.

In 1984, researchers at the Massachusetts Institute of Technology (MIT) studied dis-

tributed signal processing techniques for helicopter tracking applications [104]. The approach

involved human heuristic methodologies. A generalization of this research, for multiple tar-

get tracking in a decentralized fashion, was studied at the same time in the Advanced

Decision Systems (ADS). A multiple hypothesis tracking algorithm was developed in order

to overcome limitations and problems, e.g., false alarms, missing detections etc, [38].

The research in the early 90’s focused, mainly, on military applications. A celebrated

example was the network–centric warfare. In this application, sensors collected information,

collaborated with each other and transmitted commands to the respective weapon/shooters

e.g., [3]. WSN’s employed for military purposes in the decade of the 90’s were also the

Cooperative Engagement Capability developed by the U.S. Navy, the Advanced Deployable

System the Remote Battlefield Sensor System, etc, (see also [37]).
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2.1.2 Research trends and Applications involving Distributed Learn-

ing

In this section, we will briefly discuss typical recent real–life applications, which involve

WSNs and decentralized processing.

Exploiting the technology advances of the 21st century, distributed signal processing and

WSNs were put at the heart of a number of emergent applications. Two factors led to this

direction. The first one was the advances in processors, which allowed the use of cheap and

small sensors with considerable computational capabilities. The second one was the devel-

opment of sophisticated communication protocols, such as the IEEE 802.11 standard, which

increased significantly the available bandwidth. Celebrated examples of such applications

include: the environmental and habitat monitoring, the forest fire detection, medical ap-

plications, such as the Body Area Network (BAN), spectrum allocation for cognitive radios

and the traffic control.

• In environmental and habitat monitoring, a large number of sensors are scattered over

a geographic region and the goal is to track climatic trends, measure the population

of certain species, temperature/humidity and so on. The sensors measure acoustic

image signals. Environmental monitoring applying WSNs takes place in the Center of

Embedded Network Sensing project, [37], and in the System for the Vigilance of the

Amazon, [71]. The latter project provides information regarding environmental issues

and drug trafficking activities.

Possible anomalies of the region, onto which the sensors are deployed, may block the

line of sight among them. Henceforth, a centralized network, which requires that all

the nodes are able to communicate with the FC, can not be employed in environmental

monitoring scenarios. This fact together with the need to consume a small bandwidth,

brings out the need for the cooperation among the nodes of the network in an essentially

decentralized mode of operation.

A very important environmental oriented application is the forest fire detection. Wire-

less sensors deployed in a forest are tasked to detect and provide crucial information

about the origin of a fire, so as to prevent it from spreading uncontrollably. Usu-

ally, these sensors operate with solar energy and collaborate with each other so as to
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overcome obstacles, such as large trees and rocks, which block their communication.

• WSNs play an important role in medical applications. A celebrated example is the

Body Area Network (BAN), e.g. [74], which is envisioned to be widely used in the

future. BAN is a network of sensors, which are placed in the body of a patient, and

the goal is the early detection of hazardous conditions and their prevention if possible.

Medical applications, in which the BAN contributes, include stroke rehabilitation,

brain injury and surgery rehabilitation, blood pressure and temperature monitoring,

etc.

Tracking activities that take place inside hospitals is another important medical based

application, in which distributed processing is met. More specifically, patients have

sensors attached to them. These provide information about the heart rate, the blood

pressure, the temperature and so on. The information is sent to central data bases,

which keep the medical history of the patient. Doctors also carry sensors, which give

information about their location in the hospital. Last but not least, sensors can be

embedded to medication, so as to reduce the probability of wrong prescription. More

specifically, sensors are attached to the patients and the meditations and if a patient

happens to be allergic to an ingredient of a drug, then the interaction between them

will prevent the patient from taking that drug.

• Radio spectrum allocation is an emergent application, which is envisioned to be at

the forefront of research in the distributed signal processing field. The main idea is

that a number of primary users transmit to certain bands, at specific time instances,

whereas the rest, known as secondary users, collaborate with each other in order to

find the unoccupied bands. The importance of this task is increased by the fact that

modern devices, e.g., smart phones or tablets, exchange a large amount of data and

henceforth each one has to find the spectrum holes so as to transmit the essential in-

formation. The term spectrum hole stands for a band of frequencies, which is assigned

to a primary user, but it is not being used by this user, at a certain time instance,

e.g., [64, 118]. A spectrum sensing technique has been proposed in [112]. This tech-

nique requires centralized operations, since an FC is considered. Fully decentralized

approaches for spectrum sensing have been proposed in the works [7,25]. This problem
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will be discussed in more detail in section 2.3.3.

• Another important application, in which distributed signal processing in WSNs takes

place is the so called Traffic Control. The concept is the following. Cheap sensors,

which estimate the vehicle traffic, are deployed in road intersections. These sensors

exchange information with each other and produce a global estimate for the traffic of

a region. This knowledge can be exploited so as to inform the drivers about roads

to be avoided, or to control the traffic lights. Another viewpoint to this problem was

proposed in [56]. There, instead of deploying static sensors in intersections, the sensors

are instead placed in the vehicles. When the vehicles meet, they exchange information

regarding the location or the density of traffic jams. Notice that this application is

totally decentralized, since the vehicles act as the nodes of the network.

2.2 Basic Principles of Distributed Learning and Dif-

fusion optimization

In this section, the basic principles of distributed learning will be reviewed, under the dif-

fusion viewpoint. This section serves as an introduction to the basic “tools” and notions,

which will be used in this dissertation.

2.2.1 Motivation

A network consisting of N nodes is considered, and the goal is the estimation of an unknown,

but common to all parameter vectorw∗ ∈ Rm. As it will become clear later on, this approach

is general and many applications can be seen as special cases of the distributed estimation

task. In the “ideal” scenario, where a central node is present, the estimation of the unknown

vector can be carried out via a minimization of a properly chosen global cost function, i.e.,

w∗ = arg min
w

Jglob(w). (2.1)

The term global indicates that this cost function contains information coming from all the

nodes of the network. On the contrary, in decentralized learning, where an FC is not present,
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each node has access to the information obtained only by itself as well as its neighborhood;

i.e., the nodes of the network with which communication is possible. Fortunately, if each

node cooperates with its neighbors and these also cooperate with their own neighbors, the

goal of obtaining a solution at each node, which will be as close as possible to the global

one, becomes feasible. This is exactly the main idea of decentralized learning; develop

proper cooperation techniques, taking into consideration the constraints of the network and

allowing only partial knowledge at each node, so as to reach a solution, which will be as close

as possible to the centralized one. In the next sections, we will shed light on the cooperation

techniques, and we will discuss methodologies for solving a special case of the optimization

problem (2.1) in a fully decentralized fashion.

2.2.2 Networks and Neighborhoods

We consider an ad–hoc network, which is illustrated in Fig. 2.1 The node set is denoted

by N := {1, 2, . . . , N} and we assume that each node, say k, is able to communicate and

exchange information with a subset of the node set, namely Nk. For example, in Fig. 2.1

the neighborhood of node 1 comprises the following nodes: N1 = {1, 3, 5}. Throughout this

dissertation, the following assumptions regarding the network are considered

• Each node is a neighbor of itself, or in mathematical terms k ∈ Nk, ∀k ∈ N .

• Symmetry is assumed, i.e., l ∈ Nk ⇔ k ∈ Nl, ∀k, l ∈ N .

• The network is assumed to be connected, or in other words, for any two nodes of the

network, there exists at least one path connecting them. If the nodes are able to

communicate, then the path is the direct link connecting them, otherwise the path is

multihop, i.e., it contains more than one nodes. For example, nodes 1 and 3 commu-

nicate directly, whereas nodes 1 and 7 communicate via the path 1 → 3 → 7.

The number of neighbors of node k, which coincides with the cardinality of Nk, i.e., |Nk|,

defines the degree of this node. For example, node 3 has degree equal to 4.

As it has been already stated, each node receives information, which is transmitted by its

neighborhood. Let us describe how this information is exploited. Fix an arbitrary node, say

k. For each k a nonnegative weight is assigned to each neighbor which scales appropriately
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k = 1

k = 5

k = 3

k = 4

k = 2

k = 6

k = 7

Figure 2.1: Illustration of an ad–hoc network.

the data coming from it. In the sequel, an aggregate of all these scaled data is computed.

This information fusion is at the heart of the diffusion optimization rationale. The weights,

which are also known as combination weights, will be denoted by ck,l, ∀k ∈ N , ∀l ∈ Nk,

where the subscripts k, l imply that the information transmitted by node l to node k, is

weighted via ck,l. Some typical examples of combination rules are:

• Averaging Rule:

ck,l =


1

|Nk|
, if l ∈ Nk,

0, otherwise

• Metropolis Rule:

ck,l =


1

max{|Nk|,|Nl|}
, if l ∈ Nk, and l ̸= k

1−
∑

l∈Nk\k ck,l, if l = k

0, otherwise.

• Relative Degree:

ck,l =


|Nl|∑

j∈Nk
|Nj | , if l ∈ Nk

0, otherwise.

All the previous combination rules share in common the properties: ck,l = 0, ∀l /∈ Nk,

ck,l > 0, ∀l ∈ Nk and
∑

l∈Nk
ck,l = 1. Notice that the combination weights provide us

with information regarding the network, since if ck,l = 0 then l /∈ Nk, i.e., node l does not

belong to the neighborhood of node k. If l ∈ Nk then the value of ck,l is positive. Since
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ck,l > 0, ∀l ∈ Nk and
∑

l∈Nk
ck,l = 1, then each node computes a convex combination of the

data coming from the neighborhood.

It is worth pointing out that in the Relative Degree rule, larger weights are assigned

to those of the nodes, which have a large degree. More sophisticated approaches, which

assign larger weights to the nodes which have smaller noise variances, and henceforth their

information is more “reliable” compared to the noisier ones, have been proposed in the

studies [72, 132].

Remark 1. The topology of a network is determined by the deployment of the sensor/nodes

over the geographical region. A commonly adopted topology is the incremental one, e.g.,

[90, 93]. Each sensor is able to exchange information with only one node and consequently

the nodes constitute a ring pattern. Although this topology requires small communications

bandwidth, it is not practical to be applied in networks with many nodes. This is a direct

consequence of the fact that the construction and the maintenance of such a network requires

a Hamiltonian Cycle, which is an NP hard task, e.g., [107]. Moreover, in a possible node

failure, the network collapses. For these reasons, in many applications adopting the ad–hoc

topology is preferable.

2.2.3 Distributed Learning via Diffusion Optimization

In this subsection, the basic notions of diffusion optimization will be reviewed. Our goal is

to explain in short, the principles that govern the cooperation among the nodes, and how

these can be beneficial to the learning procedure.

As we have already stated, the ultimate goal is the estimation of an unknown vector, say

w∗ ∈ Rm, which is common to the nodes of the network. Throughout this dissertation, the

linear regression model will be adopted, i.e., we consider that each node, k, at each discrete

time instance n, has access to a scalar dk,n ∈ R and a vector uk,n ∈ Rm, which are related

via

dk,n = uT
k,nw∗ + vk,n. (2.2)

The term vk,n stands for the additive noise process. As we will see later on, the linear

system is very general and many real–world applications can be modeled as special cases of

(2.2). Several techniques and criteria have been proposed for the estimation of w∗, when the
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measurements obey (2.2). For illustrative purposes here, we adopt the Mean Square Error

(MSE) criterion, e.g., [63, 120]:

Jk(w) = E[dk,n − uT
k,nw]2. (2.3)

Firstly, we will describe the methodology for the minimization of Jk(w) in the scenario where

each node operates individually; i.e., when it does not cooperate with its neighbors. The

random processes, dk,n, uk,n, are assumed to be zero–mean and jointly–wide sense stationary,

e.g., [120]. Let us define the following second order quantities:

Rk = Euk,nu
T
k,n (2.4)

pk = Euk,ndk,n (2.5)

σ2
d,k = Ed2k,n (2.6)

If we expand (2.3) we obtain

Jk(w) = σ2
d,k − 2wTpk +w

TRkw. (2.7)

The cost function Jk(w) is differentiable and convex (see also Chapter 3), hence to attain

its minimum value, the gradient ∇Jk(w) must equal to zero. The resulting relation is the

following:

wo = R
−1
k pk, (2.8)

where the autocorrelation matrix Rk is assumed to be positive definite and henceforth in-

vertible. It has been verified, e.g., [120], that the optimum point, wo, obtained by the

minimization of Jk(w) coincides with the unknown vector w∗. The minimum value of the

loss function equals:

Jk,min = J(w∗) = σ2
d,k − pTkR−1

k pk. (2.9)

Despite the fact that the minimization of Jk(w) leads to the unknown solution, knowledge

on the statistics Rk, pk is required, which is not always feasible. However, this problem

can be overstepped, as it will become clear in the next chapters, if one resorts to adaptive

techniques, which estimate w∗ using the measurement data (dk,n,uk,n) obtained at each time
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instance. Adaptive techniques can also be accommodated in scenarios where the unknown

vector and/or the statistics undergo changes.

So far, we have considered the case where each node uses local knowledge only, i.e.,

the statistics Rk, pk, so as to estimate w∗. In this scenario, the fact that all the nodes

try to estimate the same unknown vector is not taken into consideration. However, it has

been verified that the cooperation among the nodes is beneficial to the performance of the

developed algorithms, e.g., [28]. To this end, we will shed some light on how the nodes

can collaboratively estimate the unknown vector. First of all, let us define the global cost

function:

Jglob(w) =
∑
k∈N

Jk(w). (2.10)

It is obvious that this cost function is the “optimum” one in the sense that it contains

information coming from the whole network and its minimization requires the existence of

an FC. Now, let us define the local cost at each node, given by:

Jk,loc(w) =
∑
l∈Nk

ck,lJl(w), (2.11)

where ck,l are the weights, which are defined in subsection 2.2.2. Notice that since ck,l =

0, l /∈ Nk, then each node uses information coming from its neighborhood. Hence, the

minimization of (2.11) can take place in a fully decentralized way. Indeed, the global cost is

related to the local costs as follows:

Jglob(w) =
∑
l∈N

∑
k∈N

ck,lJl(w) (2.12)

=
∑
k∈N

∑
l∈N

ck,lJl(w) (2.13)

=
∑
k∈N

Jk,loc(w) (2.14)

Let us now reformulate the local optimization problem, which involves the minimization of

Jk,loc(w), as follows:

min
w

Jk,loc(w) + λ
1

2
∥w −w∗∥2. (2.15)

Symeon N. Chouvardas 50



2.2 Basic Principles of Distributed Learning and Diffusion optimization

The reasoning of the extra term is to lead the obtained solution to lie “close” to the unknown

vector, pretending that it is “known”. Its contribution is weighted by the regularization

parameter λ. A classical technique, which can be employed for the minimization of this

constrained optimization problem is the stepest–descent iterative method (see for example

[120]). Employing the stepest–descent, in order to find a solution to the problem described

in (2.15), the following iterative scheme occurs:

wk,n+1 = wk,n + µk

∑
l∈Nk

ck,l(pl −Rlwk,n) + µkλ(w∗ −wk,n), (2.16)

where wk,n denotes the estimate obtained at the n–th iteration at node k, and µk is the

step–size. Obviously, w∗ is unknown and it cannot be employed in the iterative scheme

of (2.16). So, we substitute it with a combination of the most recent estimates, which are

obtained by the neighborhood. Thus, we reformulate (2.16) to obtain:

ψk,n = wk,n + µk

∑
l∈Nk

ck,l(pl −Rlwk,n) (2.17)

wk,n+1 = ψk,n + µkλ

 ∑
l∈Nk\k

bk,lψl,n −ψk,n

 , (2.18)

where for the weights bk,l, it holds
∑

l∈Nk\k bk,l = 1. Notice that, in contrast to (2.16),

equation (2.18) uses ψk,n instead of wk,n in the term included due to the constraint, this

is because the former is generally a better estimate of w∗ compared to the latter. Assume

a sufficiently small µk, which guarantees that 0 < (1 − µkλ) < 1, and define ak,k := 1 −

µkλ, ∀k ∈ N and ak,l = µkλbk,l. It is obvious that the weights ak,l satisfy the properties

ak,l > 0, l ∈ Nk, ak,l = 0, l /∈ Nk and
∑

l∈Nk
ak,l = 1. Plugging the weights ak,l in equations

(2.17), (2.18), we obtain:

ψk,n = wk,n + µk

∑
l∈Nk

ck,l(pl −Rlwk,n) (2.19)

wk,n+1 =
∑
l∈Nk

ak,lψl,n. (2.20)

Equations (2.19), (2.20), describe the celebrated Adapt–Combine (A–C) Diffusion strategy.
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This cooperation strategy is named this way because in step (2.19) each node performs a

learning operation, based on the statistical quantities obtained by the neighborhood, and in

step (2.20) the nodes combine and fuse the previously computed estimates. In Chapter 3,

we will study adaptive techniques, which follow the A–C cooperation strategy.

Equations (2.16) can be rewritten as follows:

ψk,n = wk,n + µkλ(w∗ −wk,n) (2.21)

wk,n+1 = ψk,n + µk

∑
l∈Nk

ck,l(pl −Rlwk,n). (2.22)

Using similar arguments as in the A–C diffusion cooperation strategy we conclude that:

ψk,n =
∑
l∈Nk

ak,lwl,n (2.23)

wk,n+1 = ψk,n + µk

∑
l∈Nk

ck,l(pl −Rlψk,n). (2.24)

Equations (2.23) and (2.24) constitute the Combine–Adapt (C–A) Diffusion strategy. It can

be readily seen that in this cooperation strategy, each node fuses the information received by

its neighbors and then uses this aggregate in the adaptation step. In [136], the A–C strategy

is compared to the C–A one, in terms of computational complexity and performance. There,

it was proved that if one employs an LMS–based algorithm in the adaptation step then the

A–C strategy outperforms the C–A one.

Remark 2. In the diffusion optimization strategy, the cooperation among the nodes of the

network can be seen as a “combination” of the information obtained by the neighborhood,

which is determined by the weights ck,l, ak,l. According to the previous discussion, the com-

bination of the estimates of the neighboring nodes, is the consequence of a constraint, the

goal of which is to lead them to be “close” to each other. Another viewpoint is the one that

runs across the so-called consensus–based algorithms. According to this rationale, constraints

which force the estimates at the nodes of the network to be the same, are employed. Usually,

the resulting optimization problem can be solved via the Alternating Direction Minimization

Multipliers, e.g., [10]. Consensus–based algorithms have been adopted in several distributed

learning tasks, such as, distributed adaptive filtering, e.g., [98,123], distributed linear estima-
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tion, e.g., [115], collaborating spectrum sensing, e.g., [7], just to name a few. Nevertheless,

it has been shown in [136], that in the distributed adaptive learning task, the diffusion based

algorithms outperform the consensus based ones.

Remark 3. The combination weights ck,l in (2.20) and (2.24) indicate that the nodes ex-

change the input/output statistics, i.e., pk, Rk, or as we will see later on, in the adap-

tive operation mode, their respective measurements, dk,n, uk,n. However, this information

exchange and exploitation increases the bandwidth demands as well as the computational

complexity. To this end, in many applications, it is assumed that ck,k = 1, ∀k ∈ N and

ck,l = 0, ∀k ∈ N , ∀l ∈ Nk \ k, or in other words, each node exploits its local statistical (or

measurement) information, and combines only the estimates of its neighborhood.

2.3 Applications of Distributed Learning and Diffusion

optimization

In this section, we will discuss three distributed learning paradigms, in order to illustrate how

the previously presented arguments, regarding the diffusion philosophy, can be employed to

attack practical applications. The first one is the so–called target localization, in which we

consider a network, where the nodes are interested in estimating the location of a certain

target. The second application is the distributed averaging one. More specifically, each node

of the network has access to a certain value and the nodes are tasked to estimate the average

of all these values. Finally, we will describe the problem of collaborative spectrum sensing, in

which a number of nodes, the so–called Secondary Users (SUs), wish to estimate unoccupied

spectrum bands so as to transmit information.

2.3.1 Distributed Learning met in nature

As we have already discussed, at the heart of distributed learning is the concept of collab-

orative decision making. That is, the nodes make decisions exploiting: a) the information

which is locally known and b) the information received by their neighbors. The roots of

this philosophy stem from basic principles of the nature. A celebrated example is the first

communities, in which ancient people organized, so as to fulfill collaboratively their basic
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Unknown target

Noisyless direction vector

Obtained (noisy) direction vector

gk

ĝk,n

Node k

Unit norm circle

Figure 2.2: Illustration of a node, the target source and the direction vectors.

needs for food, sheltering, etc. Many paradigms drawn from the nature can be modeled as

decentralized networks, with nodes whose purpose is to achieve the same goal. Networks

consisting of living organisms are also known as biological networks. In the sequel, we present

an example of a biological network, the nodes of which have the goal of estimating a specific

target; we will explain in brief how the diffusion rationale can be employed in this problem.

Target Localization

Consider a network consisted of N nodes, whose goal is to estimate and track the location

of a specific target. The nodes can possibly represent fish schools, which seek for a nutrition

source, e.g., [138], bee swarms, which search for their hive, e.g., [88], bacteria seeking for

nutritive sources, e.g., [33]. The location of the unknown target, say w∗, is assumed to

belong to the two-dimensional space, with definition w∗ = [w
(1)
∗ , w

(2)
∗ ]T , where w(1)

∗ and w
(2)
∗

are its coordinates. The position of each node is denoted by wk = [w
(1)
k , w

(2)
k ]T , and the true

distance between node k and the unknown target equals to

rk = ∥w∗ −wk∥. (2.25)

The vector, whose direction points from the node k to the unknown source, is given by:

gk =
w∗ −wk

∥w∗ −wk∥
. (2.26)

Obviously, the distance equation can be rewritten in terms of the direction vector as follows:

rk = g
T
k (w∗ −wk). (2.27)
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Usually, it is assumed that k senses the distance and the direction vectors via noisy obser-

vations. Following a similar rationale as in [138], the noisy distance scalar can be modeled

as follows:

r̂k,n = rk + vk,n, (2.28)

where n stands for the discrete time instance and vk,n for the additive noise term. The

noise in the direction vector is a consequence of two effects: a) a deviation occurring along

the direction, which is perpendicular to gk and b) a deviation that takes place along the

parallel direction of gk (see Fig. 2.2). All in one, the noisy direction vector, occurring at

time instance n, can be written as:

ĝk,n = gk + v⊥k,ng
⊥
k + v

∥
k,ngk, (2.29)

where v⊥n is the noise corrupting the unit norm perpendicular direction vector, i.e., g⊥k and

v
∥
n is the noise occurring at the parallel direction vector. Taking into consideration the noisy

terms, (2.28) is given by

r̂k,n = ĝTk,n(w∗ −wk) + ηk,n, (2.30)

where

ηk,n = vk,n − v⊥k,ng
⊥T
k (w∗ −wk)− v

∥
k,ng

T
k (w∗ −wk). (2.31)

Equation (2.30) can be further simplified if one recalls that by construction g⊥T
k (w∗−wk) =

02. Moreover, typically the contribution of v⊥k,n is assumed to be significantly larger than

the contribution of v∥k,n. Henceforth, taking into consideration these two arguments, (2.31)

can be rewritten as:

ηk,n ≈ vk,n. (2.32)

If one defines dk,n := r̂k,n + ĝTk,nwk and combines (2.30) with (2.32) the following model

results:

dk,n ≈ ĝTk,nw∗ + vk,n. (2.33)

Equation (2.33) is a special case of the previously described linear model. Henceforth, the

“tools” discussed in previous sections can be employed for the estimation of the unknown

target source, i.e., w∗. The study in [138] proposes an LMS–based algorithm for the compu-
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tation of this vector. As it will become clear later on, this algorithm is suitable for environ-

ments, in which the position of the source is changing, and, henceforth, the nodes have to

be able to track these alterations. It is worth pointing out that the cooperation principles,

which are described in subsection 2.2.2, are adopted in [138], so that the nodes estimate

the position of the unknown source in a collaborative way. More specifically, each node

minimizes the cost function Jk,loc(w) =
∑

l∈Nk
ck,lJl(w), where Jl(w) = E(dl,n − wT ĝl,n)

2.

Then the A–C or the C–A diffusion scheme can be employed for the computation of w∗.

Indeed, it has been verified that the information exchange and fusion enhances significantly

the ability of the nodes to estimate and track the target source.

2.3.2 Distributed Averaging

A problem of great importance met in distributed signal processing, is the distributed av-

eraging or distributed consensus task. The general concept can be summarized as follows.

Given an N node network, where each node has access to a scalar quantity, xk, ∀k ∈ N ,

the goal is to reach consensus to the average value, w∗ or in other words, the nodes are

interested in estimating:

w∗ =
1

N

∑
k∈N

xk. (2.34)

The distributed consensus problem is met in numerous applications, such as: data fusion

[119], vehicle formation [57], distributed inference [77], just to name a few. A straightforward

solution to this problem is to employ a FC, which collects the scalar values from the nodes of

the network, computes w∗ and transmits it back to the nodes. Nevertheless, as it has been

already stated, this solution presents many drawbacks. We are interested, henceforth, to

solve the problem in a fully decentralized way. Another possible technique is the flooding one.

According to this, the nodes transmit their values to the neighborhood and in the sequel, the

neighbors transmit the information to their neighbors and so on. This procedure is completed

when every node has access to all the data and is able to compute the desired average value.

The flooding methodology is not robust due to the fact that in large networks the nodes

have to store a large number of values. Moreover, if the network is sparse, i.e., the number

of links of the network is small, if the latter represented as a graph, then a significant delay

may occur. Finally, this technique consumes a large amount of the bandwidth resources,
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since nodes with many neighbors have to transmit their values to the other nodes, with

which communication is possible.

Another more efficient route is to resort to techniques, which compute w∗, exploiting

solely information coming from the neighborhood, e.g., [51,146,147]. More specifically, each

node collects data from the neighborhood, fuses them under a certain rule and the goal is

to achieve consensus to the average value. Consider the following iterative scheme at each

node

xk,n =
∑
l∈N

ck,lxl,n−1, (2.35)

with initial values xk,0 = xk, ∀k ∈ N . The combination weights ck,l can be chosen with

respect to several rules, e.g., the Metropolis rule presented in subsection 2.2.2. If one recalls

the property ck,l > 0, ∀l ∈ Nk, ck,l = 0, ∀l /∈ Nk, (2.35) trivially implies that each node

exploits neighborhood information, which is in line with the basic principles of decentralized

processing. Gathering all xk,n’s in a vector xn = [x1,n, . . . , xN,n]
T ∈ RN , then (2.35) can be

written equivalently for the whole network as follows:

xn =Wxn−1, (2.36)

whereW is an N×N matrix with entries given by ck,l. Consider that the matrixW satisfies

the following properties:

1. 1T
NW = 1T

N , where 1N ∈ RN is the vector of ones.

2. W1N = 1N .

3. τ(W −1N1
T
N/N) < 1, where τ(·) stands for the maximum eigenvalue of the respective

matrix.

Property 1 implies that the vector of ones is a left eigenvector of W , which in turn indicates

that 1T
Nxn = 1T

Nxn−1 = . . . = 1T
Nx0. The last relation shows that the sum of the individual

values, therefore their average, is preserved at each step. From Property 2, it can be seen

that 1N is a right eigenvector of W and it is a fixed point of (2.36). Finally, combining the

previous properties with Property 3, it can be proved, e.g., [146], that 1 is an eigenvalue of

the combination matrix W . Methodologies for constructing the combination matrix so as

to fulfill these properties in a fully decentralized way, have been proposed in, e.g., [146].
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Theorem 1. Assume that the matrix W satisfies Properties 1-3. Then it holds that [146]:

lim
n→∞

xn = w∗, (2.37)

with w∗ = [w∗, . . . , w∗]
T ∈ RN . In words, each node gains access to the desired average value.

This theorem is a direct consequence of the fact that the assumptions regarding the

combination coefficients ensure that

lim
n→∞

W n =
1

N
1N1

T
N . (2.38)

Another important class of distributed consensus algorithms is the one of randomized

gossip algorithms, e.g., [16,51]. The goal remains the same, i.e., the nodes desire to compute

the average value, as in the classical consensus averaging algorithms. The difference lies in

the fact that at each time instance, a single node exchanges and fuses information with a

single neighbor. Moreover, this procedure takes place in a stochastic way, since a random

node of the network and a random neighbor of this node, are picked at each time instance.

Fix a certain time instance n and consider that node k is chosen at random, to exchange

information with node l. At the end of this gossip round, k and l will have access to the

values xk,n =
xk,n−1+xl,n−1

2
. This procedure can be written compactly for the whole network

as follows:

xn =Wnxn−1, (2.39)

where the matrix Wn, which is time–varying in this scenario, has two non–zero entries, at

the positions k, l and l, k, and they equal to 1/2. Despite the fact that the desired behavior is

the same as in classical distributed consensus averaging, i.e., limn→∞ xn = w∗, the analysis

is different due to the stochastic nature of the matrix Wn. First of all, assume that the

combination matrices are selected independently and EWn = EW0 = EW , ∀n ∈ Z, where

the time instance is suppressed. Employing the expectation operator in (2.39) we have:

Exn = E

(
n∏

i=0

Wi

)
xi = (EW )nx0, (2.40)
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where the second equality holds since the matrices are selected independently. Notice that

Properties 1,2 hold true for the matrix Wn, ∀n ∈ N, and, hence, they hold for EW . If

Property 3 is valid for the matrix EW , i.e, τ(EW − 1N1
T
N/N) < 1 then

lim
n→∞

Exn = w∗, (2.41)

i.e., the nodes reach consensus in the mean. Unfortunately, the convergence in the mean

property provides us with little information about the behavior of the algorithm in terms of

convergence speed. To this end, the ε̆–averaging time is introduced. Given a positive ε̆ > 0

and an initial vector x0 the ε̆–averaging time equals to:

Tav(ε̆) = sup
x0

inf
n

{
P
(
∥xn −w∗∥

∥x0∥
≥ ε̆

)}
≤ ε̆. (2.42)

The ε̆–averaging time indicates the earliest time index n, in which the distance between the

networkwise vector xn and w∗ is smaller than ε̆ with probability greater than 1 − ε̆. This

measure is very useful because it helps us to bound the number of iterations, which are

needed in order to achieve a certain performance (dictated by ε̆).

Theorem 2. For any randomized consensus algorithm, which converges in the mean, the

ε̆–averaging time is bounded by [16]:

Tav(ε̆) ≤
3 log ε̆−1

1− τ2(EW )
, (2.43)

where τ2(EW ) is the second largest eiqenvalue of the matrix EW .

Taking a closer look at (2.43), it can be obtained that the desired accuracy is dictated

by: a) the distance ε̆ and b) the parameter τ2(EW ). The first factor indicates that a

smaller distance between the desired vector and the obtained one, requires a larger number

of iterations, which is an expected behavior. The second factor, i.e., the second largest

eigenvalue contains information about the topology of the network and it has been employed

in several works, e.g., [14, 58]. For this eigenvalue it holds that τ2(EW ) ≤ 1. In order to

guarantee asymptotic consensus, the topology of the network has to be properly chosen so

as to ensure that the eigenvalue will be strictly less than 1. Furthermore, from (2.43), it
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can be seen that if τ2(EW ) is small, then the ε̆–averaging time requires a smaller number of

iterations, in order to achieve a certain accuracy ε̆.

Apart from the network topology, the value of τ2(EW ) is determined by the probability

distribution at the edges of the network [15]. Recall from the previous discussion that at each

time instance a random node of the network, say k, and a random neighbor of this node, l,

are chosen. We consider that the edge k, l is chosen with probability equal to Pk,l. In order

to accelerate the convergence speed, via reducing the ε̆–averaging time, [15] proposes the

following optimization problem:

minimize τ2(EW ) (2.44)

s.t.
∑

k∈N ,l∈Nk

Pk,l = 1 (2.45)

Pk,l ≥ 0. (2.46)

As it has been shown in [15], this problem is convex and can be solved using semi–definite

programming techniques, e.g., [17, 87].

Remark 4. In many applications involving WSNs, exchanging real valued scalars may be

prohibited due to bandwidth limitations. This limitation can be overstepped if a quantization

process takes place and, henceforth, the value of a transmitted coefficient is drawn from a

finite alphabet. Obviously in this scenario, there are no guarantees that the nodes will reach

consensus to the average value, due to the quantization distortion. Nevertheless, in the

studies [9, 81, 86], the quantized consensus algorithms are shown to converge to a value, the

distance of which from the true average, is bounded by known constants.

Remark 5. In the previous discussion, perfect communication among the nodes was assumed.

This means that the values transmitted throughout the network are not corrupted with noise.

However, this is not always the case. In numerous applications the communication among

the nodes is non–ideal and it has to be taken into consideration. Usually, the non–ideal

communication is modeled via additive noise or packet loss. In the first scenario, each node

receives the value sent by its neighbor corrupted by additive noise, whereas in the second

it is assumed that certain packets do not arrive to the receiver nodes. In [78, 114, 144]

independent failures in space are considered, i.e., failures that occur independently at the
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nodes of the network, and in time, that is link failure events are temporary independent.

However, all these studies consider a noiseless environment. Noisy information exchange

has been considered in [62, 69]. Consensus is guaranteed by employing decreasing weight

sequences. Finally, the study in [79] assumes both packet losses as well as additive noise

corruption.

2.3.3 Spectral Sensing for Cognitive Radios

In this section, we will describe the basic principles of Spectral Sensing in Cognitive Radio

systems. Moreover, we will explain how the basic issues of linear estimation using diffusion

optimization can be employed in this paradigm.

Cognitive radios comprise two types of users: the primary users (PU) and the secondary

users (SU). Secondary users need to detect unoccupied frequency bands, i.e., frequency bands

in which primary users are not active, and transmit information in these. This is important

since if a SU sends information in a band occupied by a PU, then harmful interference effects

may occur, e.g., [64,118]. A possible methodology, in order to carry out the spectral sensing

task at each SU, is the following. Each SU estimates the aggregated power spectrum, which

is transmitted by the PUs, and aftermaths locates the unused frequency bands. Consider an

environment with P primary users and S secondary ones. Let us define Sp(e
jω) to be the

power spectrum transmitted by PU p, p = 1, . . . , P , where j =
√
−1 and ω ∈ [−π, π] is the

normalized angular frequency. It is assumed that the power spectrum can be represented as

a linear combination of B functions fi(ejω) as follows:

Sp(e
jω) =

B∑
i=1

vp,ifi(e
jω), p = 1, . . . , P, (2.47)

where vp,i denotes the coefficients of the basis expansion for user p. A typical example of

the basis function is the Gaussian pulse, which is given by fi(e
jω) := e

− (ω−ωi)
2

σ2
i , where the

parameters ωi, σ
2
i are assumed to be known. Fix a certain PU, say p, and collect all the

coefficients vp,i in a vector: vp := [vp,1, vp,2, . . . , vp,B]
T ∈ RB, as well as the basis functions in

the following vector fω := [f1(e
jω), f2(e

jω), . . . , fB(e
jω)]T ∈ RB. Then, (2.47) can be written
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compactly as follows:

Sp(e
jω) = fT

ω vp. (2.48)

Now, let us denote with qp,k the path loss scalar from PU p to SU k. It is assumed that a

training procedure takes place so that the path loss coefficients are known to the system.

These coefficients are allowed to be slowly time–varying and hence the training stage, through

which they are estimated, has to be repeated at regular time intervals. Each SU k senses

information coming from all active PUs. Thus the power spectrum which arrives at SU k is

given by:

Sk(e
jω) =

P∑
i=1

qi,kSi(e
jω) + σ2

k

=
P∑
i=1

qi,kf
T
ω vp + σ2

k

= uT
k,ωw∗ + σ2

k, (2.49)

where σ2
k stands for the receiver noise power, uk,ω = [q1,kf

T
ω , . . . , qP,kf

T
ω ]

T ∈ RBP , w∗ =

[vT1 , . . . ,v
T
P ]

T ∈ RBP . At each time instance, node k senses the power spectrum Sk(e
jω) at

R different frequency samples, ω1, ω2, . . . , ωR, which lie in the interval [−π, π]. To this end,

the following model rises

dk,r(n) = Sk(e
jωr) = uk,ωrw∗ + σ2

k + vk,r(n), r = 1, . . . , R, (2.50)

where vk,r(n) denotes the sampling noise. Gathering the R measurements which are collected

at node k at time instance n, we obtain:

dk,n = Uk,nw∗ + vk,n, (2.51)

where dk,n = [dk,1(n)− σ2
k, . . . , dk,R(n)− σ2

k]
T ∈ RR, vk,n = [vk,1(n), . . . , vk,R(n)]

T ∈ RR and

the matrix Uk,n = [uT
k,ω1

,uT
k,ω2

, . . . ,uT
k,ωR

]T , of dimension R×BP .

Recall that the SUs wish to estimate the aggregate power spectrum of the PUs, in order
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to decide whether to transmit or not. This is equivalent to estimating w∗ since:

P∑
p=1

Sp(e
jω) = (1P ⊗ fω)w∗, (2.52)

where with ⊗ we denote the Kronecher product. The model in (2.51) is a slight modification

of the linear system, which was discussed in Section 2.2.3. The difference is that in the current

model at each time instance, each node obtains R measurements instead of one. Nevertheless,

the adopted methodology through which a solution is obtained, follows a similar philosophy

with the one presented in section 2.2.3.

First of all let us consider the case where each node estimates w∗ using only local mea-

surements. The following cost function is defined:

J(w) = ∥dk,n −Uk,nw∥2. (2.53)

Under similar assumptions regarding the statistics of dk,n and Uk,n as the ones presented in

2.2.3, and following similar steps, the minimization of (2.53) gives us the following equations:

pdkUk
= RUk

w∗ ⇔ w∗ = R
−1
Uk
pdkUk

, (2.54)

where pdkUk
= EUT

k,ndk,n and RUk
= EUT

k,nUk,n.

The cost function (2.53) can be minimized at each node via diffusion based optimiza-

tion, e.g., [122]; that is, the nodes exchange information (estimates and statistics) and fuse

them with respect to the previously discussed principles. In more practical scenarios, where

the statistics are not a–priori known and/or undergo changes, adaptive algorithms can be

employed so as to estimate the desired vector.

Remark 6. Another route, followed in [26, 30], is to resort to diffusion based distributed

detection techniques. In distributed detection, e.g., [140,141], each node, which in the certain

paradigm is a SU, decides whether a PU is present or not based on a hypothesis testing. In

principle, each SU performs computations and if a computed measure is above a certain

threshold, which is determined by the noise statistics , then it decides that the frequency

bands are occupied. On the contrary, if the computed value is smaller than this threshold
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then the bands are considered unoccupied. An LMS–based scheme is employed in [26] and

a set–theoretic one in [30]. Finally, a different viewpoint, proposed in the study [7], is to

adopt a parsimonious model for the power spectrum density and resort to sparsity promoting

techniques for its estimation.
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Chapter 3

Adaptive Filtering

In this chapter, the task of adaptive filtering will be discussed. More specifically, the major

characteristics of the LMS and the RLS algorithms will be presented. Furthermore, their

distributed/diffusion counterparts will be discussed. Finally, the set–theoretic based APSM

will be described together with its theoretical properties.

3.1 The LMS algorithm

Our kick off point is the linear system, which was discussed in chapter 2. Recall that the

goal is the estimation of a vector w∗ ∈ Rm, exploiting measurements obeying the following

model:

dn = uT
nw∗ + vn, n ∈ Z, (3.1)

where dn ∈ R, un ∈ Rm and vn ∈ R is the noise process. Notice that the node subscript is

omitted here, since we deal with a non–distributed adaptive filtering problem. As we have

already discussed in chapter 2, the estimation of w∗ is achieved via the minimization of the

following cost function:

J(w) = E[dn − uT
nw]2. (3.2)

Solving (3.2) we obtain w∗ as

w∗ = R
−1p, (3.3)
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where R and p are the autocorellation matrix and the crosscorelation vector, respectively.

A possible way for the computation of w∗, instead of solving (3.3) directly, is to resort to

iterative techniques, such as the steepest–descent method. The resulting recursion is:

wn+1 = wn − µ∇J(wn)

= wn + µ (p−Rwn) , (3.4)

where µ is the constant step–size and wn is the estimate of w∗ at the n–th iteration. For a

properly chosen step–size, it can be proved that wn → w∗, n→ ∞, e.g., [120].

In practice, the statistics R and p are rarely available and the gradient, i.e., ∇J(wn),

which requires knowledge of these quantities, cannot be computed exactly. A possible “es-

cape” route for such cases is the so–called stochastic gradient rationale. This belongs to

the more general family of stochastic approximation [116]; expected values are replaced by

their instantaneous measurements, e.g., [120]. The celebrated LMS algorithm belongs to the

family of the stochastic gradient schemes, where the following approximations are employed:

Rn ≈ unu
T
n and pn ≈ dnu

T
n . In this case, the gradient of the cost function is approximated

by:

∇J(wn) ≈ unu
T
nwn − dnun = (uT

nwn − dn)un. (3.5)

and the resulting recursion becomes:

wn+1 = wn + µ(dn − uT
nwn)un. (3.6)

The LMS scheme of (3.6) is one of the most commonly used adaptive filtering algorithms,

due to its simplicity and its robustness to deal with different learning scenarios. The LMS

algorithm was originally proposed by Widrow and Hoff in [143]. Finally, it is worth pointing

out that the theoretical properties of the LMS have been extensively studied in the literature,

e.g., [52,63,120], albeit under a number of assumptions. Although LMS is structurally simple,

it is a nonlinear time varying algorithm, which makes its analysis a formidable task.

Now, let us describe how the classical LMS can be generalized so as to address distributed

adaptive filtering problems. Our starting point will be the A–C and the C–A diffusion

schemes presented in Chapter 2. Recall that the recursion for the A–C diffusion algorithm
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is given by

ψk,n = wk,n + µk

∑
l∈Nk

ck,l(pl −Rlwk,n) (3.7)

wk,n+1 =
∑
l∈Nk

ak,lψl,n, (3.8)

whereas the C–A one is given by:

ψk,n =
∑
l∈Nk

ak,lwl,n (3.9)

wk,n+1 = ψk,n + µk

∑
l∈Nk

ck,l(pl −Rlwk,n). (3.10)

Using the instantaneous measurement approximation, i.e., pl−Rlwk,n ≈ (dk,n−uT
k,nwk,n)uk,n,

we obtain the A–C diffusion LMS:

ψk,n = wk,n + µk

∑
l∈Nk

ck,l(dl,n − uT
l,nwk,n)ul,n (3.11)

wk,n+1 =
∑
l∈Nk

ak,lψl,n, (3.12)

and the C–A diffusion LMS:

ψk,n =
∑
l∈Nk

ak,lwl,n (3.13)

wk,n+1 = ψk,n + µk

∑
l∈Nk

ck,l(dl,n − uT
l,nwk,n)ul,n. (3.14)

The A–C diffusion LMS was first proposed in [29] and the C–A one in [94].

As we have already discussed, under proper assumptions regarding the step–size, the

gradient descent iterative scheme, which uses the statistical quantities pk, Rk, converges

asymptotically to w∗. In the LMS and in its distributed counterparts, where an approxima-

tion of the statistics is used, the algorithm converges in a different sense. More specifically,

the algorithm converges in the mean; that is, the expected value of the estimates tends

asymptotically to the unknown vector w∗. In the sequel, the convergence behavior of the

LMS will be summarized along its main points.
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3.1.1 Convergence of the Diffusion based LMS

Let us first write in a more compact form the equations of the A–C and the C–A diffusion

LMS as follows: 
ϕk,n =

∑
l∈Nk

a1,k,lwl,n,

ψk,n+1 = ϕk,n + µk

∑
l∈Nk

ck,l
(
dl,n − uT

l,nϕk,n

)
ul,n,

wk,n+1 =
∑

l∈Nk
a2,k,lψl,n+1,

(3.15)

where the properties satisfied by the coefficients a1,k,l, ck,l and a2,k,l are given in Chapter 2.

Note that the A–C LMS occurs if we let A1 = Im in (4.5), where A1 is an N × N matrix,

with entries a1,k,l, whereas the C–A LMS results if we let A2 = Im, where A2 is an N ×N

matrix consisting of the weights a2,k,l. Let us define the following vectors:

w̃k,n = w∗ −wk,n, ψ̃k,n = w∗ −ψk,n, ϕ̃k,n = w∗ − ϕk,n.

Moreover, the following networkwise vectors will turn to be useful:

w̃n =


w∗ −w1,n

...

w∗ −wN,n

 , ψ̃n
=


w∗ −ψ1,n

...

w∗ −ψN,n

 , ϕ̃n
=


w∗ − ϕ1,n

...

w∗ − ϕN,n

 .

as well as:

A1 = A1 ⊗ Im, A2 = A2 ⊗ Im, P = C ⊗ Im,

where the matrix C is defined in a similar way as A1, A2, with entries the weights ck,l. Let

now

Dn = diag
{∑

l∈N1

c1,lul,nu
T
l,n, . . . ,

∑
l∈NN

cN,lul,nu
T
l,n

}
,

and

gn = P T [uT
1,nv1,n, . . . ,u

T
N,nvN,n]

T .
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Then, (4.5) can be written for the whole network as follows
ϕ̃

n
= A1w̃n

ψ̃
n+1

= ϕ̃
n
−M

[
Dnϕ̃n

+ gn

]
w̃n+1 = A2ψ̃n+1

,

(3.16)

where the Nm×Nm matrix M equals to

M = diag{µ1Im, . . . , µnIm}.

The set of equations in (3.16) can be written compactly as follows:

w̃n+1 = A2 [Im −MDn]A1w̃n −A2Mgn. (3.17)

Finally, we define

D = E[Dn] = diag
{∑

l∈N1

c1,lRl, . . . ,
∑
l∈NN

cN,lRl

}

G = P Tdiag
{
σ2
1R1, . . . , σ

2
NRN

}
P .

Assumptions 1.

1. The input vector and the noise process have zero means. Moreover, they are indepen-

dent.

2. The input vectors are temporarily and spatially independent. In system identifica-

tion applications, the input vectors are assumed to have a sliding window form, i.e.,

uk,n := [uk,n, uk,n−1, . . . , uk,n−m+1]. Obviously, the temporal independence does not hold

due to the sliding window form, since any two successive vectors will have m − 1

common coefficients. Nevertheless, this assumption, which is known as independence

assumption, is often adopted in the study of LMS–based algorithms, e.g., [98,100,120],

because it simplifies significantly the analysis.
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3. Assume that the combination matrices A1, A2 satisfy 1T
NmAi = 1T

Nm, i = 1, 2.

4. Regarding the step–sizes, we assume that:

0 < µk <
2

τ
(∑

l∈Nk
ck,lRl

) (3.18)

Theorem 3. Consider that the previously mentioned assumptions hold true. Then, the mean

value of the estimates at the nodes of the network converge asymptotically to the unknown

solution, that is:

lim
n→∞

E[wk,n] = w∗, ∀k ∈ N .

Proof. First of all, it is easy to obtain that under assumption 1.2, the input vector, uk,n is

independent of the past estimates, wl,j, l ∈ N , j = 1, . . . , n − 1. According to this, if we

employ the expectation operator in (3.17), and take into consideration that E[gn] = 0Nm,

because the noise is independent of the input and their expected value equals to zero, we

have

E[w̃n+1] = A2 [Im −MDn]A1E[w̃n] = (A2 (Im −MDn)A1)
n E[w̃0]. (3.19)

It has been proved, e.g., [122], that if the step–sizes µk satisfy assumption 1.2 and the

matrices A1,A2 satisfy assumption 1.3, then

lim
n→∞

(A2 [Im −MDn]A1)
n = ONm,

where ONm denotes the zero matrix of dimension Nm×Nm. Combining the last equation

with (3.19), it can be readily obtained that

lim
n→∞

E[w̃n+1] = 0Nm ⇔ lim
n→∞

E[wk,n] = w∗.

Remark 7. The complexity of the LMS–based algorithms is linear with respect to the dimen-

sionality of the unknown vector. More specifically, in the non–distributed LMS, each iteration

requires 2m additions and 2m+1 multiplications. The low–complexity of this scheme is one
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of its major advantages.

Remark 8. Another important advantage of the LMS is its powerful tracking ability, i.e.,

the LMS is able to track possible changes, which take place on the unknown parameter w∗.

This is a direct consequence of the fact that the LMS exploits only the most recent data; this

is due to the choice of µ, which is either constant or it does not allow to be vanishingly small

as the iterations progress, [64,120].

Remark 9. As it has been already stated in the previous chapters, another class of adaptive

schemes for distributed learning is that of the consensus based algorithms. The recursion of

the consensus–based LMS, see for example [80,105]1, is the following:

wk,n+1 =
∑
l∈Nk

ak,lwl,n + µk(dk,n − uT
k,nwk,n)uk,n. (3.20)

It has been proved, [122,137] that the mean stability of this algorithm is sensitive to the choice

of the combination coefficients, in contrast to the diffusion–based schemes. Another view-

point of the LMS algorithm following the consensus rationale has been proposed in [98,123].

The treatment there is different and the philosophy adopted there is that of the Alternating

Direction Method of Multipliers, [10]. The resulting scheme consists of updates associated

not only with the estimates of the unknown parameter vector but, also, of updates for a set

of Lagrange multipliers.

3.2 Recursive Least Squares Algorithm

Another celebrated algorithm, which is commonly used for adaptive filtering is the RLS one.

The RLS algorithm is a recursive implementation of the Least Squares (LS) method. Given

the measurement pairs (dn,un), n = 0, . . . , K, the classical LS problem seeks an m×1 vector

that minimizes the following cost function, e.g., [120]:

JLS(w) =
K∑

n=0

(dn −wTun)
2, (3.21)

1In these studies, a diminishing step size was assumed so as to guarantee convergence to w∗. Obviously,
in this case, the algorithms do not have the ability to track changes. Following [122], a constant step–size
has been considered here, to cope with adaptivity.
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or in matrix-vector form:

JLS(w) = ∥dK −UKw∥2, (3.22)

with dK = [d0, d1, . . . , dK ]
T and UK = [uT

0 ,u
T
1 , . . . ,u

T
K ]

T . The vector that minimizes (3.21)

is given by (see for example [64, 120]):

wLS = (UT
KUK)

−1UT
KdK (3.23)

Employing the conventional LS in an online/adaptive scenario is prohibited since: a) the

number of involved measurements increases as the time advances and a large amount of data

has to be stored, b) solving (3.21) requires the inversion of an m ×m matrix at each time

instance and c) all the measurements are equally weighted. This does note pose problems

in a stationary environment when the system has to be solved once. However, if w∗ is time

varying, then measurements corresponding to the remote past have a strong influence on the

more recent time instants. This is taken into account by the exponentially weighted LS cost

function defined as

The cost function of the exponentially weighted (non-distributed) RLS is given by:

JLS(w) =
K∑

n=0

ζK−n(dn −wTun)
2. (3.24)

The factor ζ ∈ (0, 1], which is widely known as forgeting factor, reduces the contribution

of the past values, for ζ < 1. In the case where ζ = 1, all the measurements are equally

weighted; such a choice is suitable in stationary environments. From the first order optimality

condition, the minimizer of (3.24) satisfies:

K∑
n=0

ζK−nunu
T
nwLS =

K∑
n=0

ζK−nundn. (3.25)

Obviously, the computation of wLS requires the solution of an m×m system of equations,

which is prohibited when operating in an online fashion, since this has to be repeated every

time instant. The RLS algorithm overcomes this obstacle by solving the LS task in a time
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iterative manner. Observe that:

K+1∑
n=0

ζK+1−nunu
T
n = uK+1u

T
K+1 + ζ

K∑
n=0

ζK−nunu
T
n = uK+1u

T
K+1 + ζΦK , (3.26)

where ΦK =
∑K

n=0 ζ
K−nunu

T
n . Similarly, we have that

∑K+1
n=0 ζ

K+1−nundn = uK+1dK+1 +

ζpK , with pK =
∑K

n=0 ζ
K−nundn. According to these relations, the optimum vector wLS is

given by

wLS =
(
uK+1u

T
K+1 + ζΦK

)−1
(uK+1dK+1 + ζpK) . (3.27)

Next, the celebrated Matrix Inversion Lemma will be employed to facilitate the computation

of the inverse in the right hand side in (3.27).

Lemma 1. Consider the m × m positive definite matrices A,B. Moreover, assume that

A = B−1 + CD−1CT , where the D m × r is positive definite and C is an m × r matrix.

Then it holds that

A−1 = B −BC
(
D +CTBC

)−1
CTB. (3.28)

If we apply the matrix inversion Lemma with A = Φn+1, B−1 = ζpn, C = un and

D = 1, we get that

Pn+1 := Φ−1
n+1

= ζ−1Pn −
ζ−2Pnunu

T
nPn

1 + ζ−1uT
nPnun

. (3.29)

Summarizing the previous relations we define:

kn+1 =
ζ−1Pnun

1 + ζ−1uT
nPnun

, (3.30)

and (3.29) can be rewritten as:

Pn+1 = ζ−1Pn − ζ−1kn+1u
T
nPn. (3.31)

The steps of the RLS algorithm are summarized as follows, [120]:

1. Initializations: w0 = 0m, P0 = δIm, for a small δ > 0.
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2. Computation of kn+1 via (3.30).

3. Computation of the error residual en := dn −wT
nun.

4. Estimate update wn+1 = wn + kn+1en.

5. Update Pn+1 via (3.31).

Remark 10. The complexity of the RLS algorithm is higher compared to the complexity of

the LMS. More specifically, since matrix operations are required, the complexity of the RLS

is of order O(m2). In the literature, variations of the RLS have been proposed, which reduce

the number of operations, e.g., [47,60,101,120].

Remark 11. As we have already mentioned before, the forgetting factor ζ helps to “forget”

past data. Hence, if ζ equals to 1 and w∗ is time varying, then the performance of the

algorithm is degraded, since values corresponding to previous instances of w∗ will be taken

into consideration. On the contrary, if ζ < 1, then values from the remote past will be

weighted with weights close to zero and they will not contribute to the cost function. In

practice, e.g., [120], if one chooses a ζ < 1 then the algorithm obtains a tracking potential.

3.2.1 Diffusion Recursive Least Squares

In this section, the RLS algorithm will brought in a form that complies with the diffusion

rationale. The diffusion RLS scheme, presented in [27], consists of two steps: a) an incre-

mental one, in which the nodes exchange their measurements and perform successive least

squares operations, and b) a diffusion step, where the nodes exchange their obtained esti-

mates, which were previously computed, and then combine them via an adopted combination

scheme. The steps of the diffusion based RLS are given in the sequel:

1. Initializations: wk,0 = 0m, Pk,0 = δIm, for a small δ > 0.

2. Incremental Steps:

• ψk,n = wk,n

• Pk,n = ζ−1Pk,n−1
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• For every node of the neighborhood l ∈ Nk repeat:

ψk,n+1 = ψk,n +
ck,lPk,nul,n

1 + ck,luT
l,nPk,nul,n

(dl,n − uT
l,nψk,n) (3.32)

Pk,n+1 = Pk,n −
ck,lPk,nul,nu

T
l,nPk,n

1 + ck,luT
l,nPk,nul,n

(3.33)

• end

3. Diffusion Step:

• wk,n+1 =
∑

l∈Nk
ak,lψk,n+1.

Notice that in the diffusion RLS, the nodes do not exchange the matrices Pl,n, since this would

require transmittion of m2 coefficients and would be a burden in terms of communication

resources. Instead, the nodes exchange dl,n, ul,n and the vector ψl,n.

It can be verified that at the end of the incremental step, the following equations are

satisfied:

P−1
k,n+1 = ζP−1

k,n +
∑
l∈Nk

ck,lul,nu
T
l,n (3.34)

qk,n+1 := P−1
k,n+1ψk,n+1 = ζP−1

k,nwk,n +
∑
l∈Nk

ck,lul,ndl,n. (3.35)

Exploiting these two relations, the diffusion RLS can be rewritten:

wk,n =
∑
l∈Nk

ak,lψl,n (3.36)

P−1
k,n+1 = ζP−1

k,n +
∑
l∈Nk

ck,lul,nu
T
l,n (3.37)

qk,n+1 = ζP−1
k,nwk,n +

∑
l∈Nk

ck,lul,ndl,n. (3.38)

ψk,n+1 = Pk,n+1qk,n+1. (3.39)

The theoretical properties of the diffusion based RLS are discussed in [27].

Remark 12. RLS based algorithms following the consensus approach have been presented,

together with their theoretical analyses, in [97,98]. It is worth pointing out that the diffusion
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RLS enjoys a faster convergence speed compared to the consensus based one, as it has been

experimentally verified in [27].

3.3 The Adaptive Projected Subgradient Method

In this section, we will discuss the “algorithmic tool”, which comprises the method on which

the novel results in this dissertation are built upon, i.e., the Adaptive Projected Subgradient

Method.

The main idea of the previously described adaptive algorithms is to employ a proper

cost function and minimize it so as to compute estimates of the unknown parameter vector.

These cost functions quantify the deviation/dissimilarity between the input and the output,

so the point that minimizes them, minimizes this dissimilarity as well. Nevertheless, in many

applications, adopting a cost function is not a trivial task. For example, it is by now well

established, that the performance of the LMS algorithm is dictated by the statistics of the

input, in the sense that if the autocorellation matrix has a large eigenvalue spread, then the

performance of the LMS is degraded, e.g., [120]. Another typical example (see [134]) is that

the Least Squares cost function, which is employed in the RLS algorithm, is very sensitive

to outliers, i.e., noise values with extremely large amplitudes. Finally, it is worth pointing

out that frequently the choice of the cost function is mainly dictated by the mathematical

properties that underlie it and not by the specific nature of the problem, which is dealt. More

specifically, since the problem is solved via the minimization of the respective functions, issues

such as differentiability often dictate the choice of the loss function.

The APSM algorithm, which was introduced in [148] and generalized in [125, 128], fol-

lows a different route. Instead of a single loss function, that is minimized over the whole

set of measurements, each time instant is treated separately. Given the measurement pair

(dn,un) ∈ R×Rm, at time n, the designer quantifies his/her perception of loss, with respect

to the received measurement pair, by a “local” loss function, which can also be considered

to be time varying. This “local” loss defines a region (set of points), which is also known as

a property set, where the estimate of the unknown vector would be desirable to lie, in order

to be considered in agreement with the current measurements (i.e., low error, smaller than a

predefined threshold). Furthermore, in several applications additional knowledge concerning
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dn − u
T
nw = +ǫ

dn − u
T
nw = −ǫ

PSn
(w)

w

Figure 3.1: Illustration of a hyperslab and the projection of a point onto it.

the unknown parameter vector may be available a–priori. This a–priori knowledge can be

embedded in the algorithm in the form of constraints. Each constraint defines a correspond-

ing set of points in the solutions space. The goal is to find a point in the intersection of all

these property sets as well as the respective constraint sets. In order to achieve this goal, a

sequence of projections onto all the previously mentioned sets will be mobilized; this is in

line with the classical concept of the method of Projections onto Convex Sets (POCS), [142].

It is worth pointing out that the only requirements for the property and the constraint sets,

is convexity and not differentiability of any loss functions, which was the case in the LMS

and the RLS algorithms.

To learn by example, before we describe the algorithm, let us provide a typical example

of a set, which can be employed for the estimation of w∗. Recall the linear system (3.1) and

assume that the noise process is bounded by a constant ρ, i.e., |vn| ≤ ρ, n ∈ Z. At each

time instance, the following set of points is defined

Sn := {w ∈ Rm : |dn − uT
nw| ≤ ϵ}, (3.40)

where ϵ is a user–defined threshold that satisfies ϵ ≥ ρ. This set is known as a hyperslab and

it is illustrated in Fig 3.1. Since the noise is bounded and ϵ ≥ ρ it can be readily verified

that the unknown vector w∗ ∈ Sn, ∀n ∈ Z. This justifies the notion behind the APSM

algorithm, where one seeks for a point, that lies in the intersection of the property sets, since

all of them contain the unknown solution. If the noise is not bounded, then an appropriate

choice of ϵ, can guarantee that with high probability [150].
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3.3.1 Basic Concepts of Convex Analysis and the POCS Algo-

rithm.

At the heart of the APSM algorithm lies the idea of projecting onto the property sets in order

to find a point, which belongs in their intersection. From this point of view, the algorithm can

be seen as a generalization of the classical Projections Onto Convex Sets (POCS) algorithm.

The main difference is that in the POCS algorithm, the number of involved sets is finite,

whereas the APSM deals with an infinite number of sets, one per time instance. In this

subsection, we will describe the basic “tools”, which will be used for the derivation of the

main algorithmic scheme. For the sake of completeness and in order to help the reader to

grasp the main idea behind the APSM algorithm, the POCS algorithm will be discussed.

Basic Concepts Of Convex Analysis

A set C ⊆ Rm, for which it holds that ∀w1,w2 ∈ C and ∀α̂ ∈ [0, 1], α̂w1 + (1 − α̂)w2 ∈ C,

is called convex. From a geometric point of view, this means that every line segment having

as endpoints any w1,w2 will lie in C. Moreover, a function Θ : Rm → R is called convex if

∀w1,w2 ∈ Rm and ∀α̂ ∈ [0, 1] the inequality Θ(α̂w1+(1− α̂)w2) ≤ α̂Θ(w1)+ (1− α̂)Θ(w2)

is satisfied. The 0-th level set of the convex function Θ is defined as

lev≤0Θ = {w ∈ Rm : Θ(w) ≤ 0}. (3.41)

Finally, the subdifferential of Θ at an arbitrary point, say w1, is defined as the set of all

subgradients, ∂Θ of Θ at w1 ([11, 65]), i.e.,

∂Θ(w1) := {s ∈ Rm : Θ(w1) + (w −w1)
Ts ≤ Θ(w), ∀w ∈ Rm}. (3.42)

The subgradient of a convex function is a generalization of the gradient, which is only defined

if the function is differentiable. As a matter of fact, if a convex function is differentiable,

its subdifferential at point w1 is a singleton, with a single element, that is the gradient of

the function at this point. It is well known that the gradient at a point w1 has an elegant

geometric interpretation. It defines the unique hyperplane, which is tangent at w1 to the

graph of Θ(w). Moreover, if Θ(w) is convex, the graph of Θ(w) lies in one of the sides of this
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w1
w2

Θ

Θ(w1)

Θ(w2)

Figure 3.2: Illustration of a gradient and two subgradients of a convex function. Note that
in w1 the function is differentiable, so there exists a unique supporting hyperplane, which
is tangent to the graph of the function, whereas in w2 the function is not differentiable and
there exist more than one hyperplanes, that support the graph of the function.

hyperplane. Similarly, each subgradient at a point of a convex function is associated with a

hyperplane that leaves the graph of Θ(w) on one of its side (supporting hyperplane). The

only difference, now, is that there are more than one, possibly infinite, such hyperplanes.

This is basically guaranteed by (3.42) and it is illustrated in Fig. 3.2.

The distance of an arbitrary point, w, from a closed non-empty convex set, C, is given

by the distance function

d(·, C) : Rm → [0,+∞)

: w 7→ inf {∥w − ŵ∥ : ŵ ∈ C}.

This function is continuous, convex, nonnegative and is equal to zero for every point that

lies in C [65]. Moreover, the projection mapping, PC onto C, is the mapping which takes a

point w to the uniquely existing point, PC(w) ∈ C, such that

∥w − PC(w)∥ = d(w, C).

It also holds that, PC(w) = w, ∀w ∈ C. Making as our kick–off point the projection

mapping, we define the relaxed projection mapping as follows:

TC = I + µ(PC − I), (3.43)

where µ ∈ (0, 2) and I is the identity mapping. Obviously, if µ = 1 then TC = PC. The

projection and the relaxed projection operators are illustrated in Fig. 3.3. In the sequel, we
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PC(w)

w

µ > 1

TC(w) = w + µ(PC(w)−w)

µ < 1

Figure 3.3: The projection and the relaxed projection operators.

present some convex sets alongside their projection operators, which will be used throughout

this dissertation.

Given a scalar, d, and a nonzero vector u ∈ Rm, the definition of a closed halfspace (Fig.

3.4a) is given by

H− := {w ∈ Rm : wTu ≤ d}, (3.44)

and the projection operator associated with it is given by

PH−(w) = w − min{0,wTu− d}
∥u∥2

u, ∀w ∈ Rm. (3.45)

In a similar notion, we define the hyperplane

H := {w ∈ Rm : wTu = d}, (3.46)

and the resulting projection operator is

PH(w) := w − wTu− d

∥u∥2
u, ∀w ∈ Rm. (3.47)

Two more convex sets, which will be used in the theoretical analysis of the algorithms,

are the closed and open balls with center c and radius δ (Fig. 3.4b). The definition of the

closed ball set is:

B[c,δ] := {w ∈ Rm : ∥w − c∥ ≤ δ}. (3.48)
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w

PH−(w)

H
−

u

(a) Halfspace
w

PB(w)

c

δ

(b) A closed ball

Figure 3.4: (a) The geometry of a halfspace. Its boundary is a hyperplane. (b) A closed ball
B[c,δ].

In a similar notion, the open ball is defined as

B(c,δ) := {w ∈ Rm : ∥w − c∥ < δ}. (3.49)

Finally, the relative interior of a nonempty set, C, with respect to another one, S, is defined

as

riS(C) = {w ∈ C : ∃ε0 > 0 with ∅ ̸= (B(w,ε0) ∩ S) ⊂ C}.

In a similar way, we define the interior of a set

int(C) := {w ∈ Rm : ∃δ := δ(w) > 0 such that B(w, δ) ⊂ C} . (3.50)

The (relative) interior will be used in the convergence proof of the APSM–based algorithms.

The POCS Algorithm

As it was previously discussed, the goal of the POCS algorithm is to find a point that lies

in the intersection of a finite number of sets. Assume that we are given K closed convex

sets, namely Ci ⊂ Rm, i = 1, . . . , K. Moreover, assume that these sets share a non–empty

intersection, i.e., Ω̆ :=
∩K

i=1 Ci ̸= ∅. We denote with TCi = I + µi(PCi − I) the relaxed
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Figure 3.5: Sequential formulation of the POCS algorithm. Each iteration takes us closer to
the intersection of the convex sets.

projection operator onto the set Ci and µi ∈ (0, 2). Furthermore, we define the mapping:

T = TCKTCK−1
. . . TC1 . (3.51)

This mapping comprises K consecutive relaxed projections. The first takes place onto C1,

the obtained vector is projected onto C2 and so on.

Theorem 4. Assume that the intersection of the Ci-s is nonempty, i.e., Ω̆ ̸= ∅. Then for

any initial point w0 ∈ Rm, the sequence T n(w0) converges to a point in Ω̆, i.e.,

lim
n→∞

T n(w0) = ŵ, ŵ ∈ Ω̆. (3.52)

Proof. The proof of the theorem can be found in [18]. From a geometrical point of view, the

theorem is illustrated in Fig. 3.5

In the previous derivation of the POCS algorithm the projections took place sequentially.

A parallel version of the POCS algorithm is given by the following iterative scheme

wn+1 = wn + µn

(
K∑
j=1

ωjPCj(wn)−wn

)
, (3.53)

where
∑K

j=1 ωj = 1 and µn ∈ (0, 2Mn), with

Mn =

∑K
j=1 ωj∥PCj(wn)−wn∥2

∥
∑K

j=1 ωjPCj(wn)−wn∥2
. (3.54)
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Figure 3.6: Parallel formulation of the POCS algorithm. Each iteration takes us closer to
the intersection of the convex sets.

Notice that at each iteration step, the most recent estimate is projected onto all the sets and

a convex combination of these projections is computed. The new estimate is obtained via

(3.53) and in order to guarantee convergence the step–size µn lies in the interval (0, 2Mn).

The geometric interpretation is shown in Fig. 3.6. Finally, the theoretical properties of the

algorithm in (3.53) are studied in [109]. There, it was shown that the algorithm converges

to a point that lies in Ω̆.

Adaptive Projected Subgradient Method

So far, we have considered the case where the number of sets, onto which one seeks for a

solution, is finite; the POCS algorithm was employed in this problem. In adaptive learning,

an infinite number of measurements is (theoretically) available and through these, an infinite

number of convex sets are constructed. The APSM algorithm, e.g., [125, 128, 148] is a

generalization of the POCS algorithm, in the sense that it deals with infinite convex sets.

The goal remains the same; find a point that lies in the intersection of these infinite convex

sets, with the possible exception of a finite number of outliers. Put in mathematical terms,

we denote the received sets Cn, n ∈ Z and the goal is to find a ŵ ∈
∩

n≥n0
Cn for a n0 ≥ 0.

For the derivation of the APSM, our starting point will be the parallel formulation of

the POCS algorithm given by (3.53). The difference is that instead of projecting onto the

K available convex sets, here we project onto the q most recent ones. For an arbitrarily

initialized w0, the resulting recursion is the following

wn+1 = wn + µn

(∑
j∈Jn

ωjPCj(wn)−wn

)
, (3.55)
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where
∑

j∈Jn
ωj = 1, Jn := max{0, n− q + 1}, n and µn ∈ (0, 2Mn), with

Mn =

∑
j∈Jn

ωj∥PCj(wn)−wn∥2

∥
∑

j∈Jn
ωjPCj(wn)−wn∥2

. (3.56)

Under certain assumptions, it can be shown that the APSM converges to a point that lies

arbitrarily close to the intersection of the infinite convex sets, with the possible exception of

a finite number of sets. The theoretical properties of this algorithm will be discussed later

on.

An important property of the APSM algorithm is that convex constraints can be readily

incorporated in the optimization task, in a rather trivial way, e.g., [82,124]. More specifically,

assume that we are given an a–priori knowledge regarding the desired solution. Typical

examples of such knowledge is the sparsity of the unknown vector, e.g., [82], or sparsification

constraints, e.g., [124], robustness constraints [127], etc. This information can be embedded

in an elegant way in the algorithm, as a set of convex constraints. Let us define the constraint

sets Cn, n ∈ Z. The goal now becomes to find a point that lies in the intersection of the

property sets with the constraint sets. The occurring iterative scheme is given by:

wn+1 = PCn

(
wn + µn

(∑
j∈Jn

ωjPCj(wn)−wn

))
. (3.57)

It has been verified that if properly chosen constraints are used in the learning procedure,

then the performance of the algorithm is significantly enhanced. This comes at the expense

of a single extra projection at each step. From a geometrical point of view, the APSM

recursion is illustrated in Fig. 3.7.

Until now, we have discussed the case where the projection operators onto the sets, into

which one seeks for the unknown solution, are known. For example, if the property sets take

the form of hyperslabs, then, due to the fact that the projection onto that sets is known, one

can employ (3.55) or (3.57) in the constrained scenario, for the unknown vector estimation.

Nevertheless, a closed form expression for the projection mappings is not always the case.

In the sequel, we will present an elegant way to overcome this problem.

Consider a convex loss function Θn : Rm → R : w 7→ Θn(w), which is constructed

via the measurements dn,un. The previously described property sets, where the estimate
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Cn

Cn

Cn−1

wn

wn+1

Figure 3.7: Geometrical illustration of the algorithm. The point wn is projected onto
Cn, Cn−1, a convex combination of these projection is computed. The occurring vector
from this step is projected onto the constraint set.

of the unknown vector would be desirable to lie, can be thought as the 0-th level sets of

an appropriately chosen convex loss function. As an example, consider the quadratic ϵ–

insensitive loss function given by:

Θn(w) = max{0, (dn −wTun)
2 − ϵ}. (3.58)

If the square distance between the desired response, dn, and the response to the input, i.e.,

wTun, is smaller or equal than ϵ, then a vector is considered to be in agreement with the

measurements. On the contrary, if the square distance between dn and wTun is larger than

ϵ, then the loss function scores a quadratic penalty. Note that the corresponding property

set coincides with the zero level set of the function Θn. The goal is to find points which lie

in this property set. However, this level set is defined by a hyperquadtratic surface (see Fig.

3.8.b) and the projection operator onto such a set is not known in analytical form. To bypass

this difficulty, the following methodology is used. Being at a point w, a support hyperplane,

defined by a subgradient (the gradient), divides Rm in two halfspaces. Projecting w onto

the halfspace, where the level set lies, guarantees that we get closer to the level set, where a

solution lies. This is illustrated in Fig. 3.8.b.

It is interesting to notice a difference between Figs. 3.8.a and 3.8.b. In Fig. 3.8.a, the

0-th level set is a hyperslab, and one can reach it in a single step, via a single projection of

w onto the hyperslab. In other words, in this case, the APSM algorithm breaks down to

a simple projection onto the hyperslab. The case of Fig. 3.8.b is different, where in order

to approach the level set, APSM results in a succession of projections onto a sequence of
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Figure 3.8: (a) A cost function whose 0-th level set is a hyperslab. (b) A cost function and
the supporting hyperplane generated by the differential.

halfspaces. The algorithmic recursion, when projecting onto halfspaces generated by the

subgradient, becomes

wn+1 =

PCn

(
wn − λn

Θn(wn)
∥Θ′

n(wn)∥2Θ
′
n(wn)

)
, Θ′

n(wn) ̸= 0m,

PCn
(wn), Θ′

n(wn) = 0m,

(3.59)

where Θ′
n(wn) is the subgradient of Θn at the current estimate wn and λn ∈ (0, 2).

Remark 13. The complexity of the APSM algorithm is linear with respect to the dimensio

of w∗. More specifically, at each time instance the complexity accounts to O(qm), i.e.,

the complexity increases w.r.t the number of parallel projections. However, as it has been

experimentally verified in [82], a larger q results to a faster convergence speed.

Remark 14. Note that the APSM stems for Polyak’s algorithm [110]. Nevertheless, in

contrast to Polyak’s algorithm, where the cost function to be minimized is fixed, here it may

be time varying, a fact that allows the adopted algorithmic scheme to be applicable in dynamic

and time-adaptive scenarios.

Theoretical Properties of the APSM

The majority of studies, dealing with the theoretical properties of the APSM algorithm,

follow a deterministic route. More specifically, it has been shown that under certain as-

sumptions, e.g., [128], the convergence of the APSM algorithm enjoys properties such as:

monotonicity, optimality and strong convergence to a point that lies arbitrarily close to the

property sets. The theoretical properties of the APSM under the deterministic perspective

were first examined in [149] and generalized in [125, 128].
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On the contrary, the efforts in [46,131] study the convergence properties of the APSM by

employing stochastic arguments. More analytically, the MSE performance of a special case

of the algorithm, which uses projections onto hyperslabs, assuming Gaussian noise, is given

in [131] by employing energy conservation arguments [120]. There, a single hyperslab is

considered at each time instance and the step–size equals to one. The study in [46] considers

the hyperslab-inspired version of the APSM, for an arbitrary number of hyperslabs processed

at each time instance and an arbitrary stepsize. There it was shown that the algorithm

generates a sequence of estimates which converge to a point located, with probability one,

arbitrarily close to the unknown vector w∗, under the bounded noise assumption.

Convergence properties of the APSM: the deterministic viewpoint

In this subsection we will describe, in brief, the convergence properties of the APSM em-

ploying deterministic arguments.

First of all, it is worth pointing out that (3.57) is a special case of the algorithm (3.59)

(see [82]). Nevertheless, due to the fact that the majority of algorithms, which are developed

in this dissertation, are variations of the scheme given in (3.57), we will discuss the theoretical

properties of the latter algorithm.

The assumptions under which the algorithm converges are the following:

Assumptions 2.

1. Define ∀n ∈ Z, Ωn = Cn∩
(∩

j∈Jn
Cn
)

. The set Ωn is the intersection of the constraint

sets and the sets considered at time instance n. Assume that there exists n0 ∈ Z such

that Ω :=
∩

n≥n0
Ωn ̸= ∅. In words, with the exception of a finite number of sets Ωn,

the rest of them have a nonempty intersection.

2. Assume a sufficiently small ε such that ∀n ∈ Z, µn

Mn
∈ [ε, 2− ε].

3. The interior of Ω is assumed to be nonempty, i.e., int(Ω) ̸= ∅.

4. Assume that ω̃ := inf{ωj : j ∈ Jn, n ∈ Z} > 0, that is the weights, which are used for

combining the projections, will not fade away as the time index n advances.
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Theorem 5. Under the previously mentioned assumptions, the following properties hold:

1. Monotonicity: Every step leads us closer to the intersection Ω, i.e., ∀n ≥ n0,

d(wn+1,Ω) ≤ d(wn,Ω).

2. Asymptotic Optimality. Asymptotically the distance of the obtained estimates from

the sets Cn as well as from the constraints sets Cn tends to zero, that is limn→∞ max{d(wn, Cj) :

j ∈ Jn} = 0 and limn→∞ d(wn, Cn) = 0.

3. The sequence of estimates converges to a point ŵ∗, i.e., limn→∞wn = ŵ∗. Furthermore,

it holds that:

ŵ∗ ∈
(
lim infn→∞Cn

)
∩
(
lim infn→∞Cn

)
, (3.60)

where lim infn→∞Cn :=
∪

n≥0

∩
r≥n Cr and the overline symbol denotes the closure of a

set. In words, the algorithm converges to a a point that lies arbitrarily close to the

intersection of all the involved sets.

Proof. The proof of this theorem can be found in [82] and the theoretical properties of the

most general case of the APSM are studied in [128].

Stochastic Analysis of the APSM: Convergence in Probability2

In the sequel, the main theorem, which was presented in [46], is given. In a nutshell, the

theorem states that the user can choose an arbitrarily small α > 0, and with probability

equal to 1, the distance of the estimate, to which the algorithm converges, from w∗ will be

smaller than or equal to α. In other words, any user-defined accuracy can be achieved.

In the theorem, which will be discussed here, stochastic arguments are employed. To

this end, a slight modification in the notation will be introduced, as the stochastic processes

have to be explicitly stated. Moreover, we define the probability space (Ξ,F,Pr), where Ξ

is the sample space, F is the σ-field of events, and Pr is the probability measure.

The classical linear model is considered, i.e.,:

dn(ξ) = w
T
∗ un(ξ) + vn(ξ), ∀n ∈ Z, ξ ∈ Ξ, (3.61)

2This section involves results which are novel in this thesis
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where (vn(ξ))n∈Z≥0
⊂ R is the noise stochastic process, (un(ξ))n∈Z≥0

⊂ Rm is the input signal

process, and (dn(ξ))n∈Z≥0
⊂ R is the process of output measurements3.

The sets into which one seeks for a candidate solution, by employing the APSM, are a

slight modification of the previously described hyperslabs. Here, the definition of a hyperslab

is given by:

Sn(ξ) :=

{w ∈ Rm : |dn(ξ)−wTun(ξ)| ≤ ϵ}, if ∥un(ξ)∥ ∈ (0,∆),

Rm, otherwise,
(3.62)

where ∆ > 0 is a user defined parameter, which is used in order to prevent the input signals

from taking excessively large values. The projection onto the hyperslab in (3.62) equals to:

∀w ∈ Rm,

PSn(ξ)(w) =

w + βn(ξ)un(ξ), if ∥un(ξ)∥ ∈ (0,∆),

w, otherwise,
(3.63)

βn(ξ) :=



dn(ξ)−wTun(ξ) + ϵ

∥un(ξ)∥2
, if dn(ξ)−wTun(ξ) < −ϵ,

0, if |dn(ξ)−wTun(ξ)| ≤ ϵ,

dn(ξ)−wTun(ξ)− ϵ

∥un(ξ)∥2
, if dn(ξ)−wTun(ξ) > ϵ.

The recursion that describes this special case of the APSM, which is considered here,

occurs if in (3.55) we employ the projection operators onto the hyperslabs. More specifically,

given any starting point w0(ξ), define ∀n ∈ Z≥0,

wn+1(ξ) := wn(ξ) + µn(ξ)
(∑
j∈Jn

ω
(n)
j PSj(ξ)(wn(ξ))−wn(ξ)

)
, (3.64)

where the extrapolation parameter µn(ξ) can take any value that lies within the interval

3In the stochastic quantities, the term (ξ) will be embedded.
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µn(ξ) ∈
[
εMn(ξ), (2− ε)Mn(ξ)

]
, where

Mn(ξ) :=



∑
j∈Jn

ω
(n)
j

∥∥∥PSj(ξ)

(
wn(ξ)

)
−wn(ξ)

∥∥∥2∥∥∥∑j∈Jn
ω
(n)
j PSj(ξ)

(
wn(ξ)

)
−wn(ξ)

∥∥∥2 ,
if
∥∥∥∑j∈Jn

ω
(n)
j PSj(ξ)

(
wn(ξ)

)
−wn(ξ)

∥∥∥ ̸= 0,

1, otherwise,

(3.65)

and ε is a user-defined parameter s.t. ε ∈ (0, 1], and obviously Mn(ξ) ≥ 1, ∀n ∈ Z≥0,

∀ξ ∈ Ξ. The terms Jn, ωj are defined in a similar way as in the algorithm given in (3.55).

Let us redefine, here, ∀n ∈ Z≥0, ∀ξ ∈ Ξ, the set Ωn(ξ) :=
∩

j∈Jn
Sj(ξ). Then, let

Γ :=
{
ξ ∈ Ξ : ∃n0 := n0(ξ) ∈ Z≥0 s.t. int

(∩
n≥n0

Ωn(ξ)
)
̸= ∅
}

.

Fact 1. Assume that Γ ̸= ∅. Then, ∀ξ ∈ Γ, the APSM, illustrated in Algorithm 3.64, produces

a sequence of estimates (wn(ξ))n∈Z≥0
which converges to a point ŵ(ξ), i.e., limn→∞wn(ξ) =

ŵ(ξ). Moreover, ∀ξ ∈ Γ, the following holds true: limn→∞ d
(
wn(ξ), Sn(ξ)

)
= 0 [134].

The assumptions, under which the algorithms converges are the following:

Assumptions 3.

1. The noise process is bounded, i.e., ∃ρ > 0, s.t. |vn(ξ)| ≤ ρ, ∀n ∈ Z≥0, almost surely

(a.s.).

2. The input vector is defined as un(ξ) := [un(ξ), un−1(ξ), . . . , un−m+1(ξ)]
T , where (un(ξ))n∈Z

is a realization of an i.i.d. process, with a probability density function f whose support

contains at least one of the intervals (0,∞), (−∞, 0), i.e., (0,∞) or/and (−∞, 0) ⊂

supp(f) :=
{
u ∈ R : f(u) > 0

}
, and every interval of non-zero length, which belongs

to supp(f), owns a non-zero probability.

Note that the assumption regarding the input covers a variety of distributions, e.g.,

Gaussian, generalized Gaussian, Cauchy, Laplacian. Moreover, it should be pointed out that

the sliding window construction of the input vectors is not restrictive. The theorem to be

presented in the sequel can be generalized in cases where the input vectors do not obey

to this sliding window formulation. In such a case, successive input vectors do not share

common components, and assuming that they are independent, the proof of the theorem
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follows similar steps. Finally, it should be stressed that the adopted assumption regarding

the input is realistic in contrast to an independence assumption (see for further details [120]),

often adopted in adaptive filtering. As we have already discussed previously, this assumption

states that the input vectors are independent ∀n ∈ Z, which does not hold true if the input

has the sliding-window form. Albeit unrealistic, such an independence assumption is widely

used in adaptive filtering, since it simplifies the analysis. In Assumption 3.2, the vector

entries are assumed to be independent, instead of the whole vectors, which holds true only

for properly chosen inputs.

Before we derive the main theorem, we need to prove the following lemma.

Lemma 2. Let Assumption 3.1 hold true, and choose the user-defined hyperslab parameter

ϵ to be larger than the bound of the noise, i.e., ϵ > ρ. Moreover, fix arbitrarily the value of

the user-defined parameter ∆ > 0. Then, Pr(Γ) = 1.

Proof. First of all, notice that ∀n ∈ Z≥0 s.t. ∥un(ξ)∥ ∈ (0,∆), |dn(ξ)−wT
∗ un(ξ)| = |vn(ξ)| ≤

ρ < ϵ, a.s. Hence, for such n, w∗ ∈ Sn(ξ). For all those n s.t. ∥un(ξ)∥ /∈ (0,∆), by (3.62),

w∗ ∈ Sn(ξ) = Rm. To summarize, w∗ ∈ Sn(ξ), ∀n ∈ Z≥0. Moreover, w∗ ∈ Ωn(ξ), ∀n ∈ Z≥0,

which implies in turn that w∗ ∈
∩

n∈Z≥0
Ωn(ξ). Fix, now, any w ∈ B

(
w∗, (ϵ − ρ)/∆

)
.

Obviously, ∥w −w∗∥ < (ϵ− ρ)/∆. It can be easily verified that ∀n ∈ Z≥0,

|dn(ξ)− uT
n (ξ)w| = |uT

n (ξ)(w∗ −w) + vn(ξ)|

≤ ∥un(ξ)∥∥w∗ −w∥+ |vn(ξ)| < ∆
ϵ− ρ

∆
+ ρ = ϵ, a.s.

Hence, B
(
w∗, (ϵ− ρ)/∆

)
⊂
∩

n∈Z≥0
Ωn(ξ). This suggests that int

(∩
n∈Z≥0

Ωn(ξ)
)
̸= ∅, which

establishes the claim of Lemma 2.

Theorem 6. Let Assumptions 3 hold true. Choose an arbitrary accuracy α > 0. Moreover,

choose a ∆ ∈
(
4ϵ
√
m

α
,∞
)
, where the parameter ∆ refers to (3.62), with ϵ > ρ. Then,

(wn(·))n∈Z of Algorithm 3.64 converges to a point ŵ(·). If ŵ(·) is bounded a.s., i.e., ∃B > 0

s.t. Pr
(
{ξ ∈ Ξ : ∥ŵ(ξ)∥ ≤ B}

)
= 1, then ŵ(·) achieves the user-defined accuracy α > 0,

i.e., Pr
(
{ξ ∈ Ξ : ∥w∗ − ŵ(ξ)∥ ≤ α}

)
= 1.

Proof. The assumptions of the theorem, as well as Lemma 2 and Fact 1, imply the existence

of ŵ(·). Hence, there exists a subset Ξ′ of Ξ, with Pr(Ξ′) = 1, such that ŵ(·) exists ∀ξ ∈ Ξ′,
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and a sufficiently large B′ > 0 can be chosen s.t. ∥w∗ − ŵ(ξ)∥ ≤ B′, ∀ξ ∈ Ξ′.

Let G := {ξ ∈ Ξ′ : ∥w∗ − ŵ(ξ)∥ > α}. In order to establish the second claim of our

theorem, it is sufficient to prove that Pr(G) = 0. To this end, given any i ∈ 1,m, define

Pi :=
{
ξ ∈ Ξ′ : |[w∗ − ŵ(ξ)]i| > α/

√
m
}

. Notice here that

G ⊂
m∪
i=1

Pi. (3.66)

Indeed, given any ξ ∈ G, there exists an i0 ∈ 1,m s.t. |[w∗ − ŵ(ξ)]i0| > α/
√
m, i.e., ξ ∈ Pi0 .

Fix now arbitrarily any i ∈ 1,m, and define the following sequence of events; ∀n ∈ Z≥0,

E±
i,n :=


ξ ∈ Ξ′ : sgn([un(ξ)]i) = ±1,

4ϵ
√
m

α
< |[un(ξ)]i| < ∆,

|[un(ξ)]j | < min
{ ϵ

(m− 1)B′ ,∆
}
, ∀j ̸= i


. (3.67)

Without any loss of generality, let us assume that (0,∞) ⊂ supp(f) holds true. Then, our

assumptions guarantee that any event E+
i,n is non-empty and possesses a positive probability,

∀n. Fix, now, arbitrarily any ξ ∈ Pi, and assume that

ξ ∈
∩
n≥0

∪
k≥n

E+
i,km. (3.68)

The reason for choosing the subsequence (E+
i,km)k∈Z will be given shortly, after (3.72).

Our assumption (3.68) can be rephrased equivalently as follows; there exists a subse-
quence (kl)l∈Z s.t. ξ ∈ E+

i,klm
, ∀l ∈ Z. Moreover, given ξ ∈ Pi, either sgn([w∗ − ŵ(ξ)]i) = +1

or sgn([w∗ − ŵ(ξ)]i) = −1. If sgn([w∗ − ŵ(ξ)]i) = +1, recalling Assumption 3.1, (3.67), and
the fact that ϵ ≥ ρ, ∀l ∈ Z,

dklm(ξ)− uT
klm

(ξ)ŵ(ξ) = vklm(ξ) + uT
klm

(ξ)
(
w∗ − ŵ(ξ)

)
≥ −ρ+

∑
j ̸=i

[uklm(ξ)]j [w∗ − ŵ(ξ)]j + [uklm(ξ)]i[w∗ − ŵ(ξ)]i

≥ −ϵ−
∑
j ̸=i

|[uklm(ξ)]j ||[w∗ − ŵ(ξ)]j |+ |[uklm(ξ)]i||[w∗ − ŵ(ξ)]i|

> −ϵ−
∑
j ̸=i

ϵ

(m− 1)B′B
′ +

4ϵ
√
m

α

α√
m

= −ϵ− ϵ+ 4ϵ = 2ϵ. (3.69)

In the case where sgn([w∗ − ŵ(ξ)]i) = −1, similar computations result into dklm(ξ) −
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uT
klm

(ξ)ŵ(ξ) < −2ϵ, ∀l ∈ Z. For both of these cases, (3.63) and (3.69) suggest that ∀l ∈ Z,

d
(
ŵ(ξ), Sklm(ξ)

)
=
∥∥∥ŵ(ξ)− PSklm

(ξ)

(
ŵ(ξ)

)∥∥∥ > ϵ

∆
. (3.70)

Since ∀l ∈ Z, d
(
ŵ(ξ), Sklm(ξ)

)
≤ d

(
wklm(ξ), Sklm(ξ)

)
+
∥∥ŵ(ξ)−wklm(ξ)

∥∥, then Fact 1

implies that liml→∞ d
(
ŵ(ξ), Sklm(ξ)

)
= 0. However, this contradicts (3.70), and, thus, our

initial claim in (3.68) is false.

For compact notations, let us define also A+
i,n :=

∪
k≥nE

+
i,km, ∀n ≥ 0. Since ξ was

chosen arbitrarily from Pi in the previous paragraphs, the contra position of (3.68) can be

formulated as follows:

Pi ∩
∩
n≥0

A+
i,n = ∅. (3.71)

Notice, now, that ∀n ∈ Z, ∀K ∈ Z \ {0},

1 ≥ Pr(A+
i,n) ≥ Pr

(n+K−1∪
k=n

E+
i,km

)
= 1− Pr

(n+K−1∩
k=n

Ξ′ \ E+
i,km

)
. (3.72)

Since the members of the process (un)n∈Z≥0
are independent, the members of the vector-

valued process (ukm)k∈Z are also mutually independent4. This is the reason behind the

choice of the subsequence (E+
i,km)k∈Z. Since, also, (un)n∈Z≥0

is i.i.d., then Pr(E+
i,km) attains

a positive value independent of the index k, i.e., Pr(E+
i,km) =: λ+ ∈ (0, 1), ∀k ∈ N. Hence, it

can be verified by the independency of the events (Ξ′\E+
i,km)k∈Z that Pr

(∩n+K−1
k=n Ξ′\E+

i,km

)
=∏n+K−1

k=n Pr
(
Ξ′ \ E+

i,km

)
= (1− λ+)

K , and (3.72) becomes 1 ≥ Pr(A+
i,n) ≥ 1− (1− λ+)

K . If

limK→∞ is applied to the previous inequality, then it can be verified by (1 − λ+) ∈ (0, 1)

that Pr(A+
i,n) = 1, ∀n ∈ Z.

To summarize: A+
i,n+1 ⊂ A+

i,n, and Pr(A+
i,n) = 1, ∀n ∈ Z. Based on these outcomes,

a classical result of probability theory, e.g., [91, p. 152], suggests that Pr
(∩

n≥0A
+
i,n

)
=

limn→∞ Pr(A+
i,n) = 1. Therefore, by (3.71), 0 ≤ Pr(Pi) ≤ 1− Pr

(∩
n≥0 A

+
i,n

)
= 0.

Since i was chosen arbitrarily from 1,m, the previous discussion leads to Pr(Pi) = 0,

4In the case where the input has not a sliding window form, the proof of the theorem follows a similar
path.
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∀i ∈ 1,m. Therefore, (3.66) suggests that 0 ≤ Pr(G) ≤ Pr
(∪m

i=1Pi

)
≤
∑m

i=1 Pr(Pi) = 0,

which establishes the second claim of the theorem.

3.4 Numerical Examples

In this section, numerical examples in the context of the system identification task are

provided. The goal is twofold: a) to demonstrate the performance of the algorithms described

in this chapter, in a typical setup of Gaussian unbounded noise and b) to validate numerically

Theorem 4.

The task is the estimation of an unknown vector w∗ of dimension m = 40, through

measurements dn, un, related via the linear model. The APSM algorithm is compared to

the LMS, the RLS and the Normalized LMS (NLMS). It is worth pointing out that the

NLMS is a special case of the hyperslab–based APSM and occurs if one lets q = 1 and

ϵ = 0. In the first experiment, we assume that the variance of the noise equals to 10−2

and the input coefficients are drawn from the Gaussian distribution, with variance equal

to 1. The step–size for the LMS equals to 0.1 whereas for the NLMS 1. Moreover, the

forgetting factor ζ in the RLS equals to 1. Finally, the parameters in the APSM algorithm

are: q = 15, µn = (1/2) × Mn and ϵ =
√
2σ. The Mean Square Deviation (MSD),i.e.,

MSDn := ∥w∗ −wn∥2, is presented and the curves occur from 100 Monte Carlo runs.

Fig. 3.9 indicates that the RLS and the APSM have similar convergence speeds. How-

ever, the former algorithm converges to a lower steady state error floor, at the expense of

a higher complexity. Furthermore, the NLMS algorithm converges faster compared to the

LMS, to the same steady state error. Both algorithms, converge slower compared to the

RLS and the APSM.

In the second experiment, the parameters are the same as in the first one, albeit the

coefficients of the input are assumed to be strongly correlated. More specifically, we assume

that the input coefficients are related via un = 0.8un−1 + χn, where χn follows the Gaussian

distribution with zero mean and variance 1. The step–sizes for the LMS and the NLMS take

the maximum value for which the algorithms converge. As it can be readily seen in Fig. 3.10,

the performance of the LMS and the NLMS algorithms is degraded compared to the previous

experiment. This is expected, since the LMS–based algorithms are sensitive to colored inputs.

Symeon N. Chouvardas 94



3.4 Numerical Examples

0 500 1000 1500 2000 2500 3000
−40

−30

−20

−10

0

10

20

Iteration Number

A
ve

ra
ge

 M
S

D
 (

dB
)

 

 
APSM
LMS
NLMS
RLS

Figure 3.9: MSD performance for the first experiment.
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Figure 3.10: MSD performance for the second experiment.

This fact is also theoretically validated, e.g., [120]. On the contrary, we observe that the

performance of the RLS and the APSM algorithm is not affected significantly.

In the next experiments, the numerical validation of Theorem 4 will be studied. The

length of w∗ is set to be equal to m = 64, and its coefficients are drawn from the Gaussian

distribution with standard deviation set to 1. The input samples are generated by the

Gaussian distribution with standard deviation equal to 1. The noise samples are generated

by the Gaussian distribution, with standard deviation σ =
√
0.5, and samples with amplitude

equal to or greater than ρ = 2 ∗ σ are set equal to ρ. Moreover, for the APSM, q = 32,

ωj = 1/q, ∀j ∈ Jn, µn = Mn/2, and ϵ = ρ + 10−3. In the third experiment, three different

values for α are chosen, i.e., α ∈ {10−2, 10−4, 10−6}, and 1000 independent experiments are

performed for every α. The number of times that the desired accuracy is achieved is counted.

It was observed that all of the accuracies are achieved, since the Euclidean distance of the

vector, to which the algorithm converges, from the estimand stays smaller than α, for every

experiment. This fact corroborates the theoretical findings of the study.

In the fourth experiment (Fig. 3.11), the APSM, with q = 32 (APSMq=32), the RLS,

the LMS, and the NLMS are validated. To study the robustness of the APSM, whenever
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Figure 3.11: MSD curves for the 2nd experiment. Only a single iteration is plotted, since
Theorem 4 does not involve the expectation operator, where the averaging of independent
iterations is necessary.

the exact value of σ is not known, we validate it in the cases where q = 1 (APSMq=1), and

ϵ = 1.5ρ (APSMϵ=1.5∗ρ). The step-sizes for the LMS and the NLMS are equal to 10−2 and

0.5, respectively, and they are chosen so that both algorithms exhibit similar convergence

speed. It can be readily seen that the APSMq=32, the APSMϵ=1.5∗ρ and the RLS outperforms

the LMS and the NLMS, at the expense of larger complexity. It is interesting to notice

that APSMq=1 outperforms also the LMS-based algorithms, although their complexities are

similar. This behavior is a direct consequence of the fact that by employing the hyperslabs,

in the case of bounded noise, the estimand belongs surely to these sets. In NLMS, since

ϵ = 0, the w∗ may not belong to a property set. Moreover, it can be seen that APSM-based

algorithms converge to lower steady state error floors, compared to the RLS, except from

APSMϵ=1.5∗ρ.

It is worth noticing that similar behavior was observed also in cases of larger m. In

such scenarios, the designer possesses the additional freedom of choosing the values of q

from larger intervals. In general, and as Fig. 3.11 attests, the larger the q, the faster the

convergence speed of APSM [134]. However, large q values come at the expense of increased

computational complexity.
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Chapter 4

Adaptive Robust Algorithms for

Distributed Learning

In this chapter, distributed algorithms, which follow the diffusion rationale and belong to

the family of the Adaptive Projected Subgradient Method, will be developed. The proposed

algorithms adopt the novel combine–project–adapt cooperation protocol. The intermediate

extra projection step of this protocol “harmonizes” the local information, which comprises

the input/output measurements, with the information coming from the neighborhood, i.e., the

estimates obtained from the neighboring nodes. It turns out that this enhances significantly

the performance of the respective schemes. Moreover, the possibility that some of the nodes

may fail is also considered and it is addressed by building the required property sets via

the use of loss functions, which have been used in the context of robust statistics. Under

some mild assumptions, the developed algorithms enjoy monotonicity, asymptotic optimality,

asymptotic consensus, strong convergence to a point that lies in the consensus subspace

and linear complexity with respect to the number of unknown parameters. Finally, system–

identification experiments verify the validity of the proposed algorithmic schemes, which are

compared to other state of the art algorithms which have been developed in the context of

adaptive distributed learning.
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4.1 Diffusion Adaptive Algorithm Using Projections onto

Hyperslabs

Recall the problem described in Chapter 2. A network of N nodes is considered and each

node, k, at time n, has access to the measurements dk,n ∈ R, uk,n ∈ Rm generated by the

linear system:

dk,n = wT
∗ uk,n + vk,n, (4.1)

where vk,n is an additive noise process of zero mean and variance σ2
k. The goal is the

estimation of the m× 1 vector w∗.

In this chapter, an APSM–based scheme, which employs projections onto hyperslabs, is

developed. The scheme is brought in a distributed fashion by following a similar rationale as

the one of the diffusion LMS/RLS, which were presented in the previous chapter. Although

this is a possibility, here an extra step is added, that follows the combination stage and

precedes the adaptation one. As it will become apparent in the simulations section, such a

step turns out to be beneficial to the convergence performance, at the expense of the minimal

cost of an extra projection onto a hyperslab S ′
k,n, which is defined as

S ′
k,n = {w ∈ Rm : |dk,n −wTuk,n| ≤ ϵ′k},

where ϵ′k > ϵk and ϵk is the user defined parameter associated with the hyperslabs, that will

be used in the adaptation step at node k, i.e.,

Sk,n = {w ∈ Rm : |dk,n −wTuk,n| ≤ ϵk}.

The algorithm comprises the following steps:

1. Combination Step: The estimates from the nodes that belong to Nk are received

and convexly combined with respect to the combination weights ak,l.

2. Projection Step: The resulting aggregate is first projected onto the hyperslab S ′
k,n

1.

3. Adaptation Step: The adaptation step is performed.
1The projection of a point onto a hyperslab is provided in Chapter 3.
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φk,n

zk,n

S
′

k,n

Sk,n

Sk,n−1

wk,n+1
w∗

Figure 4.1: Illustration of an iteration for the case of q = 2. The aggregate is projected onto
an external hyperslab and the result, zk,n, is used in the adaptation step. Note that zk,n
is projected onto Sk,n and Sk,n−1, and the projections are combined together. The update
estimate, wk,n+1 lies closer to the intersection of the hyperslabs, compared to ϕk,n. Note,
also, that the hyperslab S ′

k,n contains Sk,n.

Algorithm 1:

ϕk,n =
∑
l∈Nk

ak,lwl,n,

zk,n = PS′
k,n

(
ϕk,n

)
,

wk,n+1 = zk,n + µk,n

(∑
j∈Jn

ωk,jPSk,j
(zk,n)− zk,n

)
,

(4.2a)

(4.2b)

(4.2c)

where PS′
k,n

and PSk,n
are the projection operators onto the respective hyperslabs,

∑
j∈Jn

ωk,j =

1 and Jn := max{0, n− q + 1}, n (see also chapter 3).

The geometry for the case of q = 2 is shown in Fig. 4.1. The aggregate ϕk,n is first pro-

jected onto S ′
k,n to provide zk,n. The latter is the point that gets involved in the adaptation

step, which consists of the projections onto Sk,n and Sk,n−1, and in their subsequent convex

combination in accordance to the APSM rationale. As it will be shown in the Appendix B,

convergence is guaranteed if µk,n ∈ (0, 2Mk,n) where

Mk,n =


∑

j∈Jn
ωk,j∥PSk,j

(zk,n)−zk,n∥2

∥∑j∈Jn
ωk,jPSk,j

(zk,n)−zk,n∥2 , if
∑

j∈Jn
ωk,jPSk,j

(zk,n) ̸= zk,n,

1, otherwise.
(4.3)

Also, Mk,n ≥ 1 [124], hence µk,n = 1 is an acceptable step-size ∀n ∈ Z.

Before we proceed further, let us “translate” equations (4.2a)-(4.2c) from the local to a
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global form to include all nodes. It is a matter of simple algebra to see that

zn :=


z1,n

...

zN,n

 =


PS′

1,n

(∑
l∈N1

a1,lwl,n−1

)
PS′

2,n

(∑
l∈N2

a2,lwl,n−1

)
...

PS′
N,n

(∑
l∈NN

aN,lwl,n−1

)

 , (4.4)

wn+1 :=


w1,n+1

...

wN,n+1

 = zn +Mn



∑
j∈Jn

ω1,jPS1,j
(z1,n)− z1,n∑

j∈Jn
ω2,jPS2,j

(z2,n)− z2,n
...∑

j∈Jn
ωN,jPSN,j

(zN,n)− zN,n

 , (4.5)

where Mn = diag{µ1,nIm, µ2,nIm, . . . , µN,nIm}.

Observe that the resulting scheme is structurally simple. It consists of two vector equa-

tions, one for the combination/fusion and one for the update. The main operations which

are involved are projections. The complexity per time update amounts to O(qm), where q

is the number of hyperslabs onto which one projects during the adaptation step, in every

node. Moreover, note that in a parallel processing environment, the q projections can take

place concurrently.

Remark 15. A projection based algorithm of the adapt–combine type has been developed

in [31]. In contrast, the new algorithm follows the combine-project-adapt philosophy. This

scenario gives us the advantage of being able to accommodate the extra projection. The notion

behind this extra step is to “harmonize”, at each node, the information that is sensed locally

with the information transmitted by the neighboring nodes. Although all nodes search for

the same unknown vector (i.e., w∗), the statistics of the regressors are, in general, different.

For this reason, by projecting the aggregate (which is the information collected from the

neighborhood) onto a hyperslab, i.e., S ′
k,n, which is constructed using information that is

sensed locally, we push the aggregate closer to the feasible region and the convergence is

accelerated, which is verified by the experiments. Note that if we let PS′
k,n

be the identity

mapping, then the algorithm conforms to the simple combine-adapt cooperation protocol.

Another notable difference with [31] is that the theoretical analysis is different and strong

convergence has been proved for the scheme developed here, which was not the case with [31].
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4.2 Theoretical Analysis

As it will be established in Appendix B, the algorithm (4.4)-(4.5) enjoys a number of nice

convergence properties such as monotonicity, strong convergence to a point and consensus.

To prove these properties the following assumptions must hold.

Assumptions:

(a) There exists a non-negative integer, say n0, for which Ω =
∩

n≥n0
Ωn ̸= ∅, where

Ωn =
∩

k∈N
∩

j∈Jn
Sk,j. This means that the hyperslabs share a non empty intersec-

tion. However, it is possible for a finite number of them, n0, not to share a common

intersection. This is important, since the presence of a finite number of outliers does not

affect convergence. A case where such an assumption holds true is whenever the noise

is bounded, and the width of the hyperslabs, determined by the parameter ϵk, is chosen

appropriately so as to contain w∗ (see also Chapter 3).

(b) The local stepsize µk,n ∈ (0, 2Mk,n) , k = 1, . . . , N . As it is always the case with adap-

tive algorithms, the adaptation step must lie within an interval, in order to guarantee

convergence. Here, this interval is computed by the algorithm itself.

(c) Let ε1 > 0 be a sufficiently small constant such that µk,n ∈ [ε1Mk,n,Mk,n(2− ε1)], k =

1, . . . , N .

(d) In order to guarantee consensus the following statement must hold: ϵ′k > ϵk, ∀k ∈ N .

(e) Let us define C := O ∩ Ω, where the Cartesian product space, Ω, is defined as Ω =

Ω× . . .× Ω︸ ︷︷ ︸
N

and O is the consensus subspace, which is defined in Appendix A. We

assume that riO(C) ̸= ∅, where riO(C) stands for the relative interior of C with respect

to O, and its definition can be found in chapter 3.

Theorem 1: For any w∗ ∈ C, which is of the form w∗ =
[
ŵT

∗ , . . . , ŵ
T
∗
]T ∈ RNm, with

ŵ∗ ∈ Ω, the following hold true:

1. Monotone Approximation. Under assumptions (a), (b),

∥∥wn+1 −w∗
∥∥ ≤ ∥wn −w∗∥ , ∀n ≥ n0. (4.6)
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The previous inequality yields that, the distance of wn from any point w∗ ∈ C (that

comprises our solution space) is a nonincreasing function of the time adaptation step,

n.

2. Asymptotic Optimality. If assumptions (a), (c) hold true then:

lim
n→∞

d(wk,n,Ωn) = 0, ∀k ∈ N ,

where d(wk,n,Ωn) is the distance of wk,n from Ωn. In other words, the distance of the

obtained estimates, in each one of the nodes, from the intersection of the respective

hyperslabs tends asymptotically to zero.

3. Asymptotic Consensus. It has been shown, [31], that in order to achieve asymptotic

consensus, i.e., [13]

lim
n→∞

∥wk,n −wl,n∥ = 0, ∀k, l ∈ N , (4.7)

the following must hold true:

lim
n→∞

[(INm −BBT )wn] = 0Nm,

where the matrix B is defined in Appendix A. The previous statement is true under

assumptions (a), (c), (d).

4. Strong Convergence. If Assumptions (a), (c), (d), (e) hold true, then there exists

wO ∈ O such that

lim
n→∞

wn = wO.

In other words, the sequence generated by (4.5) converges strongly to a point in O.

Proof. The proof is given in Appendix B.

Remark 16. Notice that asymptotic consensus is achieved despite the fact that the algo-

rithm follows the diffusion optimization rationale. Loosely speaking, after a large number of

iterations, the estimates of the nodes will lie close or will belong to the hyperslabs, which
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implies that they will not be updated. This is a consequence of the asymptotic optimality

property. Henceforth, the only operation taking place at each node is the combination of the

estimates coming from the neigborhood. This reminds us of the consensus averaging itera-

tion discussed in Chapter 2. So, if the weights, ak,l, are properly chosen, then the nodes will

reach asymptotic consensus. The consensus based LMS as well as the consensus based RLS,

e.g., [97,98,123] achieve consensus in the mean, which implies that in a single realization of

the algorithm there is no guarantee that the nodes will converge to the same estimate. These

results are summarized in Table 4.1.

Table 4.1: Convergence Properties of Adaptive Distributed Algorithms

Algorithm Consensus Convergence
Algorithm 1 Asymptotic Consensus Consensus Subspace

Diffusion LMS Consensus in the Mean Convergence in the Mean
Consensus LMS Consensus in the Mean Convergence in the Mean
Consensus RLS Consensus in the Mean Convergence in the Mean

4.3 Introducing Robustness to Cope with a Failure of

Nodes

Consider a scenario, in which some of the nodes are damaged and the associated observations

are very noisy 2. In such cases, the use of loss functions, suggested in the framework of robust

statistics, are more appropriate to cope with outliers. A popular cost function of this family

is the Huber cost function, e.g., [70, 113], defined as3,

Θ̃k,n(w) =


0, if |dk,n −wTuk,n| ≤ γ̃k,

1
2
|dk,n −wTuk,n|2 −

γ̃2
k

2
, if γ̃k < |dk,n −wTuk,n| ≤ c̃k,

c̃k|dk,n −wTuk,n| −
γ̃2
k

2
− c̃2k

2
, otherwise.

(4.8)

2We assume that the noise remains additive and white. However, its standard deviation becomes larger.
3It should be stressed out, that the cost function given in (4.8) is slightly modified compared to the

classical Huber function. The difference is that in (4.8) a 0–th level set is introduced, which is determined
by the parameter γ̃k. The existence of 0–th level set is not in the classical Huber cost function.
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The one dimensional version of it is illustrated in Fig. 4.2. The use of this function in the

context of sensor networks has also been suggested in [113]. Let us take a closer look at

(4.8). First of all, whenever |dk,n −wTuk,n| ≤ γ̃k, we assume that our cost function scores

a zero penalty and the non-negative, user-defined parameter, γ̃k, defines the 0-th level set

(property set) of the function. On the contrary, if γ̃k < |dk,n −wTuk,n| ≤ c̃k, where c̃k > γ̃k

is also a user defined parameter, then the estimate scores a non-zero penalty, with a square

dependence on the error. Finally, in the case when |dk,n −wTuk,n| > c̃k, the measurements

have probably occurred from a corrupted node and the cost function now changes to a linear

dependence so as to treat it as an outlier.

In order to derive the new algorithm around the cost in (4.8), all that has to change,

with respect to the algorithm which was previously developed, are the projection operators.

Instead of projecting onto hyperslabs, one has to project onto halfspaces, denoted as H−
k,n,

which are formed by the intersections of the supporting hyperplanes (associated with the

subgradients of the cost function) and the space where the solution lies, as already discussed

in Chapter 3. Algebraically, this is done by the APSM formula, i.e.,

PH−
k,n
(w) =


w − Θ̃k,n(w)

∥Θ̃′
k,n(w)∥2 Θ̃′

k,n(w), if Θ̃′
k,n(w) ̸= 0,

w, otherwise.
(4.9)

The subgradient Θ̃′
k,n of the loss function is given by [126]:

Θ̃′
k,n(w) =



0m, if |dk,n −wTuk,n| ≤ γ̃k,

κ(dk,n −wTuk,n)(−uk,n) with κ ∈ [0, 1], if |dk,n −wTuk,n| = γ̃k,

(dk,n −wTuk,n)(−uk,n), if γ̃k < |dk,n −wTuk,n| ≤ c̃k,

c̃ksgn(dk,n −wTuk,n)(−uk,n), otherwise,

where sgn(·) denotes the sign function.

We can also include the extra projection step, described in the previous section, by

introducing a modified version of (4.8) and following a similar rationale as in Section 4.1.

However, instead of projecting the aggregate ϕk,n onto an external hyberslab, we project it

onto a halfspace that is generated by a properly modified cost function (Fig. 4.2). To be
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lev≤0(Θ̃)lev≤0(Θ̂)

φk,n

zk,n

Θ̂(φk,n)

Θ̃(zk,n)

H
′−

k,nH
−

k,n

Figure 4.2: Illustration of the cost functions Θ̃(·), Θ̂(·). The aggregate, ϕk,n, is projected
onto H

′−
k,n, which is the intersection of the hyperplane associated with the subgradient at

Θ̂(ϕk,n) with the space Rm, to provide zk,n. In the sequel, zk,n is used into the adaptation
step.

more specific, we define

Θ̂k,n(w) =


0, if |dk,n −wTuk,n| ≤ γ̂k,

1
2
|dk,n −wTuk,n|2 −

γ̂2
k

2
, if γ̂k < |dk,n −wTuk,n| ≤ ĉk,

ĉk|dk,n −wTuk,n| −
γ̂2
k

2
− ĉ2k

2
, otherwise,

where ĉk > γ̂k and γ̂k > γ̃k. The latter condition is required to guarantee consensus. The

projection of an arbitrary point onto the halfspace H ′−
k,n is similar to (4.9) and the algorithm is

similar to the one given in (4.2a)-(4.2c) with the slight difference that the involved hyperslabs

have been replaced by halfspaces. More specifically, the following recursion occurs at each

node.

Algorithm 2:

ϕk,n =
∑
l∈Nk

ak,lwl,n,

zk,n = P
H

′−
k,n

(
ϕk,n

)
, ,

wk,n+1 = zk,n + µk,n

(∑
j∈Jn

ωk,jPH−
k,j
(zk,n)− zk,n

)
,

(4.10a)

(4.10b)

(4.10c)

where the parameters ωk,j, Jn and µk,n are defined similarly as in Algorithm 1.
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As in the case of the hyperslab projection algorithm, the algorithmic scheme, which

builds the property sets around the Huber loss function, enjoys monotonicity, asymptotic

optimality, asymptotic consensus and strong convergence. Obviously, the assumptions un-

der which the algorithm enjoys these convergence properties have to change compared to

the algorithm of the previous section. More specifically, Ω now becomes Ω′ =
∩

n≥n0
Ω′

n ̸= ∅

where Ω′
n =

∩
k∈N

∩
j∈Jn

H−
k,j. Furthermore, the stepsizes must lie inside the interval with

upper bound determined as in the previous algorithm, with the difference that Mk,n is re-

placed by a parameter determined by the projection operators onto the respective halfspaces.

Finally, the assumption regarding the consensus is now γ̂k > γ̃k. Such a choice guarantees

that lev≤0Θ̃k,n ⊂ lev≤0Θ̂k,n, which is required in order to prove consensus (see Appendix B).

Remark 17. Note that although the property sets, associated with the loss function used in

this section, are quite different compared to the hyperslabs used before, both algorithms, i.e.,

the one built around the Huber loss function and the one given in (4.2a)-(4.2c), are of the

same form. The only difference lies in the projection operators. Moreover, the theoretical

analysis is exactly the same. All that matters is the property of convexity. This is a major

advantage of the methodology behind this set theoretic approach.

4.4 Numerical Examples

In this section, we present simulation results in order to study the comparative perfor-

mance of the developed algorithms with respect to previously reported schemes. The gen-

eral framework of our experiments is the system identification task in ad–hoc networks. A

linear system described by (4.1) is adopted and our goal is to estimate the unknown vec-

tor w∗ using the measurements dk,n, uk,n. The components of the regression vectors, i.e.,

uk,n = [uk,n, . . . , uk,n−m+1]
T , are generated according to

uk,n = ψkuk,n−1 + χk,n, ∀k ∈ N ,

where ψk ∈ (0, ψu) and it is distributed according to the uniform distribution and ψu is a

parameter that we alter throughout our experiments in order to investigate the behaviour of

the algorithms for cases where the regressors are strongly or weakly correlated. Finally, χk,n
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is Gaussian with unit variance. The standard deviation of the noise vk,n, which is assumed to

be white and Gaussian, equals to σk = bkσu where bk ∈ (0, 1) under the uniform distribution

and σu is user-defined and will change throughout our experiments. In order to construct

the network, the following strategy has been followed. A certain node, say k, is connected

to any other node with probability equal to 0.3, and it is connected to itself with probability

1. Additionally, the combination coefficient are chosen according to the Metropolis rule.

Finally, the adopted performance metrics used are:

• Mean Square Error (MSE), which is defined:
∑N

k=1

(dk,n−uT
k,nwk,n)

2

N
,

• Mean Square Deviation (MSD), defined as:
∑N

k=1

∥w∗−wk,n∥2

N
.

The experiments are averaged over 100 realizations for smoothing purposes.

We compare the proposed algorithm 1 with a) the adapt-combine LMS of [28] (A-C LMS),

b) the consensus based LMS [98] (D-LMS), and c) with the Adaptive Projected Subgradient

Method in Diffusion networks (APSMd) proposed in [31]. In the first experiment, we consider

an ad–hoc network with N = 20 nodes and the unknown vector w∗ is of dimension m = 60.

The noise profile for this network is obtained with σu = 10−3, ψu = 0.5. The parameter

ϵ =
√
2σk for both the proposed algorithm 1 and for the APSMd and the parameter ϵ′k = 2ϵk.

Furthermore, the number of hyperslabs onto which we project, in each step, is q = 8,

whereas the convex combination multipliers are all equal, i.e., ωk,n = 1
q
, and we let µk,n =

1, k = 1, . . . , N , for algorithm 1 and APSMd. For the A-C LMS, the stepsize equals

to µLMS = 0.01, whereas for D-LMS µD−LMS = 0.006. The stepsizes in the LMS-based

algorithms are chosen so that the algorithms reach the same steady state error floor in the

MSE sense. Throughout our experiments, if we let PS′
k,n

be the identity mapping, it turns

out that the proposed algorithm 1 and the APSMd have similar performance. Hence, as it

can be seen in Figs. 4.3.a, 4.3.b, the extra projection onto the hyperslab S ′
k,n, which adds an

O(m) expense on the computational complexity of the algorithm for each node, enhances the

results compared to the other algorithms, as it accelerates the convergence speed for the same

error floor. Moreover, the proposed algorithm 1 outperforms the LMS-based algorithms and

the APSMd, as it achieves a better steady state error floor in the MSD sense. Nevertheless,

compared to the LMS-based algorithms, the proposed algorithm 1 and the APSMd require

knowledge on the noise statistics, i.e., σk, ∀k ∈ N . Moreover, for q > 1, the projection-
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Figure 4.3: (a) MSE for experiment 1. (b) MSD for experiment 1. (c) The statistics of the
network’s regressors.

based algorithms require some extra memory in order to store past data. We would also like

to mention, that through experiments, we observed small discrepancies between the steady

state performances of the nodes, despite the fact that the noise statistics may be different.

This is also known as equalization property and it is a common effect met in diffusion based

algorithms, e.g., [94, 98].

In the second experiment, (Figs. 4.4.a, 4.4.b), the parameters remain the same as in

the previous one. However, we choose a larger ψu, namely 0.9, in order to compare the

algorithms in a more correlated environment. Furthermore, we alter the step-sizes for the

LMS-based algorithms. More specifically, the values µLMS = 0.007 and µD−LMS = 0.002

were chosen in a similar philosophy as in the previous experiment. As it is expected, the

LMS-based algorithms result in worse performance compared to the previous example of

less correlated signals, something that holds true also in the classical LMS case [120]. This

performance trend can be seen both in the MSE and the MSD curves, as algorithm 1 out-

performs significantly the LMS-based algorithms. Moreover, as it was the case in the first

experiment, it can be seen that the extra projection step accelerates the convergence speed

of proposed algorithm 1 compared to the APSMd.

The scenario in the third experiment (Figs. 4.5.a, 4.5.b) is the same as the one in

the first experiment, but now after a number of iterations there is a sudden change in the

channel. At time instant n = 1800, w∗ changes to −w∗. This is a popular experiment

in adaptive filter theory in order to test the tracking performance of the algorithm. As it

is by now well established, fast convergence speed does not necessarily guarantee a good

tracking performance [120]. It can be readily seen that the proposed algorithm 1 shows a
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Figure 4.4: (a) MSE for experiment 2. (b) MSD for experiment 2. (c) The statistics of the
network’s regressors.
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Figure 4.5: (a) MSE for experiment 3. (b) MSD for experiment 3. (c) The statistics of the
network’s regressors.

large capacity for tracking ability, when a sudden change in the channel takes place. More

specifically, until the time instant at which w∗ changes, the performance of the algorithms

coincides with that of Figs. 1.3.a, 1.3.b. After the sudden change, the proposed algorithm 1

exhibits the best tracking performance to the common steady state error floor.

Next, the algorithms are compared in a scenario where a subset of the nodes is malfunc-

tioning. The number of nodes is chosen equal to N = 10 and the vector to be estimated is

of dimension m = 30. Five of the nodes are malfunctioning, so for them σ′
k = 40σk, and

σu = 0.01. For algorithm 2, γ̃k = 4σk, γ̂k = 2γ̃k, c̃k = 5γ̃k, ĉk = 5γ̂k. Finally, the rest of

the parameters are ψu = 0.5, q = 8 in the projection based algorithms, µLMS = 0.08 and

µD−LMS = 0.01. The stepsizes, as in the previous experiments, were chosen so that the

algorithms converge to the same steady state error floor, in the MSE sense.

From Fig. 4.6.a, it can be observed that the projection based algorithms converge faster

to the common error floor. Furthermore, the proposed algorithm 2 and the APSMd have a

similar convergence speed. In Fig. 4.6.c, the average MSE, taken over the healthy nodes only,

Symeon N. Chouvardas 109



Adaptive Robust Algorithms for Distributed Learning

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

Iteration Number

A
ve

ra
ge

 M
S

E
 (

dB
)

 

 
Proposed 2
A−C LMS
APSMd
D−LMS

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
−30

−20

−10

0

10

20

30

Iteration Number

A
ve

ra
ge

 M
S

D
 (

dB
)

 

 
Proposed 2
A−C LMS
APSMd
D−LMS

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
−25

−20

−15

−10

−5

0

5

10

15

20

25

Iteration Number

A
ve

ra
ge

 M
S

E
 fo

r 
th

e 
he

al
th

y 
no

de
s 

(d
B

)

 

 
Proposed 2
A−C LMS
APSMd
D−LMS

(c)

Figure 4.6: (a) MSE for experiment 4 by considering all the nodes of the network. (b) MSD
for experiment 4. (c) Average MSE computed over the healthy nodes.

is given. It can be seen that the proposed algorithm 2 exhibits a significantly better steady

state error floor compared to the other algorithms. The reason that the proposed algorithm

2 achieves this improved error floor, whereas in Fig. 4.6.a the algorithms converge to the

same one, is a consequence of the fact that by taking into consideration the malfunctioning

nodes, the noise dominates the average MSE. Furthermore, Fig. 4.6.b demonstrates that the

proposed algorithm 2 also achieves a significantly improved steady state error floor in the

MSD sense, for the whole network. This implies that the estimate occurring is closer to w∗.

The LMS-based algorithms result in the worst performance compared to the projection based

algorithms, which is expected as in the APSMd and the proposed algorithm 2, robust cost

functions are employed for minimization. However, the proposeduse algorithm 2 results in the

lowest steady state error floor, since the Huber cost function accounts for the outliers, that

occur due to the malfunctioning nodes, in a more focused way, compared to the hyperslabs

used in APSMd. Finally, the fact that the proposed algorithm 2 converges slightly slower

than APSMd, which can be seen from the curves of Fig. 4.6.b and Fig. 4.6.c, is not a

surprising result and it is due to the fact that in the case of hyperslabs the level set is

reached with a single projection, whereas in the proposed algorithm 2, the corresponding

level set is approached via a sequence of projections onto halfspaces that contain it.
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Appendix A

Consensus Matrix and the Consensus

Subspace

Gathering all the coefficients ak,l in a matrix, we define the combination matrix A, the

k, l-th component of which equals to ak,l. The Nm × Nm consensus matrix, which will

be used in the theoretical analysis of the algorithm, is given by P = A ⊗ Im. Now, let

us give the definition of the consensus subspace O. This linear subspace has definition:

O := {w ∈ RNm : w = [wT , . . . ,wT ]T , w ∈ Rm}, and its dimension equals to m. Some

very useful properties of the consensus matrix as well as the consensus subspace, which will

be used in the derivation of the main theorem, are [31]:

1. P1Nm = 1Nm.

2. ∥P ∥ = 1.

3. Any consensus matrix P can be decomposed as

P =X +BBT ,

where B = [b1, . . . , bm] is an Nm × m matrix, and bk =
(1N ⊗ ek)√

N
, ek is an m × 1

vector of zeros except the k-th entry, which is one and X is an Nm×Nm matrix for

which it holds that ∥X∥ < 1.

4. Pw̆ = w̆,∀w̆ ∈ O.
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5. The vectors bk, k = 1, . . . ,m constitute a basis for O. The projection of a vector,

w ∈ RNm, onto this linear subspace is given by PO(w) := BBTw, ∀w ∈ RNm.
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Appendix B

Proof of Theorem 1

In this appendix, the proof of the main Theorem will be presented.

B.1 Proof of Theorem 1.1

Assume that for a fixed node, say k, at time instant n we have estimated zk,n. We define

the cost function, for any w ∈ Rm 1

Θk,n(w) =


∑

j∈Jn

ωk,jd(zk,n,Sk,j)∑
l∈Jn

ωk,ld(zk,n,Sk,l)
d(w, Sk,j), if zk,n /∈

∩
j∈Jn

Sk,j,

0, otherwise.

We also define Ln :=
∑

j∈Jn
ωk,jd(zk,n, Sk,j), for which, by definition, Ln ̸= 0 if zk,n /∈∩

j∈Jn
Sk,j. The previous statement holds true obviously because if zk,n /∈

∩
j∈Jn

Sk,j there

exists j0 ∈ Jn for which d(zk,n, Sk,j0) ̸= 0 hence
∑

j∈Jn
ωk,jd(zk,n, Sk,j) > 0.

It can be seen that this cost function is convex, continuous and subdifferentiable. Its

subgradient is given by [124]

Θ′
k,n(w) =


1
Ln

∑
j∈Jn

ωk,jd(zk,n, Sk,j)d
′(w, Sk,j), if zk,n /∈

∩
j∈Jn

Sk,j,

0, otherwise,
(B.1)

1The proof when we use projections onto halfspaces, which are involved when the Huber cost function is
employed, follows similar steps. All one has to do is to modify the cost function replacing projections onto
hyperslabs with projections onto halfspaces. However, the proofs rely on the properties of metric projections
and not on their specific form.
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where d′(w, Sk,j) ∈ ∂d(w, Sk,j), and [65]

∂d(w, Sk,j) =


w − PSk,j

(w)

d(w, Sk,j(w))
, if w /∈ Sk,j,

a certain subset of B[0m,1] which contains 0m, otherwise.

Additionally, if w /∈
∩

j∈Jn
Sk,j and zk,n /∈

∩
j∈Jn

Sk,j, from (B.1) a choice of a subgradient

is:

Θ′
k,n(w) =

1

Ln

∑
{j∈Jn:w/∈Sk,j}

ωk,jd(zk,n, Sk,j)
w − PSk,j

(w)

d(w, Sk,j)
.

Finally, if zk,n /∈
∩

j∈Jn
Sk,j,

Θ′
k,n(zk,n) =

1

Ln

∑
{j∈Jn:zk,n /∈Sk,j}

ωk,j

(
zk,n − PSk,j

(zk,n)
)

=
1

Ln

∑
j∈Jn

ωk,j

(
zk,n − PSk,j

(zk,n)
)
. (B.2)

The last equality is true, due to the fact that if there exists j0 ∈ Jn such that zk,n ∈ Sk,j0 ,

then zk,n = PSk,j0
(zk,n).

Now, recall the definition of Mk,n given in (4.3). We define

λk,n =
µk,n

Mk,n

. (B.3)

One should notice here that λk,n ∈ (0, 2) under assumption (b). In the case where∑
j∈Jn

ωk,j

(
zk,n − PSk,j

(zk,n)
)
̸= 0m, if we go back to the recursion given in (4.2c) and
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B.1 Proof of Theorem 1.1

combining (B.3) with (B.1) and (B.2) we get

wk,n+1 = zk,n + µk,n

(∑
j∈Jn

ωk,jPSk,j
(zk,n)− zk,n

)

= zk,n + λk,n

∑
j∈Jn

ωk,jd2(zk,n, Sk,j)∥∥∥∑j∈Jn
ωk,j

(
zk,n − PSk,j

(zk,n)
)∥∥∥2

×

(∑
j∈Jn

ωk,j

(
PSk,j

(zk,n)− zk,n
))

= zk,n + λk,n

1
Ln

∑
j∈Jn

ωk,jd2(zk,n, Sk,j)

1
L2
n

∥∥∥∑j∈Jn
ωk,j

(
zk,n − PSk,j

(zk,n)
)∥∥∥2

1

Ln

×

(∑
j∈Jn

ωk,j

(
PSk,j

(zk,n)− zk,n
))

= zk,n − λk,n
Θk,n(zk,n)∥∥Θ′
k,n(zk,n)

∥∥2Θ′
k,n(zk,n). (B.4)

Equation (B.4) is a slight modification of the Adaptive Projected Subgradient Method. Fol-

lowing similar steps as in [124], and under assumption (a), then it can be shown that:
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zk,n /∈
∩

j∈Jn
Sk,j ⇔ ∥Θ′

k,n(zk,n)∥ ̸= 0,∀k ∈ N , ∀n ≥ n0. So for the whole network we have

wn+1 =



z1,n − λ1,n
Θ1,n(z1,n)

∥Θ′
1,n(z1,n)∥2Θ′

1,n(z1,n)

z2,n − λ2,n
Θ2,n(z2,n)

∥Θ′
2,n(z2,n)∥2Θ′

2,n(z2,n)

...

zN,n − λN,n
ΘN,n(zN,n)

∥Θ′
N,n(zN,n)∥2Θ′

N,n(zN,n)


⇒ (B.5)

∥∥wn+1 −w∗
∥∥2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



z1,n − λ1,n
Θ1,n(z1,n)

∥Θ′
1,n(z1,n)∥2Θ′

1,n(z1,n)

z2,n − λ2,n
Θ2,n(z2,n)

∥Θ′
2,n(z2,n)∥2Θ′

2,n(z2,n)

...

zN,n − λN,n
ΘN,n(zN,n)

∥Θ′
N,n(zN,n)∥2Θ′

N,n(zN,n)


−w∗

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥


z1,n − ŵ∗

z2,n − ŵ∗
...

zN,n − ŵ∗



∥∥∥∥∥∥∥∥∥∥∥∥

2

+
N∑
k=1

λ2k,n
(Θk,n(zk,n))

2∥∥Θ′
k,n(zk,n)

∥∥4 ∥∥Θ′
k,n(zk,n)

∥∥2

− 2
N∑
k=1

λk,n
Θk,n(zk,n)Θ

′T
k,n(zk,n)(zk,n − ŵ∗)∥∥Θ′

k,n+1(zk,n)
∥∥2 . (B.6)

Notice here that PS′
k,n
(ŵ∗) = ŵ∗,∀k ∈ N . This argument is true since ŵ∗ ∈ Ωn ⇒ ŵ∗ ∈

Sk,n ⊂ S ′
k,n ⇒ ŵ ∈ S ′

k,n,∀k ∈ N . Furthermore, one basic property of the projection operator

onto closed convex sets [129] states that ∥PS′
k,n
(ϕk,n)− PS′

k,n
(ŵ∗)∥ ≤ ∥ϕk,n − ŵ∗∥, ∀k ∈ N .

Hence, recalling the properties of the matrix P we have:

∥∥∥∥∥∥∥∥∥∥∥∥


z1,n − ŵ∗

z2,n − ŵ∗
...

zN,n − ŵ∗



∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥


PS′

1,n
(ϕ1,n)− PS′

1,n
(ŵ∗)

PS′
2,n
(ϕ2,n)− PS′

2,n
(ŵ∗)

...

PS′
N,n

(ϕN,n)− PS′
N,n

(ŵ∗)



∥∥∥∥∥∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥∥∥∥∥∥


ϕ1,n − ŵ∗

ϕ2,n − ŵ∗
...

ϕN,n − ŵ∗



∥∥∥∥∥∥∥∥∥∥∥∥

2

= ∥Pwn −w∗∥2 = ∥Pwn − Pw∗∥2

≤ ∥P ∥2∥wn −w∗∥2 = ∥wn −w∗∥2, (B.7)

Moreover, from the definition of the subgradient Θ′T
k,n(zk,n)(zk,n − ŵ∗) ≥ Θk,n(zk,n) −

Symeon N. Chouvardas 116



B.2 Proof of Theorem 1.2

Θk,n(ŵ∗) = Θk,n(zk,n) ≥ 0, where we have used the fact that Θk,n(ŵ∗) = 0, which holds by

the definition of the cost function, since ŵ∗ ∈
∩

j∈Jn
Sk,j. Combining the last argument with

(E.12) and (B.7) we have

∥∥wn+1 −w∗
∥∥2 ≤ ∥wn −w∗∥

2 +
N∑
k=1

λ2k,n
(Θk,n(zk,n))

2∥∥Θ′
k,n(zk,n)

∥∥2 − 2
N∑
k=1

λk,n
(Θk,n(zk,n))

2∥∥Θ′
k,n(zk,n)

∥∥2
= ∥wn −w∗∥

2 −
N∑
k=1

λk,n(2− λk,n)
(Θk,n(zk,n))

2∥∥Θ′
k,n(zk,n)

∥∥2
⇔ ∥wn −w∗∥

2 −
∥∥wn+1 −w∗

∥∥2
≥

N∑
k=1

λk,n (2− λk,n)
(Θk,n(zk,n))

2∥∥Θ′
k,n(zk,n)

∥∥2 ≥ 0. (B.8)

Hence, we conclude that
∥∥wn+1 −w∗

∥∥ ≤ ∥wn −w∗∥ . This completes the proof of Theorem

1.1.

Remark 18. Here, we would like to point out that monotonicity also holds in cases where

the subgradients of some nodes equal to zero. Assume, without loss of generality, that the

subgradient of node l, at time instance n, is zero, which under assumption (a) implies that

zl,n ∈
∩

j∈Jn
Sl,j. Then, from [124] and if assumption (a) holds true, it can be proved that

the recursion for this node is wl,n = zl,n. Loosely speaking, the second term of the right hand

side in (B.4) is omitted. So, following exactly similar steps as in the previous proof, (B.8)

becomes ∥wn −w∗∥ − ∥wn+1 −w∗∥ ≥
∑

k∈N\l λk,n (2− λk,n)
(Θk,n(zk,n))

2

∥Θ′
k,n(zk,n)∥

2 ≥ 0.

B.2 Proof of Theorem 1.2

We want to show that lim
n→∞

d(wk,n,Ωn) = 0. The sequence ∥wn −w∗∥
2 is bounded and

monotonically decreasing, hence it converges. So it is a Cauchy sequence, from which we

obtain that

∥wn −w∗∥
2 −

∥∥wn+1 −w∗
∥∥2 → 0, n→ ∞. (B.9)
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So from (B.8), (B.9)

lim
n→∞

λk,n(2− λk,n)
(Θk,n(zk,n))

2∥∥Θ′
k,n(zk,n)

∥∥2 = 0, ∀k ∈ N . (B.10)

Following similar steps as in [82] it can be proved that ∥Θ′
k,n(zk,n)∥ ≤ 1,∀k ∈ N , ∀n ∈ Z.

Under assumption (c) and if we take into consideration (B.10), we have that

ε21Θk,n(zk,n) ≤
λk,n(2− λk,n)∥∥Θ′

k,n(zk,n)
∥∥2Θk,n(zk,n) → 0,∀k ∈ N .

From the last equation we have that

lim
n→∞

Θk,n(zk,n) = 0, ∀k ∈ N . (B.11)

Now, if we go back to the recursion given in equation (B.5) and combine it with (B.10) we

obtain

lim
n→∞

∥wk,n+1 − zk,n∥ = 0, ∀k ∈ N . (B.12)

Let us assume that v is an arbitrary point that belongs to Ω(n). We have that ∥wk,n+1 − v∥ ≤

∥wk,n+1 − zk,n∥+ ∥zk,n − v∥, where this holds due to the triangle inequality. Therefore,

inf
v∈Ωn

∥wk,n+1 − v∥ ≤ ∥wk,n+1 − zk,n∥+ inf
v∈Ωn

∥zk,n − v∥

⇔ d(wk,n,Ωn) ≤ ∥wk,n − zk,n∥+ d(zk,n,Ωn). (B.13)

Following the same steps as in [124] and taking into consideration (I.10), it can be proved

that

lim
n→∞

d(zk,n,Ωn) = 0. (B.14)

Taking limits into equation (B.13), and combining (B.12), (B.14) we conclude that:

lim
n→∞

d(wk,n+1,Ωn) = 0.
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B.3 Proof of Theorem 1.3

First we need to prove the following claim

Claim 1. Assume that ϵ′k > ϵk and that (a), (c) hold true. Then, there exists n2 such that

ϕk,n ∈ S ′
k,n, ∀n ≥ n2, ∀k ∈ N .

Proof. Since ϵ′k > ϵk, for any vectorw on the boundary of S ′
k,n, there exists ε2, which depends

on the choice of ϵ′k and ϵk, such that d(w, Sk,n) > ε2. We have shown that d(zk,n,Ωn) →

0, n → ∞ under assumptions (a), (c). However, since by definition Ωn ⊆ Sk,n we have that

d(zk,n, Sk,n) → 0, n→ ∞. Due to the last argument, there exists n2 such that

d(zk,n, Sk,n) ≤
ε2
2
, ∀n ≥ n2. (B.15)

However, if ∃n ≥ n2 such that ϕk,n /∈ S ′
k,n then zk,n will lie on the boundary of S ′

k,n, as it is

the projection of ϕk,n onto it. Hence d(zk,n, Sk,n+1) > ε2 which clearly contradicts equation

(B.15). Thus our claim holds true.

The fact that ϕk,n ∈ S ′
k,n, after some iterations, implies that zk,n = PS′

k,n
(ϕk,n) =

ϕk,n, ∀n ≥ n2. Recalling (B.5) we have ∀n ≥ n2

wn+1 =



ϕ1,n − λ1,n
Θ1,n(ϕ1,n)

∥Θ′
1,n(ϕ1,n)∥2Θ′

1,n(ϕ1,n)

ϕ2(n)− λ2,n
Θ2,n(ϕ2,n)

∥Θ′
2,n(ϕ2,n)∥2Θ′

2,n(ϕ2,n)

...

ϕN,n − λN,n
ΘN,n(ϕN,n)

∥Θ′
N,n(ϕN,n)∥2Θ′

N,n(ϕN,n)


= Pwn+1 − Fn, (B.16)

where

Fn =



λ1,n
Θ1,n(ϕ1,n)

∥Θ′
1,n(ϕ1,n)∥2Θ′

1,n(ϕ1,n)

λ2,n
Θ2,n(ϕ2,n)

∥Θ′
2,n(ϕ2,n)∥2Θ′

2,n(ϕ2,n)

...

λN,n
ΘN,n(ϕN,n)

∥Θ′
N,n(ϕN,n)∥2Θ′

N,n(ϕN,n)


.
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Taking into consideration (B.10) we have that

lim
n→∞

∥Fn∥2 = lim
n→∞

N∑
k=1

∥λk,n
Θk,n(ϕk,n)∥∥Θ′
k,n(ϕk,n)

∥∥2Θ′
k,n(ϕk,n)∥2 = 0. (B.17)

Now, going back and iterating equation (B.16), ∀n ≥ n2 we have:

wn+1 = Pwn − Fn = PPnwn−1 − PFn−1 − Fn =

. . . =

n−n2∏
j=0

Pwn2
−

n∑
j=n2+1

n−j∏
l=0

PFj − Fn.

If we left-multiply the previous equation by (INm −BBT ) we obtain

(INm −BBT )wn+1 = (INm −BBT )
n∏

j=n2

Pwn2
−

(INm −BBT )
n∑

j=n2+1

n−j∏
l=0

PFj − (INm −BBT )Fn.

If we follow similar steps as in [31, Lemma 2] it can be verified that

lim
n→∞

(INm −BBT )wn+1 = 0Nm, (B.18)

which completes our proof.

Remark 19. Note that the result of this theorem can be readily generalized to the algorithm

using the Huber loss function. The only condition needed to guarantee asymptotic consensus

is lev≤0Θ̃k,n ⊂ lev≤0Θ̂k,n, which by construction of the loss functions is true.

B.4 Proof of Theorem 1.4

Recall that the projection operator, of an arbitrary vector x ∈ RNm onto the consensus

subspace equals to PO(x) = BBTx,∀x ∈ RNm. Let assumptions (a), (c), (d), (e) hold.

Since assumption (e) holds, together with (E.10), from [149, Lemma 1] we have that there

exists ŵO ∈ O such that

lim
n→∞

PO(wn) = wO. (B.19)
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Now, exploiting the triangle inequality we have that

∥wn −wO∥ ≤ ∥wn − PO(wn)∥+ ∥wO − PO(wn)∥ → 0, n→ ∞, (B.20)

where this limit holds from (I.14) and (E.30). The proof is complete since (E.31) implies

that limn→∞wn = wO.
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Chapter 5

A Sparsity–Promoting

Projection–Based Algorithm for

Distributed Learning

In this chapter, an APSM–based sparsity–promoting adaptive algorithm for distributed learn-

ing in ad–hoc networks will be developed. At each time instance and at each node of the

network, a hyperslab is constructed based on the received measurements; this defines the

region in which the solution is searched for. Sparsity encouraging variable metric projections

onto these sets have been adopted. In addition, sparsity is also imposed by employing variable

metric projections onto weighted ℓ1 balls. A combine adapt cooperation strategy is followed.

The theoretical properties of the algorithm are studied and it is shown that under some mild

assumptions, the scheme enjoys monotonicity, asymptotic optimality and strong convergence

to a point that lies in the consensus subspace. Finally, numerical examples verify the en-

hanced performance obtained by the proposed scheme compared to other algorithms, which

have been developed in the context of sparsity–aware adaptive learning.

5.1 Sparsity–Aware Learning

Sparsity, i.e., the presence of only a small number of non-zero coefficients in an unknown

signal/parameter vector, which is to be estimated, has been recently attracting an over-

whelming interest under the Compressed Sensing (CS) framework [20, 53]. The task of
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estimating sparse parameter vectors is met in a wide range of both distributed and cen-

tralized applications, such as data compression, echo cancellation, spectrum cartography,

medical signal processing, just to name a few, e.g., [19, 21, 96].

In its centralized form, our familiar linear model is considered, i.e.,

dn = uT
nw∗ + vn, ∀n ∈ Z≥0. (5.1)

We assume that w∗ is sparse, i.e., ∥w∗∥0 ≪ m, or, in other words, it has a small number of

non-zero coefficients. Suppose that a finite number of measurements, say K, is available. In

that case, (5.1) can be written as

d = Uw∗ + v,

where U = [u1, . . . ,uK ]
T ∈ RK×m, d = [d1, . . . , dK ]

T ∈ RK and v = [v1, . . . , vK ]
T ∈ RK .

Classical techniques, such as the celebrated least-squares method, fail to obtain a good

estimate of the unknown parameters, since they do not take into consideration the sparsity

of w∗ and, consequently, there is no guarantee that the estimate will predict the support,

i.e., the set of non-zero components, while forcing the rest to become zero. This results to

an increased misadjustment between the true and the estimated values, [6]. Nevertheless,

one can resort to a sparsity promoting technique, namely Least Absolute Shrinkage and

Selection Operator (Lasso), and overstep the previously mentioned problem. Analytically,

the Lasso estimator promotes sparsity by solving the following optimization task

ŵ = argmin∥w∥1≤ϱ∥d−Uw∥2,

where the term ∥d −Uw∥ accounts for the error residual in the estimation process; the ℓ1
norm promotes sparsity by shrinking small coefficient values towards zero, e.g., [19]. Most of

the emphasis in solving the Lasso problem has been given on batch techniques, see, e.g., [95].

However, such techniques are inappropriate for online learning, where data arrive sequentially

and/or the environment is not stationary but it undergoes changes as time evolves. In the

sequel, we will give a brief description of sparsity–promoting adaptive algorithms.
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5.1.1 Sparsity–Promoting Adaptive Algorithms

Although sparsity–promoting adaptive algorithms have drawn the attention of the signal

processing community for many years, see, e.g., [8, 54], it is only recently that the topic

is being treated in a more theoretically sound framework. There are mainly two routes to

follow when the goal is the estimation of a sparse unknown vector:

• Algorithms within the spirit of ℓ1 regularization, e.g., [4,5,35,75,82,103]. The a–priori

information concerning the underlying sparsity is exploited by constraining the ℓ1 norm.

Providing this a–priori information, the convergence rate is improved significantly, and

the associated error floor in the steady state is also reduced.

• Greedy algorithms, e.g., [44, 100]. In a nutshell, greedy techniques estimate the posi-

tions containing the non–zero coefficients of the unknown target vector to be estimated,

and then perform the computations in this subset.

As it is often the case, most of these efforts evolve along the three main axes in adaptive

filtering. One is along the gradient descend rationale, as this is represented in the adaptive

learning by the LMS [35, 100]. The other direction follows Newton-type arguments, as

represented by the RLS [4, 5]. The other route is more recent and builds upon the APSM

algorithm, e.g., [82]. The algorithm, which will be developed here and was presented in

[39, 45], belongs to the latter algorithmic family.

5.2 Set–theoretic Estimation Approach and Variable

Metric Projections

As we saw in Chapters 3,4, the philosophy behind the APSM algorithm is that instead of

adopting a loss function to be optimized, one obtains an estimate that lies arbitrarily close in

the intersection of an infinite number of convex sets. Each one of these (convex) property sets

is constructed using information which is provided by the sensed measurements. The goal

of computing such a point is accomplished by projecting, in parallel, the currently available

estimate onto the q (user-defined) most recently “received” sets. It has been pointed out (see,

for example, [153]), that the sparsity–related a–priori knowledge can be “embedded” in the
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projection operators to the benefit of the algorithm’s performance. To this end, the notion

of the variable metric projection was introduced. The result of a variable metric projection

of a vector onto a closed convex set is determined by: a) a positive definite matrix, which

defines the induced inner product, b) the specific convex set, onto which the projection takes

place and c) the vector itself. As it will become clear later on, for a properly chosen matrix,

which is time-dependent and it is constructed via the current estimate at each time instance,

the variable metric projection pushes small coefficients to diminish faster. In other words, by

employing at each time instance a different inner product in our Euclidean space, we favor

sparse solution vectors.

Here, the adopted property sets take the form of hyperslabs, with definition (see also

Chapters 2,3)

Sn := {w ∈ Rm : |dn − uT
nw| ≤ ϵ}. (5.2)

In the previous chapters, we considered the case of the Euclidean projection onto these hyper-

slabs. Let us introduce, here, the variable metric projection, onto the respective hyperslabs,

with respect to the matrix Gn, defined as [152]:

∀w ∈ Rm, P
(Gn)
Sn

(w) := w + βnG
−1
n un, (5.3)

where

βn =



dn − uT
nw + ϵ

∥un∥2G−1
n

, if dn − uT
nw < −ϵ,

0, if |dn − uT
nw| ≤ ϵ,

dn − uT
nw − ϵ

∥un∥2G−1
n

, if dn − uT
nw > ϵ,

and ∥un∥2G−1
n

denotes the weighted norm, with definition ∥un∥2G−1
n

:= uT
nG

−1
n un (see Ap-

pendix C). Note that if Gn = Im, then (5.3) is the Euclidean projection onto a hyper-

slab. The positive definite diagonal matrix G−1
n is constructed following similar philosophy

as in [8, 153]. The i-th coefficient of its diagonal equals to g−1
i,n = 1−α

m
+ α

|w(n)
i |

∥wn∥1 , where

α ∈ [0, 1) is a parameter, that determines the extend to which the sparsity level of the

unknown vector will be taken into consideration, and w
(n)
i denotes the i-th component of

wn. In order to grasp the reasoning of the variable metric projections, consider the ideal
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Sn

w∗

w

PSn
(w)

P
(Gn)
Sn

(w)

w2

w1

Figure 5.1: Illustration of a hyperslab, the standard metric projection of a vector w onto it,
denoted by PSn(w), and the variable metric projection onto it.

situation, in which G−1
n is generated by the unknown vector w∗. It is easy to verify that

g−1
i,n > g−1

i′,n, if i ∈ supp(w∗), and i′ /∈ supp(w∗), where supp(·) stands for the support set

of a vector, i.e., the set of the non–zero coefficients. Hence, employing the variable metric

projection, the amplitude of each coefficient of the vector used to construct G−1
n determines

the weight that will be assigned to the corresponding coefficient of the second term of the

right hand side in (5.3). That is, components with smaller magnitude are multiplied with

small coefficients of G−1
n . Loosely speaking, the variable metric projections accelerate the

convergence speed when tracking a sparse vector, since by assigning different weights pushes

the coefficients of the estimates with small amplitude to diminish faster. The geometric

implication of it is that the projection is made to “lean” towards the direction of the more

significant components of the currently available estimate. Another viewpoint, as docu-

mented in [8], is the following. The coefficients of the matrix G−1
n , which are multiplied

with the second term of the right hand side in (5.3), can be seen as m individual step-sizes,

one for each coefficient. As it is by now well established in adaptive filter community (see

for example [120]), the larger the step-size the faster the convergence. Hence, coefficients of

large amplitude are assigned a large “step-size”, whereas the rest are multiplied by a smaller

“step-size”. This results to a faster convergence speed compared to the case where the same

step-size is adopted to each one of coefficients; the latter case results in Gn = Im, as it has

been shown in [8, 54]. Obviously, since w∗ is unknown, the weights rely on the available

estimates, i.e., wn, at each time instance. These concepts are depicted in Fig. 5.1.

Remark 20. The variable metric projections rationale is in line with the so called propor-
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Bℓ1
[hn, δ]

Bℓ1
[1m, δ]

w2

w1

Figure 5.2: Illustration of a weighted ℓ1 ball (solid line magenta) and an unweighted ℓ1 ball
(dashed line blue).

tionate algorithms [8, 54, 154]. At the heart of these algorithms lies the fact that at every

time instance different weights are assigned to the coordinates of the vector, which leads to

the next estimate.

In the algorithm which is presented here, we go one step further, as far as sparsity is

concerned. In a second stage, additional sparsity-related constraints, which are built around

the weighted ℓ1 ball, are employed, [22]. A sparsity promoting adaptive scheme, based on set-

theoretic estimation arguments, in which the constraints are weighted ℓ1 balls, was presented

in [82]. Given a vector of weights hn = [h
(n)
1 , . . . , h

(n)
m ]T , where h(n)i > 0, ∀i = 1, . . . ,m, and a

positive radius, δ, the weighted ℓ1 ball is defined as: Bℓ1 [hn, δ] := {w ∈ Rm :
∑m

i=1 h
(n)
i |wi| ≤

δ}. Notice, that the classical ℓ1 ball occurs if hn = 1m. The projection onto Bℓ1 [hn, δ], is

given in [82, Theorem 1], and the geometry of these sets is illustrated in Fig. 5.2.

It was shown that the estimates of the algorithm proposed in [82] converge asymptotically

to a point, which lies arbitrarily close to the intersection of the hyperslabs with the weighted

ℓ1 balls, with the possible exception of a finite number of outliers. A generalized version of

the algorithm presented in [82] will be developed in the next section.

Remark 21. The weighted ℓ1 ball is determined by the vector of weights and the user–defined

radius δ. Strategies of constructing the weights have been proposed in [20,82]. For example,

h
(n)
i = 1/(|w(n)

i | + ϵ̃n), i = 1, . . . ,m, where ϵ̃n is a sequence of positive numbers used in

order to avoid divisions by zero. It has been shown, e.g., [82], that by choosing the weights

according to the previously mentioned strategy and if one sets δ ≥ ∥w∗∥0, then it holds that
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w∗ ∈ Bℓ1 [hn, δ].

Here we should note that in [82], standard metric projections onto the hyperslabs and

the weighted ℓ1 balls take place. However, since we employ variable metric projections onto

the hyperslabs, the induced inner product is time varying and it is determined by the matrix

Gn. This fact forces us to employ variable metric projections onto the respective ℓ1 balls,

too.

Claim 2. Recall the definition of the diagonal matrix Gn. The variable metric projection

onto Bℓ1 [hn, δ] is given by P (Gn)
Bℓ1

[hn,δ]
= G

− 1
2

n P
Bℓ1

[G
− 1

2
n hn,δ]

G
1
2
n .

Proof. The proof is given in Appendix D.

5.3 Proposed Algorithmic Scheme

The goal is to bring together the sparsity promoting “tools”, which where discussed in Section

5.2 and to reformulate them in a fashion that is appropriate for distributed learning. We

will proceed by adopting the combine–adapt diffusion strategy, which was presented in the

Chapter 2. The main steps of the algorithm, for node k and at time instance n, can be

summarized as follows:

Algorithm 1:

1. The estimates from the neighborhood are received and combined with respect to the

adopted combination strategy, in order to produce ϕk,n =
∑

l∈Nk
ak,lwl,n, ∀k ∈ N ,

where ak,l are the combination weights, which are defined in a similar way as in Chapter

4.

2. Exploiting the most recently received measurements, dk,n,uk,n, the following hyper-

slab is defined: Sk,n = {w ∈ Rm : |dk,n − uT
k,nw| ≤ ϵk}, where the parameter ϵk is

allowed to vary from node to node. The aggregate ϕk,n is projected, using variable

metric projections, onto the q most recent hyperslabs, constructed locally in node k;

in the sequel, their convex combination is computed. Analytically, the sliding win-

dow Jn := max{0, n− q + 1}, n is defined, and it determines the hyperslabs that will

be considered at time instance n. Given the set of weights ∀j ∈ Jn, ωk,j, where
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∑
j∈Jn

ωk,j = 1,∀k ∈ N , the convex combination of the projections onto the hyper-

slabs, i.e.,
∑

j∈Jn
ωk,jP

(Gn)
Sk,j

(ϕk,n) is computed. The effect of projecting onto a q > 1

number of hyperslabs is to speed up convergence [82].

3. The result of the previous step is projected onto the sparsity constraint set, i.e., the

weighted ℓ1 ball.

The previous steps can be encoded in the following mathematical formula:

wk,n+1 = P
(Gn)
Bℓ1

[hn,δ]

(
ϕk,n + µk,n

(∑
j∈Jn

ωk,jP
(Gn)
Sk,j

(ϕk,n)− ϕk,n

))
, (5.4)

where µk,n ∈ (0, 2Mk,n), and

Mk,n :=



∑
j∈Jn

ωk,j

∥∥∥P (Gn)
Sk,j

(ϕk,n)− ϕk,n

∥∥∥2∥∥∥∑j∈Jn
ωk,jP

(Gn)
Sj

(ϕk,n)− ϕk,n

∥∥∥2 , if
∑

j∈Jn
ωk,jP

(Gn)
Sk,j

(ϕk,n) ̸= ϕk,n

1, otherwise.

(5.5)

The algorithm has an elegant geometrical interpretation, which can be seen in Fig. 5.3.

From the theoretical analysis concerning convergence, it turns out that the weighted ℓ1

ball, as well asGn, have to be the same for every node of the network, which implies that this

information cannot be constructed locally. This fact, as it will be established in Appendix

E, is essential in order to guarantee consensus. Hence, a reasonable strategy is to construct

hn and Gn, using the methodology described in Section 5.2, via wkopt,n, where kopt is the

node with the smallest noise variance. It is obvious that this requires knowledge, in every

node, of wkopt,n something that is in general infeasible. However, it is not essential to update

the parameters at every time instance. Instead, hn and Gn can be updated at every, n′ ≥ 1,

time instances, where n′ are the time steps required for wkopt,n to be distributed over the

network. Experiments regarding the robustness of the proposed algorithm with respect to

n′ are given in the Numerical Examples section. Moreover, as it will become clear in the

Numerical Examples section, it turns out that the algorithm is robust in cases where the

knowledge of the less noisy node is not available, and/or in cases where the assumption that

these quantities must be common to all nodes is violated and each node uses the locally

Symeon N. Chouvardas 130



5.3 Proposed Algorithmic Scheme

available values. It should be pointed out that in the adaptive filtering such deviations

between theory and practice are not uncommon. The most celebrated example is the so

called independence assumption adopted in the LMS, which is commonly employed to prove

convergence, although in practice it does not hold, e.g., [120].

Regarding the complexity of the algorithm, it has been shown in [82], that if standard

metric projections take place, then the complexity of the respective algorithm is O(qm),

coming from the projection operators and O(mlog2m) occurring from the projection onto

the weighted ℓ1 ball. If we employ the variable metric projections, at each node, it is

obvious that the term G−1
n uk,j, j ∈ Jn has to be computed, and this adds qm multiplication

operations.

Remark 22. The algorithm presented in [82] is a special case of the scheme in (5.4), if

N = 1 and Gn = Im. The same also holds for the IPNLMS [8] if we let N = 1, q = 1,

ϵk = 0 and P (G)
Bℓ1

[hn,δ]
= I, where I stands for the identity operator.

As it will be verified in Appendix E, the Algorithm 1 in (5.4) enjoys monotonicity,

asymptotic optimality and strong convergence to a point that lies in the consensus subspace.

The assumptions under which the previous hold are the following.

Assumptions.

(a) Define ∀n ∈ Z≥0, Ωn = Bℓ1 [hn, δ] ∩
(∩

j∈Jn

∩
k∈N Sk,j

)
. Assume that there exists

n0 ∈ Z≥0, such that Ω :=
∩

n≥n0
Ωn ̸= ∅.

(b) There exists n1 ∈ Z≥0, such that Gn = Gn1 =: G, ∀n ≥ n1. In other words, the update

of the matrix Gn pauses after a finite number of iterations1.

(c) Assume a sufficiently small ε1, such that ∀k ∈ N ,
µk,n

Mk,n
∈ [ε1, 2− ε1].

(d) Assume ∀k ∈ N ω̃k := inf{ωk,j : j ∈ Jn, n ∈ Z≥0} > 0.

(e) Define C := Ω∩O, where the cartesian product space Ω := Ω× . . .× Ω︸ ︷︷ ︸
N

, where O is the

consensus subspace (see Chapter 4). We assume that riOΩ ̸= ∅, where this term stands

for the relative interior of Ω with respect to O.
1Notice that the matrix Gn is constructed via wkopt,n, hence ∀n ≥ n1, the variable metric projections is

determined by wkopt,n1
. In practice, for sufficiently large n1, the algorithm has converged and the fact that

Gn is not updated does not affect the performance of the algorithm.
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Theorem 7. Under the previous assumptions, the following hold:

(1) Monotonicity. Under assumptions (a), (b), (c), it holds that ∀n ≥ z0, ∀ŵ ∈

C, ∥wn+1 − ŵ∥G ≤ ∥wn − ŵ∥G, where z0 := max{n0, n1}, G is the Nm × Nm block-

diagonal matrix, with definition G := diag {G, . . . ,G}︸ ︷︷ ︸
N

, and wn = [wT
1,n, . . . ,w

T
N,n]

T ∈

RNm, ∀n ∈ Z≥0.

(2) Asymptotic Optimality. If assumptions (a), (b), (c), (d) hold true then limn→∞ max{d(wk,n+1, Sk,j) :

j ∈ Jn} = 0,∀k ∈ N , where d(·, Sk,j) denotes the distance of wk,n+1 from Sk,j . The

previous implies that the distance of the estimates from the respective hyperslabs will

tend asymptotically to zero.

(3) Asymptotic Consensus. Consider that assumptions (a), (b), (c), (d) hold. Then

limn→∞ ∥wk,n −wl,n∥ = 0, ∀k, l ∈ N .

(4) Strong Convergence. Under assumptions (a), (b), (c), (d), (e), it holds that limn→∞wn =

ŵO, ŵO ∈ O. So, the estimates for the whole network, converge to a point that lies in

the consensus subspace.

Proof. The proof is given in Appendix E.

5.4 Numerical Examples

In this section, the performance of the proposed algorithm is validated within the system

identification framework. In the first experiment, we compare the proposed algorithm against

others in the context of a non–distributed system identification task. This essentially allow

us to evaluate the use of the variable metric projections scheme, together with the weighted

ℓ1 ball. More specifically, we compare the proposed algorithm with the Adaptive Projection

based algorithm using Weighted ℓ1 Balls (APWL1) [82], with the Online Cyclic Coordinate

Descent Time Weighted Lasso (OCCD-TWL), the Online Cyclic Coordinate Descent Time

and Norm Weighted LASSO (OCCD-TNWL), both proposed in [4], and with the LMS-based,

Sparse Adaptive Orthogonal Matching Pursuit (Spadomp) [100]. The unknown vector is of

dimension m = 512 and the number of non-zero coefficients, equals to 20. Moreover, the
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φk,n

Sk,n

Sk,n−1

w∗

wk,n+1

w2

w1

Figure 5.3: Geometrical interpretation of the algorithm. The number of hyperslabs onto
which ϕk,n is projected, using variable metric projections, is q = 2. The result of these two
projections, which are illustrated by the dash dotted black line, is combined (red line) and
the result is projected (solid black line) onto the sparsity promoting weighted ℓ1 ball, in
order to produce the next estimate.

input samples un = [un, . . . , un−m+1]
T are drawn from a Gaussian distribution, with zero

mean and standard deviation equal to 1. The noise process is Gaussian with variance equal

to σ2 = 0.01. Finally, the adopted performance metric, which will be used, is the average

Mean Square Deviation (MSD), given by MSD(n) = 1/N
∑N

k=1 ∥wk,n−w∗∥2, and the curves

occur from an averaging of 100 realizations for smoothing purposes.

In the projection-based algorithms, i.e., the proposed and the APWL1, the number of

hyperslabs used per time update equals to q = 55, the width of the hyperslabs equals to

ϵ = 1.3× σ, and the step-size equals to µn = 0.2×Mn, where Mn is given in (5.5) and the

node subscript is omitted. It should be pointed out that the performance of the algorithm

turns out to be relatively insensitive to different choices of the parameter ϵ. A detailed

experimental analysis on how different choices of ϵ affect the projection-based algorithms,

has taken place in [82]. Moreover, for the weights we choose ωn = 1/q. These choices

are not necessarily optimal, albeit they lead to a good trade–off between the convergence

speed and the steady state error floor. Regarding the choice of q, the larger the q the faster

the convergence. This behaviour is also met in the Affine Projection Algorithm (APA),

where the larger the number of affine sets, employed at each time instance, the faster the

convergence. The parameter q is not a critical parameter, and one can choose it depending
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Figure 5.4: MSD for the experiment 1.
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Figure 5.5: MSD for the experiment 2.

on the complexity load that can be afforded by the algorithm in real time operations. The

radius of the weighted ℓ1 ball equals to δ = ∥w∗∥0 and the weights are constructed according

to the discussion in Section 5.2. It should be stressed out that we experimentally observed

that the proposed algorithm is rather insensitive to overestimated values of the sparsity level,

which implies that even if we do not know the exact value of ∥w∗∥0, if we set δ ≥ ∥w∗∥0 the

proposed algorithm exhibits a good performance; this behavior was also observed in [82].

Furthermore, we set ϵ̃n = 10−2. The weighting matrix Gn is defined according to the

strategy presented in Section 5.2. Regarding the parameter α, we observed that a value

close to 1 leads to a fast convergence speed but it increases the steady state error floor, and

vice versa. So, at the beginning of the adaptation, we choose α = 0.99 and at every 250

time instances, we set α = α/2. Finally, hn and Gn are updated at every time instance,

i.e., n′ = 1. In the OCCD-TWL and the OCCD-TNWL, the regularization parameter is

chosen to be λTWL =
√
2σ2nlogm,λTNWL =

√
2σ2n4/3logm, respectively, as adviced in [4].

The step size, adopted in the Spadomp, equals to 0.2, due to the fact that this choice gives

similar steady state error floor with the projection-based algorithms2. The forgetting factor

of OCCD-TWN, OCCD-TNWL and Spadomp equals to 1 since, in the specific example,

the system under consideration does not change with time. From Fig. 5.4, it can be seen

that the proposed algorithm exhibits faster convergence speed compared to the APWL1 to

a common error floor. Moreover, the proposed algorithm outperforms the Spadomp, since it

converges faster and the steady state error floor is slightly better. We should point out, that

the complexity of the Spadomp is O(m), which implies that for the previously mentioned

choice of q, the proposed algorithm is of larger complexity, yet still of linear dependence
2Extensive experiments have shown that a choice of a smaller step-size, results in a slower convergence

speed, without significant improvement in the steady state error floor.

Symeon N. Chouvardas 135



A Sparsity–Promoting Projection–Based Algorithm for Distributed Learning

on the number of unknown parameters. Regarding the OCCD-TWL, we observe that its

performance is slightly better, compared to the proposed one, albeit the complexity of the

algorithm is O(m2). Finally, the OCCD-TNWL outerforms the rest of the algorithms, at

the expense of even higher complexity, which is approximately twice that of OCCD-TWL.

In the second experiment, we consider a network consisted of N = 10 nodes, in which

the nodes are tasked to estimate an unknown parameter w∗ of dimension m = 256. The

number of non-zero coefficients, of the unknown parameter equals to 20 and each node has

access to the measurements (dk,n,uk,n), where the regressors are defined as in the previous

experiment. The variance of the noise at each node is σ2
k = 0.01ςk, where ςk ∈ [0.5, 1],

following the uniform distribution. We compare the proposed algorithm with the distributed

APWL1, i.e., if we let Gn = Im, and the distributed Lasso (Dlasso) [96]. The Dlasso

is a batch algorithm, which implies that the data have to be available prior to start the

processing. So, here we assume that at every time instance, in which a new pair of data

samples becomes available, the algorithm is re-initialized so as to solve a new optimization

problem. For the projection-based algorithms, q = 20 and the rest of the parameters are

chosen as in the previous experiment. Moreover, the combiners ak,l are chosen with respect to

the Metropolis rule (see Chapter 2). Finally, the regularization parameter in the Dlasso is set

via the distributed cross-validation procedure, which is proposed in [96]. From Fig. 5.5, we

observe that the Dlasso outperforms the projection-based algorithms and that the proposed

algorithm converges faster than APWL1. However, the complexity of the proposed algorithm

is significantly lower than that of the Dlasso. Dlasso, at every time instance, requires the

inversion of a m×m matrix.

In the third experiment, we study the sensitivity of the proposed algorithm to the choice

of the parameter n′, i.e., the frequency at which hn and Gn are updated. To this end, the

parameters are the same as in the previous experiment, but we set different values to n′. Fig.

5.6 illustrates that the algorithm is relatively insensitive to the frequency of the updates,

as even in the case where n′ = 20 the algorithm exhibits fast convergence speed. This is

important, since the robustness of the proposed scheme to choice of the parameter n′ makes

it suitable to be adopted in distributed learning.

In the fourth experiment, the performance of the algorithm in a non-stationary envi-

ronment is validated. It is by now well established that a fast convergence speed does not
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Figure 5.6: MSD for the experiment 3.
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Figure 5.7: MSD for the experiment 4.
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necessarily imply a good tracking ability [64]. To this end, we consider that a sudden change

in the unknown parameter takes place. So, untilw∗ changes, the parameters remain the same

as in the second experiment and after the sudden change, we have that ∥w∗∥0 = 15. The

radius of the weighted ℓ1 ball is set equal to 23, since we have observed that the performance

is relative insensitive to choices of δ, as long as it remains larger than ∥w∗∥0. Furthermore,

we assume the algorithm is able to monitor sudden changes of the orbit (wk,n)n∈Z≥0
, in order

to reset the value of α when the channel changes. To be more specific, we reset the value of

α, if the ratio ∥wk,n+1 −wk,n∥/∥wk,n −wk,n−1∥, ∀k ∈ N , is greater than a threshold, which

is chosen, here, to be equal to 10. This strategy is adopted since we observed that if the

algorithm has converged, the previously mentioned ratio takes values close to 1, whereas if

an abrupt change takes place in the unknown parameter, then the value of the ratio increases

significantly. From Fig. 5.7, it can be observed that both the projection-based algorithms

enjoy good tracking ability, when a sudden change occurs. Moreover, as in the previous

experiments, the proposed algorithm converges faster than the APWL1 to a similar error

floor.

Finally, in the fifth experiment, we study the robustness of the proposed scheme, with

respect to adopting different strategies in order to construct hn and Gn. To this end, we

consider the following strategies: a) the previously mentioned quantities are constructed

using the node with the smallest noise variance (Proposed a), b) hn and Gn are generated

via the node with the largest variance (Proposed b) and c) hn andGn are constructed locally

at every node (Proposed c). Obviously, the latter one violates the theoretical assumption of

having common weights to all nodes. In order to verify whether the nodes reach consensus,

we plot the squared distance of wn from the consensus subspace, i.e., ∥wn − PO(wn)∥2.

As in the previous experiments, the curves occur from an averaging of 100 independent

experiments. From Fig. 5.8, it can be readily seen that the distance ofwn from the consensus

subspace, is decreasing as time steps increase. It is interesting that even in the Proposed

c, where the assumption for achieving asymptotic consensus is violated, the estimates for

the whole network tend asymptotically to the consensus subspace. Loosely speaking, even

if there cannot be theoretical guarantees that the nodes will achieve asymptotic consensus

in the case where each node constructs hn and Gn using local information, the fact that the

estimates received from the neighbourhood are combined at each step, leads the nodes to
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Figure 5.8: Squared distance from the consensus subspace, for experiment 5.

asymptotic consensus.

Symeon N. Chouvardas 139



Appendix C

Basic Concepts Of Convex Analysis

Employing Weighted Inner Products

The stage of discussion will be Rm,the induced inner product, given a positive definite m×m

matrix V , is ⟨w1,w2⟩V = wT
1 V w2 and the weighted norm is ∥w∥2V = wTV w. Given a

convex function, Θ, the subdifferential of Θ, with respect to V , at an arbitrary point, w1,

is defined as the set of all subgradients of Θ at w1, i.e.,

∂(V )Θ(w1) := {s ∈ Rm : Θ(w1) + ⟨w −w1, s⟩V ≤ Θ(w), ∀w ∈ Rm}.

The distance of an arbitrary point w from a closed non-empty convex set C, with respect

to V , is given by the distance function

d(V )(·, C) : Rm → [0,+∞)

: w 7→ inf {∥w − x∥V : x ∈ C},

and if we let V be the identity matrix, the Euclidean distance is given. Finally, the projection

mapping, P (V )
C onto C, is defined as P (V )

C (w) := argminx∈C∥w−x∥V , and as in the distance

function, if V = Im the standard metric projection is obtained.
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Appendix D

Variable Metric Projection onto the

Weighted ℓ1 Ball

The variable metric projection of w, onto Bℓ1 [hn, δ], is given by

min
x∈Bℓ1

[hn,δ]
∥w − x∥2Gn

s.t.
m∑
i=1

h
(n)
i |xi| ≤ δ,

where x := [x1, . . . , xm]
T . However, ∥w − x∥2Gn

= ∥G
1
2
n (w − x) ∥2 = ∥G

1
2
nw − ξ∥2, where

ξ := G
1
2
nx. Moreover, x = G

− 1
2

n ξ ⇔ xi =
√
g−1
i,nξi, i = 1, . . . ,m, where ξi are the coefficients

of ξ. From the previous, it holds that
∑m

i=1 h
(n)
i |xi| =

∑m
i=1

√
g−1
i,nh

(n)
i |ξi|. Hence the initial

optimization problem, is equivalent to

min
ξ

∥G
1
2
nw − ξ∥2

s.t.
m∑
i=1

√
g−1
i,nh

(n)
i |ξi| ≤ δ.

The solution of the previous optimization, is the standard metric projection of G
1
2
nw onto

Bℓ1 [G
− 1

2
n hn, δ] and it can be found in [82]. So, from the previous ξopt = P

Bℓ1
[G

− 1
2

n hn,δ]
(G

1
2
nw) ⇔

P
(Gn)

Bℓ1
[G

− 1
2

n hn,δ]
(w) = G

− 1
2

n P
Bℓ1

[G
− 1

2
n hn,δ]

(G
1
2
nw).
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Appendix E

Proof of Theorem 1

E.1 Monotonicity

Lemma 3. Define the following non-negative loss functions, ∀k ∈ N :

∀n ∈ Z≥0, ∀w ∈ Rm, Θk,n(w) :=


∑

j∈Ik,n
ωk,jd(G)(ϕk,n,Sk,j)

Lk,n
d(G)(w, Sk,j), if Ik,n ̸= ∅,

0, if Ik,n = ∅,
(E.1)

where Ik,n := {j ∈ Jn : ϕk,n /∈ Sk,j} and Lk,n :=
∑

j∈Jn
ωk,jd(G)(ϕk,n, Sk,j). Then (5.4) is

equivalent to1

∀n ∈ Z≥0, ∀k ∈ N , wk,n+1 =


P

(G)
Bℓ1

[hn,δ]

(
ϕk,n − λk,n

Θk,n(ϕk,n)

∥Θ′
k,n(ϕk,n)∥2G

Θ′
k,n(ϕk,n)

)
, if Ik,n ̸= ∅,

P
(G)
Bℓ1

[hn,δ]
(ϕk,n) , if Ik,n = ∅,

(E.2)

where Θ′
k,n(ϕk,n) is the subgradient of the function and λk,n ∈ (0, 2).

Proof. First of all, notice that if Ik,n ̸= ∅, then there exists j0 ∈ Jn such that ϕk,n /∈

Sk,j0 ⇔ d(G)(ϕk,n, Sk,j0) > 0. Hence, Lk,n ≥ ωk,j0d(G)(ϕk,n, Sk,j0) > 0, which implies that the

denominator in (E.2) is positive and the cost function is well defined. Now, a subgradient of

the distance function, i.e., d(G)(·, Sk,j), is the following [151]:

d′
(G)(w, Sk,j) =


w − P

(G)
Sk,j

(w)

d(G)(w, Sk,j)
, if w /∈ Sk,j

0, otherwise.
(E.3)

1The time dependence on Gn is omitted for simplicity in notation.
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Recalling basic properties of the subdifferential (see for example [65]), we have that

∂Θk,n(w) =


∑

j∈Ik,n
ωk,jd(G)(ϕk,n,Sk,j)

Lk,n
∂d(G)(w, Sk,j), if Ik,n ̸= ∅,

{0}, if Ik,n = ∅.
(E.4)

So, combining (E.3), (E.4) and if Ik,n ̸= ∅ we have

Θ′
k,n(ϕk,n) =

∑
j∈Ik,n

ωk,jd(G)(ϕk,n, Sk,j)

Lk,n

ϕk,n − P
(G)
Sk,j

(ϕk,n)

d(G)(ϕk,n, Sk,j)

=
1

Lk,n

∑
j∈Ik,n

ωk,j

(
ϕk,n − P

(G)
Sk,j

(ϕk,n)
)

=
1

Lk,n

∑
j∈Jn

ωk,j

(
ϕk,n − P

(G)
Sk,j

(ϕk,n)
)
. (E.5)

Nevertheless, since Ik,n ̸= ∅, then there exists j0 ∈ Jn such that ϕk,n /∈ Sk,j0 ⇔ P
(G)
Sk,j

(ϕk,n) ̸=

ϕk,n. So, if Ik,n ̸= ∅ then Θ′
k,n(ϕk,n) ̸= 0m. Following similar steps as in [82], it can be

proved that ∀n ≥ z0,∀j ∈ Jn, ∀k ∈ N , Θ′
k,n(ϕk,n) = 0m ⇔ ϕk,n =

∑
j∈Jn

ωk,jP
(G)
Sk,j

(ϕk,n).

From this fact, if we define µk,n := Mk,nλk,n, and if we substitute (E.5) in (E.2) the lemma

is proved.

Claim 3. It holds that ∥Pw − w̆∥G ≤ ∥w − w̆∥G, ∀w̆ ∈ O, ∀w ∈ RNm, where P is a

Nm×Nm consensus matrix with ∥P ∥ = 1.

Proof. From the definition of ∥·∥G, it can be readily seen that ∥Pw−w̆∥G = ∥G
1
2 (Pw − w̆) ∥ =

∥G
1
2P (w − w̆) ∥, where this holds since w̆ ∈ O. Moreover, w =


w1

...

wN

 ,wk ∈ Rm, k ∈ N

and w̆ ∈ O ⇔ w̆ =


w̆
...

w̆

 , w̆ ∈ Rm. Recalling the definition of the consensus matrix, with
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coefficients ak,l, k, l ∈ N , we have the following

∥G
1
2P (w − w̆) ∥ =

∥∥∥∥∥∥∥∥∥


G

1
2

∑
l∈N1

a1,l (wl − w̆)
...

G
1
2

∑
l∈NN

aN,l (wl − w̆)


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥


∑

l∈N1
a1,lG

1
2 (wl − w̆)

...∑
l∈NN

aN,lG
1
2 (wl − w̆)


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥P

G

1
2 (w1 − w̆)

...

G
1
2 (wN − w̆)


∥∥∥∥∥∥∥∥∥ ≤ ∥P ∥

∥∥∥∥∥∥∥∥∥


G

1
2 (w1 − w̆)

...

G
1
2 (wN − w̆)


∥∥∥∥∥∥∥∥∥

= ∥w − w̆∥G (E.6)

From (E.6), our claim is proved.

First of all, given a convex function Θ : Rm → R, with non-empty level set, where the

level set is defined lev≤0Θ := {w ∈ Rm : Θ(w) ≤ 0}, let us define the subgradient projection

mapping, as follows T (G)
Θ : Rm → Rm [151]:

T
(G)
Θ (w) :=


w − Θ(w)

∥Θ′(w)∥2G
Θ′(w), w /∈ lev≤0Θ

w, w ∈ lev≤0Θ,

where Θ′(w) is any subgradient of Θ, at w. Similarly, we define the relaxed subgradient

projection mapping, T (G)
Θ,λ (w) := I + λ(T

(G)
Θ (w) − I), λ ∈ (0, 2), where I is the identity

mapping.

Now, given a non-empty closed convex set, say C ⊂ Rm, and a convex function Θ : Rm →

R, such that C ∩ lev≤0Θ ̸= ∅ it holds that [151]:

∀w ∈ Rm,∀ŵ ∈ C ∩ lev≤0Θ :
2− λ

2
∥w − PCT

(G)
Θ,λ (w)∥2G ≤ ∥w − ŵ∥2G − ∥PCT

(G)
Θ,λ (w)− ŵ∥2G.

(E.7)

Following similar steps as in [82], it can be proved that ∀n ≥ z0, ϕk,n ∈ lev≤0Θk,n ⇔ Ik,n = ∅

and ∀n ≥ z0,ϕk,n /∈ lev≤0Θk,n ⇔ Ik,n ̸= ∅. Moreover, lev≤0Θk,n =
∩

j∈Ik,n Sk,j ⊃ Ωn ⊃ Ω.
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Recall the definition of the relaxed projection mapping; it can be readily seen that wk,n+1 =

P
(G)
Bℓ1

[hn,δ]
T

(G)
Θk,n,λk,n

(ϕk,n). Exploiting this fact, under Assumptions (a), (b), and (E.7) we have

that

∀n ≥ z0,∀k ∈ N ,∀ŵ ∈ Ω :

0 ≤ 2− λk,n
2

∥ϕk,n −wk,n+1∥2G =
2− λk,n

2
∥ϕk,n − P

(G)
Bℓ1

[hn,δ]
T

(G)
Θk,n,λk,n

(ϕk,n)∥2G

≤ ∥ϕk,n − ŵ∥2G − ∥P (G)
Bℓ1

[hn,δ]
T

(G)
Θk,n,λk,n

(ϕk,n)− ŵ∥2G. (E.8)

Recalling the definitions wn = [wT
1,n, . . . ,w

T
N,n]

T ∈ RNm, Pwn = [ϕT
1,n, . . . ,ϕ

T
N,n]

T ∈ RNm,

and (E.8), we have

∀n ≥ z0,∀ŵ ∈ C :

0 ≤ min
k

{
2− λk,n

2

}
∥Pwn −wn+1∥2G

≤ ∥Pwn − ŵ∥2G − ∥wn+1 − ŵ∥2G. (E.9)

Nevertheless, from Claim 2, the previous inequality can be rewritten

0 ≤ ∥Pwn − ŵ∥2G − ∥wn+1 − ŵ∥2G ≤ ∥wn − ŵ∥2G − ∥wn+1 − ŵ∥2G.

Hence,

∀n ≥ z0, ∀ŵ ∈ C : ∥wn+1 − ŵ∥2G ≤ ∥wn − ŵ∥2G, (E.10)

which completes our proof.

E.2 Asymptotic optimality

A well known property of the projection operator (see for example [151]), is the non-

expansivity, i.e., given a non-empty set C, ∥P (G)
C (w1)−P (G)

C (w2)∥G ≤ ∥w1−w2∥G,∀w1,w2 ∈

Rm. Recall the definition of the algorithm given in (E.2). Then, ∀k ∈ N , ∀n ≥ z0,∀ŵ ∈ Ω,
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we have

∥wk,n+1 − ŵ∥G =

∥∥∥∥∥P (G)
Bℓ1

[hn,δ]

(
ϕk,n − λk,n

Θk,n(ϕk,n)

∥Θ′
k,n(ϕk,n)∥2G

Θ′
k,n(ϕk,n)

)
− ŵ

∥∥∥∥∥
G

=

∥∥∥∥∥P (G)
Bℓ1

[hn,δ]

(
ϕk,n − λk,n

Θk,n(ϕk,n)

∥Θ′
k,n(ϕk,n)∥2G

Θ′
k,n(ϕk,n)

)
− P

(G)
Bℓ1

[hn,δ]
(ŵ)

∥∥∥∥∥
G

≤

∥∥∥∥∥ϕk,n − λk,n
Θk,n(ϕk,n)

∥Θ′
k,n(ϕk,n)∥2G

Θ′
k,n(ϕk,n)− ŵ

∥∥∥∥∥
G

, (E.11)

where the equality in the second line holds since, by definition, ŵ ∈ Ω ⊂ Bℓ1 [hn, δ] and the

inequality, from the non-expansivity of the projection operator. Assuming that Θ′
k,n(ϕk,n) ̸=

0m,∀k ∈ N , and rewriting (E.11) for all the nodes of the network we have

∥∥wn+1 − ŵ
∥∥2
G
≤

∥∥∥∥∥∥∥∥∥∥


ϕ1,n − λ1,n

Θ1,n(ϕ1,n)

∥Θ′
1,n(ϕ1,n)∥2

G

Θ′
1,n(ϕ1,n)

...

ϕN,n − λN,n
ΘN,n(ϕN,n)

∥Θ′
N,n(ϕN,n)∥2

G

Θ′
N,n(ϕN,n)

− ŵ

∥∥∥∥∥∥∥∥∥∥

2

G

=

∥∥∥∥∥∥∥∥∥


ϕ1,n − ŵ

...

ϕN,n − ŵ


∥∥∥∥∥∥∥∥∥
2

G

+
∑
k∈N

λ2k,n
(Θk,n(ϕk,n))

2∥∥Θ′
k,n(ϕk,n)

∥∥2
G

− 2
∑
k∈N

λk,n
Θk,n(ϕk,n)⟨Θ′

k,n(ϕk,n), (ϕk,n − ŵ)⟩G∥∥Θ′
k,n(ϕk,n)

∥∥2
G

. (E.12)

Nevertheless, ∥∥∥∥∥∥∥∥∥


ϕ1,n − ŵ

...

ϕN,n − ŵ


∥∥∥∥∥∥∥∥∥
G

= ∥Pwn − ŵ∥G ≤ ∥wn − ŵ∥G. (E.13)

From the definition of the subgradient, we have

⟨Θ′
k,n(ϕk,n), (ϕk,n − ŵ)⟩G ≥ Θk,n(ϕk,n)−Θk,n(ŵ) = Θ′

k,n(ϕk,n), (E.14)
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where the last equation, holds due to the fact that ŵ ∈ Ω ⇔ Θ′
k,n(ŵ) = 0. Taking (E.13)

and (E.14) into consideration, we obtain

∥∥wn+1 − ŵ
∥∥2
G
≤ ∥wn − ŵ∥2G −

∑
k∈N

λk,n(2− λk,n)
Θk,n(ϕk,n)

∥Θ′
k,n(ϕk,n)∥2G

. (E.15)

Here, notice that the sequence ∥wn − ŵ∥G is bounded and monotone decreasing, hence it

converges. The latter fact implies that

lim
n→∞

(
∥wn − ŵ∥G −

∥∥wn+1 − ŵ
∥∥
G

)
= 0. (E.16)

Under Assumption (c), (E.15) can be rewritten

∑
k∈N

ε21
Θk,n(ϕk,n)

∥Θ′
k,n(ϕk,n)∥2G

≤
∑
k∈N

λk,n(2− λk,n)
Θk,n(ϕk,n)

∥Θ′
k,n(ϕk,n)∥2G

≤ ∥wn − ŵ∥2G −
∥∥wn+1 − ŵ

∥∥2
G
.

(E.17)

Taking limits in (E.17) and recalling (E.16) we have that

lim
n→∞

Θk,n(ϕk,n)

∥Θ′
k,n(ϕk,n)∥2G

= 0, ∀k ∈ N .

If we follow similar steps as in [82], it can be verified that ∀n ∈ Z≥0,∀k ∈ N ,∀w ∈ Rm :

∥Θ′
k,n(w)∥G ≤ 1. So, if Θ′

k,n(ϕk,n) ̸= 0m

Θk,n(ϕk,n) ≤
Θk,n(ϕk,n)

∥Θ′
k,n(ϕk,n)∥2G

→ 0, n→ ∞. (E.18)

Obviously, recalling the previous discussion, Θ′
k,n(ϕk,n) = 0m ⇔ Θk,n(ϕk,n) = 0, ∀n ≥ z0.

Combining this fact together with (E.18), we have that

∀k ∈ N , lim
n→∞

Θk,n(ϕk,n) = 0. (E.19)

Now, following similar steps as in [82], it can be shown that there exists D > 0 such that

Lk,n ≤ D, ∀k ∈ N ,∀n ∈ Z≥0. From the definition of Θk,n, and under Assumption (d), we
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have ∀k ∈ N

D

ω̃k

Θk,n(ϕk,n) ≥
D

ω̃k

∑
j∈Jn

ωk,j

d2
(G)(ϕk,n, Sk,j)

Lk,n

≥ D

ω̃k

ω̃k

D

∑
j∈Jn

d2
(G)(ϕk,n, Sk,j)

≥ max{d2
(G)(ϕk,n, Sk,j) : j ∈ Jn}.

Taking limits in the previous inequality, we obtain that

lim
n→∞

max{d(G)(ϕk,n, Sk,j) : j ∈ Jn} = 0. (E.20)

Combining (E.9) with the result of Claim 2, we have

∀n ≥ z0,∀ŵ ∈ C :

0 ≤ min
k

{
2− λk,n

2

}
∥Pnwn −wn+1∥2G

≤ ∥wn − ŵ∥2G − ∥wn+1 − ŵ∥2G. (E.21)

Taking limits in (E.21) and recalling (E.16) gives us

lim
n→∞

∥Pnwn −wn+1∥2G = 0 ⇔ lim
n→∞

∑
k∈N

∥ϕk,n −wk,n+1∥2G = 0. (E.22)

Fix an arbitrary point v ∈ Sk,j,∀k ∈ N , ∀j ∈ Jn. Then from the triangle inequality we have

∥wk,n+1 − v∥G ≤ ∥wk,n+1 − ϕk,n∥G + ∥ϕk,n − v∥G ⇒

inf
v∈Sk,j

∥wk,n+1 − v∥G ≤ ∥wk,n+1 − ϕk,n∥G + inf
v∈Sk,j

∥ϕk,n − v∥G ⇒

d(G)(wk,n+1, Sk,j) ≤ ∥wk,n+1 − ϕk,n∥G + d(G)(ϕk,n, Sk,j) (E.23)
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If we take limits in (E.23), from (E.20) and (E.22), it can be seen that

lim
n→∞

d(G)(wk,n+1, Sk,j) = 0,∀k ∈ N , ∀j ∈ Jn ⇔ lim
n→∞

∑
j∈Jn

d(G)(wk,n+1, Sk,j) = 0, ∀k ∈ N .

(E.24)

The definitions of the distance function and the projection operator, yield

d(wk,n+1, Sk,j) = ∥wk,n+1 − PSk,j
(wk,n+1)∥

≤ ∥wk,n+1 − P
(G)
Sk,j

(wk,n+1)∥. (E.25)

Nevertheless, the Rayleigh-Ritz theorem implies [67] ∀w ∈ Rm : ∥w∥ ≤ τ
− 1

2
min∥w∥G, where

τmin is the smallest eigenvalue of G. Combining this fact as well as (E.25) we obtain

d(wk,n+1, Sk,j) ≤ ∥wk,n+1 − P
(G)
Sk,j

(wk,n+1)∥

≤ τ
− 1

2
min∥wk,n+1 − P

(G)
Sk,j

(wk,n+1)∥G → 0, n→ ∞, ∀k ∈ N , (E.26)

where the limit holds from (E.24). From the previous, it is not difficult to obtain that

lim
n→∞

max{d(wk,n+1, Sk,j) : j ∈ Jn} = 0,

which completes our proof.

E.3 Asymptotic Consensus

In [31] it has been proved, that the algorithmic scheme achieves asymptotic consensus, i.e.,

∥wk,n −wl,n∥ → 0, n→ ∞,∀k, l ∈ N if and only if

lim
n→∞

∥wn − PO(wn)∥ = 0. (E.27)

Let Assumptions (a), (b), (c), (d), hold true. We define the following quantity

ϵn := wn+1 − Pwn. (E.28)
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Obviously from (E.22)

lim
n→∞

ϵn = 0 (E.29)

Now, if we rearrange the terms in (E.28) and if we iterate the resulting equation, we have:

wn+1 = Pwn + ϵn

= PPwn−1 + Pnϵn−1 + ϵn = . . .

=
n∏

i=1

Pw0 +
n∑

j=1

n−j∏
l=0

Pϵj−1 + ϵn

If we left-multiply the previous equation by (INm−BBT ) and follow similar steps as in [31,

Lemma 2] it can be verified that lim
n→∞

∥
(
INm −BBT

)
wn+1∥ = lim

n→∞
∥wn+1−PO(wn+1)∥ = 0

which completes our proof.

E.4 Strong Convergence

We will prove, that under assumptions (a), (b), (c), (d), (e), limn→∞wn = ŵO, ŵ∗ ∈ O.

Recall that the projection operator, of an arbitrary vector w ∈ RNm onto the consensus

subspace equals to PO(w) = BBTw,∀w ∈ RNm. Taking into consideration Assumption (e)

together with (E.10), from [149, Lemma 1] we have that there exists ŵO ∈ O such that

lim
n→∞

PO(wn) = ŵO. (E.30)

Now, exploiting the triangle inequality we have that

∥wn − ŵO∥ ≤ ∥wn − PO(wn)∥+ ∥ŵO − PO(wn)∥ → 0, n→ ∞, (E.31)

where this limit holds from (I.14) and (E.30). The proof is complete since (E.31) implies

that limn→∞wn = ŵO.
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Chapter 6

Dimensionality Reduction in

Distributed Adaptive Learning via

Krylov Subspaces

In this chapter, the problem of dimensionality reduction in adaptive distributed learning is

studied. We consider a network obeying the ad–hoc topology, in which the nodes sense an

amount of data and cooperate with each other, by exchanging information, in order to estimate

an unknown, parameter vector, which is common to all nodes. As in the previous chapters,

the algorithm, to be presented here, is based on the APSM algorithmic family. At each time

instant and at each node of the network, a hyperslab is constructed based on the received

measurements and this defines the region in which the solution is searched for. Moreover, in

order to reduce the number of transmitted coefficients, which is dictated by the dimension of

the unknown vector, we seek for possible solutions in a subspace of lower dimensionality; the

technique will be developed around the Krylov subspace rationale. Our goal is to find a point

that belongs to the intersection of this infinite number of hyperslabs and the respective Krylov

subspaces. This is achieved via a sequence of projections onto the property sets as well as the

Krylov subspaces. Finally, the case of highly correlated inputs, which, usually, degrades the

performance of an algorithm is also considered. This is bypassed via a transformation which

whitens the input. The proposed schemes are brought in a decentralized form by adopting the

combine-adapt cooperation strategy among the nodes.
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6.1 Problem Formulation

We consider a network consisting of N spatially distributed nodes. Our task is to estimate

an unknown parameter vector of interest, w∗ ∈ Rm, through measurements (dk,n,uk,n) ∈

R× Rm, which are related according to the linear model

dk,n = uT
k,nw∗ + vk,n, ∀n ∈ Z≥0, ∀k ∈ N , (6.1)

where N denotes the node set: N = {1, . . . , N} and vk,n is the additive noise process with

variance equal to σ2
k, ∀k ∈ N . As we have already discussed in the previous chapters, the

unknown parameter estimation process can be benefited by the node cooperation; that is, the

nodes exchange estimates and/or measurements with their neighbors and exploit them ac-

cordingly. Obviously, this type of cooperation demands that at every time instant each node

will transmit a number of coefficients, which is proportionate to the dimension of the vector

to be estimated. In applications where this dimension is large, the exchange of information

among the nodes can be a burden. In the current study, in order to achieve dimensionality

reduction and consequently to reduce the number of transmitted coefficients, the reduced

rank adaptive filtering rationale is adopted. Algorithms whose goal is to reduce the amount

of transmitted information, by performing dimensionality reduction, have been proposed in

the context of distributed quantized Kalman Filtering [102, 145], and quantized consensus

algorithms, e.g., [108]. Finally, reduced rank algorithms able for adaptive operation in ad–

hoc networks, following the diffusion optimization strategy, were proposed in [42, 43] and

will be presented in this chapter.

The basic concept of our reduced rank adaptive filtering task can be summarized as

follows: instead of seeking for the unknown vector in the original space, one seeks for the

projection of it onto a lower dimension subspace. Via this procedure, the obtained estimates

are optimally forced in a lower dimension space, and each node transmits fewer coefficients

than the ones originally needed, in the case where the full dimensionality of the unknown

vector was exploited. Here, the associated subspaces are the so-called Krylov subspaces,

constructed by exploiting the statistics of the sensed information. The Krylov subspaces

have been used in several applications, e.g., in the reduced rank adaptive filtering [155], in

the Multistage Nested Wiener Filter [73], in the auxiliary vector filtering, [76], etc.
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6.1.1 Krylov Subspaces and the Reduced Rank Wiener Solution

Our kickoff point is the Wiener filtering task. Throughout this section, the notational de-

pendence on the nodes is suppressed for simplicity purposes, since the results hold true for

all nodes. It can been shown, e.g., [120], that the solution that minimizes the mean-square

error (MSE), i.e., E[(dn−uT
nw)2], where dn, un are related via (6.1), satisfies the celebrated

Wiener-Hopf equation, given by

p = Rw, (6.2)

where the m × m matrix R = E[unu
T
n ] is the so-called input autocorrelation matrix, and

the vector p = E[dnun] is the crosscorrelation vector between the input and the desired

response. If the matrix R is invertible, which is usually the case, then the solution of (6.2) is

the unknown vector w∗, e.g., [64]. Our main goal, here, is to use the Wiener MSE solution

in its constrained form. Since our objective is to reduce dimensionality, we are going to

search for the filter that minimizes the MSE and at the same time lies in a lower dimension

subspace. This brings Krylov spaces into the scene.

Given an m×m matrixA and a vectorw ∈ Rm, the Krylov subspace of dimension D < m

is defined as KD(A,w) := span{w,Aw, . . . ,AD−1w}. The Krylov subspaces play a central

role and they have been employed in the reduced rank adaptive filtering task, e.g., [66,155].

It has been observed that they provide a good trade-off between the dimensionality reduction

and the performance of the developed algorithms, due to their strong connection with the

Wiener solution. In the sequel, we will comment on the physical reasoning of these subspaces.

Following a similar rationale as in [61] and in [66], we denote by w(D)
WF ∈ Rm the solution

of the Wiener-Hopf equation in the Krylov subspace, KD(R,p). In words, w(D)
WF is the

vector we obtain if we solve the Wiener-Hopf equation and constraint the solution to lie

inside KD(R,p). This vector is the optimum one, in the MSE sense, which belongs to this

subspace, e.g., [66]. Moreover, it has an elegant geometrical property; it is the projection of

w∗ with respect to the R-norm (see also Chapter 5 and Appendix F) onto KD(R,p), i.e.,

w
(D)
WF = P

(R)
KD(R,p)(w∗), where the operator P (R)

KD(R,p)(w∗) stands for the previously mentioned

projection. Analytically, it is given by [155]:

w
(D)
WF = T (T TRT )−1T Tp = T (T TRT )−1T TRw∗,
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where T ∈ Rm×D is a matrix whose columns form an orthonormal basis for the subspace

KD(R,p).

Now, let us examine one more viewpoint which clarifies the connection between w(D)
WF and

w∗. Our starting point will be the MultiStage Nested Wiener Filter (MSNWF), proposed in

[61]. Put in general terms, the MSNWF solves the Wiener-Hopf equation, without inversion

of the matrix R. The MSNWF consists of m filters, ti ∈ Rm, i = 1, . . . ,m, which produce m

outputs di[n] = tTi un, i = 1, . . . ,m, and they are computed via the following optimization

i = 2, . . . ,m, ti =arg max
t

{tTRti−1} = arg max
t

E{di[n]di−1[n]} (6.3)

s.t. tT t = 1

tT tr = 0, r = 1, . . . , i− 1,

and t1 occurs by maximization of t1 = arg maxt E{tTundn} = arg maxt E{d1[n]dn}, s.t.

tT t = 1. The physical reasoning of the previous optimization problem can be summarized

as follows. The first filter t1 is obtained so as to maximize the correlation of the output

d1[n] and the desired one dn. The i-th filter is computed in a similar notion, which is the

maximization of the correlation between the current and the previous outputs, i.e., di[n] and

di−1[n]. Furthermore, as it can be seen by (6.3), we restrict the filters to be orthonormal.

It has been proved, e.g., in [73], that the m-th output response occurring by the MSNWF,

equals to the one occurring by the unknown vector, i.e., d̂n = uT
nw∗.

It is very interesting to see what happens if one stops the iterations in (6.3), at step D.

It turns out that the obtained solution corresponds to the reduced rank Wiener Filter (WF),

w
(D)
WF. Moreover, as it has been proved, e.g., [61], the filters ti, i = 1, . . . , D, form a basis in

the Krylov subspace; in other words, if we group them in a matrix, we obtain the matrix T .

Now, let us see how the previous arguments can be employed in the adaptive filtering

task. As we have already mentioned, in the reduced rank adaptive filtering, instead of seeking

for the unknown solution, which in our case is w∗, one seeks for the projection of it onto a

subspace of reduced dimension; in our case this is the projection, in the R norm sense, onto

KD(R,p). Obviously, the fact that instead of tracking w∗, one tracks for its projection in

a subspace of lower dimension, results at an increased error floor in the steady state, which

depends on the distance between the true solution and the reduced rank one. These issues
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will be clarified in the sequel.

A natural question rising is how accurately can w∗ be identified by employing the Krylov

subspace rationale. It has been proved, e.g., [155], that

∥w∗ −w(D)
WF∥ ≤ 2τ

−1/2
min w

T
∗Rw∗α

D
κ , (6.4)

where τmin is the smallest eigenvalue of the matrix R, ακ := (
√
κ − 1)/(

√
κ + 1) with

κ := ∥R∥∥R−1∥ ≥ 1. From the previous findings, it can be readily observed that the input

statistics play a central role in the performance of the algorithms built around the Krylov

subspaces. More specifically, if the eigenvalue spread of the matrix R is large, which yields

a large value of ακ, the upper bound in the previous inequality is larger, and it has also been

experimentally verified that the performance of the respective algorithm is degraded.

6.1.2 Set–theoretic estimation: the reduced rank case

According to the discussion in the previous chapters, the property sets are constructed so

as to contain the unknown vector w∗ with a high probability. The question now is which

strategy to follow in the case of reduced rank scenarios. Our kick off point will be the

reduced rank Wiener solution. More specifically, the property sets will be constructed so as

to contain the vector w(D)
WF with a high probability. As it will become clear later on, this

can be guaranteed by seeking for points that lie in the intersection of the hyperslabs and

the Krylov subspace, i.e., KD(R,p). Let us define the set Sn := Sn ∩ KD(R,p) = {w ∈

KD(R,p) : |dn − uT
nw| ≤ ϵ}, where Sn is the hyperslab constructed via dn,un. Recall from

the previous discussion that w(D)
WF ∈ KD(R,p). In order to have w(D)

WF ∈ Sn, the following

must hold true

|dn − uT
nw

(D)
WF| ≤ ϵ⇔ |uT

nw∗ + vn − uT
nw

(D)
WF| ≤ ϵ⇔ |uT

n (w∗ −w(D)
WF) + vn| ≤ ϵ. (6.5)

From (6.5), it can be seen that the parameter ϵ, which determines the width of the hyperslab,

determines the probability that w(D)
WF ∈ Sn, in the sense that the larger the ϵ, the larger the

possibility that the previously mentioned condition will hold. Obviously, in the full rank

case, in which the condition to be satisfied is w∗ ∈ Sn, the only term, which dictates the
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choice of ϵ, is vn. Hence, the width of the hyperslabs is chosen with respect to the statistics

of the noise. In the reduced rank case, besides the noise, one has to take into consideration

the term uT
n (w∗ −w(D)

WF). However, in practice, as it has been documented in [155], in cases

where the eigenvalue spread of R is close to 1, which implies that the distance between w∗

and w(D)
WF is small (see also (6.4)), the noise term is the dominant one. Hence, if the user-

controlled parameter, ϵ, is defined according to the noise statistics, the condition of having

w
(D)
WF ∈ Sn, holds with a high probability. In the sequel, a technique appropriate for the case

where the eigenvalue spread is large, will be proposed in order to overstep this limitation.

In order to construct the subspace, knowledge on the statistics of the input and the

desired response, i.e., R,p, is required. A reasonable strategy is to rely on estimates of the

previously mentioned quantities. To this end, the autocorrelation is estimated via R̂n :=∑n−1
j=0 ζ

n−1−juju
T
j and the crosscorrelation via p̂n :=

∑n−1
j=0 ζ

n−1−jdjuj, where ζ ∈ (0, 1]

is the so-called forgetting factor, employed in order to ”forget” past values in time varying

scenarios. The estimates, R̂n, p̂n are updated ∀n ∈ Z≥0, according to the following formulas:

R̂n = ζR̂n−1 +un−1u
T
n−1 and p̂n = ζp̂n−1 + dn−1un−1. Having obtained the estimates of R̂n

and p̂n, our goal now is to develop the projection operator that projects an estimate to the

intersection of the corresponding hyperslab and the current estimate of the Krylov subspace,

i.e., Sn ∩Kn, where Kn := KD(R̂n, p̂n).

Claim 4. The projection of a vector lying in Kn onto Sn ∩Kn is given by

∀w ∈ Kn : PSn∩Kn(w) = w + β̃T̂nT̂
T
n un, (6.6)

where T̂n is an m×D matrix, whose columns form an orthonormal basis of Kn and

β̃ =



dn −wT T̂nT̂
T
n un + ϵ

∥T̂ T
n un∥2

, if dn −wT T̂nT̂
T
n un < −ϵ,

0, if |dn −wT T̂nT̂
T
n un| ≤ ϵ

dn −wT T̂nT̂
T
n un − ϵ

∥T̂ T
n un∥2

, if dn −wT T̂nT̂
T
n un > ϵ.

Proof. The proof is given in Appendix G.

Now, let us see how the case where the denominator in the previous equation equals to
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zero is treated. First of all, recall that the columns of T̂n form a basis for the Krylov subspace.

If T̂ T
n un = 0D, this means that the vector un is perpendicular to the Krylov subspace.

Moreover, it holds, e.g., [133], that the vector un is perpendicular to the hyperplanes H1,n =

{w ∈ Rm : dn − uT
nw = −ϵ} and H2,n = {w ∈ Rm : dn − uT

nw = +ϵ}, which constitute

the hyperplanes that define the hyperslab. These two facts imply that T̂ T
n un = 0D in the

case where the subspace is “parallel” to the hyperslab. This case is treated as in the full

rank case, i.e., when the input vector is 0m, e.g., [134]. To be more specific, if such an input

vector occurs, it is not taken into consideration in the algorithmic flow.

6.2 Proposed Scheme

First of all, it has to be pointed out, that despite the fact that the nodes seek for the same

unknown vector, the input as well as the noise statistics differ from node to node. Hence, in

contrast to the non-distributed scenario, here, we should take into consideration the statistics

from all the nodes. Let us define the mean square error loss function L : Rm → [0,+∞), for

the whole network

L(w) =
1

N

∑
k∈N

E
{
(dk,n − uT

k,nw)2
}

=
1

N

∑
k∈N

(wTRkw − 2wTpk + σ2
dk
)

= wTR′w − 2wTp′ +
1

N

∑
k∈N

σ2
dk
, (6.7)

where σ2
dk

= E{d2k,n}, R′ = 1
N

∑
k∈N E{uk,nu

T
k,n} = 1

N

∑
k∈N Rk and

p′ = 1
N

∑
k∈N E{dk,nuk,n} = 1

N

∑
k∈N pk. It can be readily shown following similar steps as

in [155], that the solution minimizing (6.7) is given by w∗ = R
′−1p′. This argument indicates

that a reasonable strategy in order to achieve dimensionality reduction is to construct the

Krylov subspace relying on R′ and p′; i.e., the average values relying on approximations

of the previously mentioned quantities. To this end, at each node, the following approx-

imations are computed: R̂′
n = 1

N

∑
k∈N R̂

′
k,n, where R̂′

k,n = ζR̂k,n−1 + uk,n−1u
T
k,n−1 and

p̂′n = 1
N

∑
k∈N p̂

′
k,n, with p̂k,n = ζp̂k,n−1 + dk,n−1uk,n−1 and ζ is the forgetting factor. From

the previous relations, it can be observed that in order to construct the respective subspace,
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Figure 6.1: Illustration of a hierarchical network with L = 5. The solid lines denote the
simple communication links, whereas the dashed-dotted ones the hierarchical communication
links.

every node must have access to measurements coming out from the other nodes of the net-

work, i.e., uk,n, dk,n; however, this is, in general, infeasible in distributed networks. In the

sequel, we present two techniques which will help us overstep this obstacle.

6.2.1 Enhancing the Information Flow

First of all, it should be stressed out that in system identification problems the input is

defined as follows: uk,n = [uk,n uk,n−1 . . . uk,n−m+1]
T . Hence, the novel information at each

time instant comprises of two numbers: uk,n and dk,n. In order to enhance the information

flow, the following strategies are adopted.

1. We assume that R̂′
n and p̂′n will not be updated every time instant but every L time

instants instead. Thus the coefficients uk,n and dk,n will be delivered to the other nodes

of the network within a time window of size L. This parameter is chosen with respect

to the size of the network as well as the maximum distance between two nodes. As it

will become clear in the simulations section, the larger the L the worse the performance

of the algorithm; this behaviour is due to the fact that for a large time window, R̂′
n

and p̂′n are updated less frequently and their convergence to a good approximation

is slowed down. Nevertheless, as it will become apparent in the simulations section,

provided that L does not take too large values, the algorithm turns out to be relatively

insensitive to its choice.

2. We adopt a multi-cluster architecture (see for example [59]) for the network in order to

improve the flow of transmitted information. In principle, nodes which are connected
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to a large number of neighbours are “equipped” with better transmission capabilities.

Despite the fact that the issue of clustering the nodes according to predefined protocols

has been extensively discussed in the literature, see [59] and references therein, complex

protocols are beyond the scope of this paper. So, we adopt a simple hierarchical

protocol, which has been employed in the context of adaptive distributed learning

in [23]. More specifically, we classify the nodes, according to the number of their

neighbors, into two subclasses: the hierarchical and the non-hierarchical ones. The

former are able to communicate over three nodes, whereas the latter are not, and

every non-hierarchical node is connected to a hierarchical one. The rationale is to

assign enhanced transmission capabilities to the nodes which have many neighbours;

through this procedure the information is delivered faster throughout the network,

e.g., [59].

Now, let us see how the information needed to construct the Krylov subspace is distributed

over such a network, which is illustrated in Fig. 6.1. Notice that the network comprises

of N = 14 nodes and the number of the hierarchical nodes equals to 3. At each time

instant, nodes have to transmit D coefficients to their neighbourhood; these are the updated

components lying in the reduced space RD. At time instant 1, node 1 transmits to node 2,

u1,1, d1,1, at time instant 2, u4,1, d4,1, at 3, u5,1, d5,1 and at time instant 4, u6,1, d6,1. Node

2, at time instant n = 1, transmits to 3, u2,1, d2,1, u7,1, d7,1. At n = 2, u1,1, d1,1, u8,1, d8,1, at

n = 3, u4,1, d4,1, u10,1, d10,1, at n = 4, u5,1, d5,1, u9,1, d9,1 and at n = 5, u6,1, d6,1. The rest of

the exchanges follow a similar philosophy. The largest number of coefficients is transmitted

by node 2 and amounts to D + 4, where D comes from the D coefficients of the estimate

and the other four from the information needed to construct the subspace. In the full rank

scenario, every node has to transmit m coefficients to each neighboring node. Hence, if D

is much smaller than m, which is the case of our interest, then the nodes transmit fewer

coefficients, if they seek for a reduced rank solution.

Unfortunately, in networks with a large number of nodes and/or in scenarios where the

longest path, among the nodes of the network, is large, the previously mentioned techniques

may fail. Nevertheless, as it will become apparent in the simulations section, another route

can be followed. Indeed, the Krylov subspace can be constructed by exploiting information

coming from a single node, e.g., a master node, without significant degradation of the per-
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formance of the algorithm. It can be readily obtained that, if the information of a single

node has to be delivered throughout the network, each node transmits D + 2 coefficients at

most. Hence in this scenario, the only limitation is to use a large enough L, which depends

on the longest path among the nodes of the network, and then distribute the two coefficients,

which are used to construct the subspace. A possible criterion in order to choose the master

node is to find the node with the smallest eigenvalue spread, as (6.4) suggests. Techniques

for finding this “optimum” node are beyond the scope of this paper and will be presented

in a future work. In the simulations section, the case of choosing the “worst” node is also

adopted in order to study the sensitivity of this scenario in failing to choose the “best” node.

Finally, if the statistics are the same for the nodes of the network, then the Krylov

subspaces can be constructed locally, and then the information transmitted by each node

drops to D coefficients, i.e., the length of the reduced rank estimate.

6.2.2 The Algorithmic Scheme

As it has been already mentioned, our goal has now become to search for estimates that lie

in the reduced D-dimensional Krylov subspace. However, in general, any vector in such a

subspace is expressed in terms of m components, since it is a subset of Rm. Our next goal

becomes to map the respective estimates in the RD subspace; this mapping will result in the

description of the estimates in terms of D components. Nevertheless, the mapping which

leads vectors from the Krylov subspace to RD, is known. Moreover, the inverse mapping

leading vectors from RD to the subspace is also known. This correspondence between vectors

of the Krylov subspace with vectors lying in RD will be the kick-off point in order to reduce

the communication load. More specifically, at each node, vectors which belong in RD will be

computed and transmitted, reducing the communication load; these vectors can be readily

mapped, locally at each node, back to the original Krylov subspace where they belong.

Let us define the m × D matrix T̂n the columns of which form a basis for Kn =

KD(R̂
′
n, p̂

′
n). The following holds: ∀w̃ ∈ RD, ∃w ∈ Kn : w = T̂nw̃ and w̃ = T̂ T

n w
1, [155].

According to the previous discussion, the matrix T̂ T
n maps vectors, of dimension m which

belong in Kn, to the reduced dimension space, i.e., RD, whereas T̂n maps vectors lying in

RD to Kn ⊂ Rm.
1From now on, the tilded vectors will stand for vectors lying in RD.
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The steps of the algorithm for each node k and at time instant n, can be summarized as

follows:

• The estimates, of reduced dimension, from the neighbourhood, i.e., w̃l,n ∈ RD, ∀l ∈

Nk, are received and convexly combined, with respect to the adopted combination

strategy in order to produce ϕ̃k,n :=
∑

l∈Nk
ak,lw̃l,n, where ak,l are the combination

weights. As already said, these estimates are related to their counterparts in the

Krylov subspace in Rm ones, according to: ∀n ∈ Z≥0, ∀k ∈ N , w̃k,n = T̂ T
n wk,n (see

also Appendix G).

• Taking into consideration the newly received information, i.e., (dk,n,uk,n) the following

hyperslab is defined in RD: S̃k,n := {w̃ ∈ RD : |dk,n−uT
k,nT̂nw̃| ≤ ϵk}, where ϵk > 0 can

vary from node to node, depending on the noise statistics. The aggregate ϕ̃k,n, which

was computed at the previous step, is projected onto the q most recent hyperslabs,

and then a convex combination of the resulting projections is computed. It has been

verified, that by projecting onto a q > 1 number of hyperslabs the convergence speed

is accelerated [82, 150].

• The information needed in order to update the subspace is distributed over the network,

using one of the techniques described previously. If mod(n, L) = 0, then R̂k,n, p̂k,n are

updated, and the matrix T̂n+1 is computed.

The previous can be encoded in the following formula.

Algorithm 1:

w̃k,n+1 = ϕ̃k,n + µ̃k,n

(∑
j∈Jn

ωk,jPS̃k,j
(ϕ̃k,n)− ϕ̃k,n

)
, (6.8)

where Jn := max{0, n− q + 1}, n,
∑

j∈Jn
ωk,j = 1, ∀k ∈ N and µ̃k,n ∈ (0, 2M̃k,n) where

[134]:

M̃k,n =


∑

j∈Jn
ωk,j∥PS̃k,j

(ϕ̃k,n)−ϕ̃k,n∥2

∥
∑

j∈Jn
ωk,jPS̃k,j

(ϕ̃k,n)−ϕ̃k,n∥2
, if ∥

∑
j∈Jn

ωk,jPS̃k,j
(ϕ̃k,n)− ϕ̃k,n∥ ̸= 0,

1, otherwise.
(6.9)
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(φ̃k,n)
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D

(b)

Figure 6.2: (a) Geometrical illustration of the algorithm for q = 1. The aggregate ϕk,n,
which belongs in the subspace, is projected onto the intersection of the subspace and the
hyperslab, generated by the measurement data. (b) The algorithmic scheme in the reduced
dimension space, i.e., RD.

In the previously described scheme, the obtained estimates lie in RD, which implies that

each sensor will transmit D coefficients at each time instant. The following claim clarifies

the connection between the algorithm in (6.8) and the Krylov subspaces, discussed in the

previous section.

Claim 5. Eq. (6.8) is equivalent to

wk,n+1 = T̂n+1T̂
T
n

(
ϕk,n + µk,n

(∑
j∈Jn

ωk,jPSk,j∩Kn(ϕk,n)− ϕk,n

))
, (6.10)

where µk,n ∈ (0, 2Mk,n), ϕk,n = T̂nϕ̃k,n, that is, the corresponding aggregate in the respective

Krylov space, and

Mk,n =


∑

j∈Jn
ωk,j∥PSk,j∩Kn(ϕk,n)− ϕk,n∥2

∥
∑

j∈Jn
ωk,jPSk,j∩Kn(ϕk,n)− ϕk,n∥2

, if ∥
∑

j∈Jn
ωk,jPSk,j∩Kn(ϕk,n)− ϕk,n∥ ̸= 0

1, otherwise.

Proof. The proof is given in Appendix H.

The geometrical interpretation of the algorithm is given in Fig. 6.2. The complexity
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of the algorithm is of order O(qD) coming from (6.8), O(Nm
L
) from the update of R̂′

n,

and O(Dm2

L
) due to the computation of T̂n, e.g., [155]. It is important to notice that the

dominant complexity–contributing terms, which are involved in the subspace computation,

depend also on the frequency with which the subspace is constructed. Hence, if one is to

reduce the computational load, a larger L must be chosen. Obviously, this results to a

performance degradation; however as it will become clear in the simulations section, the

algorithms turn out to be relatively insensitive to this parameter.

As it will become clear shortly, the algorithm enjoys a number of nice convergence prop-

erties. Despite the fact that at each node the recursion given in (6.8) is employed, the

theoretical properties for (6.10) will be studied since the estimates computed by this scheme

belong to the same subspace with w(D)
WF and from the fact that the two schemes are equiv-

alent. For the algorithm in (6.10), we prove a number of nice convergence properties such

as: monotonicity, asymptotic optimality and strong convergence to a point which lies in

the consensus subspace. Moreover, we prove that the estimates at each node converge to

a vector which belongs to the Krylov subspace. It is important to notice that asymptotic

optimality implies that the distance of the computed estimates from the intersection of the

hyperslabs with the Krylov subspace will tend asymptotically to zero. Moreover, recalling

the discussion in subsection 6.1.2, these sets contain w(D)
WF with a high probability.

Assumptions 1:

(a) There exists a non-negative integer, say n0, for which Ω =
∩

n≥n0
Ωn ̸= ∅ where Ωn =

Kn∩Ω′
n with Ω′

n :=
∩

k∈N
∩

j∈Jn
Sk,j. In words, the hyperslabs together with the Krylov

subspaces share a non-empty intersection.

(b) There exists n1 such that T̂n = T̂n1 , ∀n ≥ n1. In other words, after a finite number of

iterations, the subspace remains fixed2.

(c) Let some sufficient small ε1 > 0 such that µk,n ∈ (ε1Mk,n,Mk,n(2− ε1)), k ∈ N .

(d) Let us define C := Ω̃ ∩ Õ, where the cartesian product space Ω̃ := Ω̃× . . .× Ω̃︸ ︷︷ ︸
N

, Ω̃ :=∩
n≥n0

∩
k∈N

∩
j∈Jn

S̃k,j and Õ := {w̃ ∈ RND : w̃ = [w̃T , . . . , w̃T ]T , w̃ ∈ RD}. We

2For a large choice of n1 the approximations of the quantities used in order to construct the subspace are
good and, consequently, this assumption does not lead to performance degradation.
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assume that riÕΩ̃ ̸= ∅, where this term stands for the relative interior of C with respect

to Õ (see Chapter 3).

Theorem 8. Under the previously adopted assumptions, the following properties can be

proved.

• Monotonicity. Under assumptions (a), (b), (c) for the recursion given in (6.10) it

holds that

∥wn+1 −w∗∥ ≤ ∥wn −w∗∥, ∀n ≥ n′
0

where n′
0 = max{n0, n1}, w∗ =


ŵ∗
...

ŵ∗

 ∈ RNm, ∀ŵ∗ ∈ Ω and wn =


w1,n

...

wN,n

.

• Asymptotic Optimality. If assumptions (a), (b), (c) hold true, we have that

lim
n→∞

d(wk,n+1,Ωn) = 0, ∀k ∈ N ,

where d(G)(·,Ωn) denotes the distance of a vector from Ωn. In other words, the distance

of the estimates from the intersection set Ωn, tends asymptotically to zero.

• Asymptotic Consensus. Consider that assumptions (a), (b), (c), hold. Then

limn→∞ ∥wk,n −wl,n∥ = 0, ∀k, l ∈ N .

• Strong Convergence. Under assumptions (a), (b), (c), (d), it holds that limn→∞wn =

wO,wO ∈ O, where O stands for the consensus subspace. Moreover, if we define

wO := [wT
O, . . . ,w

T
O]

T , it holds that wO ∈ Kn1. The previous relation yields that the

estimates for the whole network converge to a point that lies in the consensus subspace

and the estimate at each node converges to a point which lies in the estimated Krylov

subspace.

Proof. The proof is provided in Appendix I.

6.3 Whitening the input

Recall the discussion in Section 6.1.1 regarding (6.4). As it was documented there, the

performance of the Krylov based reduced rank algorithm is dictated, mainly, by the input

Symeon N. Chouvardas 164



6.3 Whitening the input

statistics. In other words, in cases where the input is highly correlated and, henceforth,

the eigenvalue spread of the autocorrelation matrix takes a large value, then the upper

bound of the distance between the unknown vector and the one, which is tracked inside

the Krylov subspace, is large and as it has been experimentally verified, the performance of

the algorithms built around the Krylov subspaces is degraded. This results to an increased

error floor in the steady state, as we will see in the Numerical Examples section. Hence, a

reasonable strategy, which will be adopted here, is to employ a transformation that “whitens”

the input. To this end, at each time instant the input vectors are multiplied with a properly

chosen matrix, such that the autocorrelation matrix of the “new” input to be as close as

possible to the identity matrix. A first approach could be to employ the celebrated Karhunen

Loeve transform in order to produce a transformed input for which the eigenvalue spread of

the autocorrelation matrix would be equal to 1. Nevertheless, as it has been also documented

in [120], this approach requires a-priori knowledge of the input statistics, which is in general

infeasible. Hence, an alternative route has to be followed. In the non-distributed scenario, the

following transformation has been proposed [120]: ψn = Z
1
2Y un ∈ Rm, where Y is them×m

Discrete Cosine Transformation (DCT) transformation matrix3, and Z = diag{ 1
σ̂2
1
. . . 1

σ̂2
m
},

where σ̂i, i = 1, . . . ,m is the i-th element in the diagonal of the matrix E{Y unu
T
nY

T}.

The physical reasoning of this transformation can be summarized as follows4. The left and

right multiplication with the DCT matrix, approximately diagonalizes the matrix R (see

also [120]) so as to produce

E{Y unu
T
nY

T} ≈


σ̂2
1 0

. . .

0 σ̂2
m

 . (6.11)

Now, it is not difficult to see that the multiplication with the matrix Z 1
2 , normalizes the

diagonal entries of the matrix in (6.11) so that the resulting autocorrelation matrix approx-

imates the identity matrix. In practice, since the coefficients σ̂i, i = 1, . . . ,m are unknown,

one relies on the following recursive approximation of them: σ̂2
i,n = γσ̂2

i,n−1 + [Y un]
2
i , where

3For the DCT transformation matrix holds that Y Y T = Y TY = Im. It should be pointed out that a
variety of transformations could be employed, e.g., the Fourier Transformation. However, the DCT one is
usually adopted [120].

4For a more detailed analysis the reader is referenced to [120].
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γ ∈ (0, 1], and with [·]i we denote the i-th component of a vector, e.g., [120,155]. Obviously

the performance of the previously mentioned transformation, i.e., how “close” will be the

final matrix to the identity one, depends on R. However, in practice it has been observed

that the previously mentioned transformation results in autocorrelation matrices, which are

reasonably close to diagonal.

In the distributed scenario, our goal is to impose a transformation, which is common

to all the nodes of the network, and which whitens the autocorelation matrix used for the

construction of the subspace, i.e., R′. Assuming that the input vectors between any two

different nodes of the network are independent and have zero mean, which is usually the case,

e.g., [28,98], we have that R′ = 1
N
E[u′

nu
′T
n ], where u′

n =
∑

k∈N uk,n. The transformed input

takes the form ([120]): ψk,n = Z ′ 1
2Y uk,n where Z ′ = diag{ 1

σ̂′2
1
. . . 1

σ̂′2
m
}, and σ′

i, i = 1, . . . ,m

is the i-th element of the diagonal of the matrix Y R′Y T . Employing the transformed input

in the linear model, we get that dk,n = uT
k,nw∗ + vk,n = hT

k,nh∗ + vk,n, where

h∗ = Z
′− 1

2Y w∗ ⇔ w∗ = Y
TZ ′ 1

2h∗. (6.12)

It should be pointed out that, by employing a transformed input, the generated estimates do

not track the original unknown vector, but the transformed one, i.e., h∗. Nevertheless, by

multiplying them with the inverse transformation, which is in our case Y TZ ′ 1
2 , one obtains

estimates tracking the original unknown vector (see also [52]).

It is obvious that the definition of the corresponding Krylov subspace changes, since the

input changes. Let us define

R′ =
1

N

∑
k∈N

E{hk,nh
T
k,n} =

1

N

∑
k∈N

Z ′ 1
2Y E{uk,nu

T
k,n}Y TZ ′ 1

2 = Z ′ 1
2Y R′Y TZ

1
2 , (6.13)

and r′ = 1
N

∑
k∈N E{dk,nhk,n}. Using a similar rationale as in section 6.1.2, the algorithm,

after employing the transformed input, tracks the following vector

ĥ = T ′(T ′TR′T ′)−1T ′TR′h∗ = P
(R′)
KD(R′,r′)(h∗), (6.14)

where T ′ is an m×D matrix whose column form an orthonormal basis of KD(R′, r′). Now,

let us shed some light on the connection between the estimates generated exploiting the
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Figure 6.3: Illustration of KD(R′, r′), M̂ and the connection between points that belong to
them.

transformed input, and the estimates, which are produced relying on the original input. If

we substitute (6.12) and (6.13) into (6.14) we obtain

ĥ = T ′(T ′TZ ′ 1
2Y R′Y TZ ′ 1

2T ′)−1T ′TZ ′ 1
2Y R′Y TZ ′ 1

2h∗

= T ′(T ′TZ ′ 1
2Y R′Y TZ ′ 1

2T ′)−1T ′TZ ′ 1
2Y Rw∗. (6.15)

Notice that SM̂ := Y TZ ′ 1
2T ′ is an m×D matrix, of rank D ([68]), hence its columns form

a basis for a new subspace M̂ := range{Y TZ ′ 1
2T ′}. Fig. 6.3 illustrates the connection

between the points of the two subspaces. Now, according to the previous discussion, if we

left multiply (6.15) by Y TZ ′ 1
2 , in order to employ the inverse transformation, we get

Y TZ ′ 1
2 ĥ = SM̂(ST

M̂
R′SM̂)−1ST

M̂
R′w∗ = ŵ = P

(R′)

M̂
(w∗). (6.16)
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From (6.16) we conclude that

Y TZ
1
2 ĥ = ŵ ⇔ ĥ = Z ′− 1

2Y ŵ (6.17)

Equation (6.17) establishes the connection among estimates occurring in the case where the

input is hk,n,∀k ∈ N ,∀n ∈ N, with the ones produced by the input uk,n,∀k ∈ N , ∀n ∈ N.

It should be pointed out that, if we employ the whitening transformation, the estimates

obtained from the original input (which are produced by employing the inverse transforma-

tion), lie in M̂ , which is also a subspace of dimension equal to D, instead of KD(R
′,p′),

which would be the case if the original input uk,n were employed. Despite the fact that

the reduced rank Wiener Filter w(D)
WF does not belong to M̂ , in general, as it will become

apparent in the Numerical Examples section, if the input is highly correlated it is better to

seek for ŵ instead of w(D)
WF , since the misadjustment between w(D)

WF and w∗ is large.

Obviously, in order to construct the matrix Z ′, knowledge on the statistic has to be

available. As in the previous section, we rely on estimates of the unknown statistics in

order to construct Z ′. More specifically, the approximated matrix is given by Ẑ ′
n =

diag{ 1
σ̂′2
1,n
. . . 1

σ̂′2
m,n

}, where σ̂′2
i,n = γσ̂′2

i,n−1 +
1
N
Y [u′

n]
2
i , γ ∈ (0, 1].

The algorithm is similar to the one developed in the previous section and its mathemat-

ical formula is given by

Algorithm 2:

hk,n+1 = T̂
′
n+1T̂

′T
n

(
φk,n + µk,n

(∑
j∈Jn

ωk,jPS′
k,j∩K̂n

(φk,n)−φk,n

))
, (6.18)

with φk,n =
∑

l∈Nk
ak,lhl,n and S ′

k,n := {w ∈ Rm : |dk,n −wThk,n| ≤ ϵk}. Furthermore, the

m ×D matrix T̂ ′
n is defined similarly to T̂n, and its columns form an orthonormal basis of

K̂n := KD(R̂′
n, r̂

′
n), where R̂′

n, r̂
′
n, are approximations of the R′ and r′ respectively, and they

are computed recursively in a similar way as in the previous section.

Recall the assumptions of Theorem 1. In order to derive the convergence analysis of

the algorithm in (6.18), we consider that the assumptions of Theorem 1 hold true, with the

following slight modifications:

• The intersection Ω becomes Ω̂ =
∩

n≥n0
Ω̂n ̸= ∅, where Ω̂n = K̂n ∩ Ω̂′

n, and Ω̂′
n :=
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∩
k∈N

∩
j∈Jn

S ′
k,j (Assumption (a’)).

• There exists n1 such that T̂ ′
n = T̂ ′

n1
, ∀n ≥ n1 (Assumption (b’)).

• After a finite number of iterations, say n2, Z ′
n = Z ′

n2
, ∀n ≥ n2 and, for compact

notations, we define n′
0 = max{n0, n1, n2} (Assumption (c’)).

• The upper bound of the step size equals to 2M′
k,n, where

M′
k,n =


∑

j∈Jn
ωk,j∥PS′

k,j∩K̂n
(φk,n)−φk,n∥2

∥
∑

j∈Jn
ωk,jPS′

k,j∩K̂n
(φk,n)−φk,n∥2

, if ∥
∑

j∈Jn
ωk,jPS′

k,j∩K̂n
(φk,n)−φk,n∥ ̸= 0

1, otherwise,

(Assumption (d’)).

• The set C, now becomes C′, with C′ := ˆ̃Ω∩Õ, where ˆ̃Ω := ˆ̃Ω× . . .× ˆ̃Ω︸ ︷︷ ︸
N

and ˆ̃Ω :=
∩

n≥n0

∩
k∈N

∩
j∈Jn

S̃′
k,j

employing the modified input (Assumption (e’)).

Theorem 9.

• Monotonicity: Assume that assumptions (a’), (b’), (c’), (d’), hold true. It holds

that

∥wn+1 − ŵ
′
∗∥G ≤ ∥wn − ŵ

′
∗∥G, ∀n ≥ n′

0,

whereG = diag {A, . . . ,A}︸ ︷︷ ︸
N

, (Nm×Nm),A = Y TZ−1
n2
Y , (m×m), ŵ′

∗ = [ŵ′T
∗ , . . . , ŵ

′T
∗ ]T ,

where ŵ′
∗ ∈ Ω, Ω =

∩
n≥n′

0
Ωn, Ωn = M ∩ Ω′

n and M := range{Y TZ
′ 1
2

n2T
′
n1
} is an ap-

proximation of M̂ . The last equation states that the algorithm enjoys monotonicity, in

the G norm sense.

• Asymptotic Optimality: Under Assumptions (a’), (b’), (c’), (d’), it holds that

lim
n→∞

d(wk,n+1,Ωn) = 0, ∀k ∈ N .

• Strong Convergence to a point that lies in the Consensus subspace: Con-

sider that (a’), (b’), (c’), (d’), (e’), hold true it holds that limn→∞wn = w′
O, w

′
O ∈ O.

As in Theorem 1, if we define w′
O := [w′T

O, . . . ,w
′T
O]

T , it holds that w′
O ∈M . In other
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words, as in Theorem 1, the estimates for the whole network converge to a point that

lies in the consensus subspace and the estimate at each node converges to a point which

lies in M .

Proof. The proof is given in Appendix I.

6.4 Numerical Examples

In this section, the performance of the proposed algorithms is validated within the system

identification framework. In order to evaluate the performance of the proposed algorithms,

we compare it with a modified version of the proposed scheme, denoted as subsampled

Adaptive Projected Subgradient Method (sAPSM), where each node, instead of transmitting

the whole estimate vector, at every time instant, transmits a subset of D coefficients of it.

More specifically, at time instant 1, the first D coefficients are transmitted, at time instant

2, the coefficients #D + 1, . . . ,#2D and so on. Moreover, the proposed algorithms are

compared with the full rank APSM, i.e., the proposed where the full vector estimate is

transmitted and with the diffusion based Adapt-Combine LMS (A-C LMS) [28].

In the first experiment, we consider an ad–hoc network, in which the number of nodes

equals to N = 20. The unknown vector is of dimension m = 160. We consider that the input

samples, un = [un, . . . , un−m+1]
T , obey the following model uk,n = θkuk,n−1 +

√
1− θ2kχk,n,

where θk is a parameter, which we will alter throughout the experiments, so as to validate

the proposed schemes in weakly or strongly correlated environments, and χk,n is drawn from

the Gaussian distribution with unit variance. The variance of the noise, at each node, equals

to σk = 0.01 × ξk, where ξk ∈ (0.5, 1], under the uniform distribution. Furthermore, the

combination coefficients are chosen with respect to the Metropolis rule. Finally, the adopted

performance metric, which will be used, is the average Mean Square Error (MSE), given

by MSE(n) = 1/N
∑

k∈N (dk,n − uT
k,nwk,n)

2, and the curves are the result of averaging 100

realizations for smoothing purposes.

The number of hyperslabs used per time update equals to q = 4, the step-size is chosen

µk,n = 1/2 × Mk,n and the width of the hyperslabs equals to ϵk = 1.3 × σk. The weights

are set ωk,n = 1/q. The step-size in the A-C LMS equals to 3× 10−3, so that the algorithm

converges to a similar error floor with the full rank APSM. In the first experiment, we
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Figure 6.4: Average MSE for the first experiment.

study the performance of the proposed scheme (denoted as Proposed 1), with respect to

the dimension of the subspace, within which we seek for a solution. For this reason, we

consider a weakly correlated environment, so the parameter θk ∈ (0, 0.5), ∀k ∈ N , with

respect to the Uniform distribution. Moreover, since the unknown vector does not undergo

changes, the forgetting factor is chosen ζ = 1. Finally, we assume that L = 1, i.e., the

subspace is updated at each time instant and for the sAPSM D = 30. From Fig. 6.4 it can

be seen that even if the dimension of the subspace takes small values, compared to m, the

Proposed 1 performs significantly well. Analytically, the Proposed 1, converges fast and for

the specific choices D = 10, D = 30 the steady state error floor is only slightly increased

compared to the full rank APSM and the A-C LMS. If D = 5, then the steady state error

floor increases significantly. Moreover, the Krylov-based algorithms outperform the sAPSM.

Finally, it should be pointed out that the complexity of the LMS is of order O(m) and the

complexity of the APSM is of order O(qm).

In Table 6.1 we present the steady state Mean Square Deviation, i.e., ∥wav −w∗∥2, as

well as the distance of the steady state estimate from w
(D)
WF, i.e., ∥wav − w

(D)
WF∥2, where

wav = 1/N
∑

k∈N wk,n, for a large n. It can be observed, that the smaller the dimension

of the Krylov subspace, the smaller the distance of the estimate from w
(D)
WF, whereas the

mean square deviation is larger. This is a direct consequence of (6.4) since, as one can see in

this equation, a smaller D leads to a larger upper bound of the distance between w(D)
WF and
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D ∥wav −w(D)
WF∥2 ∥wav −w∗∥2

5 1.21 ∗ 10−4 3.49 ∗ 10−4

10 1.87 ∗ 10−4 1.26 ∗ 10−5

20 2.28 ∗ 10−4 1.23 ∗ 10−5

30 2.40 ∗ 10−4 1.22 ∗ 10−5

Table 6.1: Steady State distances.

D SDCS
5 2.6 ∗ 10−4

10 2.1 ∗ 10−4

20 1.9 ∗ 10−4

30 1.9 ∗ 10−4

Table 6.2: Squared Distance from the Consensus Subspace.

w∗. Finally, in Table 6.2, we present the steady state squared distance from the consensus

subspace (SDCS), i.e., ∥(Im −BBT )wn∥2, n → ∞, where the definition of the matrix B

is provided in Chapter 4. It can be readily seen, that in the steady state every choice of D

leads to a small distance from the consensus subspace.

In the second experiment, Fig. 6.5, the parameters remain the same as in the previous

one. Nevertheless, here we examine the Average Excess Mean Square Error (EMSE) instead

of the MSE. The Average EMSE is given by EMSE := 1/N
∑

k∈N (uT
k,nw∗−uT

k,nwk,n)
2. From

Fig. 6.5 it can be seen that the full rank LMS and the APSM converge to a lower steady state

error floor, compared to the algorithms built around the Krylov subspace rationale. This fact

is expected since in the Krylov based algorithms we seek for a vector lying in a subspace of

lower dimension, and not the unknown one. However, the Krylov based algorithms converge

significantly faster and, moreover, compared to the full rank algorithms, the difference in

the steady state error is relatively small.

In the third experiment, we consider that the parameters remain the same as in the

previous experiment, albeit a fixed dimension for the subspace, namely D = 10, is chosen.

Our goal is to study the sensitivity of the algorithm, to the parameter L. To this end, we

set different values to L, or in other words, to the frequency with which the subspace is

updated. From Fig. 6.6 it can be readily observed that the smaller the update window, the

faster the convergence, due to the fact that for a small window we update the estimate of the

subspace more often, and we reach sooner a good approximation of it, compared to the case
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Figure 6.5: Average EMSE for the second experiment.

of a larger window. Moreover, as in the previous experiment, the Krylov-based algorithms

outperform the sAPSM. Finally, we should note that the Proposed 1 performs well even for

large values of L, which makes it appropriate to be adopted in distributed learning.

In the fourth experiment, we consider a non-stationary environment, since, as it is by

now well established, a fast convergence speed does not necessarily coincide with a good

tracking ability [64]. To be more specific, we consider that a sudden change in the unknown

parameter vector takes place. So, in this experiment, we fix L = 1 and D = 10 and we

alter the forgetting factor. From Fig. 6.7 it can be seen that until the system undergoes

the change, the best performance is achieved for ζ = 1, whereas for smaller ζ the steady

state error floor is increased. Nevertheless, if ζ = 1, the algorithm has a long memory of

the old statistics, through which the subspace is constructed, that have to change and its

tracking ability is not good. On the contrary, the other choices of ζ provide a good tracking

ability. Obviously, for large L the tracking ability may be affected, since apart from the

forgetting factor, one has to take into consideration the fact that at time instant n the

quantities sensed at a past time instant are delivered through the network; this is a direct

consequence of the strategy adopted in subsection 6.2.1, in order to enhance the information

flow. In this case, we consider that the algorithm is able to monitor abrupt changes of the

orbit (wk,n)n∈Z≥0
, in order to restart transmitting the input and the desire response. In

order to ”sense” the previously mentioned abrupt changes, we employ the following metric:

∥wk,n+1−wk,n∥/∥wk,n−wk,n−1∥, ∀k ∈ N , or, more specifically, we restart the transmission
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Figure 6.6: Average MSE for the third experiment.

of the input coefficients and the desired responses, if this ratio is greater than a threshold,

which is chosen, here, to be equal to 10.

In the fifth experiment, we validate the performance of the whitening version (denoted as

Proposed 2), in a strongly correlated environment. To this end, the parameter θk takes values

inside the interval (0.8, 1). We compare the Proposed 1 for D = 10, the Proposed 2, for the

following choices D = 10, D = 20, the sAPSM, the full rank APSM and the A-C LMS. In the

A-C LMS, we choose the largest step-size for which the algorithm converges, and it equals

to 10−3. The rest of the parameters remain the same as in the previous experiments, and

the forgetting factor which corresponds to the computation of σ̂′
i,n equals to γ = 1. Fig. 6.8

illustrates that the performance of the Proposed 1 is degraded due to the highly correlated

input. However, by employing the transformation, which whitens the input (Proposed 2),

the performance is significantly enhanced, even if the dimension is relatively low, compared

to the case where we employ the original input.

Finally, in the sixth experiment, we examine how the performance of the Proposed 1 is

affected when the Krylov subspace is constructed based on information coming from a single

node (see also subsection 6.2.1). To this end, we compare the Proposed 1 in the case where

the subspace is constructed using information from every node, with the same algorithm in

the cases where: a) the optimum node, b) the worst node and c) an arbitrary node, provide

information in order to construct the subspace. D equals to 20 and the rest parameters are
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Figure 6.7: Average MSE for the fourth experiment.
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Figure 6.8: Average MSE for the fifth experiment.
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Figure 6.9: Average MSE for the sixth experiment.

the same as in the first experiment. The optimum node is the one with the less correlated

input and the worst node is the one with the most correlated input. Fig. 6.9 shows that by

using global information the algorithm converges faster. Nevertheless, the proposed scheme

performs well even in the worst case scenario, where the node with the most correlated input

is used in order to compute the subspaces. This results is very useful, in large networks,

where using global information may be prohibited.
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Appendix F

Projection Operators Onto Subspaces

The projection onto a closed convex set C, in the W -norm sense, where W is an m × m

positive definite matrix, is given via the following optimization P (W )
C (w) := argminx∈C∥w−

x∥W . Moreover, the projection of a point, say w, onto a subspace, say V , is given by

PV (w) = QQTw, where Q is a matrix whose columns form a basis for V , whereas the

projection of w onto V in the W -norm sense equals to P (W )
V (w) = Q(QTWQ)QTWw.
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Appendix G

Proof of Claim 1

By basic linear algebraic arguments [130], it can be verified that the subspace Kn is isomor-

phic and isometric to RD via the mapping T̂n : RD → Kn where T̂n is the matrix whose

columns form an orthonormal basis for Kn.

Take the previously mentioned argument into consideration and fix a ϕ ∈ Kn. Then

notice that

∥ϕ− PSn∩Kn(ϕ)∥ = min
w∈Sn∩Kn

∥ϕ−w∥

= min
w̃∈S̃n

∥ϕ̃− w̃∥

= ∥ϕ̃− PS̃n
(ϕ̃)∥

= ∥ϕ− T̂nPS̃n
(ϕ̃)∥, (G.1)

where S̃n = {w̃ ∈ RD : |dn − uT T̂nw̃| ≤ ϵ}.

By (G.1) and the uniqueness of the projection, we obtain

PSn∩Kn(ϕ) = T̂nPS̃n
(ϕ̃) = T̂nPS̃n

(T̂ T
n ϕ), (G.2)

which completes our proof.
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Appendix H

Proof of Claim 2

Recalling the arguments of Claim 1, it can be verified that

M̃k,n = Mk,n (H.1)

Moreover, it holds that wk,n+1 = T̂n+1w̃k,n+1. Going back to Eq. (6.8) and substituting

ϕ̃k,n = T̂ T
n ϕk,n, PSk,n∩Kn(ϕk,n) = T̂nPS̃k,n

(ϕ̃k,n) ⇒ PS̃k,n
(ϕ̃k,n) = T̂ T

n PSk,n∩Kn(ϕk,n), and if

left multiply with T̂n+1 and equation (H.1) we obtain the desired result.
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Appendix I

Proof of Theorems 1 and 2

We will prove Theorem 2, since Theorem 1 is a special case of it. To be more specific, the

properties which will be proved in this appendix hold also for Theorem 1, if we substitute

the matrix Z ′− 1
2

n2 Y by Im.

I.1 Monotonicity

First of all let us define h∗ =


h∗
...

h∗

 ∈ RNm, ∀h∗ ∈ Ω̂ and hn =


h1,n

...

hN,n

. Since ∀n ≥ n1,

we have that T̂ ′
n = T̂ ′

n+1 = T̂ ′
n1

, it holds that (see also [154]) T̂ ′
n+1T̂

′T
n = PK̂n1

. Fix a node,

say k ∈ N . We have that, ∀n ≥ n′
0

∥hk,n+1 − h∗∥ =

∥∥∥∥∥PK̂n1

(
φk,n + µk,n

(∑
j∈Jn

ωk,jPS′
k,j∩K̂n1

(φk,n)−φk,n

))
− h∗

∥∥∥∥∥
However, from the definition of Ω̂ and since h∗ ∈ Ω̂ ⇒ h∗ ∈ K̂n1 ⇔ h∗ = PK̂n1

(h∗),∀n ≥ n′
0

by definition. Hence

∥hk,n+1 − h∗∥ =

∥∥∥∥∥PK̂n1

(
φk,n + µk,n

(∑
j∈Jn

ωk,jPS′
k,j∩K̂n1

(φk,n)−φk,n

))
− PK̂n1

(h∗)

∥∥∥∥∥ .
(I.1)
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I.1 Monotonicity

A well known property of the projection operator, e.g., [149], is the non-expansivity, i.e.,

given a non-empty convex set, say C, ∥PC(w1) − PC(w2)∥ ≤ ∥w1 − w2∥,∀w1,w2 ∈ Rm.

Combining the previous with (I.1) we obtain

∥hk,n+1 − h∗∥ ≤

∥∥∥∥∥φk,n + µk,n

(∑
j∈Jn

ωk,jPS′
k,j∩K̂n1

(φk,n)−φk,n

)
− h∗

∥∥∥∥∥
Gathering the inequalities for every node, we obtain that

∥∥∥∥∥∥∥∥∥


h1,n+1

...

hN,n+1

− h∗

∥∥∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥∥∥


φ1,n + µ1,n

(∑
j∈Jn

ω1,jPS′
1,j∩K̂n1

(φ1,n)−φ1,n

)
...

φN,n + µN,n

(∑
j∈Jn

ωN,jPS′
N,j∩K̂n1

(φN,n)−φN,n

)
− h∗

∥∥∥∥∥∥∥∥∥
(I.2)

Following similar steps as in [41, Theorem 1] and under assumptions (a’)-(d’) it can be proved

that∥∥∥∥∥∥∥∥∥


φ1,n + µ1,n

(∑
j∈Jn

ωk,jPS′
1,j∩K̂n1

(φ1,n)−φ1,n

)
...

φN,n + µN,n

(∑
j∈Jn

ωk,jPS′
N,j∩K̂n1

(φN,n)−φN,n

)
− h∗

∥∥∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥∥∥


h1,n

...

hN,n

− h∗

∥∥∥∥∥∥∥∥∥ (I.3)

Combining (I.2), (I.3) we obtain

∥hn+1 − h∗∥ ≤ ∥hn − h∗∥, ∀n ≥ n′
0 (I.4)

From (I.4) we have ∥∥∥∥∥∥∥∥∥


h1,n+1 − h∗

...

hN,n+1 − h∗


∥∥∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥∥∥


h1,n − h∗

...

hN,n − h∗


∥∥∥∥∥∥∥∥∥ , ∀n ≥ n′

0 (I.5)
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Proof of Theorems 1 and 2

However, if we take into consideration (6.17) and ∀n ≥ n′
0


h1,n+1 − h∗

...

hN,n+1 − h∗

 =


Z

− 1
2

′

n2 Y (w1,n+1 − ŵ′
∗)

...

Z
− 1

2

′

n2 Y (wN,n+1 − ŵ′
∗)

.

Having as kick off point the previous equation, it is not difficult to obtain that ∀n ≥ n′
0∥∥∥∥∥∥∥∥∥


h1,n+1 − h∗

...

hN,n+1 − h∗


∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥


w1,n+1 − ŵ′

∗
...

wN,n+1 − ŵ′
∗


∥∥∥∥∥∥∥∥∥
G

. (I.6)

Since A is a positive definite matrix ([154]), it is not difficult to obtain that G is also positive

definite. Let us take a closer look on ŵ′
∗. Since by assumption h∗ ∈ K̂n ∩S ′

j,n, ∀k ∈ N , ∀j ∈

Jn, ∀n ≥ n′
0 we have that there exists h̃∗ ∈ RD such that h∗ = T̂

′
n1
h̃∗ and |hT

k,jh∗ − dk,j| ≤

ϵk, ∀k ∈ N , j ∈ Jn, n ≥ n′
0. The previous equations yield that ŵ′

∗ = Y
TZ

1
2

′

n2 T̂
′
n1
h̃∗ ⇒ ŵ′

∗ ∈

M , and since hT
k,nh∗ = u

T
k,nŵ

′
∗, it holds that ŵ′

∗ ∈ Sk,j,∀k ∈ N , n ≥ n′
0.

Now, combining (I.5) and (I.6) implies

∥wn+1 −w′
∗∥G ≤ ∥wn −w′

∗∥G,∀n ≥ n′
0, (I.7)

I.2 Asymptotic Optimality

Let us define the following non-negative cost function ∀k ∈ N

Θk,n(h) =


1

Lk,n

∑
j∈Ik,n ωk,jd(G)(φk,n, S

′
k,j ∩ K̂n)d(G)(h, S

′
k,j ∩ K̂n), if Ik,n ̸= ∅

0, if Ik,n = ∅,
(I.8)

where Ik,n := {j ∈ Jn : φk,n /∈ Sk,j} and Lk,n =
∑

j∈Jn
ωk,jd(G)(φk,n, S

′
k,j ∩ K̂n), It can be

readily seen that since h∗ ∈ Ω, Θk,n(h∗) = 0,∀k ∈ N , ∀n ≥ n0. Following similar steps as

in [41] and [82], we have that (6.10) can be equivalently written

hk,n+1 =


PK̂n

(
φk,n − λk,n

Θk,n(φk,n)

∥Θ′
k,n(φk,n)∥2Θ′

k,n(φk,n)

)
, if Θ′

k,n(φk,n) ̸= 0,

PK̂n
(φk,n) , if Θ′

k,n(φk,n) = 0,

(I.9)
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I.3 Asymptotic Consensus

where λk,n =
µk,n

M′
k,n

∈ (ε1, 2− ε1) and with Θ′
k,n(φk,n) we denote the subgradient of Θk,n(·) at

the point φk,n. Following similar steps as in [41, 45] and if assumptions (a’)-(d’) hold true,

it can be proved that

lim
n→∞

Θk,n(φk,n) = 0, ∀k ∈ N (I.10)

which in turn implies that [41]:

lim
n→∞

d(G)(hk,n+1, Ω̂n) = 0, ∀k ∈ N . (I.11)

This yields that

lim
n→∞

∥hk,n+1 − PΩ̂n
(hk,n+1)∥ = 0. (I.12)

However, using similar arguments as before with ŵ′
∗, for every point h̊ that lies in Ω̂n it

holds that ẘ := Y Z
− 1

2

′

n2 h̊ ∈ Ωn. Hence, if we define w̆ = Y TZ
1
2

′

n2PΩ̂n
(hk,n+1), we have

∥wk,n+1 − PΩn
(wk,n+1)∥ ≤ ∥wk,n+1 − w̆∥

= ∥Y TZ
1
2

′

n2hk,n+1 − Y TZ
1
2

′

n2PΩ̂n
(hk,n+1)∥

≤ ∥Y TZ
1
2

′

n2∥∥hk,n+1 − PΩ̂n
(hk,n+1)∥ (I.13)

where the first inequality holds from the definition of the distance function, as the vec-

tors w̆, PΩn
(wk,n+1) ∈ Ωn. Taking limits in (I.13) and recalling (I.12), we conclude that

limn→∞ d(wk,n+1,Ωn) = 0.

I.3 Asymptotic Consensus

Under assumptions (a’)-(d’), the algorithmic scheme achieves asymptotic consensus, i.e., [31]:

limn→∞∥hk,n − hl,n∥ = 0, ∀k, l ∈ N .

It has been proved [31], that the algorithmic scheme achieves asymptotic consensus, i.e.,

∥hk,n − hl,n∥ → 0, n→ ∞,∀k, l ∈ N if and only if

lim
n→∞

∥hn − PO(hn)∥ = 0. (I.14)
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Proof of Theorems 1 and 2

First of all, notice that hk,n ∈ K̂n,∀n ∈ Z≥0. Since φk,n =
∑

l∈Nk
ak,lhl,n is a convex

combination of vectors which belong to K̂n, which is a convex set [17], then φk,n ∈ K̂n.

Hence PK̂n1
(φk,n) = φk,n, ∀k ∈ N , ∀n ≥ n′

0. So,

∥hk,n+1 −φk,n∥ =

∥∥∥∥∥PK̂n1

(
φk,n − λk,n

Θk,n(φk,n)∥∥Θ′
k,n(φk,n)

∥∥2Θ′
k,n(φk,n)

)
−φk,n

∥∥∥∥∥
=

∥∥∥∥∥PK̂n1

(
φk,n − λk,n

Θk,n(φk,n)∥∥Θ′
k,n(φk,n)

∥∥2Θ′
k,n(φk,n)

)
− PK̂n1

(φk,n)

∥∥∥∥∥
≤

∥∥∥∥∥φk,n − λk,n
Θk,n(φk,n)∥∥Θ′
k,n(φk,n)

∥∥2Θ′
k,n(φk,n)−φk,n

∥∥∥∥∥
=

∥∥∥∥∥λk,n Θk,n(φk,n)∥∥Θ′
k,n(φk,n)

∥∥2Θ′
k,n(φk,n)

∥∥∥∥∥→ 0,

where in the inequality we have used the nonexpansivity of the projection operator onto a

closed convex set and the limit on the last equality holds true as
∥∥∥∥λk,n Θk,n(φk,n)

∥Θ′
k,n(φk,n)∥2Θ′

k,n(φk,n)

∥∥∥∥ ≤

(2− ε1)
Θk,n(φk,n)

∥Θ′
k,n(φk,n)∥ → 0 which holds from (I.10) and [45]. Now, it can be readily seen that

lim
n→∞

∥hk,n+1 −φk,n∥ = 0, ∀k ∈ N (I.15)

If we generalize (I.15) for the whole network, we have

lim
n→∞

∥hn+1 − Phn∥ = 0, (I.16)

where P is the consensus matrix defined in Chapters 4, 5. Having as kick off point (I.16)

and if we follow similar steps as in [45] it can be verified that lim
n→∞

(INm −BBT )hn+1 = 0.

The previous relation implies that

lim
n→∞

∥hk,n − hl,n∥ = 0, ∀k, l ∈ N . (I.17)

Hence, ∀n ≥ n1 ∥wk,n −wl,n∥ ≤ ∥Y T Ẑ
′ 1
2

n1∥∥hk,n − hl,n∥. Taking limits and recalling (I.17)

completes our proof.
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I.4 Strong Convergence

Following similar steps as in Claim 2, it can be proved that the algorithm in (6.18) can be

equivalently written:

h̃k,n+1 = φ̃k,n + µ̃k,n

(∑
j∈Jn

ωk,jPS̃′
k,j
(φ̃k,n)− φ̃k,n

)
, (I.18)

where S̃ ′
k,j := {w̃ ∈ RD : |dk,n − ψT

k,nT̂
′
nw̃| ≤ ϵk}. Notice that the algorithm in (I.18)

is a special case of the algorithm proposed in [41]. The difference is that in the latter,

the combined information coming from the nodes of the neighbourhood is projected onto

a convex set, before the adaptation step. So, the convergence analysis, which took place

in [41] holds for the scheme presented in (6.8). In order to verify this, we have to examine

if the assumptions, under which the scheme converges, hold here too. First of all notice

that under Assumption (a), ∃h0 ∈ Ω̂. From the previous we have that ∃h̃0 ∈ RD such that

h̃0 = T̂ ′T
n1
h0. Moreover, since h0 belongs to the intersection of the hyperslabs, it satisfies

|dk,n − hT
k,nh0| ≤ ϵk, ∀k ∈ N , ∀n ≥ n′

0. So, we have that

|dk,j − hT
k,jh0| ≤ ϵk ⇔ |dk,j − hT

k,jT̂
′
n1
h̃0| ≤ ϵk, ∀k ∈ N ,∀j ∈ Jn, ∀n ≥ n′

0. (I.19)

From the previous we have that there exists h̃0 ∈ RD, such that h̃0 ∈ S̃ ′
k,j, ∀k ∈ N , ∀j ∈

Jn, ∀n ≥ n′
0. Thus, ˆ̃Ω ̸= ∅. Moreover, µ̃k,n ∈ (0, 2M̃′

k,n). In [41, Theorem 1.1] it has been

proved, that these two facts, together with Assumption (d) are the assumptions under which

the algorithm converges to a point, i.e.,

lim
n→∞

h̃n = h̃O, (I.20)

where h̃O := [h̃T
O, . . . , h̃

T
O]

T ∈ Õ. Taking into consideration (I.20) it follows that limn→∞ h̃k,n =

h̃O, ∀k ∈ N . Our proof is complete, since from the previous equation we have that

lim
n→∞

hk,n = lim
n→∞

T̂ ′
n1h̃k,n = T̂n1h̃O.
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If we write the previous relation for all the nodes of the network we obtain

lim
n→∞

hn = hO,

where hO = [(T̂ ′
n1h̃O)

T , . . . , (T̂ ′
n1h̃O)

T ]T . In words, the algorithm converges to a point,

which lies in the consensus subspace.

According to the previous discussion we have that wn = Ghn, ∀n ≥ n′
0, with

G = diag {Y TZ
1
2

′

n2 , . . . ,Y
TZ

1
2

′

n2}︸ ︷︷ ︸
N

. Recall that from Theorem 1, we have limn→∞ hn = hO,

where hO ∈ O. Hence,

lim
n→∞

wn = lim
n→∞

Ghn = GhO = w′
O. (I.21)

Since consensus holds for hO, i.e., hO =


hO

...

hO

, it can be readily obtained that w′
O =


w′

O

...

w′
O

, hence w′
O ∈ O. Finally, since w′

O = Y TZ
1
2

′

n2 T̂
′
n1
h̃O ⇒ w′

O ∈ M , which finishes

our proof.
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Chapter 7

Conclusions and Future Work

This dissertation presented and studied distributed algorithms for adaptive learning in decentralized/ad–

hoc networks. The proposed schemes belong to the family of the Adaptive Projected Subgra-

dient Method and the nodes cooperate with each other by adopting the diffusion optimization

rationale. This Chapter presents a summary of the work, as well as possible directions for

future research.

7.1 Summary

Initially, the problem of adaptive parameter estimation in ad–hoc networks was considered.

In general, despite the fact that the nodes share a common goal, i.e., the estimation of an

unknown parameter vector, the input and the noise statistics differ from node to node. To

overcome possible problems, which occur due to these diversities, a novel Combine–Project–

Adapt cooperation protocol was introduced. The physical reasoning of the intermediate

projection step was to “harmonize” the local information with the information coming from

the neighborhood. The proposed algorithm exhibited a significant performance enhancement

at the minimal expense of an extra projection.

Wireless Sensor Networks usually consist of cheap and sensitive sensors and, henceforth,

various problems may occur to a number of them. To this end, we considered a scenario

where a number of nodes are malfunctioning and the associated observations are very noisy.

The problem was successfully dealt by employing the Huber cost function, which is robust

when the data are corrupted with outliers. Projections onto halfspaces, associated with the
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subgradient of the Huber function, were employed. Numerical examples showed that the

proposed scheme outperformed significantly other distributed algorithms, which do not take

into consideration the presence of outliers.

Many signals/systems adhere to parsimonious models. That is, the vector to be estimated

is sparse. The sparse nature of the system can be exploited by embedding into the problem

ℓ1–norm or weighted ℓ1–norm constraints. Furthermore, one can promote sparse solutions

by modifying properly the projection operators. More analytically, sparsity can be exploited

if the Euclidean projections are substituted by the variable metric projections, which weight

heavier coefficients which belong to the support set of the unknown vector, compared to

the rest. The proposed sparsity–promoting adaptive distributed algorithm combined both

of theses features and was developed according to the diffusion optimization strategy.

Finally, the problem of dimensionality reduction in ad–hoc networks was studied. The

cooperation among the nodes demands that at every time instant each node will transmit a

number of coefficients, which is at least equal to the dimension of the unknown vector. In

scenarios where this dimension is large, the information exchange can be a burden. To this

end, a reduced rank distributed adaptive scheme was introduced, where instead of seeking

for the unknown vector in the original space, one searches for the projection of it onto a lower

dimension subspace. The involved subspaces were the so–called Krylov subspaces, which are

related to the reduced rank Wiener filter. As it was experimentally verified, the proposed

algorithm served a good trade–off between the performance and the number of transmitted

coefficients.

7.2 Future Work

In this section, we point out possible directions and issues for future research.

• Throughout this dissertation, we considered that the measurements, through which

the unknown vector is estimated, are related via the linear system. Nevertheless, in

several applications, such as satellite, mobile communications, high definition TV, just

to name a few, a nonlinear behavior is observed. To this end, the generalization of the

algorithms presented here in scenarios where the input and the output are related via

an unknown nonlinear function, can be investigated.
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• In sparsity–aware learning one seeks for an unknown vector, which has a small number

of non–zero coefficients. Hence, low complexity schemes, whose complexity is of the

order of the number of non–zero coefficients, instead of the full dimensionality, can

be developed. Such techniques can also reduce the number of transmitted coefficients

and, henceforth, the bandwidth of the network.

• The algorithm of Chapter 6 employed the Krylov subspace rationale for dimension-

ality reduction, which reduced the number of transmitted coefficients. Reduced rank

techniques of lower complexity can be developed. To this direction, sophisticated tech-

niques for subspace tracking, proposed in the literature, can be combined with adaptive

learning techniques so as to seek for the unknown vector (using the adaptive algorithms)

within a lower dimension subspace, which will be estimated via the subspace learning

procedure. Through this methodology, fewer coefficients will be transmitted.

• A problem of great importance and interest in distributed learning is to develop decen-

tralized classification and clustering algorithms. The proposed APSM based algorithms

can be modified so as to minimize properly chosen cost functions, which will be suitable

for supervised/unsupervised learning. The resulting algorithms can of relatively low

complexity and suitable for online learning and general enough to cope with several

learning scenarios.
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List of Abbreviations

• APSM: Adaptive Projected Subgradient Method

• dB: decibel

• DCT: Discrete Cosine Transformation

• EMSE: Excess Mean Square Error

• i.i.d.: Independent and Identically Distributed

• Lasso: Least Absolute Shrinkage and Selection Operator

• LMS: Least Mean Squares

• LS: Least Squares

• MSD: Mean Square Deviation

• MSE: Mean Square Error

• PCA: Principal Component Analysis

• POCS: Projections Onto Convex Sets

• RLS: Recursive Least Squares

• WSN: Wireless Sensor Network
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List of symbols

• wT Transpose of a vector

• AT Transpose of a matrix

• ⊗ Kronecker Product

• ∥w∥ Euclidean Norm

• ∥w∥1 ℓ1 Norm

• ∥w∥0 ℓ0 Norm

• ∥w∥A Weighted Norm

• |S| Cardinallity of the set S

• supp(·) Support set of a vector

• ⟨·, ·⟩ Inner Product

• ⟨·, ·⟩A Weighted Inner Product

• I Identity Mapping

• Im m×m Identity Matrix.

• INm Nm×Nm Identity Matrix.

• 0m m× 1 Zero Vector.

• 0Nm Nm× 1 Zero Vector.

• 1m m× 1 Ones Vector.
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• 1Nm Nm× 1 Ones Vector.

• R Set of All Real Numbers

• Z Set of All Integers Numbers
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